JPH05271857A - High tensile strength steel sheet and its production - Google Patents

High tensile strength steel sheet and its production

Info

Publication number
JPH05271857A
JPH05271857A JP9885992A JP9885992A JPH05271857A JP H05271857 A JPH05271857 A JP H05271857A JP 9885992 A JP9885992 A JP 9885992A JP 9885992 A JP9885992 A JP 9885992A JP H05271857 A JPH05271857 A JP H05271857A
Authority
JP
Japan
Prior art keywords
less
steel sheet
content
ductility
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9885992A
Other languages
Japanese (ja)
Other versions
JP2962038B2 (en
Inventor
Naomitsu Mizui
直光 水井
Tomoki Fukagawa
智機 深川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9885992A priority Critical patent/JP2962038B2/en
Publication of JPH05271857A publication Critical patent/JPH05271857A/en
Application granted granted Critical
Publication of JP2962038B2 publication Critical patent/JP2962038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high tensile strength steel sheet excellent in workability, corrosion resistance, and surface treatability. CONSTITUTION:The steel sheet has a composition which contains 0.05-0.3% C, <=2% Si, 0.05-4.0% Mn, <=0.1% P, <=0.1% S, 0.1-2% Cu in the range not lower than Si(%)/5, 0.1-2% Al, <=0.01% N, and Ni by the amount not lower than Cu(%)/3 (Ni is not needed when Cu is =0.5%) and satisfies [Si(%)+Al(%)>=0.5] and [Mn(%)+Ni(%)>=0.5]. Further, this steel sheet has a structure containing retained austenite by >=5% by volume ratio. This steel sheet can b< produced by subjecting a slab of a steel with the above composition to hot rolling, to coiling at 300-720 deg.C, to descaling treatment, and to cold rolling at 30-80% draft and then subjecting the resulting steel sheet to heating up to a temp. in the region between the Ac1 transformation point and the Ac3 transformation point in the subsequent continuous annealing or continuous hot-dip galvanizing stage and to holding, in the course of cooling, at a temp. in the range between 550 and 350 deg.C for >=30sec or to slow cooling through the temp. region at <=100 deg.C/min cooling rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】この発明は、プレス加工や伸びフランジ加
工等により様々な形状に成形される構造部材として好適
な、延性,耐食性及び表面処理性の優れた高張力薄鋼板
並びにその製造方法に関する。
The present invention relates to a high-strength thin steel sheet having excellent ductility, corrosion resistance and surface treatment property, which is suitable as a structural member formed into various shapes by press working, stretch flange working, etc., and a method for producing the same.

【0002】[0002]

【従来技術とその課題】近年、各種機械・装置類には高
性能化と同時に軽量化が強く推進されており、これを受
けて適用される鋼板の高強度化技術が数多く開発されて
きたが、一般に鋼板の高強度化は延性の劣化を伴うた
め、良好な加工性と高強度を兼ね備えた鋼板の製造は非
常に困難であるとされていた。
2. Description of the Related Art In recent years, various machines and devices have been strongly promoted to have higher performance and lighter weight. In response to this, many technologies for strengthening steel plates have been developed. Generally, it is said that it is very difficult to manufacture a steel sheet having both good workability and high strength, since increasing the strength of the steel sheet causes deterioration of ductility.

【0003】ところが、最近、「SiとMnを複合添加した
低炭素鋼板を2相域焼鈍の後350〜550℃まで急冷
し、 その温度域で短時間保持するか階段状の冷却を行う
かしてオ−ステナイトを一部べイナイトに変態させ最終
的に〔フェライト+ベイナイト+残留オ−ステナイト〕
から成る組織としたものは、 加工時の変形中に残留オ−
ステナイトが歪誘起変態を起こして大きな伸びを示す」
との現象が見出されて以来、この現象を利用して高延性
高張力鋼板を製造しようとの試みもなされるようになっ
た。
However, recently, "a low-carbon steel sheet to which Si and Mn are added in combination is rapidly cooled to 350 to 550 ° C. after annealing in a two-phase region, and is held in that temperature region for a short time or is cooled stepwise. And partially transform austenite into bainite, and finally [ferrite + bainite + residual austenite]
The structure consisting of
Stenite undergoes strain-induced transformation and shows a large elongation. "
Since the discovery of this phenomenon, attempts have also been made to manufacture high ductility and high strength steel sheets by utilizing this phenomenon.

【0004】例えば、特開昭61−157625号公報
には、 0.4〜 1.8%のSi(以降、 成分割合を表わす%は
重量%とする)と 0.2〜 2.5%のMnのほか、必要により
適量のP,Ni,Cu,Cr,Ti,Nb,V,及びMoの1種又は
2種以上を含む鋼板を〔フェライト+オ−ステナイト〕
2相域に加熱した後、冷却途中の500〜350℃の温
度域で30秒〜30分間保持することで前記混合組織を
実現し、高延性を示す高張力鋼板とする方法が開示され
ている。
For example, in Japanese Patent Laid-Open No. 61-157625, there is 0.4 to 1.8% Si (hereinafter,% representing the component ratio is% by weight) and 0.2 to 2.5% Mn, and if necessary, an appropriate amount. A steel sheet containing one or more of P, Ni, Cu, Cr, Ti, Nb, V, and Mo [ferrite + austenite]
After heating to the two-phase region, a method for producing a high-tensile steel sheet exhibiting high ductility by realizing the mixed structure by maintaining the temperature region of 500 to 350 ° C during cooling for 30 seconds to 30 minutes is disclosed. ..

【0005】また、特公昭62−35461号公報に
は、高延性を示す高張力鋼板の製造法として、 0.7〜
2.0%のSiと 0.5〜 2.0%のMnを含有する鋼板を焼鈍過
程で〔フェライト+オ−ステナイト〕2相域に加熱した
後、冷却過程の650〜450℃間にて合計10〜50
秒の定温保持を行い、マルテンサイト或いはベイナイト
中に体積率で10%以上のフェライトと残留オ−ステナ
イトを含む混合組織鋼板とする方法が開示されている。
Further, Japanese Patent Publication No. 62-35461 discloses a method for producing a high-strength steel sheet exhibiting high ductility.
After heating a steel sheet containing 2.0% Si and 0.5 to 2.0% Mn to the [ferrite + austenite] two-phase region in the annealing process, a total of 10 to 50 was applied between 650 and 450 ° C in the cooling process.
A method is disclosed in which a steel sheet having a mixed structure containing 10% or more by volume of ferrite and retained austenite is contained in martensite or bainite by maintaining a constant temperature for 2 seconds.

【0006】しかし、実際には、上記のような混合組織
を有する鋼板は引張試験において良好な延性を示したと
しても一般にプレス加工時等の成形性については必ずし
も良好とは言えず、加工用鋼板として十分に満足できる
ものではなかった。例えば、前記混合組織鋼板を加工す
ると、変形後期では大部分の残留オ−ステナイトが歪誘
起変態して高炭素マルテンサイトに変化してしまってい
るので局部延性が極めて悪い状態となる。この現象は
“穴拡げ”のような伸びフランジ加工の場合に顕著に現
れ、そのため該混合組織鋼板の穴拡げ性は従来の低炭素
鋼板のそれよりも劣った結果となる。これは、打ち抜き
により穴開け加工を行った際、歪誘起変態で生成した高
炭素マルテンサイトが非常に硬質なためにクラックが生
じ、このクラックがその後の穴拡げ時に拡大・伝播する
ためであると考えられている。
However, in practice, a steel sheet having the above-described mixed structure generally cannot be said to have good formability at the time of press working even if it shows good ductility in a tensile test. I was not completely satisfied with it. For example, when the mixed structure steel sheet is processed, most of the retained austenite has undergone strain-induced transformation into high carbon martensite in the latter stage of deformation, resulting in extremely poor local ductility. This phenomenon remarkably appears in the case of stretch flanging such as "hole expansion", so that the hole expandability of the steel sheet having the mixed structure is inferior to that of the conventional low carbon steel sheet. This is because when performing punching by punching, cracks occur because the high carbon martensite generated by strain-induced transformation is extremely hard, and this crack expands and propagates during subsequent hole expansion. It is considered.

【0007】また、既知の前記混合組織鋼板の製造技術
では強度レベルを変化させるためには鋼中C濃度を変化
させる必要があるが、鋼中C濃度を低下させると最終製
品中の残留オ−ステナイトの体積率が低下することとな
り、そのため“強度の比較的低い領域で残留オ−ステナ
イトを多量に含有し高延性を示す冷延鋼板”を製造する
ことは困難であった。
Further, in the known manufacturing technique for a steel sheet having a mixed structure, it is necessary to change the C concentration in the steel in order to change the strength level. Since the volume ratio of the austenite decreases, it has been difficult to produce "a cold-rolled steel sheet containing a large amount of retained austenite in a relatively low strength region and exhibiting high ductility".

【0008】更に、鋼板へのSi添加量が多量になると、
熱延工程のスラブ加熱時にSiO2 とFeOが共晶反応を起
こして低融点のスケ−ルが不均一に生じ、酸洗後の熱延
板の表面に凹凸が生じる。この凹凸は冷延により若干軽
減されるが、それでも最終製品にまで残って外観劣化の
原因となった。
Further, when the amount of Si added to the steel sheet becomes large,
During heating of the slab in the hot rolling process, SiO 2 and FeO undergo a eutectic reaction to cause non-uniform scaling of the low melting point, resulting in unevenness on the surface of the hot rolled sheet after pickling. Although these irregularities were slightly reduced by cold rolling, they still remained in the final product, causing deterioration in appearance.

【0009】その上、変態組織強化した鋼板の場合に
は、一般にその耐食性が固溶強化した鋼板に比べて劣る
という問題もあった。この問題は、腐食電位の異なる複
数の組織から成る複合組織鋼板では所謂“局部電池”が
形成されやすく、これが腐食に結びつくことに起因して
生じるものと考えられる。しかも、最近では、これら鋼
板の表面処理性(めっき処理性等)に対しても厳しい要
求がなされるようにもなってきた。
Further, in the case of a steel sheet having a transformation structure strengthened, there is also a problem that its corrosion resistance is generally inferior to that of a solid solution strengthened steel sheet. This problem is considered to occur because a so-called "local battery" is likely to be formed in a steel sheet having a composite structure composed of a plurality of structures having different corrosion potentials, and this is associated with corrosion. Moreover, recently, strict requirements have come to be made on the surface treatability (plating treatability, etc.) of these steel sheets.

【0010】このようなことから、本発明が目的とした
のは、延性を始めとした加工性に優れ、しかもC含有量
の大きな変化なしに強度レベル調整が行えるところの、
耐食性,外観,表面処理性の良好な高張力鋼板を安定提
供できる手段を確立することであった。
From the above, the object of the present invention is that the workability including ductility is excellent, and the strength level can be adjusted without a large change in the C content.
The aim was to establish means for stably providing high-strength steel sheets with good corrosion resistance, appearance, and surface treatment.

【0011】[0011]

【課題を解決するための手段】そこで、本発明者は上記
目的を達成すべく鋭意研究を重ねたところ、次のような
知見を得ることができた。 (A) 0.15%C-1.5%Mnの組成を標準組成とした連続焼
鈍鋼板のオ−ステナイト残留量に及ぼすSi及びAlの影響
を調査した結果が次のことを示す。 a) 添加量が同等であれば、Si及びAlの何れを添加した
鋼板においてもほゞ同体積率の残留オ−ステナイトが得
られる, b) Alを添加した鋼板の方が全伸びはSi添加鋼板よりも
若干小さいものの、全伸びから均一伸びを差し引いた局
部伸びは逆に大きく、穴拡げ性に関しては良好な性能を
有する。これは、Alを添加した鋼板では残留オ−ステナ
イトが安定なため高歪域に達するまで歪誘起変態を起こ
しにくく、大きな変形域に至ってから変態するためであ
ると考えられる。なお、このような差が生じる原因は不
明であるが、残留オ−ステナイトの分布形態が変化する
ためと推定される。
Therefore, the inventors of the present invention have made extensive studies in order to achieve the above object, and have been able to obtain the following findings. (A) The results of investigating the effects of Si and Al on the amount of retained austenite in a continuous annealed steel sheet having a standard composition of 0.15% C-1.5% Mn are shown below. a) Retained austenite of approximately the same volume ratio can be obtained in steel sheets to which both Si and Al are added if the addition amounts are the same.b) The total elongation of steel sheets to which Al is added is Si-added. Although it is slightly smaller than the steel sheet, the local elongation obtained by subtracting the uniform elongation from the total elongation is conversely large, and it has good performance in terms of hole expandability. It is considered that this is because, in the steel sheet to which Al is added, the retained austenite is stable, and thus strain-induced transformation is unlikely to occur until the high strain region is reached, and the transformation is performed after reaching the large deformation region. Although the cause of such a difference is unknown, it is presumed that the distribution form of retained austenite changes.

【0012】(B) この場合、鋼板中C濃度並びに〔Si
+Al〕の合計含有量を変えなくても、Si(%) とAl(%) の
バランスを変化させることにより同じ残留オ−ステナイ
ト体積率のままで鋼板の引張強度を任意に変化させるこ
とが可能である。
(B) In this case, the C concentration in the steel sheet and [Si
+ Al], the tensile strength of the steel sheet can be arbitrarily changed by changing the balance of Si (%) and Al (%) without changing the total content. Is.

【0013】(C) 更に、残留オ−ステナイトを確保す
るための成分としてAlの積極添加を行いSi量を低減する
と熱延鋼板段階で平滑な表面状態が確保され、最終製品
での外観劣化を招くことも無くなる。
(C) Furthermore, if Al is positively added as a component for securing retained austenite and the amount of Si is reduced, a smooth surface state is secured at the stage of hot-rolled steel sheet, and deterioration of appearance in the final product is prevented. No more inviting.

【0014】(D) また、0.15%C-1.5%Si-1.5%Mnの
組成を標準組成とした鋼にCuを添加すると、次の効果が
認められる。 a) 熱延過程のスラブ加熱時に発生する高Siスケ−ルの
除去性が向上する(これは、 “加熱時に酸化されてスケ
−ルとなるスラブ表層”中に含まれているCuが酸化され
ずにスケ−ルと地鉄の界面に濃化し、 スケ−ルの剥離性
が良くなるためと考えられる), b) 表面処理を行わずに冷延鋼板として使用する場合の
耐食性が向上する(これは、 上記Cu濃化層が鋼板表面の
耐食性向上に寄与するためであると考えられる), c) 該組成の鋼板を連続溶融亜鉛めっきラインでめっき
する場合に、めっきの濡れ性及び合金化処理性が向上す
る(これも上記Cu濃化層の作用であると考えられる)。
(D) When Cu is added to steel having a standard composition of 0.15% C-1.5% Si-1.5% Mn, the following effects are observed. a) Removability of high Si scale generated during slab heating during hot rolling process is improved (This is because Cu contained in “slab surface layer that is oxidized during heating to scale” is oxidized. It is thought that this is because the scale peels off at the interface between the scale and the base metal, improving the peelability of the scale.), B) Corrosion resistance when used as a cold-rolled steel sheet without surface treatment ( This is considered to be because the Cu concentrated layer contributes to improving the corrosion resistance of the steel sheet surface), c) when the steel sheet of the composition is plated by a continuous hot dip galvanizing line, the wettability and alloying of the plating The processability is improved (this is also considered to be the action of the Cu-enriched layer).

【0015】(E) そして、上記Al,Si添加鋼にCuを含
有させて特性改善を図った鋼から冷延焼鈍板を製造する
場合、熱延巻取り温度や焼鈍条件に工夫を凝らすことに
よって延性に好都合な残留オ−ステナイト量の確保が一
段と容易になり、延性を始めとする加工性や耐食性,表
面処理性に優れた高強度鋼板の製造性が非常に安定化す
ること。
(E) When a cold-rolled annealed sheet is manufactured from a steel whose properties have been improved by adding Cu to the Al- and Si-added steel, by carefully devising the hot-rolling winding temperature and the annealing conditions, It is much easier to secure the amount of retained austenite favoring ductility, and the productivity of high-strength steel sheets with excellent ductility and other workability, corrosion resistance, and surface treatment is greatly stabilized.

【0016】本発明は、上記知見事項等を基にして完成
されたものであり、「薄鋼板を、 C,Si,Mn,P,S,
Cu,Al及びNの含有量が C:0.05〜 0.3%, Si: 2.0%以下, Mn: 0.5
〜 4.0%, P: 0.1%以下, S: 0.1%以下, Cu: 0.1〜 2.0%の範囲でかつSi(%)/5以上, Al: 0.1〜 2.0%, N:0.01%以下 で、 しかも Si(%)+Al(%) ≧ 0.5 を満足し残部がFe及び不可避的不純物から成る成分組
成、 或いは、 Niを添加してCu含有量の範囲を拡げたとこ
ろの C:0.05〜 0.3%, Si: 2.0%以下, Mn:0.05
〜 4.0%, P: 0.1%以下, S: 0.1%以下, Cu: 0.1〜 2.0%の範囲でかつSi(%)/5以上, Al: 0.1〜 2.0%, N:0.01%以下, Ni:Cu
(%)/3以上 を含むと共に、 Si(%)+Al(%) ≧ 0.5, Mn(%)+Ni(%) ≧ 0.5 を満足し残部がFe及び不可避的不純物から成る成分組成
であって、 しかも体積率にて5%以上の残留オ−ステナ
イトを含んだ組織を有して成る構成とすることにより、
高強度と優れた延性,耐食性,表面処理性を兼備せしめ
た点」を特徴としており、更には、「C,Si,Mn,P,
S,Cu,Ni,Al及びNの含有量が C:0.05〜 0.3%, Si: 2.0%以下, Mn:0.05
〜 4.0%, P: 0.1%以下, S: 0.1%以下, Cu: 0.1〜 2.0%の範囲でかつSi(%)/5以上, Al: 0.1〜 2.0%, N:0.01%以下, Ni:Cu(%)/3以上(但しCuが 0.5%以下の場合は含まな
くても良い) で、しかも Si(%)+Al(%) ≧ 0.5, Mn(%)+Ni(%) ≧ 0.5 を満足すると共に残部がFe及び不可避的不純物から成る
成分組成の鋼片を熱間圧延後300〜720℃で巻取
り、次いで脱スケ−ル処理後に圧下率:30〜80%で
冷間圧延してから、その後の連続焼鈍又は連続溶融亜鉛
めっき工程においてAc1変態点以上Ac3変態点以下の温
度域に加熱し、かつその冷却の途中で550〜350℃
の温度域に30秒以上保持するか該温度域を100℃/m
in以下の冷却速度で徐冷することにより、 体積率にて5
%以上の残留オ−ステナイトを含んでいて高強度と優れ
た延性,耐食性,表面処理性を兼備した高張力薄鋼板を
安定製造できるようにした点」をも大きな特徴とするも
のである。
The present invention has been completed on the basis of the above findings and the like. "A thin steel plate is made of C, Si, Mn, P, S,
Content of Cu, Al and N: C: 0.05-0.3%, Si: 2.0% or less, Mn: 0.5
~ 4.0%, P: 0.1% or less, S: 0.1% or less, Cu: 0.1 to 2.0% and Si (%) / 5 or more, Al: 0.1 to 2.0%, N: 0.01% or less, and Si (%) + Al (%) ≥ 0.5 and the balance is a component composition consisting of Fe and unavoidable impurities, or when the range of Cu content is expanded by adding Ni: C: 0.05 to 0.3%, Si: 2.0% or less, Mn: 0.05
~ 4.0%, P: 0.1% or less, S: 0.1% or less, Cu: 0.1 to 2.0% and Si (%) / 5 or more, Al: 0.1 to 2.0%, N: 0.01% or less, Ni: Cu
(%) / 3 or more, and the composition is Si (%) + Al (%) ≧ 0.5, Mn (%) + Ni (%) ≧ 0.5, and the balance is Fe and inevitable impurities. By having a structure having a residual austenite content of 5% or more in terms of volume ratio,
It features high strength and excellent ductility, corrosion resistance, and surface treatment. "Furthermore," C, Si, Mn, P,
Content of S, Cu, Ni, Al and N is C: 0.05-0.3%, Si: 2.0% or less, Mn: 0.05
~ 4.0%, P: 0.1% or less, S: 0.1% or less, Cu: 0.1 to 2.0% and Si (%) / 5 or more, Al: 0.1 to 2.0%, N: 0.01% or less, Ni: Cu (%) / 3 or more (however, it does not have to be included when Cu is 0.5% or less), and Si (%) + Al (%) ≧ 0.5 and Mn (%) + Ni (%) ≧ 0.5 are satisfied. A steel slab having a composition with the balance being Fe and unavoidable impurities is hot-rolled, wound at 300 to 720 ° C., then descaled, cold-rolled at a rolling reduction of 30 to 80%, and thereafter. In the continuous annealing or continuous hot dip galvanizing process, heating to a temperature range from the Ac 1 transformation point to the Ac 3 transformation point and below, and 550 to 350 ° C during cooling.
Hold for 30 seconds or more in the temperature range of 100 ℃ / m
By gradually cooling at a cooling rate of in or less, the volume ratio is 5
% Or more of retained austenite and having a high strength and excellent ductility, corrosion resistance, and surface treatment, it is possible to stably manufacture a high-strength thin steel sheet ”.

【0017】以下、本発明において、鋼板(鋼片)の成
分組成並びに鋼板の製造条件を前記の如くに限定した理
由をその作用と共に説明する。
In the following, the reason why the composition of the steel sheet (steel slab) and the manufacturing conditions of the steel sheet are limited as described above in the present invention will be explained together with its action.

【作用】[Action]

A) 成分組成 Cは最も強力なオ−ステナイト安定化元素であり、室温
においてオ−ステナイトを安定化するためにはオ−ステ
ナイト中に1%以上のCが含有されることが必要である
が、焼鈍のヒ−トサイクルを選ぶことにより0.05%以上
の含有量で十分なオ−ステナイト安定化効果を確保する
ことができる。そして、より多量のCを添加することに
より一層強度の高い高張力冷延鋼板を製造できるが 0.3
%を超える含有量になると鋼板が硬くなり過ぎ、通常の
製板工程では薄鋼板に加工することができなくなる。従
って、C含有量は0.05〜 0.3%と限定したが、好ましく
は0.1 〜 0.2%に調整するのが良い。
A) Component composition C C is the most powerful austenite stabilizing element, and it is necessary that 1% or more of C is contained in austenite in order to stabilize austenite at room temperature. However, by selecting the heat cycle of annealing, it is possible to secure a sufficient austenite stabilizing effect with a content of 0.05% or more. Then, by adding a larger amount of C, a high-strength high-strength cold-rolled steel sheet can be manufactured.
If the content exceeds%, the steel plate becomes too hard, and it becomes impossible to process it into a thin steel plate in a normal plate-making process. Therefore, although the C content is limited to 0.05 to 0.3%, it is preferably adjusted to 0.1 to 0.2%.

【0018】Si Siはフェライト安定化元素で、2相域焼鈍時のフェライ
トの体積率を増加させて平衡するオ−ステナイト相のC
濃度を高める作用を有している。また、これと共にSiは
フェライトを強化する作用をも有している。しかしなが
ら、 2.0%を超えてSiを含有させるとSi添加鋼板特有の
高Siスケ−ルによる表面品質の劣化が著しく生じるの
で、Si含有量は 2.0%以下と定めた。なお、Siの含有量
は同じフェライト安定化元素であるAlとの関係で制御し
なければならず、上記作用に所望の効果を得るためには
[Si(%)+Al(%)]の値が 0.5以上となるように調整する必
要がある。
Si Si is a ferrite stabilizing element, and increases the volume fraction of ferrite during annealing in the two-phase region to equilibrate with C in the austenite phase.
It has the effect of increasing the concentration. At the same time, Si also has a function of strengthening ferrite. However, if the Si content exceeds 2.0%, the high Si scale peculiar to the Si-added steel sheet significantly deteriorates the surface quality, so the Si content was set to 2.0% or less. The content of Si must be controlled in relation to Al, which is the same ferrite stabilizing element, and in order to obtain the desired effect on the above action.
It is necessary to adjust the value of [Si (%) + Al (%)] to be 0.5 or more.

【0019】Mn Mnはオ−ステナイト安定化元素であり、この観点からす
るとMn含有量は同様の作用を有するNi(必要に応じて添
加される)の含有量との合計量にて規制され、[Mn(%)+
Ni(%)]の値が 0.5以上になるように調整する必要があ
る。即ち、[Mn(%)+Ni(%)]の値が 0.5未満ではオ−ステ
ナイトが安定化されない。ただ、Mn含有量が 4.0%を超
えると鋼板が硬くなりすぎて延性面で十分な性能が得ら
れない恐れがあるため、Mn含有量の上限は 4.0%に抑え
た。
Mn Mn is an austenite-stabilizing element, and from this viewpoint, the Mn content is regulated by the total amount with the content of Ni (added as necessary) having a similar action, [Mn (%) +
It is necessary to adjust the value of Ni (%)] to be 0.5 or more. That is, if the value of [Mn (%) + Ni (%)] is less than 0.5, austenite is not stabilized. However, if the Mn content exceeds 4.0%, the steel plate may become too hard and sufficient ductility may not be obtained, so the upper limit of the Mn content was limited to 4.0%.

【0020】 Pは不純物として鋼中に不可避的に含有される元素であ
って、出来るだけ低い方が好ましい。特に、 0.1%を超
えて含有されると鋼板の延性劣化が顕著化することか
ら、P含有量は 0.1%以下と定めた。
P P is an element inevitably contained in steel as an impurity, and it is preferable that P P is as low as possible. In particular, if the content of P exceeds 0.1%, the ductility deterioration of the steel sheet becomes remarkable, so the P content was set to 0.1% or less.

【0021】 Sも不純物として鋼中に不可避的に含有される元素であ
って、やはり低い方が好ましい。特に、 0.1%を超えて
含有されるとMnSの析出量が目立つようになり鋼板の延
性を阻害するのみならず、オ−ステナイト安定化元素と
して添加されるMnを前記析出物として消費することか
ら、S含有量は 0.1%以下と定めた。
S S is also an element that is unavoidably contained in steel as an impurity, and it is preferable that S S is also lower. In particular, if the content of MnS exceeds 0.1%, the precipitation amount of MnS becomes conspicuous, which not only hinders the ductility of the steel sheet, but also consumes Mn added as an austenite stabilizing element as the precipitate. , S content was set to 0.1% or less.

【0022】Al 前述した如く、AlはSiと同様にフェライト安定化元素で
あって、2相域焼鈍時のフェライトの体積率を増加させ
ることにより平衡するオ−ステナイト相のC濃度を高め
る作用を有している。しかし、Siと比べてオ−ステナイ
トを安定化する作用が強く、 0.1%以上の含有量が確保
されると鋼板の局部延性を向上させる効果が得られる。
一方、Al含有量が 2.0%を超えると鋼板中に介在物が多
くなって延性低下を招く。従って、Al含有量は 0.1〜
2.0%と定めたが、フェライト安定化元素としての所望
効果を確保するためにはSiと共に[Si(%)+Al(%)]の値が
0.5以上となるように調整する必要がある。なお、図1
は本発明鋼板に係わるSi及びAlの含有量範囲を図示した
グラフである。
Al As described above, Al is a ferrite stabilizing element like Si, and has an effect of increasing the C concentration of the equilibrium austenite phase by increasing the volume fraction of ferrite during the two-phase region annealing. Have However, it has a stronger effect of stabilizing austenite than Si, and if a content of 0.1% or more is secured, the effect of improving the local ductility of the steel sheet can be obtained.
On the other hand, when the Al content exceeds 2.0%, inclusions increase in the steel sheet and ductility decreases. Therefore, the Al content is 0.1 ~
Although it was set to 2.0%, in order to secure the desired effect as a ferrite stabilizing element, the value of [Si (%) + Al (%)] along with Si should be
It is necessary to adjust it to be 0.5 or more. Note that FIG.
3 is a graph showing the Si and Al content ranges of the steel sheet of the present invention.

【0023】Cu Cuは、 「熱延工程にてスラブに形成された高Siスケ−ル
の除去性向上」, 「表面処理を行わずに冷延鋼板として使
用する場合の耐食性向上」, 「連続溶融亜鉛めっきライン
にてめっきを施す場合のめっきの濡れ性及び合金化処理
性の向上」 を目的として添加されるが、その含有量が
0.1%未満或いはSi(%)/5を下回るとこれらの効果が十
分でなく、一方、 2.0%を超えて多量に含有させると、
原因は不明であるが、残留オ−ステナイトの積層欠陥エ
ネルギ−が下がり過ぎるために歪誘起変態を起こさなく
なり、このため延性が著しく低下する。従って、Cu含有
量は0.1 〜2.0 %の範囲であって、かつSi(%)/5以上の
量と定めた。なお、図2は本発明鋼板に係わるSi及びCu
の含有量範囲を図示したグラフである。
Cu Cu is used for “improving the removability of high Si scale formed on a slab in the hot rolling process”, “improving corrosion resistance when used as a cold rolled steel sheet without surface treatment”, and “continuous It is added for the purpose of "improving the wettability of the plating and the alloying processability when plating is performed on a hot-dip galvanizing line.
If less than 0.1% or less than Si (%) / 5, these effects are not sufficient, while if more than 2.0% is contained in a large amount,
Although the cause is unknown, the stacking fault energy of the retained austenite is too low to prevent the strain-induced transformation, resulting in a marked decrease in ductility. Therefore, the Cu content is determined to be in the range of 0.1 to 2.0% and Si (%) / 5 or more. In addition, FIG. 2 shows Si and Cu related to the steel sheet of the present invention.
5 is a graph illustrating a content range of.

【0024】Ni 鋼中に0.5 %を超える量のCuを含有させると、そのスラ
ブの加熱中に亀裂割れと呼ばれる欠陥が表面に生じる。
その原因は、Cuを多く含む低融点の合金相がオ−ステナ
イト粒界に生じることにあるが、Niには、融点を高めて
この欠陥の発生を抑制する作用がある。Niの上記作用に
所望の効果を得るためには、Cu(%)/3以上のNi含有量を
確保する必要があるが、Cuが 0.5%以下の場合には前記
亀裂割れの恐れが殆どないためNi添加を必ずしも必要と
しない。ただ、前述したようにNiはオ−ステナイト安定
化元素であり、オ−ステナイトの安定化のためにはMnと
の合計量(Mn+Ni)が 0.5%以上となるように留意する
必要がある。即ち、[Mn(%)+Ni(%)]の値が 0.5未満では
オ−ステナイトが安定化されないことから、Mn含有量と
の兼ね合いで前記値が確保されるようにNi含有量の調整
がなされる。
When the Ni steel contains Cu in an amount of more than 0.5%, defects called crack cracks occur on the surface during heating of the slab.
The cause is that a low melting point alloy phase containing a large amount of Cu is generated in the austenite grain boundaries, but Ni has an action of increasing the melting point and suppressing the generation of this defect. In order to obtain the desired effect on the above action of Ni, it is necessary to secure a Ni content of Cu (%) / 3 or more, but when Cu is 0.5% or less, there is almost no possibility of crack cracking. Therefore, Ni addition is not always necessary. However, as described above, Ni is an austenite stabilizing element, and in order to stabilize austenite, it is necessary to pay attention so that the total amount of Mn (Mn + Ni) is 0.5% or more. That is, if the value of [Mn (%) + Ni (%)] is less than 0.5, austenite is not stabilized. Therefore, the Ni content is adjusted so as to secure the above value in consideration of the Mn content. It

【0025】 Nも不純物として鋼中に不可避的に含有される元素であ
り、その含有量は低い方が好ましい(現状の製鋼技術で
はC含有量の多い鋼でのN低減が非常に困難であり 0.0
01%程度に経済的限界値があるものの、 出来るだけ低い
方が良い)。特に、N含有量が0.01%を超えるとAlNと
して消費されるAlの量が多くAl添加の効果が小さくなる
と共に、AlNによる延性の劣化が目立つようになること
から、N含有量の上限を0.01%と定めた。
N 2 N is also an element that is unavoidably contained in steel as an impurity, and it is preferable that the content thereof be low (current steelmaking technology makes it very difficult to reduce N in steel having a large C content). Yes 0.0
Although there is an economic limit of about 01%, the lower the better. In particular, when the N content exceeds 0.01%, the amount of Al consumed as AlN is large and the effect of Al addition becomes small, and the deterioration of ductility due to AlN becomes conspicuous. Therefore, the upper limit of the N content is 0.01%. Defined as%.

【0026】B) 残留オ−ステナイトの体積率 最終製品としての本発明鋼板の延性は製品中に含まれる
残留オ−ステナイトの体積率に左右され、該体積率が5
%未満ではオ−ステナイトの歪誘起変態による延性の向
上は期待できない。なお、鋼板の延性は残留オ−ステナ
イトの増加に伴い向上するため、残留オ−ステナイトの
体積率は好ましくは10%以上とするのが良い。
B) Volume Ratio of Retained Austenite The ductility of the steel sheet of the present invention as a final product depends on the volume ratio of retained austenite contained in the product, and the volume ratio is 5%.
If it is less than%, improvement in ductility due to strain-induced transformation of austenite cannot be expected. Since the ductility of the steel sheet improves as the amount of retained austenite increases, the volume ratio of retained austenite is preferably 10% or more.

【0027】C) 製造条件熱延巻取り温度 本発明組成の鋼の場合は、低温で巻取ると焼きが入って
硬くなるためその後の酸洗等によるスケ−ル除去や冷間
圧延が困難になる。逆に、高温で巻取るとセメンタイト
が粗大化し軟質になって酸洗,冷間圧延が容易になる反
面、焼鈍の均熱時にセメンタイトの再固溶に時間がかか
りすぎ、十分なオ−ステナイトが残留しなくなる。その
ため、熱延後の巻取りは上記不都合が回避できる300
〜720℃で実施することと定めた。ただ、熱延鋼板は
出来るだけ酸洗,冷間圧延が容易であることが望まれる
ため、巻取り温度は550〜650℃で実施するのが好
ましいと言える。
C) Manufacturing conditions Hot rolling coiling temperature In the case of the steel of the composition of the present invention, when it is coiled at a low temperature, it is hardened by being hardened, so that it becomes difficult to remove the scale by subsequent pickling or to carry out cold rolling. Become. On the other hand, when coiled at a high temperature, the cementite becomes coarse and becomes soft, which facilitates pickling and cold rolling, but it takes too long to re-dissolve cementite during soaking during annealing, and sufficient austenite is formed. It will not remain. Therefore, winding after hot rolling can avoid the above-mentioned inconvenience.
It was decided to carry out at -720 degreeC. However, since it is desired that the hot-rolled steel sheet is as easy as possible to be pickled and cold-rolled, it can be said that the winding temperature is preferably 550 to 650 ° C.

【0028】冷間圧延圧下率 冷間圧延の圧下率が30%未満では、その後の焼鈍工程
において完全に再結晶が生じず延性が劣化する。一方、
80%を超える圧下率では圧延機に負荷がかかりすぎる
ため、冷間圧延時の圧下率を30〜80%と定めた。
Cold rolling reduction ratio If the reduction ratio of cold rolling is less than 30%, recrystallization does not occur completely in the subsequent annealing step and ductility deteriorates. on the other hand,
If the rolling reduction exceeds 80%, the rolling mill is overloaded, so the rolling reduction during cold rolling was set to 30 to 80%.

【0029】連続焼鈍条件 冷延鋼板の連続焼鈍では、まず〔フェライト+オ−ステ
ナイト〕の2相組織とするためにAc1変態点以上Ac3
態点以下の温度域に加熱が行われる。ただ、加熱温度が
低すぎるとセメンタイトが再固溶するのに時間がかかり
過ぎ、高すぎるとオ−ステナイトの体積率が大きくなり
過ぎてオ−ステナイト中のC濃度が低下することから、
800〜850℃で均熱することが望ましい。そして、
均熱後は、徐冷してフェライトを成長させオ−ステナイ
ト中のC濃度を高めるために、700℃までの冷却速度
を10℃/s以下とするのが望ましい。また、過時効処理
帯に入るまでの700℃を切る温度域では、オ−ステナ
イトのパ−ライト変態を抑制するために冷却速度は逆に
50℃/s以上とするのが望ましい。
Continuous Annealing Conditions In continuous annealing of a cold-rolled steel sheet, first, in order to form a two-phase structure of [ferrite + austenite], heating is performed in a temperature range from Ac 1 transformation point to Ac 3 transformation point. However, if the heating temperature is too low, it takes too long to re-dissolve cementite, and if it is too high, the volume ratio of austenite becomes too large and the C concentration in austenite decreases.
It is desirable to soak at 800 to 850 ° C. And
After soaking, in order to gradually cool and grow ferrite to increase the C concentration in austenite, it is desirable that the cooling rate up to 700 ° C. be 10 ° C./s or less. Further, in the temperature range below 700 ° C. before entering the overaging treatment zone, it is desirable that the cooling rate is conversely 50 ° C./s or more in order to suppress the pearlite transformation of austenite.

【0030】過時効処理帯では、550〜350℃の間
において30秒以上(好ましくは2分以上)の保持を行
うか、又は550〜350℃間を100℃/min以下の冷
却速度で徐冷し、オ−ステナイトをベイナイト変態させ
ながらオ−ステナイトへのCの濃縮を促進する必要があ
る。ここで、Cの濃縮促進を行う温度が550℃を上回
るとベイナイト変態が生じず、一方、350℃を下回る
と下部ベイナイとになってオ−ステナイトへのCの濃縮
が十分に起こらなくなる。好ましくは、400〜450
℃である。なお、過時効処理帯後の冷却速度は特に限定
する必要はない。更に、30秒以上に相当する長さの定
温保持帯のある連続溶融亜鉛めっきラインでも同様の焼
鈍が行えることは言うまでもない。そして、めっき処理
時における合金化処理は、最高加熱温度が600℃以下
であればベイナイト変態後に加熱されることになるので
格別な悪影響はない。
In the overaging treatment zone, it is held for 30 seconds or longer (preferably 2 minutes or longer) between 550 and 350 ° C, or is gradually cooled between 550 and 350 ° C at a cooling rate of 100 ° C / min or less. However, it is necessary to promote the concentration of C in austenite while transforming austenite into bainite. Here, if the temperature for promoting the concentration of C exceeds 550 ° C., bainite transformation does not occur, while if it falls below 350 ° C., it becomes a lower bainite and C is not sufficiently concentrated in austenite. Preferably 400-450
℃. The cooling rate after the overaging treatment zone does not have to be particularly limited. Further, it goes without saying that similar annealing can be performed even in a continuous hot-dip galvanizing line having a constant temperature holding zone of a length corresponding to 30 seconds or more. In the alloying treatment during the plating treatment, if the maximum heating temperature is 600 ° C. or lower, heating is performed after the bainite transformation, so there is no particular adverse effect.

【0031】続いて、本発明の効果を実施例によって更
に具体的に説明する。
Next, the effects of the present invention will be described more specifically by way of examples.

【実施例】実験用真空炉にて表1に示す各成分組成の鋼
を溶製し、これらを熱間鍛造により25mm厚の実験用ス
ラブとした。次に、該スラブを電気炉で1250℃に1
時間均熱した後、1150〜930℃の温度範囲で実験
用熱間圧延機により3パス圧延し、5mm厚の熱延板を得
た。そして、巻取りシュミレ−ションとして、鋼板は熱
延後直ちに強制空冷或いは水スプレ−冷却にて500℃
の温度まで冷却し、続いて該温度に保持した電気炉の中
に挿入して1時間保持した後、20℃/hr の冷却速度で
炉冷した。
EXAMPLE Steels having the respective compositional components shown in Table 1 were melted in an experimental vacuum furnace, and hot forged into 25 mm thick experimental slabs. Next, the slab is heated to 1250 ° C. in an electric furnace for 1 hour.
After soaking for an hour, it was rolled in a temperature range of 1150 to 930 ° C. for 3 passes by an experimental hot rolling mill to obtain a hot rolled sheet having a thickness of 5 mm. Then, as a coiling simulation, the steel sheet is subjected to forced air cooling or water spray cooling at 500 ° C. immediately after hot rolling.
It was cooled to the temperature of 1, and then inserted into an electric furnace maintained at the temperature and held for 1 hour, and then cooled at a cooling rate of 20 ° C./hr.

【0032】次いで、得られた熱延板を表面研削により
脱スケ−ルして 3.2mm厚の冷延母材とし、これを 1.4mm
厚まで冷間圧延した。得られた冷延板は、連続焼鈍シュ
ミレ−ションとして、赤外線加熱炉にて10℃/sで82
0℃まで加熱し、その温度に40秒間保持してから70
0℃まで3℃/sの冷却速度で徐冷し、その後は50℃/s
の冷却速度で400℃まで冷却し、その温度で3分保持
した。
The hot-rolled sheet thus obtained was then descaled by surface grinding to obtain a cold-rolled base metal having a thickness of 3.2 mm, which was 1.4 mm.
Cold rolled to thickness. The cold-rolled sheet thus obtained was subjected to continuous annealing simulation in an infrared heating furnace at 10 ° C./s for 82 ° C.
Heat to 0 ° C, hold at that temperature for 40 seconds, then 70
Gradually cool to 0 ℃ at a cooling rate of 3 ℃ / s, then 50 ℃ / s
It was cooled to 400 ° C. at the cooling rate of, and held at that temperature for 3 minutes.

【0033】これらの処理において、まず、熱延鋼板段
階で酸洗肌の表面粗度の測定、及び表面並びに端部にお
ける割れの有無の確認を行った。次に、焼鈍後の鋼板か
らJIS5号引張試験片を採取して引張試験に供すると
共に、穴拡げ試験,湿箱サイクル腐食試験をも実施し
た。
In these treatments, first, the surface roughness of pickled skin was measured at the hot rolled steel sheet stage, and the presence or absence of cracks on the surface and edges was checked. Next, a JIS No. 5 tensile test piece was sampled from the annealed steel sheet and subjected to a tensile test, and a hole expansion test and a wet box cycle corrosion test were also performed.

【0034】穴拡げ試験は、焼鈍板を70mm角に切断
後、クリアランス0.1mm で直径10mmの穴を打ち抜いた
試験片について、内径36.5mmφのダイスを用いてしわ押
さえ力3トンで押さえた状態で33mmφのポンチを押し
込み、亀裂発生限界の穴直径を測定した。
In the hole expansion test, the annealed plate was cut into 70 mm square, and a hole having a diameter of 10 mm was punched out with a clearance of 0.1 mm. A 33 mmφ punch was pushed in and the hole diameter at the crack initiation limit was measured.

【0035】湿箱サイクル腐食試験は、週2回の塩水噴
霧を行いつつ大気中に3ケ月間暴露し、その際の腐食深
さを測定する手法によった。これらの結果を表2に示
す。
The wet box cycle corrosion test was carried out by a method of exposing to the atmosphere for 3 months while spraying salt water twice a week and measuring the corrosion depth at that time. The results are shown in Table 2.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】なお、鋼中のSiとAlの合計添加量を一定に
し、Alを0.07〜1.54%と変化させた試験番号3〜6に関
する加工性調査結果の一部を図3に、また鋼中のMn含有
量を変化させた試験番号8〜11に関する加工性調査結果
の一部をも図3に併せて、更にCu含有量を変化させた試
験番号11〜15の湿箱サイクルテストの結果を図4にそれ
ぞれ示す。
Incidentally, a part of the workability investigation results regarding test Nos. 3 to 6 in which the total addition amount of Si and Al in the steel was kept constant and Al was changed to 0.07 to 1.54% is shown in FIG. Fig. 3 shows a part of the workability investigation results regarding the test Nos. 8 to 11 in which the Mn content of No. 2 was changed, and the results of the wet box cycle test of Test Nos. 11 to 15 in which the Cu content was further changed. Each is shown in FIG.

【0039】表2及び図3に示される結果からは次のこ
とが分かる。即ち、本発明の規定値を下回る量のAlしか
添加されていない試験番号3に係わる鋼板は他の3種類
の鋼板に比べて限界穴拡げ率が小さく、Alの添加量が多
くなると全伸びが若干改善されると同時に、限界穴拡げ
率が向上する。しかし、Alの添加量が本発明の規定値を
上回った試験番号7に係わる鋼板では、ほぼ同じ強度レ
ベルの試験番号6に係わる鋼板に比べて全伸びが低くな
る。
The following can be seen from the results shown in Table 2 and FIG. That is, the steel sheet according to Test No. 3 in which only an amount of Al less than the specified value of the present invention was added had a smaller limiting hole expansion rate than the other three types of steel sheets, and the total elongation was increased when the amount of Al added was large. At the same time, the marginal hole expansion ratio is improved at the same time. However, in the steel sheet according to test number 7 in which the added amount of Al exceeds the specified value of the present invention, the total elongation is lower than that in the steel sheet according to test number 6 having substantially the same strength level.

【0040】また、試験番号8に係わる鋼板は、本発明
の規定値を下回る量しかオ−ステナイト安定化元素(Mn,
Ni)が添加されていないので焼きが入って〔フェライト
+マルテンサイト〕組織となっており、そのため限界穴
拡げ率が著しく低くなっている。これに対して、試験番
号11に係わる鋼板は、本発明の規定値を上回る量でMnが
添加されており、残留オ−ステナイトの量は十分である
が、安定性が著しく高いために応力誘起変態を起こさ
ず、全伸びが小さい。
Further, the steel sheets according to Test No. 8 contained only austenite stabilizing elements (Mn,
Since (Ni) is not added, it has been quenched and has a [ferrite + martensite] structure, so the marginal hole expansion ratio is extremely low. On the other hand, in the steel sheet according to Test No. 11, Mn was added in an amount exceeding the specified value of the present invention, and the amount of retained austenite was sufficient, but stress-induced stress was significantly high. Does not cause transformation and has a low total elongation.

【0041】一方、表2及び図4に示される結果からは
次のことが分かる。つまり、Cu添加量が増加すると、そ
の増加に伴って“湿箱サイクルテストによる腐食深さ”
が減少するが、試験番号15に係わる鋼板のようにNi添加
量が本発明の規定値を下回ると熱延板で割れが観察され
るようになる。
On the other hand, the following can be seen from the results shown in Table 2 and FIG. In other words, as the amount of Cu added increases, the "corrosion depth measured by the wet box cycle test" increases with the increase.
However, when the Ni addition amount is less than the specified value of the present invention as in the steel sheet according to Test No. 15, cracks are observed in the hot rolled sheet.

【0042】そして、試験番号16及び19の結果は、鋼中
のC含有量が本発明の規定範囲を外れると所望の強度或
いは延性が得られないこと示している。
The results of Test Nos. 16 and 19 show that the desired strength or ductility cannot be obtained when the C content in the steel is out of the specified range of the present invention.

【0043】このように、従来のフェライト安定化元素
としてSiを添加した“フェライト+ベイナイト+残留オ
−ステナイト鋼”の欠点であった穴拡げ性はAl添加によ
る局部延性の向上により著しく改善され、同時にCuを添
加することにより、延性,熱延鋼板の割れを損なうこと
なくSi添加鋼特有の熱延鋼板の表面粗度,耐食性を著し
く向上させることができる。
As described above, the hole expandability, which was a drawback of the conventional "ferrite + bainite + retained austenitic steel" in which Si was added as a ferrite stabilizing element, was remarkably improved by improving the local ductility by adding Al. By adding Cu at the same time, the surface roughness and corrosion resistance of the hot-rolled steel sheet peculiar to Si-added steel can be significantly improved without impairing the ductility and cracks of the hot-rolled steel sheet.

【0044】なお、これらの試験とは別に、本実施例で
製造された本発明に係わる冷延鋼板について連続溶融亜
鉛めっき試験を行ったところ、何れも良好なめっきの濡
れ性を示し、かつ合金化処理性も満足できるものである
ことが確認された。
Separately from these tests, a continuous hot-dip galvanizing test was performed on the cold-rolled steel sheet according to the present invention manufactured in this example. All of them showed good wettability of the plating, and the alloy It was confirmed that the chemical treatment was also satisfactory.

【0045】[0045]

【効果の総括】以上に説明した如く、この発明による
と、延性に優れ、良好な穴拡げ性等の加工性を示すと同
時に、優れた耐食性,表面処理性をも有した高張力薄鋼
板が安定して得られるなど、産業上極めて有用な効果が
もたらされる。
[Summary of Effects] As described above, according to the present invention, a high-strength thin steel sheet having excellent ductility and good workability such as hole expandability, and at the same time excellent corrosion resistance and surface treatment property is obtained. The effect is extremely useful in industry, such as stable production.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明鋼板に係わるSi及びAlの含有量範囲を図
示したグラフである。
FIG. 1 is a graph illustrating the content ranges of Si and Al related to the steel sheet of the present invention.

【図2】本発明鋼板に係わるSi及びCuの含有量範囲を図
示したグラフである。
FIG. 2 is a graph showing the Si and Cu content ranges of the steel sheet of the present invention.

【図3】実施例の結果を基に作成したところの、加工性
に及ぼすAl含有量,Mn含有量の影響を表したグラフであ
る。
FIG. 3 is a graph showing the effect of Al content and Mn content on workability, which was created based on the results of the examples.

【図4】実施例の結果を基に作成したところの、湿箱サ
イクルテストによる腐食深さに及ぼすCu含有量の影響を
表したグラフである。
FIG. 4 is a graph showing the effect of Cu content on the corrosion depth in a wet box cycle test, which was created based on the results of Examples.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 38/16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C,Si,Mn,P,S,Cu,Al及びNの含
有量が重量割合にて C:0.05〜 0.3%, Si: 2.0%以下, Mn: 0.5
〜 4.0%, P: 0.1%以下, S: 0.1%以下, Cu: 0.1〜 2.0%の範囲でかつSi(%)/5以上, Al: 0.1〜 2.0%, N:0.01%以下 で、しかも Si(%)+Al(%) ≧ 0.5 を満足すると共に残部がFe及び不可避的不純物から成る
成分組成であって、しかも体積率にて5%以上の残留オ
−ステナイトを含んだ組織を有して成ることを特徴とす
る、延性,耐食性及び表面処理性の優れた高張力薄鋼
板。
1. The content of C, Si, Mn, P, S, Cu, Al and N is C: 0.05 to 0.3% by weight, Si: 2.0% or less, Mn: 0.5.
~ 4.0%, P: 0.1% or less, S: 0.1% or less, Cu: 0.1 to 2.0% and Si (%) / 5 or more, Al: 0.1 to 2.0%, N: 0.01% or less, and Si (%) + Al (%) ≥ 0.5, the balance is a component composition consisting of Fe and unavoidable impurities, and has a structure containing residual austenite in a volume ratio of 5% or more. A high-strength thin steel sheet with excellent ductility, corrosion resistance, and surface treatment characteristics.
【請求項2】 C,Si,Mn,P,S,Cu,Ni,Al及びN
の含有量が重量割合にて C:0.05〜 0.3%, Si: 2.0%以下, Mn:0.05
〜 4.0%, P: 0.1%以下, S: 0.1%以下, Cu: 0.1〜 2.0%の範囲でかつSi(%)/5以上, Al: 0.1〜 2.0%, N:0.01%以下, Ni:Cu
(%)/3以上 で、しかも Si(%)+Al(%) ≧ 0.5, Mn(%)+Ni(%) ≧ 0.5 を満足すると共に残部がFe及び不可避的不純物から成る
成分組成であって、しかも体積率にて5%以上の残留オ
−ステナイトを含んだ組織を有して成ることを特徴とす
る、延性,耐食性及び表面処理性の優れた高張力薄鋼
板。
2. C, Si, Mn, P, S, Cu, Ni, Al and N
Content by weight C: 0.05-0.3%, Si: 2.0% or less, Mn: 0.05
~ 4.0%, P: 0.1% or less, S: 0.1% or less, Cu: 0.1 to 2.0% and Si (%) / 5 or more, Al: 0.1 to 2.0%, N: 0.01% or less, Ni: Cu
(%) / 3 or more, satisfying Si (%) + Al (%) ≧ 0.5, Mn (%) + Ni (%) ≧ 0.5, and the balance being Fe and inevitable impurities, and A high-strength thin steel sheet excellent in ductility, corrosion resistance, and surface treatment, characterized by having a structure containing residual austenite in a volume ratio of 5% or more.
【請求項3】 C,Si,Mn,P,S,Cu,Al及びNの含
有量が重量割合にて C:0.05〜 0.3%, Si: 2.0%以下, Mn: 0.5
〜 4.0%, P: 0.1%以下, S: 0.1%以下, Cu: 0.1〜 2.0%の範囲でかつSi(%)/5以上, Al: 0.1〜 2.0%, N:0.01%以下 で、しかも Si(%)+Al(%) ≧ 0.5 を満足すると共に残部がFe及び不可避的不純物から成る
成分組成の鋼片を熱間圧延後300〜720℃で巻取
り、次いで脱スケ−ル処理後に圧下率:30〜80%で
冷間圧延してから、その後の連続焼鈍又は連続溶融亜鉛
めっき工程においてAc1変態点以上Ac3変態点以下の温
度域に加熱し、かつその冷却の途中で550〜350℃
の温度域に30秒以上保持するか該温度域を100℃/m
in以下の冷却速度で徐冷することを特徴とする、体積率
にて5%以上の残留オ−ステナイトを含む延性及,耐食
性及び表面処理性の優れた高張力薄鋼板の製造方法。
3. The content of C, Si, Mn, P, S, Cu, Al and N is C: 0.05 to 0.3% by weight, Si: 2.0% or less, Mn: 0.5.
~ 4.0%, P: 0.1% or less, S: 0.1% or less, Cu: 0.1 to 2.0% and Si (%) / 5 or more, Al: 0.1 to 2.0%, N: 0.01% or less, and Si (%) + Al (%) ≧ 0.5 and the balance of the steel composition consisting of Fe and unavoidable impurities is hot rolled, rolled at 300 to 720 ° C., and then descaled. After cold rolling at 30 to 80%, in the subsequent continuous annealing or continuous hot dip galvanizing step, the material is heated to a temperature range of Ac 1 transformation point or more and Ac 3 transformation point or less, and 550 to 350 ° C. during the cooling.
Hold for 30 seconds or more in the temperature range of 100 ℃ / m
A method for producing a high-strength thin steel sheet excellent in ductility, corrosion resistance, and surface treatment including a retained austenite content of 5% or more in terms of volume ratio, characterized by slow cooling at a cooling rate of in or less.
【請求項4】 C,Si,Mn,P,S,Cu,Ni,Al及びN
の含有量が重量割合にて C:0.05〜 0.3%, Si: 2.0%以下, Mn:0.05
〜 4.0%, P: 0.1%以下, S: 0.1%以下, Cu: 0.1〜 2.0%の範囲でかつSi(%)/5以上, Al: 0.1〜 2.0%, N:0.01%以下, Ni:Cu
(%)/3以上 で、しかも Si(%)+Al(%) ≧ 0.5, Mn(%)+Ni(%) ≧ 0.5 を満足すると共に残部がFe及び不可避的不純物から成る
成分組成の鋼片を熱間圧延後300〜720℃で巻取
り、次いで脱スケ−ル処理後に圧下率:30〜80%で
冷間圧延してから、その後の連続焼鈍又は連続溶融亜鉛
めっき工程においてAc1変態点以上Ac3変態点以下の温
度域に加熱し、かつその冷却の途中で550〜350℃
の温度域に30秒以上保持するか該温度域を100℃/m
in以下の冷却速度で徐冷することを特徴とする、体積率
にて5%以上の残留オ−ステナイトを含む延性及,耐食
性及び表面処理性の優れた高張力薄鋼板の製造方法。
4. C, Si, Mn, P, S, Cu, Ni, Al and N
Content by weight C: 0.05-0.3%, Si: 2.0% or less, Mn: 0.05
~ 4.0%, P: 0.1% or less, S: 0.1% or less, Cu: 0.1 to 2.0% and Si (%) / 5 or more, Al: 0.1 to 2.0%, N: 0.01% or less, Ni: Cu
(%) / 3 or more, while satisfying the requirements of Si (%) + Al (%) ≧ 0.5, Mn (%) + Ni (%) ≧ 0.5 and the balance being Fe and unavoidable impurities After hot rolling, the roll is wound at 300 to 720 ° C., and after descaling, cold rolling is performed at a rolling reduction of 30 to 80%, and then in the subsequent continuous annealing or continuous hot dip galvanizing process, Ac 1 transformation point or higher Ac Heating to a temperature range below 3 transformation points, and 550 to 350 ° C during cooling
Hold for 30 seconds or more in the temperature range of 100 ℃ / m
A method for producing a high-strength thin steel sheet excellent in ductility, corrosion resistance, and surface treatment including a retained austenite content of 5% or more in terms of volume ratio, characterized by slow cooling at a cooling rate of in or less.
JP9885992A 1992-03-25 1992-03-25 High tensile strength steel sheet and its manufacturing method Expired - Lifetime JP2962038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9885992A JP2962038B2 (en) 1992-03-25 1992-03-25 High tensile strength steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9885992A JP2962038B2 (en) 1992-03-25 1992-03-25 High tensile strength steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH05271857A true JPH05271857A (en) 1993-10-19
JP2962038B2 JP2962038B2 (en) 1999-10-12

Family

ID=14230957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9885992A Expired - Lifetime JP2962038B2 (en) 1992-03-25 1992-03-25 High tensile strength steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2962038B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029268A1 (en) * 1994-04-26 1995-11-02 Nippon Steel Corporation High-strength steel sheet adapted for deep drawing and process for producing the same
JPH11236621A (en) * 1997-12-17 1999-08-31 Sumitomo Metal Ind Ltd Production of high tensile strength and high ductility galvanized steel sheet
KR100400866B1 (en) * 1998-12-21 2003-12-24 주식회사 포스코 High strength cold rolled steel sheet with excellent pickling resistance and corrosion resistance to holes and manufacturing method
JPWO2003074751A1 (en) * 2002-03-01 2005-06-30 Jfeスチール株式会社 Surface-treated steel sheet and manufacturing method thereof
WO2005068676A1 (en) 2004-01-14 2005-07-28 Nippon Steel Corporation Hot dip zinc plated high strength steel sheet excellent in plating adhesiveness and hole expanding characteristics
JP2008214752A (en) * 2007-02-08 2008-09-18 Jfe Steel Kk High strength hot-dip galvanized steel sheet excellent in formability and weldability and manufacturing method therefor
WO2013018723A1 (en) 2011-07-29 2013-02-07 新日鐵住金株式会社 High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability, and method for producing each
EP2690191A3 (en) * 2004-10-06 2017-03-01 Nippon Steel & Sumitomo Metal Corporation A method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618355A (en) * 1994-04-26 1997-04-08 Nippon Steel Corporation High-strength steel sheet suitable for deep drawing and process for producing the same
WO1995029268A1 (en) * 1994-04-26 1995-11-02 Nippon Steel Corporation High-strength steel sheet adapted for deep drawing and process for producing the same
JPH11236621A (en) * 1997-12-17 1999-08-31 Sumitomo Metal Ind Ltd Production of high tensile strength and high ductility galvanized steel sheet
KR100400866B1 (en) * 1998-12-21 2003-12-24 주식회사 포스코 High strength cold rolled steel sheet with excellent pickling resistance and corrosion resistance to holes and manufacturing method
JPWO2003074751A1 (en) * 2002-03-01 2005-06-30 Jfeスチール株式会社 Surface-treated steel sheet and manufacturing method thereof
US9150946B2 (en) 2004-01-14 2015-10-06 Nippon Steel & Sumitomo Metal Corporation Hot dip galvanized high strength steel sheet excellent in plating adhesion and hole expandability and method of production of same
WO2005068676A1 (en) 2004-01-14 2005-07-28 Nippon Steel Corporation Hot dip zinc plated high strength steel sheet excellent in plating adhesiveness and hole expanding characteristics
EP2690191A3 (en) * 2004-10-06 2017-03-01 Nippon Steel & Sumitomo Metal Corporation A method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability
JP2008214752A (en) * 2007-02-08 2008-09-18 Jfe Steel Kk High strength hot-dip galvanized steel sheet excellent in formability and weldability and manufacturing method therefor
US20140170440A1 (en) * 2011-07-29 2014-06-19 Nippon Steel & Sumitomo Metal Corporation High strength steel sheet and high strength galvanized steel sheet excellent in shapeability and methods of production of same
KR20140026625A (en) 2011-07-29 2014-03-05 신닛테츠스미킨 카부시키카이샤 High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability and method for producing each
EP2738275A4 (en) * 2011-07-29 2015-10-28 Nippon Steel & Sumitomo Metal Corp High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability, and method for producing each
WO2013018723A1 (en) 2011-07-29 2013-02-07 新日鐵住金株式会社 High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability, and method for producing each
US9694561B2 (en) 2011-07-29 2017-07-04 Nippon Steel & Sumitomo Metal Corporation High strength steel sheet and high strength galvanized steel sheet excellent in shapeability and methods of production of same

Also Published As

Publication number Publication date
JP2962038B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JP2005528519A5 (en)
JPH10130782A (en) Ultrahigh strength cold rolled steel sheet and its production
JP3317303B2 (en) High tensile strength thin steel sheet with excellent local ductility and its manufacturing method
JP2003221623A (en) Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
JPH07197183A (en) Ultra-high strength thin steel sheet without developing hydrogen brittleness and its production
JP4910898B2 (en) High strength steel plate and manufacturing method thereof
JP7164024B2 (en) High-strength steel plate and its manufacturing method
JP2008308732A (en) Hardened steel plate member, steel plate for hardening, and their manufacturing methods
JP3350944B2 (en) High tensile cold rolled steel sheet with excellent ductility and corrosion resistance and manufacturing method
JP2962038B2 (en) High tensile strength steel sheet and its manufacturing method
JP6683291B2 (en) Steel plate and method for manufacturing steel plate
JP6683292B2 (en) Steel plate and method for manufacturing steel plate
JP4306497B2 (en) High-strength cold-rolled steel sheet with excellent workability and post-coating corrosion resistance and method for producing the same
KR20210118442A (en) High-strength steel sheet and its manufacturing method
JP3551878B2 (en) High-ductility, high-hole-expansion high-tensile steel sheet and method for producing the same
JP4010131B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
KR101736634B1 (en) Cold-rolled steel sheet and galvanized steel sheet having excellent hole expansion and ductility and method for manufacturing thereof
JPH0790488A (en) Ultrahigh strength cold rolled steel sheet excellent in hydrogen brittlement resistance and its production
JP3911972B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet
JP2005290485A (en) Strain aging treatment method for steel plate and method for manufacturing high-strength structural member
JP3350945B2 (en) High tensile hot rolled steel sheet with excellent ductility and corrosion resistance and manufacturing method
JP5682356B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP6687171B1 (en) steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20070806

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090806

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100806

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13