JP3350944B2 - High tensile cold rolled steel sheet with excellent ductility and corrosion resistance and manufacturing method - Google Patents

High tensile cold rolled steel sheet with excellent ductility and corrosion resistance and manufacturing method

Info

Publication number
JP3350944B2
JP3350944B2 JP35577991A JP35577991A JP3350944B2 JP 3350944 B2 JP3350944 B2 JP 3350944B2 JP 35577991 A JP35577991 A JP 35577991A JP 35577991 A JP35577991 A JP 35577991A JP 3350944 B2 JP3350944 B2 JP 3350944B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
content
austenite
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35577991A
Other languages
Japanese (ja)
Other versions
JPH05171344A (en
Inventor
直光 水井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP35577991A priority Critical patent/JP3350944B2/en
Publication of JPH05171344A publication Critical patent/JPH05171344A/en
Application granted granted Critical
Publication of JP3350944B2 publication Critical patent/JP3350944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】この発明は、プレス加工や伸びフランジ加
工等により様々な形状に成形される構造部材として好適
な、延性及び耐食性の優れた高張力冷延薄鋼板並びにそ
の製造方法に関する。
[0001] The present invention relates to a high-tensile cold-rolled thin steel sheet excellent in ductility and corrosion resistance, and suitable for a structural member formed into various shapes by press working, stretch flange working, and the like, and a method for producing the same.

【0002】[0002]

【従来技術とその課題】近年、各種機械・装置類には高
性能化と同時に軽量化が強く推進されており、これを受
けて適用される鋼板の高強度化技術が数多く開発されて
きたが、一般に鋼板の高強度化は延性の劣化を伴うた
め、良好な加工性と高強度を兼ね備えた鋼板の製造は非
常に困難であるとされていた。
2. Description of the Related Art In recent years, various types of machinery and equipment have been strongly promoted in terms of both high performance and light weight. In response to this, many techniques for increasing the strength of steel sheets have been developed. In general, increasing the strength of a steel sheet involves deterioration of ductility, and it has been considered that it is extremely difficult to manufacture a steel sheet having both good workability and high strength.

【0003】ところが、最近、「SiとMnを複合添加した
低炭素鋼板を2相域焼鈍の後350〜550℃まで急冷
し、 その温度域で短時間保持するか階段状の冷却を行う
かしてオ−ステナイトを一部べイナイトに変態させ最終
的に〔フェライト+ベイナイト+残留オ−ステナイト〕
から成る組織としたものは、 加工時の変形中に残留オ−
ステナイトが歪誘起変態を起こして大きな伸びを示す」
との現象が見出されて以来、この現象を利用して高延性
高張力鋼板を製造しようとの試みもなされるようになっ
た。
[0003] Recently, however, it has recently been reported that a "low carbon steel sheet to which Si and Mn are added in combination is rapidly cooled to 350 to 550 ° C after annealing in a two-phase region, and is kept in that temperature region for a short time or stepwise cooling is performed. To partially transform austenite into bainite and finally [ferrite + bainite + residual austenite]
The structure consisting of
Stenite undergoes strain-induced transformation and shows large elongation. ''
Since the discovery of the phenomenon described above, attempts have been made to produce a high-ductility and high-strength steel sheet using this phenomenon.

【0004】例えば、特開昭61−157625号公報
には、 0.4〜 1.8%のSi(以降、 成分割合を表わす%は
重量%とする)と 0.2〜 2.5%のMnのほか、必要により
適量のP,Ni,Cu,Cr,Ti,Nb,V,及びMoの1種又は
2種以上を含む鋼板を〔フェライト+オ−ステナイト〕
2相域に加熱した後、冷却途中の500〜350℃の温
度域で30秒〜30分間保持することで前記混合組織を
実現し、高延性を示す高張力鋼板とする方法が開示され
ている。
For example, Japanese Unexamined Patent Publication (Kokai) No. 61-157625 discloses that in addition to 0.4 to 1.8% of Si (hereinafter,% representing the component ratio is referred to as% by weight) and 0.2 to 2.5% of Mn, A steel sheet containing one or more of P, Ni, Cu, Cr, Ti, Nb, V, and Mo [ferrite + austenite]
A method is disclosed in which after heating to a two-phase region, the mixed structure is realized by maintaining the mixture in a temperature range of 500 to 350 ° C. during cooling for 30 seconds to 30 minutes to obtain a high-tensile steel sheet exhibiting high ductility. .

【0005】また、特公昭62−35461号公報に
は、高延性を示す高張力鋼板の製造法として、 0.7〜
2.0%のSiと 0.5〜 2.0%のMnを含有する鋼板を焼鈍過
程で〔フェライト+オ−ステナイト〕2相域に加熱した
後、冷却過程の650〜450℃間にて合計10〜50
秒の定温保持を行い、マルテンサイト或いはベイナイト
中に体積率で10%以上のフェライトと残留オ−ステナ
イトを含む混合組織鋼板とする方法が開示されている。
Japanese Patent Publication No. 62-35461 discloses a method for producing a high-tensile steel sheet exhibiting high ductility, which comprises 0.7 to 0.7%.
A steel sheet containing 2.0% of Si and 0.5 to 2.0% of Mn is heated to a [ferrite + austenite] two-phase region in an annealing process, and then is cooled to 650 to 450 ° C. in a cooling process to obtain a total of 10 to 50%.
A method is disclosed in which a mixed structure steel sheet containing 10% or more by volume of ferrite and retained austenite in martensite or bainite is maintained at a constant temperature for 2 seconds.

【0006】しかし、実際には、上記のような混合組織
を有する鋼板は引張試験において良好な延性を示したと
しても一般にプレス加工時等の成形性については必ずし
も良好とは言えず、加工用鋼板として十分に満足できる
ものではなかった。例えば、前記混合組織鋼板を加工す
ると、変形後期では大部分の残留オ−ステナイトが歪誘
起変態して高炭素マルテンサイトに変化してしまってい
るので局部延性が極めて悪い状態となる。この現象は
“穴拡げ”のような伸びフランジ加工の場合に顕著に現
れ、そのため該混合組織鋼板の穴拡げ性は従来の低炭素
鋼板のそれよりも劣った結果となる。これは、打ち抜き
により穴開け加工を行った際、歪誘起変態で生成した高
炭素マルテンサイトが非常に硬質なためにクラックが生
じ、このクラックがその後の穴拡げ時に拡大・伝播する
ためであると考えられている。
However, in practice, even if a steel sheet having the above-mentioned mixed structure shows good ductility in a tensile test, it generally cannot always be said that the formability at the time of press working or the like is necessarily good. Was not satisfactory enough. For example, when the mixed-structure steel sheet is processed, most of the retained austenite is transformed into high-carbon martensite by strain-induced transformation in a later stage of deformation, so that local ductility is extremely poor. This phenomenon is remarkable in the case of stretch flange processing such as “hole expansion”, and as a result, the hole expandability of the mixed structure steel sheet is inferior to that of the conventional low carbon steel sheet. This is because, when punching is performed by punching, high-carbon martensite generated by strain-induced transformation is very hard, causing cracks, and the cracks propagate and propagate during subsequent hole expansion. It is considered.

【0007】また、既知の前記混合組織鋼板の製造技術
では強度レベルを変化させるためには鋼中C濃度を変化
させる必要があるが、鋼中C濃度を低下させると最終製
品中の残留オ−ステナイトの体積率が低下することとな
り、そのため“強度の比較的低い領域で残留オ−ステナ
イトを多量に含有し高延性を示す冷延鋼板”を製造する
ことは困難であった。
[0007] Further, in the known mixed structure steel sheet manufacturing technology, it is necessary to change the C concentration in the steel in order to change the strength level. However, when the C concentration in the steel is reduced, the residual Au in the final product is reduced. As a result, the volume fraction of the austenite was reduced, and it was difficult to produce "a cold-rolled steel sheet containing a large amount of retained austenite in a relatively low strength region and exhibiting high ductility".

【0008】更に、鋼板へのSi添加量が多量になると、
熱延工程のスラブ加熱時にSiO2 とFeOが共晶反応を起
こして低融点のスケ−ルが不均一に生じ、酸洗後の熱延
板の表面に凹凸が生じる。この凹凸は冷延により若干軽
減されるが、それでも最終製品にまで残って外観劣化の
原因となった。
Further, when the amount of Si added to the steel sheet becomes large,
During slab heating in the hot rolling process, SiO 2 and FeO undergo a eutectic reaction, resulting in a non-uniform low melting point scale and unevenness on the surface of the hot rolled sheet after pickling. Although these irregularities are slightly reduced by cold rolling, they still remain in the final product and cause deterioration of appearance.

【0009】その上、変態組織強化した鋼板の場合に
は、一般にその耐食性が固溶強化した鋼板に比べて劣る
という問題もあった。この問題は、腐食電位の異なる複
数の組織から成る複合組織鋼板では所謂“局部電池”が
形成されやすく、これが腐食に結びつくことに起因して
生じるものと考えられる。
In addition, a steel sheet reinforced with a transformation structure generally has a problem that its corrosion resistance is inferior to that of a steel sheet reinforced by solid solution. This problem is considered to be caused by the fact that a so-called "local cell" is easily formed in a composite structure steel sheet composed of a plurality of structures having different corrosion potentials, which leads to corrosion.

【0010】このようなことから、本発明が目的とした
のは、延性を始めとする加工性に優れ、またC含有量の
大きな変化なしに強度レベル調整が行えるところの、耐
食性や外観の良好な高張力鋼板を安定提供できる手段を
確立することであった。
In view of the above, an object of the present invention is to provide excellent workability such as ductility, and good strength of corrosion resistance and appearance in which the strength level can be adjusted without a large change in the C content. The aim was to establish means that could provide stable high-strength steel sheets.

【0011】[0011]

【課題を解決するための手段】そこで、本発明者は上記
目的を達成すべく鋭意研究を重ねたところ、次のような
知見を得ることができた。 (A) 0.15%C-1.5%Mnの組成を標準組成とした連続焼
鈍鋼板のオ−ステナイト残留量に及ぼすSi及びAlの影響
を調査した結果が、 a) 添加量が同等であれば、Si及びAlの何れを添加した
鋼板においてもほゞ同体積率の残留オ−ステナイトが得
られる, b) Alを添加した鋼板の方が全伸びはSi添加鋼板よりも
若干小さいものの、全伸びから均一伸びを差し引いた局
部伸びは逆に大きく、穴拡げ性に関しては良好な性能を
有する, ことを示す。これは、Alを添加した鋼板では残留オ−ス
テナイトが安定なため高歪域に達するまで歪誘起変態を
起こしにくく、大きな変形域に至ってから変態するため
であると考えられる。なお、このような差が生じる原因
は不明であるが、残留オ−ステナイトの分布形態が変化
するためと推定される。
The inventor of the present invention has made intensive studies to achieve the above object, and has obtained the following findings. (A) Investigation of the effect of Si and Al on the amount of austenite remaining in a continuously annealed steel sheet with the composition of 0.15% C-1.5% Mn as the standard composition. In both steel sheets to which Al and Al are added, approximately the same volume percentage of retained austenite is obtained. B) The total elongation of the Al-added steel sheet is slightly smaller than that of the Si-added steel sheet, but it is uniform from the total elongation. On the contrary, the local elongation excluding the elongation is large, indicating that the hole has good performance in terms of hole expandability. This is considered to be because in the steel sheet to which Al is added, since the retained austenite is stable, it hardly causes strain-induced transformation until it reaches a high strain region, and transforms after reaching a large deformation region. Although the cause of such a difference is unknown, it is presumed that the distribution form of the retained austenite changes.

【0012】(B) また、鋼板中C濃度並びに〔Si+A
l〕の含有量を変えなくても、 Si(%)とAl(%) のバラン
スを変化させることにより同じ残留オ−ステナイト体積
率のままで鋼板の引張強度を任意に変化させることが可
能である。
(B) Further, the C concentration in the steel sheet and [Si + A
l), it is possible to arbitrarily change the tensile strength of the steel sheet while maintaining the same volume ratio of retained austenite by changing the balance between Si (%) and Al (%). is there.

【0013】(C) ただ、残留オ−ステナイトを確保す
るための成分としてAlの積極添加を行いSi量を低減する
と熱延鋼板段階で平滑な表面状態が確保され、最終製品
での外観劣化を招くことも無くなる。
(C) However, if the amount of Si is reduced by positively adding Al as a component for securing retained austenite, a smooth surface state is secured at the hot-rolled steel sheet stage, and the appearance deterioration of the final product is reduced. You will not be invited.

【0014】(D) 更に、Mn及びCrもオ−ステナイトの
安定化成分として知られる元素であるが、Al添加鋼板又
はSi添加鋼板に対してもMn添加及びCr添加は何れも残留
オ−ステナイト確保に好ましい効果を発揮して加工性改
善に寄与するものの、Crを添加した場合には鋼板の耐食
性が改善されるという効果も確保できるようになる。
(D) Further, Mn and Cr are also elements known as stabilizing components of austenite. However, addition of Mn and Cr both to Al-added steel sheet or Si-added steel sheet is the same as that of residual austenite. Although it exerts a favorable effect on the securing and contributes to the improvement of the workability, when Cr is added, the effect that the corrosion resistance of the steel sheet is improved can also be secured.

【0015】(E) そして、上記Al,Si添加鋼にCrを含
有させて耐食性の強化を図った鋼から冷延焼鈍板を製造
する場合、熱延巻取り温度や焼鈍条件に工夫を凝らすこ
とによって延性に好都合な残留オ−ステナイト量の確保
が一段と容易になり、延性を始めとする加工性に優れた
耐食性高強度鋼板の製造性が非常に安定化すること。
(E) When manufacturing a cold-rolled annealed sheet from a steel in which Cr is contained in the Al- or Si-added steel to enhance corrosion resistance, devising the hot-rolling winding temperature and annealing conditions. This makes it easier to secure the amount of retained austenite which is favorable for ductility, and makes the productivity of corrosion-resistant high-strength steel sheets excellent in workability including ductility extremely stable.

【0016】本発明は、上記知見事項等を基にして完成
されたものであり、「冷延薄鋼板を、 C,Si,Mn,P,
S,Cr,Al及びNの含有量が C:0.05〜 0.3%, Si: 2.0%以下, Mn:0.05〜 4.0%, P: 0.1%以下, S: 0.1%以下, Cr:0.5 〜 5.0%, Al: 0.1〜 2.0%, N:0.01%以下 で、 かつ Si(%)+Al(%) ≧ 0.5, 7.0 ≧ Mn(%)+Cr(%) ≧ 1.0 を満足すると共に残部がFe及び不可避的不純物から成る
成分組成であって、 しかも体積率にて5%以上の残留オ
−ステナイトを含んだ組織を有して成る構成とすること
により、 高強度と優れた延性,耐食性を兼備せしめた
点」を特徴としており、更には、「C,Si,Mn,P,
S,Cr,Al及びNの含有量が C:0.05〜 0.3%, Si: 2.0%以下, Mn:0.05〜 4.0%, P: 0.1%以下, S: 0.1%以下, Cr:0.5 〜 5.0%, Al: 0.1〜 2.0%, N:0.01%以下 で、 かつ Si(%)+Al(%) ≧ 0.5, 7.0 ≧ Mn(%)+Cr(%) ≧ 1.0 を満足すると共に残部がFe及び不可避的不純物から成る
成分組成の鋼片を熱間圧延後300〜720℃で巻取
り、 次いで脱スケ−ル処理後に圧下率:30〜80%で
冷間圧延してから、 その後の連続焼鈍又は連続溶融亜鉛
めっき工程においてAc1変態点以上Ac3変態点以下の温
度域に加熱し、 かつその冷却の途中で550〜350℃
の温度域に30秒以上保持するか該温度域を400℃/m
in以下の冷却速度で徐冷することにより、 体積率にて5
%以上の残留オ−ステナイトを含んでいて高強度と優れ
た延性,耐食性を兼備した高張力冷延薄鋼板を安定製造
できるようにした点」をも大きな特徴とするものであ
る。
The present invention has been completed on the basis of the above findings and the like, and is directed to " Cold-rolled thin steel sheet, C, Si, Mn, P,
Content of S, Cr, Al and N: C: 0.05-0.3%, Si: 2.0% or less, Mn: 0.05-4.0%, P: 0.1% or less, S: 0.1% or less, Cr: 0.5-5.0%, Al: 0.1 to 2.0%, N: 0.01% or less, and satisfy Si (%) + Al (%) ≥ 0.5, 7.0 ≥ Mn (%) + Cr (%) ≥ 1.0, with the balance being Fe and unavoidable impurities. A high strength and excellent ductility and corrosion resistance by having a composition having a composition containing at least 5% by volume of retained austenite in the composition. And "C, Si, Mn, P,
Content of S, Cr, Al and N: C: 0.05-0.3%, Si: 2.0% or less, Mn: 0.05-4.0%, P: 0.1% or less, S: 0.1% or less, Cr: 0.5-5.0%, Al: 0.1 to 2.0%, N: 0.01% or less, and satisfy Si (%) + Al (%) ≥ 0.5, 7.0 ≥ Mn (%) + Cr (%) ≥ 1.0, with the balance being Fe and unavoidable impurities. After hot rolling, a steel slab having the following composition is wound at 300 to 720 ° C., then, after descaling, cold rolled at a rolling reduction of 30 to 80%, and then subjected to continuous annealing or continuous hot-dip galvanizing. In the process, it is heated to a temperature range from the Ac 1 transformation point to the Ac 3 transformation point, and 550 to 350 ° C. during the cooling.
Hold for at least 30 seconds in the temperature range of 400 ° C / m
By cooling slowly at a cooling rate of less than
% Of high-strength cold-rolled thin steel sheets containing high-strength, excellent ductility, and corrosion resistance by containing at least% of retained austenite ”.

【0017】以下、本発明において、鋼板(鋼片)の成
分組成並びに鋼板の製造条件を前記の如くに限定した理
由をその作用と共に説明する。
Hereinafter, the reason why the composition of the steel sheet (slab) and the manufacturing conditions of the steel sheet are limited as described above in the present invention will be described together with the operation thereof.

【作用】A) 成分組成 Cは最も強力なオ−ステナイト安定化元素であり、室温
においてオ−ステナイトを安定化するためにはオ−ステ
ナイト中に1%以上のCが含有されることが必要である
が、焼鈍のヒ−トサイクルを選ぶことにより0.05%以上
の含有量で十分なオ−ステナイト安定化効果を確保する
ことができる。そして、より多量のCを添加することに
より一層強度の高い高張力冷延鋼板を製造できるが 0.3
%を超える含有量になると鋼板が硬くなり過ぎ、通常の
製板工程では薄鋼板に加工することができなくなる。従
って、C含有量は0.05〜 0.3%と限定したが、好ましく
は0.1 〜 0.2%に調整するのが良い。更に、溶接性を考
慮すれば 0.1〜0.15%が最も好ましい。
A) Component composition C C is the most powerful austenite stabilizing element. To stabilize austenite at room temperature, it is necessary that at least 1% of C is contained in austenite. Although necessary, a sufficient austenite stabilizing effect can be secured at a content of 0.05% or more by selecting an annealing heat cycle. By adding a larger amount of C, a high-strength cold-rolled steel sheet having higher strength can be manufactured.
%, The steel sheet becomes too hard, and cannot be processed into a thin steel sheet in a normal sheet making process. Therefore, the C content is limited to 0.05 to 0.3%, but is preferably adjusted to 0.1 to 0.2%. Further, considering the weldability, 0.1 to 0.15% is most preferable.

【0018】Si Siはフェライト安定化元素で、2相域焼鈍時のフェライ
トの体積率を増加させて平衡するオ−ステナイト相のC
濃度を高める作用を有している。また、これと共にSiは
フェライトを強化する作用をも有している。しかしなが
ら、 2.0%を超えてSiを含有させるとSi添加鋼板特有の
高Siスケ−ルによる表面品質の劣化が著しく生じるの
で、Si含有量は 2.0%以下と定めた。なお、Siの含有量
は同じフェライト安定化元素であるAlとの関係で制御し
なければならず、上記作用に所望の効果を得るためには
[Si(%)+Al(%)]の値が 0.5以上となるように調整する必
要がある。
Si Si is a ferrite stabilizing element, and increases the volume fraction of ferrite during annealing in the two-phase region to increase the equilibrium of the austenite phase.
Has the effect of increasing the concentration. In addition, Si also has a function of strengthening ferrite. However, if the content of Si exceeds 2.0%, the surface quality is significantly degraded due to the high Si scale peculiar to the Si-added steel sheet. Therefore, the Si content is set to 2.0% or less. In addition, the content of Si must be controlled in relation to the same ferrite stabilizing element, Al.
It is necessary to adjust the value of [Si (%) + Al (%)] to 0.5 or more.

【0019】Mn Mnはオ−ステナイト安定化元素であり、この観点からす
るとMn含有量は同様の作用を有するCrの含有量との合計
で規制され、[Mn(%)+Cr(%)]の値が 1.0以上になるよう
に調整する必要がある。即ち、[Mn(%)+Cr(%)]の値が
1.0未満ではオ−ステナイトが安定化されない。ただ、M
n含有量が 4.0%を超えたり、[Mn(%)+Cr(%)]の値が 7.
0を超えると鋼板が硬くなりすぎて延性面で十分な性能
が得られない恐れがあるため、Mn含有量の上限は 4.0%
に抑え、かつ[Mn(%)+Cr(%)]の値は1.0 〜7.0 の範囲と
した。一方、Mnは鋼中のSをMnSとして固定し熱間脆性
を防止する作用をも有しているので、該作用に所望の効
果を確保するためには少なくとも0.05%の含有量を確保
する必要がある。なお、図1は本発明鋼板に係わるMn及
びCrの含有量範囲を図示したグラフである。
Mn Mn is an austenite stabilizing element, and from this viewpoint, the Mn content is regulated by the sum of the Cr content having the same effect, and the content of [Mn (%) + Cr (%)] It needs to be adjusted so that the value is 1.0 or more. That is, the value of [Mn (%) + Cr (%)]
If it is less than 1.0, austenite is not stabilized. Just M
n content exceeds 4.0% or the value of [Mn (%) + Cr (%)] is 7.
If it exceeds 0, the steel sheet may be too hard and may not have sufficient ductility, so the upper limit of the Mn content is 4.0%.
And the value of [Mn (%) + Cr (%)] was in the range of 1.0 to 7.0. On the other hand, since Mn also has the effect of fixing S in steel as MnS and preventing hot brittleness, it is necessary to secure a content of at least 0.05% in order to ensure a desired effect on the effect. There is. FIG. 1 is a graph illustrating the content ranges of Mn and Cr relating to the steel sheet of the present invention.

【0020】 Pは不純物として鋼中に不可避的に含有される元素であ
って、出来るだけ低い方が好ましい。特に、 0.1%を超
えて含有されると鋼板の延性劣化が顕著化することか
ら、P含有量は 0.1%以下と定めた。
[0020] P P is an element which is inevitably contained in steel as an impurity, it only low possible is preferred. In particular, if the content exceeds 0.1%, the ductility of the steel sheet deteriorates remarkably, so the P content is set to 0.1% or less.

【0021】 Sも不純物として鋼中に不可避的に含有される元素であ
って、やはり低い方が好ましい。特に、 0.1%を超えて
含有されるとMnSの析出量が目立つようになり鋼板の延
性を阻害するのみならず、オ−ステナイト安定化元素と
して添加されるMnを前記析出物として消費することか
ら、S含有量は 0.1%以下と定めた。
S S is also an element inevitably contained in steel as an impurity, and it is also preferable that S is low. In particular, when the content exceeds 0.1%, the precipitation amount of MnS becomes conspicuous, not only hinders the ductility of the steel sheet, but also consumes Mn added as an austenite stabilizing element as the precipitate. , S content is determined to be 0.1% or less.

【0022】Cr Crは、Mnと同様にオ−ステナイトを安定化する作用を有
した元素であるのでこの目的のために添加されるが、同
時に鋼板に所望の耐食性を確保するために必須の成分で
もある。そして、Cr含有量が 0.5%未満であると鋼板に
所望の耐食性を付与することができず、一方、 5.0%を
超えてCrを含有させると逆にフェライトの安定化に寄与
するようになってオ−ステナイトを不安定にすると共
に、熱延鋼板の酸洗が著しく困難になる。従って、Cr含
有量は 0.5〜 5.0%と定めたが、好ましくは2〜3%程
度に調整するのが良い。なお、Cr含有量は、鋼板に高延
性を確保すべくMn含有量との合計において 7.0%以下に
抑える必要のあることは前述した通りである。
Cr Cr is an element having an effect of stabilizing austenite like Mn, and thus Cr is added for this purpose. At the same time, Cr is an essential component for ensuring the desired corrosion resistance of the steel sheet. But also. If the Cr content is less than 0.5%, the desired corrosion resistance cannot be imparted to the steel sheet. On the other hand, if the Cr content exceeds 5.0%, it contributes to the stabilization of ferrite. In addition to making austenite unstable, pickling of the hot-rolled steel sheet becomes extremely difficult. Therefore, the Cr content is set to 0.5 to 5.0%, but is preferably adjusted to about 2 to 3%. As described above, the Cr content needs to be suppressed to 7.0% or less in total with the Mn content in order to ensure high ductility in the steel sheet.

【0023】Al 前述した如く、AlはSiと同様にフェライト安定化元素で
あって、2相域焼鈍時のフェライトの体積率を増加させ
ることにより平衡するオ−ステナイト相のC濃度を高め
る作用を有している。しかし、Siと比べてオ−ステナイ
トを安定化する作用が強く、 0.1%以上の含有量が確保
されると鋼板の局部延性を向上させる効果が得られる。
一方、Al含有量が 2.0%を超えると鋼板中に介在物が多
くなって延性低下を招く。従って、Al含有量は 0.1〜
2.0%と定めたが、フェライト安定化元素としての所望
効果を確保するためにはSiと共に[Si(%)+Al(%)]の値が
0.5以上となるように調整する必要がある。なお、図2
は本発明鋼板に係わるSi及びAlの含有量範囲を図示した
グラフである。
Al As described above, Al is a ferrite stabilizing element like Si, and has an effect of increasing the C concentration of the austenite phase which is balanced by increasing the volume fraction of ferrite during the two-phase annealing. Have. However, the effect of stabilizing austenite is stronger than that of Si, and when the content of 0.1% or more is secured, the effect of improving the local ductility of the steel sheet can be obtained.
On the other hand, if the Al content exceeds 2.0%, inclusions increase in the steel sheet, resulting in a decrease in ductility. Therefore, the Al content is 0.1 ~
2.0%, but to ensure the desired effect as a ferrite stabilizing element, the value of [Si (%) + Al (%)] must be
It is necessary to adjust it to be 0.5 or more. Note that FIG.
3 is a graph illustrating the content ranges of Si and Al according to the steel sheet of the present invention.

【0024】 Nも不純物として鋼中に不可避的に含有される元素であ
り、その含有量は低い方が好ましい。特に、N含有量が
0.01%を超えるとAlNとして消費されるAlの量が多くAl
添加の効果が小さくなると共に、AlNによる延性の劣化
が目立つようになることから、N含有量の上限を0.01%
と定めた。
[0024] N N is also an element which is inevitably contained in steel as an impurity, the content thereof is preferably low. In particular, the N content
If it exceeds 0.01%, the amount of Al consumed as AlN is large.
Since the effect of the addition becomes small and the ductility deterioration due to AlN becomes noticeable, the upper limit of the N content is set to 0.01%.
It was decided.

【0025】B) 残留オ−ステナイトの体積率 最終製品としての本発明鋼板の延性は製品中に含まれる
残留オ−ステナイトの体積率に左右され、該体積率が5
%未満ではオ−ステナイトの歪誘起変態による延性の向
上は期待できない。なお、鋼板の延性は残留オ−ステナ
イトの増加に伴い向上するため、残留オ−ステナイトの
体積率は好ましくは10%以上とするのが良い。
B) Volume fraction of retained austenite The ductility of the steel sheet of the present invention as a final product depends on the volume fraction of retained austenite contained in the product.
%, The improvement of ductility due to the strain-induced transformation of austenite cannot be expected. In addition, since the ductility of a steel sheet improves with the increase of retained austenite, the volume fraction of retained austenite is preferably set to 10% or more.

【0026】C) 製造条件熱延巻取り温度 本発明組成の鋼の場合は、低温で巻取ると焼きが入って
硬くなるためその後の酸洗等によるスケ−ル除去や冷間
圧延が困難になる。逆に、高温で巻取るとセメンタイト
が粗大化し軟質になって酸洗,冷間圧延が容易になる反
面、焼鈍の均熱時にセメンタイトの再固溶に時間がかか
りすぎ、十分なオ−ステナイトが残留しなくなる。その
ため、熱延後の巻取りは上記不都合が回避できる300
〜720℃で実施することと定めた。ただ、熱延鋼板は
出来るだけ酸洗,冷間圧延が容易であることが望まれる
ため、巻取り温度は550〜650℃で実施するのが好
ましいと言える。
C) Manufacturing Conditions Hot Rolling Winding Temperature In the case of the steel of the present invention, if it is rolled at a low temperature, it becomes hardened and hardened, so that it is difficult to remove the scale by subsequent pickling or cold rolling. Become. Conversely, when wound at a high temperature, cementite becomes coarse and soft, and pickling and cold rolling become easy. On the other hand, it takes too much time to re-dissolve cementite during soaking in annealing, and a sufficient amount of austenite is formed. Will not remain. Therefore, winding after hot rolling can avoid the above-mentioned disadvantages.
7720 ° C. However, since it is desired that pickling and cold rolling of the hot-rolled steel sheet are as easy as possible, it can be said that the winding temperature is preferably set at 550 to 650 ° C.

【0027】冷間圧延圧下率 冷間圧延の圧下率が30%未満では、その後の焼鈍工程
において完全に再結晶が生じず延性が劣化する。一方、
80%を超える圧下率では圧延機に負荷がかかりすぎる
ため、冷間圧延時の圧下率を30〜80%と定めた。
[0027] In the cold rolling reduction ratio reduction ratio of cold rolling is less than 30%, fully recrystallization ductility is deteriorated does not occur in the subsequent annealing step. on the other hand,
If the rolling reduction exceeds 80%, the load is excessively applied to the rolling mill. Therefore, the rolling reduction during cold rolling is set to 30 to 80%.

【0028】連続焼鈍条件 冷延鋼板の連続焼鈍では、まず〔フェライト+オ−ステ
ナイト〕の2相組織とするためにAc1変態点以上Ac3
態点以下の温度域に加熱が行われる。ただ、加熱温度が
低すぎるとセメンタイトが再固溶するのに時間がかかり
過ぎ、高すぎるとオ−ステナイトの体積率が大きくなり
過ぎてオ−ステナイト中のC濃度が低下することから、
800〜850℃で均熱することが望ましい。そして、
均熱後は、徐冷してフェライトを成長させオ−ステナイ
ト中のC濃度を高めるために、700℃までの冷却速度
を10℃/s以下とするのが望ましい。また、過時効処理
帯に入るまでの700℃を切る温度域では、オ−ステナ
イトのパ−ライト変態を抑制するために冷却速度は逆に
50℃/s以上とするのが望ましい。
Continuous Annealing Conditions In continuous annealing of a cold-rolled steel sheet, first, heating is performed in a temperature range from the Ac 1 transformation point to the Ac 3 transformation point to obtain a two-phase structure of [ferrite + austenite]. However, if the heating temperature is too low, it takes too much time for cementite to re-dissolve in solid form, and if the heating temperature is too high, the volume fraction of austenite becomes too large and the C concentration in the austenite decreases.
It is desirable to soak at 800 to 850 ° C. And
After soaking, the cooling rate up to 700 ° C is desirably 10 ° C / s or less in order to gradually cool to grow ferrite and increase the C concentration in austenite. On the other hand, in a temperature range of less than 700 ° C. before entering the overaging treatment zone, the cooling rate is desirably 50 ° C./s or more in order to suppress the pearlite transformation of austenite.

【0029】過時効処理帯では、550〜350℃の間
において30秒以上(好ましくは2分以上)の保持を行
うか、又は550〜350℃間を400℃/min以下の冷
却速度で徐冷し、オ−ステナイトをベイナイト変態させ
ながらオ−ステナイトへのCの濃縮を促進する必要があ
る。ここで、Cの濃縮促進を行う温度が550℃を上回
るとベイナイト変態が生じず、一方、350℃を下回る
と下部ベイナイとになってオ−ステナイトへのCの濃縮
が十分に起こらなくなる。なお、過時効処理帯後の冷却
速度は特に限定する必要はない。更に、30秒以上に相
当する長さの定温保持帯のある連続溶融亜鉛めっきライ
ンでも同様の焼鈍が行えることは言うまでもない。そし
て、めっき処理時における合金化処理は、最高加熱温度
が600℃以下であればベイナイト変態後に加熱される
ことになるので格別な悪影響はない。
In the overaging treatment zone, the temperature is maintained between 550 and 350 ° C. for 30 seconds or more (preferably 2 minutes or more), or the temperature is slowly cooled between 550 and 350 ° C. at a cooling rate of 400 ° C./min or less. However, it is necessary to promote the concentration of C in austenite while transforming austenite to bainite. Here, if the temperature for promoting the concentration of C exceeds 550 ° C., bainite transformation does not occur. On the other hand, if the temperature is lower than 350 ° C., it becomes lower bainite and the concentration of C into austenite does not sufficiently occur. The cooling rate after the overaging treatment zone does not need to be particularly limited. Further, it goes without saying that the same annealing can be performed in a continuous hot-dip galvanizing line having a constant temperature holding zone having a length corresponding to 30 seconds or more. In the alloying process at the time of plating, if the maximum heating temperature is 600 ° C. or less, heating is performed after bainite transformation, so there is no particular adverse effect.

【0030】続いて、本発明の効果を実施例によって更
に具体的に説明する。
Next, the effects of the present invention will be described more specifically with reference to examples.

【実施例】まず、実験用真空炉にて表1に示す各成分組
成の鋼を溶製し、これらを熱間鍛造により25mm厚の実
験用スラブとした。次に、該スラブを電気炉で1250
℃に1時間均熱した後、1150〜930℃の温度範囲
で実験用熱間圧延機により3パス圧延し、5mm厚の熱延
板を得た。そして、巻取りシュミレ−ションとして、鋼
板は熱延後直ちに強制空冷或いは水スプレ−冷却にて5
00℃の温度まで冷却し、続いて該温度に保持した電気
炉の中に挿入して1時間保持した後、20℃/hr の冷却
速度で炉冷した。
EXAMPLES First, steels having the respective component compositions shown in Table 1 were melted in an experimental vacuum furnace, and these were formed into a 25 mm thick experimental slab by hot forging. Next, the slab was placed in an electric furnace at 1250.
C. for 1 hour, followed by three-pass rolling in a temperature range of 1150 to 930 ° C. by a laboratory hot rolling mill to obtain a hot-rolled sheet having a thickness of 5 mm. Then, as a winding simulation, the steel sheet was subjected to forced air cooling or water spray cooling immediately after hot rolling.
The mixture was cooled to a temperature of 00 ° C., inserted into an electric furnace maintained at the temperature, maintained for 1 hour, and then cooled at a cooling rate of 20 ° C./hr.

【0031】次いで、得られた熱延板を表面研削により
脱スケ−ルして 3.2mm厚の冷延母材とし、これを 1.4mm
厚まで冷間圧延した。得られた冷延板は、連続焼鈍シュ
ミレ−ションとして、赤外線加熱炉にて10℃/sで82
0℃まで加熱し、その温度に40秒間保持してから70
0℃まで3℃/sの冷却速度で徐冷し、その後は50℃/s
の冷却速度で400℃まで冷却し、その温度で3分保持
した。
Next, the obtained hot-rolled sheet was descaled by surface grinding to obtain a 3.2 mm-thick cold-rolled base material.
It was cold rolled to a thickness. The obtained cold-rolled sheet was subjected to continuous annealing simulation at 10 ° C./s in an infrared heating furnace.
Heat to 0 ° C., hold at that temperature for 40 seconds, then
Slowly cool to 0 ° C at a cooling rate of 3 ° C / s, then 50 ° C / s
At 400 ° C., and kept at that temperature for 3 minutes.

【0032】次に、焼鈍後の鋼板からJIS5号引張試
験片を採取して引張試験に供すると共に、穴拡げ試験を
も実施した。穴拡げ試験は、焼鈍板を70mm角に切断
後、クリアランス0.1mm で直径10mmの穴を打ち抜いた
試験片について、内径36.5mmφのダイスを用いてしわ押
さえ力3トンで押さえた状態で33mmφのポンチを押し
込み、亀裂発生限界の穴直径を測定した。
Next, a JIS No. 5 tensile test piece was sampled from the annealed steel sheet and subjected to a tensile test, and a hole expansion test was also performed. In the hole expansion test, after cutting the annealed plate into 70 mm square and punching out a hole of 10 mm diameter with 0.1 mm clearance, a punch of 33 mmφ was pressed with 3 tons of wrinkle pressing force using a 36.5 mmφ inner diameter die. And the hole diameter at the limit of crack initiation was measured.

【0033】また、各焼鈍板につき、X線反射強度測定
により残留オ−ステナイト量の測定も行った。更に、得
られた各焼鈍板につき耐食性の調査も実施した。ここ
で、耐食性は、鋼板にポリエステル系樹脂塗装を施して
からクロスカットを入れて3年間の大気暴露を行い、こ
の際にクロスカット部で赤錆が発生し塗膜が剥離した部
分の最大幅で評価した。これらの結果を表2に示す。
Further, the amount of retained austenite was measured for each annealed plate by X-ray reflection intensity measurement. Further, the corrosion resistance of each of the obtained annealed sheets was also investigated. Here, the corrosion resistance is measured by applying the polyester resin coating to the steel sheet and then performing cross-cutting and exposing it to the atmosphere for three years. At this time, the maximum width of the part where red rust is generated at the cross-cut part and the coating film is peeled off evaluated. Table 2 shows the results.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】なお、鋼中のSiとAlの合計添加量を 1.6%
前後に揃え、Alを0.09〜1.53%と変化させた試験番号1
〜4に関する強度・加工性調査結果の一部を図3に示
し、また、鋼中のMnとCrの合計添加量を 2.5%前後に揃
えてCrを 0.2〜 2.5%と変化させた試験番号2及び6〜
8に関する耐食性調査結果の一部を図4に示す。
The total content of Si and Al in the steel was 1.6%
Test number 1 with front and back aligned and Al varied from 0.09 to 1.53%
Fig. 3 shows a part of the results of strength and workability investigations on Nos. 4 to 4, and also shows the test numbers 2 in which the total amount of Mn and Cr in the steel was adjusted to about 2.5% and Cr was changed to 0.2 to 2.5%. And 6 ~
FIG. 4 shows a part of the results of the corrosion resistance survey on No. 8.

【0037】表2及び図3に示される結果からは次のこ
とが分かる。即ち、本発明の規定値を下回る量のAlしか
添加されていない試験番号1に係わる鋼板は他の3種類
の鋼板に比べて限界穴拡げ率が小さく、Alの添加量が多
くなるのに伴い「引張強度×限界穴拡げ率」が向上す
る。しかし、Alの添加量が本発明の規定値を上回った試
験番号5に係わる鋼板では伸びが小さくなる。
The following can be seen from the results shown in Table 2 and FIG. That is, the steel sheet according to Test No. 1 in which only an amount of Al less than the specified value of the present invention is added has a smaller critical hole expansion rate than the other three types of steel, and the addition amount of Al increases. “Tensile strength × critical hole expansion rate” is improved. However, the steel sheet according to Test No. 5 in which the amount of Al added exceeded the prescribed value of the present invention had a small elongation.

【0038】一方、表2及び図4に示される結果からは
次のことが分かる。つまり、Cr添加量の増加に伴い大気
暴露試験後のクロスカット部の最大赤錆発生塗膜剥離幅
が小さくなり、従って鋼板の耐食性が向上するが、機械
的性質については殆ど変わらない。
On the other hand, the following can be seen from the results shown in Table 2 and FIG. That is, as the amount of Cr added increases, the maximum width of the red rust-generating coating peeled off at the cross cut portion after the air exposure test decreases, and thus the corrosion resistance of the steel sheet improves, but the mechanical properties hardly change.

【0039】更に、試験番号9の結果は、MnとCrとの合
計が本発明の規定値を上回るために伸びが小さくなるこ
とを示している。そして、試験番号10及び13の結果は、
鋼中のC含有量が本発明の規定範囲を外れると伸びが小
さくなることを示している。
Further, the result of Test No. 9 indicates that the elongation becomes small because the sum of Mn and Cr exceeds the specified value of the present invention. And the results of Test Nos. 10 and 13 are
It shows that the elongation is reduced when the C content in the steel is out of the range specified in the present invention.

【0040】[0040]

【効果の総括】以上に説明した如く、この発明による
と、延性に優れ、良好な穴拡げ性等の加工性を示すと同
時に、優れた耐食性をも有した高張力冷延薄鋼板が安定
して得られるなど、産業上極めて有用な効果がもたらさ
れる。
[Summary of Effects] As described above, according to the present invention, a high-tensile cold-rolled thin steel sheet having excellent ductility, good workability such as good hole expandability, and also excellent corrosion resistance can be obtained stably. Industrially extremely useful effects are obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明鋼板に係わるMn及びCrの含有量範囲を図
示したグラフである。
FIG. 1 is a graph illustrating a content range of Mn and Cr according to the steel sheet of the present invention.

【図2】本発明鋼板に係わるSi及びAlの含有量範囲を図
示したグラフである。
FIG. 2 is a graph illustrating the content ranges of Si and Al according to the steel sheet of the present invention.

【図3】実施例の結果を基に作成したところの、〔Si+
Al〕の含有量が約 1.6%の鋼板に関し「引張強さ×限界
穴拡げ率」に及ぼすAl含有量の影響を表したグラフであ
る。
FIG. 3 shows the results of [Si +
5 is a graph showing the effect of Al content on “tensile strength × critical hole expansion rate” for a steel sheet having a content of [Al] of about 1.6%.

【図4】実施例の結果を基に作成したところの、〔Mn+
Cr〕の含有量が約 2.5%の鋼板に関し「耐食性」に及ぼ
すCr含有量の影響を表したグラフである。
[FIG. 4] [Mn +
5 is a graph showing the effect of Cr content on “corrosion resistance” for a steel sheet having a content of [Cr] of about 2.5%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/38 C22C 38/38 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C22C 38/38 C22C 38/38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C,Si,Mn,P,S,Cr,Al及びNの含
有量が重量割合にて C:0.05〜 0.3%, Si: 2.0%以下, Mn:0.05〜 4.0%, P: 0.1%以下, S: 0.1%以下, Cr: 0.5〜 5.0%, Al: 0.1〜 2.0%, N:0.01%以下 で、かつ Si(%)+Al(%) ≧ 0.5, 7.0 ≧ Mn(%)+Cr(%) ≧ 1.0 を満足すると共に残部がFe及び不可避的不純物から成る
成分組成であって、しかも体積率にて5%以上の残留オ
−ステナイトを含んだ組織を有して成ることを特徴とす
る、延性及び耐食性の優れた高張力冷延薄鋼板。
1. The contents of C, Si, Mn, P, S, Cr, Al and N are expressed by weight as follows: C: 0.05 to 0.3%, Si: 2.0% or less, Mn: 0.05 to 4.0%, P: 0.1% or less, S: 0.1% or less, Cr: 0.5 to 5.0%, Al: 0.1 to 2.0%, N: 0.01% or less, and Si (%) + Al (%) ≧ 0.5, 7.0 ≧ Mn (%) + Cr (%) ≧ 1.0, the balance being a component composition composed of Fe and unavoidable impurities, and having a structure containing 5% or more of retained austenite by volume. High-tensile cold-rolled thin steel sheet with excellent ductility and corrosion resistance.
【請求項2】 C,Si,Mn,P,S,Cr,Al及びNの含
有量が重量割合にて C:0.05〜 0.3%, Si: 2.0%以下, Mn:0.05〜 4.0%, P: 0.1%以下, S: 0.1%以下, Cr: 0.5〜 5.0%, Al: 0.1〜 2.0%, N:0.01%以下 で、かつ Si(%)+Al(%) ≧ 0.5, 7.0 ≧ Mn(%)+Cr(%) ≧ 1.0 を満足すると共に残部がFe及び不可避的不純物から成る
成分組成の鋼片を熱間圧延後300〜720℃で巻取
り、次いで脱スケ−ル処理後に圧下率:30〜80%で
冷間圧延してから、その後の連続焼鈍又は連続溶融亜鉛
めっき工程においてAc1変態点以上Ac3変態点以下の温
度域に加熱し、かつその冷却の途中で550〜350℃
の温度域に30秒以上保持するか該温度域を400℃/m
in以下の冷却速度で徐冷することを特徴とする、体積率
にて5%以上の残留オ−ステナイトを含む延性及び耐食
性の優れた高張力冷延薄鋼板の製造方法。
2. The content of C, Si, Mn, P, S, Cr, Al and N in terms of weight percentage is as follows: C: 0.05 to 0.3%, Si: 2.0% or less, Mn: 0.05 to 4.0%, P: 0.1% or less, S: 0.1% or less, Cr: 0.5 to 5.0%, Al: 0.1 to 2.0%, N: 0.01% or less, and Si (%) + Al (%) ≧ 0.5, 7.0 ≧ Mn (%) + Cr (%) A steel slab satisfying ≧ 1.0 and having a balance of Fe and unavoidable impurities is rolled at 300 to 720 ° C. after hot rolling, and then, after descaling, is reduced to 30 to 80%. , And in a subsequent continuous annealing or continuous hot-dip galvanizing step, it is heated to a temperature range from the Ac 1 transformation point to the Ac 3 transformation point, and 550 to 350 ° C. during the cooling.
Hold for at least 30 seconds in the temperature range of 400 ° C / m
A method for producing a high-tensile cold-rolled thin steel sheet comprising 5% or more by volume of retained austenite and having excellent ductility and corrosion resistance, characterized by gradually cooling at a cooling rate of not more than in.
JP35577991A 1991-12-21 1991-12-21 High tensile cold rolled steel sheet with excellent ductility and corrosion resistance and manufacturing method Expired - Lifetime JP3350944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35577991A JP3350944B2 (en) 1991-12-21 1991-12-21 High tensile cold rolled steel sheet with excellent ductility and corrosion resistance and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35577991A JP3350944B2 (en) 1991-12-21 1991-12-21 High tensile cold rolled steel sheet with excellent ductility and corrosion resistance and manufacturing method

Publications (2)

Publication Number Publication Date
JPH05171344A JPH05171344A (en) 1993-07-09
JP3350944B2 true JP3350944B2 (en) 2002-11-25

Family

ID=18445711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35577991A Expired - Lifetime JP3350944B2 (en) 1991-12-21 1991-12-21 High tensile cold rolled steel sheet with excellent ductility and corrosion resistance and manufacturing method

Country Status (1)

Country Link
JP (1) JP3350944B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596316B2 (en) * 1997-12-17 2004-12-02 住友金属工業株式会社 Manufacturing method of high tensile high ductility galvanized steel sheet
JP3621885B2 (en) 1998-07-01 2005-02-16 三菱レイヨン株式会社 Acrylic polymer fine particles and plastisol using the same
WO2003074751A1 (en) 2002-03-01 2003-09-12 Jfe Steel Corporation Surface treated steel plate and method for production thereof
WO2003078668A1 (en) * 2002-03-18 2003-09-25 Jfe Steel Corporation Process for producing high tensile hot-dip zinc-coated steel sheet of excellent ductility and antifatigue properties
JP4445365B2 (en) * 2004-10-06 2010-04-07 新日本製鐵株式会社 Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
JP5223366B2 (en) * 2007-02-08 2013-06-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and weldability and method for producing the same
JP4855442B2 (en) * 2008-06-20 2012-01-18 新日本製鐵株式会社 Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method
JP5418047B2 (en) * 2008-09-10 2014-02-19 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
CN101857942B (en) * 2010-07-06 2012-06-20 攀钢集团钢铁钒钛股份有限公司 Hot rolled steel plate with 590MPa-level tensile strength and production method thereof
ES2674133T3 (en) * 2014-12-01 2018-06-27 Voestalpine Stahl Gmbh Procedure for heat treatment of a manganese-steel product
CN114107789B (en) * 2020-08-31 2023-05-09 宝山钢铁股份有限公司 780 MPa-grade high-surface high-performance stability ultrahigh-reaming steel and manufacturing method thereof

Also Published As

Publication number Publication date
JPH05171344A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
EP1498507B1 (en) Cold-rolled steel sheet and galvanized steel sheet having excellent strain age hardenability and method of producing the same
JP3317303B2 (en) High tensile strength thin steel sheet with excellent local ductility and its manufacturing method
JPH10130782A (en) Ultrahigh strength cold rolled steel sheet and its production
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
JP3350944B2 (en) High tensile cold rolled steel sheet with excellent ductility and corrosion resistance and manufacturing method
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JP2002115025A (en) Steel sheet having high stretch-flanging property and excellent shape freezability and its production method
JP4062961B2 (en) High tensile hot-rolled steel sheet excellent in mold galling resistance and fatigue resistance and method for producing the same
JP2962038B2 (en) High tensile strength steel sheet and its manufacturing method
JPH11189842A (en) High-strength and high-workability hot rolled steel plate excellent in impact resistance, balance between strength and elongation, fatigue resistance, and bore-expandability, and its production
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
JP3551878B2 (en) High-ductility, high-hole-expansion high-tensile steel sheet and method for producing the same
JP2001303175A (en) Ferritic thin steel sheet excellent in shape freezability and its producing method
JP3350945B2 (en) High tensile hot rolled steel sheet with excellent ductility and corrosion resistance and manufacturing method
JP2007270167A (en) Method for producing galvanized steel sheet excellent in baking hardenability
JP3911972B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet
JP2734842B2 (en) High workability hot-rolled high-strength steel sheet and its manufacturing method
JP2727827B2 (en) High workability hot-rolled high-strength steel sheet and its manufacturing method
JP3616472B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent workability
JP2003268490A (en) Thin steel sheet for working excellent in bake hardenability and aging resistance and its production method
JPH07252590A (en) High tensile strength cold rolled steel plate for deep drawing excellent in balance of strength-ductility and its production
JP3831057B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
JP2660640B2 (en) Manufacturing method of alloyed hot-dip galvanized cold-rolled steel sheet for deep drawing with excellent bake hardenability and powdering resistance
JPH0559485A (en) High ductility hot rolled high tensile strength steel sheet and its manufacture
JP3544441B2 (en) High-strength hot-rolled steel sheet and plated steel sheet with excellent deep drawability and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10