JP3616472B2 - Method for producing high-strength hot-dip galvanized steel sheet with excellent workability - Google Patents

Method for producing high-strength hot-dip galvanized steel sheet with excellent workability Download PDF

Info

Publication number
JP3616472B2
JP3616472B2 JP09185897A JP9185897A JP3616472B2 JP 3616472 B2 JP3616472 B2 JP 3616472B2 JP 09185897 A JP09185897 A JP 09185897A JP 9185897 A JP9185897 A JP 9185897A JP 3616472 B2 JP3616472 B2 JP 3616472B2
Authority
JP
Japan
Prior art keywords
hot
rolling
steel sheet
dip galvanized
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09185897A
Other languages
Japanese (ja)
Other versions
JPH10280115A (en
Inventor
暁 田中
康治 佐久間
淳 伊丹
久芳 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09185897A priority Critical patent/JP3616472B2/en
Publication of JPH10280115A publication Critical patent/JPH10280115A/en
Application granted granted Critical
Publication of JP3616472B2 publication Critical patent/JP3616472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加工性と経済性に優れた高強度溶融亜鉛めっき鋼板の製造方法に関するものである。
【0002】
【従来の技術】
近年、経済性の点から自動車、各種機器の部材、建築用材等様々な分野において鋼の高強度化が求められている。その多くは曲げ加工や軽度の張出し、穴拡げ等の加工度の緩い成形品であり、再結晶冷延鋼板のように大きな延性を必要としない。このような用途では、プレス装置、金型等の制約から、やみくもに高強度化が求められているわけではなく、引張強さが400〜590MPa程度で、(C方向の全伸び)/(L方向の全伸び)=REL>0.7以上の、経済性の高い安定した材質の鋼板が強く望まれている。
【0003】
高強度鋼板を製造する場合、一般に、析出、変態、転位などによる強化方法を用いている。例えば、特公昭53−9167号公報、特公昭54−41985号公報では、鋼にPを添加し、冷間圧延後の焼鈍時に析出させ、高強度を得ている。また、ベイナイトやマルテンサイト等への変態による強化方法では伸びが良好な鋼板が得られるが製造中に急冷工程が入り、しかも多量の合金元素を必要とする。
【0004】
転位による強化方法は、冷間圧延後の焼鈍工程において、再結晶を完了させないことにより、高強度化を図る方法であり、様々な合金元素を必要とする上記析出、変態による強化方法に比し、安価となるが、圧延方向(L方向)の伸びと圧延方向に直角な方向(C方向) の全伸びの異方性が一般に悪い。その改善方案として特開昭56−119731号公報のように400℃以下の極低温巻取を行うことを特徴とする方法や特公昭46−26217号公報のように熱延後の冷間圧延時に軽冷延率で圧延後焼鈍する方法が知見されている。
【0005】
【発明が解決しようとする課題】
前述の特開昭56−119731号公報の製造方法は、熱間圧延後、極低温巻取をすることにより、炭素を固溶、微細炭化物状態とし、冷間圧延時のボイド抑制を図り、鋼板の伸びの異方性の改善を狙ったものであるが、実質的に引張強さ600MPa以上の鋼板の製造方法であり、熱間圧延後の巻取温度が極端に低いため、通常行われている熱間圧延仕上〜巻取の時間内に鋼板の再結晶が完了せず、加工組織が多く残留し硬化することから、その後の冷間圧延時の圧延負荷が著しく大きくなる。よって、冷延率も大きく出来ず、工業的に制約が生じるばかりか、冷延電力コストも顕著に増加するという欠点がある。
【0006】
また、特公昭46−26217号公報の製造方法では、熱間圧延、酸洗後の冷間圧延の冷延率が10〜35%と低く、同じ厚みの冷延板を得るためには、熱間圧延を薄く仕上げる必要があり、熱延及び酸洗コストの顕著な増大を招くという致命的な欠点がある。従って、引張強さが400〜590MPaで、かつC、L方向の全伸びの異方性が小さく経済性に優れた溶融亜鉛めっき鋼板を製造することは困難であった。
【0007】
【課題を解決するための手段】
本発明者は、かかる問題を解決するために鋭意検討を行い、特定の鋼成分に対し製造条件を限定することで炭化物の析出方向を制御し、伸びの異方性を改善出来ることを発見した。その結果、引張強さが400〜590MPaで、かつC、L方向の全伸びの異方性が小さく、経済性に優れた溶融亜鉛めっき鋼板を製造出来ることを知見した。すなわち、本発明による高強度溶融亜鉛めっき鋼板の製造方法の要旨は、
【0008】
(1)質量割合で、C:0.041〜0.1%、Si:0.005〜0.1%、Mn:0.01〜0.5%、P:0.002〜0.1%、S:0.002〜0.05%、Al:0.005〜0.1%、N:0.001〜0.01%、残部Fe及び不可避的不純物から成る鋼組成を有するスラブを加熱し、785〜830℃で熱間圧延を終了し、次いで500℃〜650℃の巻取温度で巻取り、通常の酸洗後、冷延率40〜80%で冷間圧延を行い、さらに溶融亜鉛めっきラインにて500〜630℃の温度で焼鈍後溶融亜鉛めっきを施すことにより得られる、引張強さが400〜590MPaで、かつ(C方向の全伸び)/(L方向の全伸び)=REL>0.7であることを特徴とする、加工性に優れた溶融亜鉛めっき鋼板の製造方法、であり、さらには、
(2)質量割合で、B:0.0002〜0.003%を含有する、前記(1)記載の加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法、である。
【0009】
【発明の実施の形態】
本発明により製造される高強度溶融亜鉛めっき鋼板は、引張強さが400〜590MPaでかつC、L方向の全伸びの異方性が小さい、低コストで加工性の優れたものである。 以下、本発明の成分限定理由について述べる。
Cは高強度を確保するために必要な元素である。0.041%未満では、高強度を得られず、脱炭コストが上昇し、また0.1%以上あると加工性が劣化すると共に合金コストが上昇するため、0.041%〜0.1%とした。
Siは、鋼の溶製工程における脱酸剤であり、固溶強化元素として鋼の強度化に有効であるが、熱間圧延時のスケール疵の要因となり、0.5%以上では冷延後の表面の品質にも悪影響を及ぼし、また、0.005%以下にすることは経済的に困難であることから0.005%〜0.5%とした。
【0010】
Mnは固溶強化元素として、鋼の強度化に有効であるほか、Sによる熱間脆性防止のために添加されるが、0.01%未満では効果がなく、また0.5%以上ではコスト高の原因になることから0.01%〜0.5%とした。
Pは、強度及び加工性に影響を与える元素であるが、0.1%を越えると脆性、及び加工性が顕著に劣化し、また0.002%未満ではさしたる影響もないことから、0.002〜0.1%とした。
【0011】
Sは不可避的に含まれるものであるが、0.05%以上あると熱間脆化のため表面が劣化し、また、0.002%未満ではその影響も小さく脱硫コストも増大することから0.002〜0.05%とした。
Alは脱酸、脱窒のために添加されるが0.005%未満では添加効果がなく、一方、0.1%を越えると製鋼工程でのノズル閉塞の恐れがあり、また製品の表面性状が劣化するため0.005〜0.1%とした。
【0012】
Nは、固溶Nがストレッチャー・ストレインの原因となり、表面性状が劣化するため少ない方が望ましく、0.01%を越えるとその影響が顕著となる。しかし、0.001%未満にすることは工業上困難であることから0.001〜0.01%とした。
Bは2次加工脆性の改善に用いられる元素であるが0.0002%未満では添加効果が無く、0.003%ではその効果が飽和するため0.0002%〜0.003%とした。
【0013】
次に製造条件について述べる。本発明者は、前述の成分を含有したスラブを次に示すような製造条件に制御することにより、炭化物の析出を制御し、伸びの異方性を改善出来ることを知見した。
熱間圧延の仕上温度は本発明にとり重要であり、785℃〜830℃で熱間圧延を終了する。この意味は、析出炭化物の析出制御と冷間圧延負荷低減にある。この温度域で仕上圧延することにより、仕上げから巻取後までに粒界析出する炭化物の析出がL方向に多くなり、C方向への析出を減少させることが出来る。この析出は後述の冷間圧延、焼鈍後の伸びに影響を与え、特にC方向では析出物の減少による伸びの改善効果が著しくなる。冷間圧延後の組織はL方向に展伸しており、L方向の伸びはさして劣化しない。
【0014】
また、この温度領域で圧延した場合には、変形抵抗の小さい集合組織が板面に平行に発達するため冷間圧延負荷が減少し析出炭化物への負荷も軽減され、圧延時の破砕などの悪影響を抑制する事が出来る。830℃より高い温度で圧延すると、この効果がないばかりか、粗大な結晶粒と細粒が混在し易くなり、通板性が悪くなるとともに熱延板の肌荒れが大きくなり、好ましくない。また720℃未満では熱間圧延後に加工組織が残留し、冷延工程の負荷が急激に大きくなる。
【0015】
熱間圧延後の巻取温度は、析出炭化物の抑制と、完全再結晶組織を得るという2つの側面を持ち、これを両立させる必要がある。650℃以上であると、冷延焼鈍後のセメンタイトが圧延面に平行に層状に粒界析出が顕著となり、全伸びを悪化させ、また500℃未満であると熱間圧延時の加工組織が再結晶せず残留し、冷間圧延時の通板性が悪くなることから500〜650℃とした。
次いで通常の酸洗後、冷間圧延する。冷間圧延の圧延率は40%未満であると所定の引張強さが得られず、また80%以上であると伸びの絶対値が小さくなるため、40〜80%とした。
【0016】
次いで、溶融亜鉛めっきを行うが、めっき前の焼鈍温度は630℃以上であると再結晶が進行し所定の強度が得られず、500℃未満では回復が充分進行せず、引張強さが所定より高く、伸びの異方性が大きいため、500℃〜630℃の範囲とした。
このように、本発明は、炭化物の析出方向を積極的に制御することで伸びの異方性を減少させるという全く新しい視点に基づいており、単に析出炭化物を固溶状態、あるいは微細炭化物状態にする特開昭56−119731号公報記載の技術とは顕著な相違がある。
【0017】
【実施例】
表1に示すA〜の化学成分の鋼を転炉出鋼し、連続鋳造により鋼片を得た後、仕上圧延出側温度780〜905℃、巻取温度550〜670℃となるように熱間圧延し、4.5mm厚さの熱延コイルを製造後、冷延率35〜85%で冷間圧延し、その後、連続式溶融亜鉛めっきラインにて480〜650℃、焼鈍時間60秒で焼鈍後、その後470℃で溶融亜鉛めっきを施した材料について材質調査を行った。引張試験片は圧延方向に対し0゜、90゜方向から切出加工したJIS5号試験片で行った。
【0018】
【表1】

Figure 0003616472
【0019】
表2に製造条件と機械的性質を示す。表中No1〜、及びNo11が本発明例である。NoはFTが規定から外れている比較例であり引張強さが低い。Noは巻取温度が規定から外れている比較例で、L方向とC方向の全伸びの比である、REL=(C方向の全伸び)/(L方向の全伸び)が小さく、異方性が大きい。No、及びは冷間圧延時の冷延率が規定から外れている比較例であり、Noは引張強さが小さく、NoはRELが不足している。また、No、及び10は溶融亜鉛めっきライン中での焼鈍温度が規定から外れている比較例であり、Noは引張強さが不足し、No10では逆に引張強さが高過ぎ、またRELも不足している。また、No12、及び13は本発明鋼の成分規定から外れている比較例であり、ともに引張強さとRELが本発明の特許請求範囲から外れている。
【0020】
【表2】
Figure 0003616472
【0021】
【発明の効果】
以上のように、本発明により得られる高強度溶融亜鉛めっき鋼板は、引張強さが400〜590MPaで、かつC、L方向の全伸びの異方性が小さいため、多くの分野に適用可能であり、しかも合金コストを抑制し、かつ製造コストも安価なため、経済性にも非常に優れており、産業上に与える効果は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-strength hot-dip galvanized steel sheet excellent in workability and economy.
[0002]
[Prior art]
In recent years, high strength of steel has been demanded in various fields such as automobiles, various equipment members, and building materials from the viewpoint of economy. Many of them are molded products with a low degree of processing such as bending, mild overhang, and hole expansion, and do not require large ductility like recrystallized cold-rolled steel sheets. In such applications, due to the limitations of press equipment, molds, etc., high strength is not always sought. Tensile strength is about 400 to 590 MPa, (total elongation in the C direction) / (L There is a strong demand for a highly economical and stable steel plate with a total elongation in the direction) = REL> 0.7 or more.
[0003]
When manufacturing a high-strength steel sheet, generally, a strengthening method using precipitation, transformation, dislocation, or the like is used. For example, in Japanese Patent Publication No. 53-9167 and Japanese Patent Publication No. 54-41985, P is added to steel and precipitated during annealing after cold rolling to obtain high strength. Further, in the strengthening method by transformation to bainite, martensite or the like, a steel sheet having good elongation can be obtained, but a rapid cooling process is entered during production, and a large amount of alloying elements are required.
[0004]
The strengthening method by dislocation is a method to increase the strength by not completing recrystallization in the annealing process after cold rolling, compared with the strengthening method by precipitation and transformation that requires various alloy elements. However, the anisotropy between the elongation in the rolling direction (L direction) and the total elongation in the direction perpendicular to the rolling direction (C direction) is generally poor. As an improvement method thereof, a method characterized by performing extremely low temperature winding at 400 ° C. or lower as disclosed in Japanese Patent Laid-Open No. 56-119731, or during cold rolling after hot rolling as disclosed in Japanese Patent Publication No. 46-26217. A method of annealing after rolling at a light cold rolling rate has been known.
[0005]
[Problems to be solved by the invention]
The manufacturing method of the above-mentioned Japanese Patent Application Laid-Open No. 56-119731 is a steel plate in which carbon is dissolved in a solid carbide and fine carbide state by cold rolling after hot rolling to suppress voids during cold rolling. Is intended to improve the elongation anisotropy of the steel sheet, but is a method of manufacturing a steel sheet having a tensile strength of 600 MPa or more substantially, and is usually performed because the coiling temperature after hot rolling is extremely low. Since the recrystallization of the steel sheet is not completed within the hot rolling finishing to winding time, and a large amount of processed structure remains and hardens, the rolling load during the subsequent cold rolling is significantly increased. Therefore, the cold rolling rate cannot be increased, and there are disadvantages that not only the industrial restriction is caused, but the cold rolling power cost is remarkably increased.
[0006]
In the manufacturing method of Japanese Examined Patent Publication No. 46-26217, in order to obtain a cold-rolled sheet having the same thickness, the cold-rolling rate of hot rolling and cold rolling after pickling is as low as 10 to 35%. There is a fatal disadvantage that it is necessary to finish the hot rolling thinly, which causes a significant increase in hot rolling and pickling costs. Therefore, it has been difficult to produce a hot-dip galvanized steel sheet having a tensile strength of 400 to 590 MPa, a small anisotropy of total elongation in the C and L directions, and excellent economic efficiency.
[0007]
[Means for Solving the Problems]
The present inventor has intensively studied to solve such a problem, and has found that the anisotropy of elongation can be improved by controlling the precipitation direction of carbides by limiting the production conditions for specific steel components. . As a result, it was found that a hot-dip galvanized steel sheet having a tensile strength of 400 to 590 MPa and a small anisotropy of total elongation in the C and L directions and excellent in economic efficiency can be produced. That is, the gist of the manufacturing method of the high-strength hot-dip galvanized steel sheet according to the present invention is as follows:
[0008]
(1) By mass ratio, C: 0.041 to 0.1%, Si: 0.005 to 0.1%, Mn: 0.01 to 0.5%, P: 0.002 to 0.1% , S: 0.002-0.05%, Al: 0.005-0.1%, N: 0.001-0.01%, heating a slab having a steel composition consisting of the balance Fe and inevitable impurities , The hot rolling is completed at 785 to 830 ° C., followed by winding at a winding temperature of 500 ° C. to 650 ° C., and after normal pickling, cold rolling is performed at a cold rolling rate of 40 to 80%, Tensile strength obtained by applying hot dip galvanizing after annealing at a temperature of 500 to 630 ° C. in a plating line, and (total elongation in the C direction) / (total elongation in the L direction) = REL A method for producing a hot-dip galvanized steel sheet excellent in workability, characterized by being> 0.7 Yes, and
(2) A method for producing a high-strength hot-dip galvanized steel sheet having excellent workability as described in (1) above, containing B: 0.0002 to 0.003% by mass ratio.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The high-strength hot-dip galvanized steel sheet produced according to the present invention has a tensile strength of 400 to 590 MPa, a small anisotropy of total elongation in the C and L directions, and low cost and excellent workability. The reasons for limiting the components of the present invention will be described below.
C is an element necessary for ensuring high strength. If it is less than 0.041% , high strength cannot be obtained, the decarburization cost increases, and if it is 0.1% or more, the workability deteriorates and the alloy cost increases, so 0.041% to 0.1 % %.
Si is a deoxidizer in the steel smelting process, and is effective as a solid solution strengthening element for strengthening steel. However, it becomes a factor of scale flaws during hot rolling. It also adversely affects the surface quality, and it is economically difficult to make it 0.005% or less, so it was made 0.005% to 0.5%.
[0010]
Mn is a solid solution strengthening element that is effective for strengthening steel and is added to prevent hot brittleness due to S. However, if it is less than 0.01%, it is ineffective. Since it becomes a cause of high, it was made into 0.01%-0.5%.
P is an element that affects the strength and workability, but if it exceeds 0.1%, the brittleness and workability deteriorate significantly, and if it is less than 0.002%, there is no significant influence. 002 to 0.1%.
[0011]
S is inevitably included, but if it is 0.05% or more, the surface deteriorates due to hot embrittlement, and if it is less than 0.002%, the effect is small and the desulfurization cost increases. 0.002 to 0.05%.
Al is added for deoxidation and denitrification, but if it is less than 0.005%, there is no effect. On the other hand, if it exceeds 0.1%, there is a risk of nozzle clogging in the steelmaking process, and the surface properties of the product. Is 0.005 to 0.1%.
[0012]
As for N, since the solid solution N causes stretcher strain and the surface properties deteriorate, it is desirable that N is less, and when it exceeds 0.01%, the effect becomes remarkable. However, it is 0.001 to 0.01% because it is industrially difficult to make it less than 0.001%.
B is an element used for improving secondary work brittleness, but if less than 0.0002%, there is no effect of addition, and if 0.003%, the effect is saturated, so 0.0002% to 0.003%.
[0013]
Next, manufacturing conditions will be described. The present inventor has found that the precipitation anisotropy can be controlled and the anisotropy of elongation can be improved by controlling the slab containing the above-described components to the following production conditions.
The finishing temperature of the hot rolling is important for the present invention, and the hot rolling is finished at 785 ° C to 830 ° C. This meaning lies in precipitation control of precipitated carbides and reduction of cold rolling load. By performing finish rolling in this temperature range, precipitation of carbides precipitated at the grain boundaries from finishing to after winding is increased in the L direction, and precipitation in the C direction can be reduced. This precipitation affects the elongation after cold rolling and annealing described later, and in particular, in the C direction, the effect of improving the elongation due to the reduction of precipitates becomes significant. The structure after cold rolling extends in the L direction, and the elongation in the L direction is not deteriorated.
[0014]
In addition, when rolling in this temperature range, a texture with low deformation resistance develops parallel to the plate surface, so the cold rolling load is reduced and the load on the precipitated carbide is reduced, which has adverse effects such as crushing during rolling. Can be suppressed. Rolling at a temperature higher than 830 ° C. is not preferable because not only this effect is not obtained, but also coarse crystal grains and fine grains are likely to coexist, the plate-through property is deteriorated and the hot-rolled sheet becomes rough. Moreover, if it is less than 720 degreeC, a process structure will remain after hot rolling, and the load of a cold rolling process will become large rapidly.
[0015]
The coiling temperature after hot rolling has two aspects of suppressing precipitated carbides and obtaining a complete recrystallized structure, and it is necessary to achieve both. When the temperature is 650 ° C or higher, cementite after cold rolling annealing is markedly grain boundary precipitated parallel to the rolling surface and deteriorates the total elongation. When the temperature is lower than 500 ° C, the work structure at the time of hot rolling is restored. It remained at 500 to 650 ° C. because it remained without crystallizing, and the plateability during cold rolling deteriorated.
Then, after normal pickling, cold rolling is performed. When the rolling rate of the cold rolling is less than 40%, a predetermined tensile strength cannot be obtained, and when it is 80% or more, the absolute value of elongation becomes small.
[0016]
Next, hot dip galvanization is performed, but if the annealing temperature before plating is 630 ° C. or higher, recrystallization proceeds and a predetermined strength cannot be obtained, and if it is less than 500 ° C., recovery does not proceed sufficiently and the tensile strength is predetermined. Since it was higher and the anisotropy of elongation was large, it was set to the range of 500 ° C to 630 ° C.
As described above, the present invention is based on a completely new viewpoint of reducing the anisotropy of elongation by actively controlling the precipitation direction of the carbide, and simply makes the precipitated carbide into a solid solution state or a fine carbide state. There is a significant difference from the technique described in Japanese Patent Laid-Open No. 56-1197331.
[0017]
【Example】
The steels having chemical components A to F shown in Table 1 are converted into steel in a converter and steel pieces are obtained by continuous casting. Then, the finish rolling exit temperature is 780 to 905 ° C, and the winding temperature is 550 to 670 ° C. After hot rolling to produce a 4.5 mm thick hot rolled coil, it is cold rolled at a cold rolling rate of 35 to 85%, and then 480 to 650 ° C. and an annealing time of 60 seconds in a continuous hot dip galvanizing line. Then, after the annealing, a material survey was performed on the material that was hot-dip galvanized at 470 ° C. The tensile test piece was a JIS No. 5 test piece cut from 0 ° and 90 ° with respect to the rolling direction.
[0018]
[Table 1]
Figure 0003616472
[0019]
Table 2 shows manufacturing conditions and mechanical properties. Table in No1~ 4, and No 11 are the invention examples. No. 5 is a comparative example in which FT is out of regulation, and the tensile strength is low. No. 6 is a comparative example in which the coiling temperature is out of regulation, and the ratio of the total elongation in the L direction and the C direction, REL = (total elongation in the C direction) / (total elongation in the L direction), is small and different. Isotropic. No. 7 and No. 8 are comparative examples in which the cold rolling rate during cold rolling is out of regulation, No. 7 has a low tensile strength, and No. 8 is deficient in REL. In addition, No 9 and 10 are comparative examples in which the annealing temperature in the hot dip galvanizing line is out of regulation, No 9 has insufficient tensile strength, and No 10 has excessively high tensile strength, REL is also lacking. Nos. 12 and 13 are comparative examples that deviate from the component specifications of the steel of the present invention, and both the tensile strength and REL are out of the scope of the claims of the present invention.
[0020]
[Table 2]
Figure 0003616472
[0021]
【The invention's effect】
As described above, the high-strength hot-dip galvanized steel sheet obtained by the present invention has a tensile strength of 400 to 590 MPa and has a small total anisotropy in the C and L directions, and thus can be applied to many fields. In addition, since the alloy cost is suppressed and the manufacturing cost is low, the cost is very excellent and the effect on the industry is extremely large.

Claims (2)

質量割合で、C:0.041〜0.1%、Si:0.005〜0.1%、Mn:0.01〜0.5%、P:0.002〜0.1%、S:0.002〜0.05%、Al:0.005〜0.1%、N:0.001〜0.01%、残部Fe及び不可避的不純物から成る鋼組成を有するスラブを加熱し、785〜830℃で熱間圧延を終了し、次いで500℃〜650℃の巻取温度で巻取り、通常の酸洗後、冷延率40〜80%で冷間圧延を行い、さらに溶融亜鉛めっきラインにて500〜630℃の温度で焼鈍後溶融亜鉛めっきを施すことにより得られる、引張強さが400〜590MPaで、かつ(C方向の全伸び)/(L方向の全伸び)=REL>0.7であることを特徴とする、加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法。By mass ratio, C: 0.041 to 0.1%, Si: 0.005 to 0.1%, Mn: 0.01 to 0.5%, P: 0.002 to 0.1%, S: 0.002~0.05%, Al: 0.005~0.1%, N: 0.001~0.01%, heating the slab having the steel composition and the balance Fe and unavoidable impurities, 785 ~ Finish the hot rolling at 830 ° C, then wind it at a coiling temperature of 500 ° C to 650 ° C, perform normal pickling, perform cold rolling at a cold rolling rate of 40 to 80%, and further to the hot dip galvanizing line The tensile strength obtained by performing hot dip galvanization after annealing at a temperature of 500 to 630 ° C. is 400 to 590 MPa, and (total elongation in the C direction) / (total elongation in the L direction) = REL> 0. 7. A method for producing a high-strength hot-dip galvanized steel sheet excellent in workability, characterized in that it is 7. 質量割合で、B:0.0002〜0.003%を含有する、請求項1記載の加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法。The manufacturing method of the high intensity | strength hot-dip galvanized steel plate excellent in workability of Claim 1 containing B: 0.0002 to 0.003% by mass ratio.
JP09185897A 1997-04-10 1997-04-10 Method for producing high-strength hot-dip galvanized steel sheet with excellent workability Expired - Fee Related JP3616472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09185897A JP3616472B2 (en) 1997-04-10 1997-04-10 Method for producing high-strength hot-dip galvanized steel sheet with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09185897A JP3616472B2 (en) 1997-04-10 1997-04-10 Method for producing high-strength hot-dip galvanized steel sheet with excellent workability

Publications (2)

Publication Number Publication Date
JPH10280115A JPH10280115A (en) 1998-10-20
JP3616472B2 true JP3616472B2 (en) 2005-02-02

Family

ID=14038265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09185897A Expired - Fee Related JP3616472B2 (en) 1997-04-10 1997-04-10 Method for producing high-strength hot-dip galvanized steel sheet with excellent workability

Country Status (1)

Country Link
JP (1) JP3616472B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112778A (en) * 2015-08-31 2015-12-02 武汉钢铁(集团)公司 460 MPa coating steel for automobile beam and ultra-fast cooling production method thereof
CN105238999A (en) * 2015-11-25 2016-01-13 武汉钢铁(集团)公司 350MPa grade thick standard hot-dip galvanized steel and production method thereof
CN105256230A (en) * 2015-11-25 2016-01-20 武汉钢铁(集团)公司 450Mpa-grade thick gauge hot-dip galvanized steel and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020044879A (en) * 2000-12-07 2002-06-19 이구택 A hot-rolled steel sheet with excellent stretching workability, and a method for manufacturing it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112778A (en) * 2015-08-31 2015-12-02 武汉钢铁(集团)公司 460 MPa coating steel for automobile beam and ultra-fast cooling production method thereof
CN105238999A (en) * 2015-11-25 2016-01-13 武汉钢铁(集团)公司 350MPa grade thick standard hot-dip galvanized steel and production method thereof
CN105256230A (en) * 2015-11-25 2016-01-20 武汉钢铁(集团)公司 450Mpa-grade thick gauge hot-dip galvanized steel and production method thereof

Also Published As

Publication number Publication date
JPH10280115A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
US20210292862A1 (en) High-strength cold rolled steel sheet with low material non-uniformity and excellent formability, hot dipped galvanized steel sheet, and manufacturing method therefor
EP2415894B1 (en) Steel sheet excellent in workability and method for producing the same
CN110959049B (en) Flat steel product with good aging resistance and method for the production thereof
US20090071574A1 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
JP2005528519A5 (en)
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
JP3498504B2 (en) High ductility type high tensile cold rolled steel sheet and galvanized steel sheet
CN113316649A (en) High-strength high-ductility complex-phase cold-rolled steel strip or plate
JP3514158B2 (en) Manufacturing method of high tensile strength hot rolled steel sheet with excellent stretch flangeability and material stability
JP3350944B2 (en) High tensile cold rolled steel sheet with excellent ductility and corrosion resistance and manufacturing method
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JP4788291B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent stretch flangeability
JP6683291B2 (en) Steel plate and method for manufacturing steel plate
JP3616472B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent workability
JP7329550B2 (en) Hot-rolled plated steel sheet with high strength, high formability, and excellent bake hardenability, and method for producing the same
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
JP3954411B2 (en) Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability
JPH0154413B2 (en)
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP3831057B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
JP2003193191A (en) High tensile strength cold rolled steel sheet with composite structure having excellent deep drawability and production method therefor
JP3870840B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JPH0557332B2 (en)
JPS63149321A (en) Production of high-strength zinc hot dip coated steel sheet having good workability
JP3425288B2 (en) 400-800N / mm2 class high-strength hot-rolled steel sheet excellent in workability and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees