JP2002115025A - Steel sheet having high stretch-flanging property and excellent shape freezability and its production method - Google Patents

Steel sheet having high stretch-flanging property and excellent shape freezability and its production method

Info

Publication number
JP2002115025A
JP2002115025A JP2001196317A JP2001196317A JP2002115025A JP 2002115025 A JP2002115025 A JP 2002115025A JP 2001196317 A JP2001196317 A JP 2001196317A JP 2001196317 A JP2001196317 A JP 2001196317A JP 2002115025 A JP2002115025 A JP 2002115025A
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolling
flangeable
shape freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001196317A
Other languages
Japanese (ja)
Other versions
JP3990553B2 (en
Inventor
Natsuko Sugiura
夏子 杉浦
Naoki Yoshinaga
直樹 吉永
Manabu Takahashi
学 高橋
Toru Yoshida
亨 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001196317A priority Critical patent/JP3990553B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to EP01970195A priority patent/EP1327695B1/en
Priority to CA002422753A priority patent/CA2422753C/en
Priority to US10/380,844 priority patent/US6962631B2/en
Priority to KR1020037004171A priority patent/KR100543956B1/en
Priority to CNB018160859A priority patent/CN1208490C/en
Priority to PCT/JP2001/008277 priority patent/WO2002024968A1/en
Publication of JP2002115025A publication Critical patent/JP2002115025A/en
Application granted granted Critical
Publication of JP3990553B2 publication Critical patent/JP3990553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin steel sheet worked mainly by bending in which the amount of spring back and the amount of wall camber are small, and which has excellent shape freezability and hole expandability. SOLUTION: This hot rolled steel sheet and cold rolled steel sheet having high stretch-flanging properties and excellent shape freezability has a composition containing, by mass, 0.0001% to 0.3% C, 0.001 to 3.5% Si, 0.05 to 3% Mn, <=0.2% P, <=0.03% S, 0.01 to 3% Al, <=0.01% N and <=0.01% O, and the balance iron with inevitable impurities and has a composite structure formed of ferrite or bainite as the main phase by area ratio, and the total area ratio of pearlite, martensite and retained austenite is <=5%, also, the average value of the X-ray random intensity ratios in the orientation groups of [100]<;011>; to [223]<;110>; of the sheet plane in the sheet thickness of at least 1/2 is >=3.0, besides, the average value of the X-ray random intensity ratios in the three crystal orientations of [554]<;225>;, [111]<;112>; and [111]<;110>; is <=3.5, and further, at least one of the (r) value in the rolling direction and the (r) value in a direction orthogonal to the rolling direction is <=0.7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、形状凍結性に優れ
た高伸びフランジ性鋼板およびその製造方法に関するも
ので、該鋼板は、自動車部品等が主たる用途のものであ
る。本発明の鋼板は熱延鋼板と冷延鋼板の双方を含有す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high elongation flangeable steel sheet excellent in shape freezing property and a method for producing the same, and the steel sheet is mainly used for automobile parts and the like. The steel sheet of the present invention contains both a hot-rolled steel sheet and a cold-rolled steel sheet.

【0002】[0002]

【従来の技術】自動車からの炭酸ガスの排出量を抑える
ために、高強度鋼板を使用して自動車車体の軽量化を図
ることが進められている。また、搭乗者の安全性を確保
するためにも、自動車車体には、軟鋼板の他に高強度鋼
板が多く使用されるようになってきている。更に自動車
車体の軽量化を今後進めていくために、従来以上に高強
度鋼板の使用強度レベルを高めたいという新たな要請が
非常に高まりつつある。
2. Description of the Related Art In order to reduce the amount of carbon dioxide gas emitted from automobiles, the use of high-strength steel sheets to reduce the weight of automobile bodies has been promoted. In addition, in order to ensure the safety of passengers, high-strength steel sheets are increasingly used in automobile bodies in addition to mild steel sheets. Further, in order to further reduce the weight of automobile bodies in the future, new demands for increasing the use strength level of high-strength steel sheets more than ever have been increasing.

【0003】しかしながら、高強度鋼板に曲げ変形を加
えると、加工後の形状がその高強度ゆえに、加工冶具の
形状から離れて加工前の形状の方向にもどりやすくなる
というスプリング・バック現象や、成形中の曲げ−曲げ
戻しからの弾性回復により、側壁部の平面が曲率を持っ
た面になってしまうという“壁そり現象”が起こり、狙
いとする加工部品の形状が得られないという寸法精度不
良が生じる。
However, when bending deformation is applied to a high-strength steel sheet, the spring-back phenomenon, in which the shape after processing tends to return from the shape of the processing jig to the shape before processing because of its high strength, Elastic recovery from bending-unbending causes "wall warp phenomenon" in which the plane of the side wall becomes a surface with curvature, resulting in poor dimensional accuracy such that the shape of the target processed part cannot be obtained. Occurs.

【0004】従って、従来の自動車の車体では、主とし
て440MPa以下の高強度鋼板に限って使用されてき
た。すなわち、自動車車体にとっては、490MPa以
上の高強度鋼板を使用して車体の軽量化を進めていく必
要があるにもかかわらず、スプリング・バックや壁そり
が起こりにくく、寸法精度が良好な、すなわち、形状凍
結性の良い高強度鋼板が存在しないのが実状である。
[0004] Therefore, in the conventional automobile body, mainly high-strength steel sheets of 440 MPa or less have been used. In other words, despite the necessity of using a high-strength steel plate of 490 MPa or more to reduce the weight of the car body, spring back and wall warpage hardly occur and the dimensional accuracy is good, that is, In fact, there is no high-strength steel sheet having good shape freezing properties.

【0005】付け加えるまでもなく、440MPa以下
の高強度鋼板や軟鋼板の加工後の形状凍結性を高めるこ
とも、自動車や家電製品などの製品の形状精度を高める
上で極めて重要である。そのような実状の中で、特開平
10−72644号公報には、圧延面に平行な面におけ
る{200}集合組織の集積度が1.5以上であること
を特徴とするスプリングバック量が小さいオーステナイ
ト系ステンレス冷延鋼板が開示されている。しかし、フ
ェライト系鋼板については何ら記載されていない。
[0005] Needless to add, it is also extremely important to enhance the shape freezing property of a high-strength steel sheet or a mild steel sheet having a pressure of 440 MPa or less after processing, such as an automobile or a home electric appliance. Under such circumstances, Japanese Unexamined Patent Application Publication No. 10-72644 discloses that the degree of accumulation of {200} texture in a plane parallel to the rolling plane is 1.5 or more, and the amount of springback is small. An austenitic stainless cold rolled steel sheet is disclosed. However, there is no description about a ferritic steel sheet.

【0006】一方、伸びフランジ性も、鋼板を自動車用
部品等へ加工する際に、欠くことのできない特性であ
り、高伸びフランジ性鋼板の形状凍結性が向上すること
により、自動車車体への高強度鋼板の適用範囲が、一層
広範なものとなる。
On the other hand, the stretch flangeability is also an indispensable property when a steel sheet is processed into automobile parts and the like. The application range of the high strength steel sheet becomes wider.

【0007】[0007]

【発明が解決しようとする課題】軟鋼板や高強度鋼板に
曲げ加工を施すと、鋼板の強度に依存しながら大きなス
プリング・バックや壁そりなどの形状不良が発生し、こ
れら鋼板は、加工成形部品の形状凍結性が悪いのが現状
である。また、伸びフランジ性は、鋼板の加工の際に欠
くことができない特性であり、高強度鋼板を自動車部品
等に適用するためには、形状凍結性と伸びフランジ性の
両方に優れていることが望まれる。
When bending a mild steel sheet or a high-strength steel sheet, a shape defect such as a large spring back or a wall warp occurs depending on the strength of the steel sheet. At present, the shape freezeability of parts is poor. Stretch flangeability is an indispensable property when processing steel sheets, and in order to apply a high-strength steel sheet to automobile parts, etc., it is necessary to have excellent shape freezing properties and stretch flangeability. desired.

【0008】本発明は、この問題を抜本的に解決して、
形状凍結性に優れた高伸びフランジ性鋼板およびその製
造方法を提供するものである。
The present invention drastically solves this problem,
An object of the present invention is to provide a high elongation flangeable steel sheet excellent in shape freezing property and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】従来の知見によれば、ス
プリング・バックや壁そり等の形状不良を抑えるための
方策としては、鋼板の変形応力を低くすることがとりあ
えず重要であると考えられていた。そして、変形応力を
低くするためには、引張強さの低い鋼板を使用せざるを
えなかった。しかしこれだけでは、鋼板の曲げ加工性を
向上させ、スプリング・バック量を低く抑えるための根
本的な解決にはならない。
According to the conventional knowledge, as a measure for suppressing a shape defect such as a spring back or a wall warp, it is considered as important for the time being to reduce the deformation stress of the steel sheet. I was Then, in order to reduce the deformation stress, a steel plate having a low tensile strength had to be used. However, this alone is not a fundamental solution for improving the bending workability of the steel sheet and keeping the spring back amount low.

【0010】そこで、本発明者らは、曲げ加工性を向上
させてスプリング・バックや壁そりの発生を根本的に解
決するために、新たに、鋼板の集合組織の曲げ加工性へ
の影響に着目して、その作用効果を詳細に調査、研究し
た。そして、本発明者らは、曲げ加工性に優れた鋼板を
見いだした。すなわち、{100}<011>〜{22
3}<110>方位群の強度と、{554}<225
>、{111}<112>、{111}<110>の各
方位の強度を制御すること、さらには、圧延方向のr値
および圧延方向と直角方向のr値のうち少なくとも1つ
をできるだけ低い値にすることで、曲げ加工性が飛躍的
に向上することを明らかにした。
[0010] In view of the above, the present inventors newly investigated the influence of the texture of the steel sheet on the bending workability in order to improve the bending workability and fundamentally solve the occurrence of spring back and wall warpage. Focusing on this, the effects and effects were investigated and studied in detail. Then, the present inventors have found a steel sheet excellent in bending workability. That is, {100} <011> to $ 22
3} <110> orientation group intensity, {554} <225
>, {111} <112>, {111} <110>, and controlling at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction as low as possible. It was clarified that by setting the value, the bending workability was dramatically improved.

【0011】本発明は前述の知見に基づいて構成されて
おり、その主旨とするところは以下の通りである。 (1)フェライトまたはベイナイトを面積率で最大相と
し、パーライト、マルテンサイトおよび残留オーステナ
イトの面積率が合計で5%以下である複合組織鋼であ
り、かつ、少なくとも1/2板厚における板面の{10
0}<011>〜{223}<110>方位群のX線ラ
ンダム強度比の平均値が3.0以上で、かつ、{55
4}<225>、{111}<112>および{11
1}<110>の3つの結晶方位のX線ランダム強度比
の平均値が3.5以下であり、さらに、圧延方向のr値
および圧延方向と直角方向のr値のうち少なくとも1つ
が0.7以下であることを特徴とする形状凍結性に優れ
た高伸びフランジ性鋼板。
The present invention has been made based on the above findings, and its gist is as follows. (1) Ferrite or bainite is a maximum phase in area ratio, is a composite structure steel in which the area ratio of pearlite, martensite, and retained austenite is 5% or less in total, and is at least a half of the sheet surface at a sheet thickness. $ 10
The average value of the X-ray random intensity ratio of the 0 <011> to {223} <110> azimuth group is 3.0 or more and {55}
4 {225}, {111} <112> and {11
The average value of the X-ray random intensity ratio of the three crystal orientations of 1 <110> is 3.5 or less, and at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction is 0.1. A high elongation flangeable steel sheet having an excellent shape freezing property of not more than 7.

【0012】(2)質量%で、C:0.0001%以
上、0.3%以下、Si:0.001%以上、3.5%
以下、Mn:0.05%以上、3%以下、P:0.2%
以下、S:0.03%以下、Al:0.01%以上、3
%以下、N:0.01%以下、O:0.01%以下を含
有し、残部は鉄および不可避的不純物よりなることを特
徴とする前記(1)記載の形状凍結性に優れた高伸びフ
ランジ性鋼板。
(2) In mass%, C: 0.0001% or more and 0.3% or less, Si: 0.001% or more and 3.5%
Below, Mn: 0.05% or more, 3% or less, P: 0.2%
Below, S: 0.03% or less, Al: 0.01% or more, 3
%, N: 0.01% or less, O: 0.01% or less, and the balance is composed of iron and unavoidable impurities. Flange steel sheet.

【0013】(3)更に、質量%で、Ti:1%以下、
Nb:1%以下、V:1%以下、Cr:3%以下、およ
び、B:0.01%以下の1種または2種以上を含有す
ることを特徴とする前記(2)に記載の形状凍結性に優
れた高伸びフランジ性鋼板。 (4)更に、質量%で、Mo:1%以下、Cu:3%以
下、Ni:3%以下、および、Sn:0.2%以下の1
種または2種以上を含有することを特徴とする前記
(2)または(3)に記載の形状凍結性に優れた高伸び
フランジ性鋼板。
(3) Further, in mass%, Ti: 1% or less,
The shape according to (2), wherein one or more of Nb: 1% or less, V: 1% or less, Cr: 3% or less, and B: 0.01% or less are contained. High stretch flangeable steel sheet with excellent freezing properties. (4) Further, by mass%, Mo: 1% or less, Cu: 3% or less, Ni: 3% or less, and Sn: 0.2% or less.
The high-stretch flangeable steel sheet according to the above (2) or (3), wherein the steel sheet comprises at least one of a kind or two or more kinds.

【0014】(5)更に、質量%で、Ca:0.000
5%以上、0.005%以下、および、Rem:0.0
01%以上、0.02%以下の1種または2種を含有す
ることを特徴とする前記(2)〜(4)の何れかに記載
の形状凍結性に優れた高伸びフランジ性鋼板。 (6)前記(1)〜(5)の何れかに記載の鋼板にめっ
きを施したことを特徴とする形状凍結性に優れた高伸び
フランジ性鋼板。
(5) Further, in mass%, Ca: 0.000
5% or more, 0.005% or less, and Rem: 0.0
The high-stretch flangeable steel sheet according to any one of the above (2) to (4), which contains one or more of 01% or more and 0.02% or less. (6) A steel sheet according to any one of (1) to (5), wherein the steel sheet is plated with a high-stretch flangeable steel sheet having excellent shape freezing properties.

【0015】(7)前記(1)〜(6)の何れかに記載
の鋼板を製造するに当たり、Ar 3変態温度〜(Ar3
100)℃の温度範囲における圧下率の合計が25%以
上となるように制御し、Ar3変態温度以上で熱間圧延
を終了し、(1)式に示す鋼の化学成分で決まる臨界温
度To以下でかつ350℃以上の温度で巻き取ることを
特徴とする形状凍結性に優れた高伸びフランジ性鋼板の
製造方法。
(7) Any one of the above (1) to (6)
In manufacturing the steel sheet of Ar ThreeTransformation temperature ~ (ArThree+
100) The total reduction in the temperature range of ° C is 25% or less.
Is controlled to be above, and ArThreeHot rolling above the transformation temperature
And the critical temperature determined by the chemical composition of the steel shown in equation (1)
Winding at a temperature below To and at a temperature above 350 ° C
High-stretch flangeable steel sheet with excellent shape freezing characteristics
Production method.

【0016】 To=-650.4×C%+B …(1) ここで、Bは質量%で表現した鋼の成分より求まる。 B=-50.6×Mneq+894.3 Mneq=Mn%+0.24×Ni%+0.13×Si%+0.38×Mo%+0.55×Cr%+
0.16×Cu%-0.50×Al%-0.45×Co%+0.90×V% (8)Ar3変態温度〜(Ar3+100)℃の温度範囲
における圧下率の合計が25%以上で、かつ、(Ar3
+100)℃以下の熱間圧延において少なくとも1パス
以上を摩擦係数が0.2以下となるように熱間圧延を制
御することを特徴とする前記(7)に記載の形状凍結性
に優れた高伸びフランジ性鋼板の製造方法。
To = −650.4 × C% + B (1) Here, B is obtained from the steel component expressed in mass%. B = -50.6 × Mneq + 894.3 Mneq = Mn% + 0.24 × Ni% + 0.13 × Si% + 0.38 × Mo% + 0.55 × Cr% +
0.16 × Cu% −0.50 × Al% −0.45 × Co% + 0.90 × V% (8) The total reduction ratio in the temperature range from the Ar 3 transformation temperature to (Ar 3 +100) ° C. is 25% or more, and ( Ar 3
(7) In the hot rolling at a temperature of + 100 ° C. or lower, the hot rolling is controlled so that the friction coefficient is 0.2 or less in at least one pass or more. Manufacturing method of stretch flangeable steel sheet.

【0017】(9)前記(1)〜(6)の何れかに記載
の鋼板を製造するに当たり、Ar 3変態温度以下の圧下
率の合計が25%以上になるように熱間圧延を制御し、
熱間圧延を終了後、350〜Ac3変態温度で巻き取る
か、または、一旦冷却後、500〜Ac3変態温度に1
0〜120分加熱することを特徴とする形状凍結性に優
れた高伸びフランジ性鋼板の製造方法。
(9) Any one of the above (1) to (6)
In manufacturing the steel sheet of Ar ThreeReduction below transformation temperature
Controlling the hot rolling so that the sum of the rates is at least 25%,
After finishing hot rolling, 350 ~ AcThreeWinding at transformation temperature
Or after cooling once, 500-AcThree1 for transformation temperature
Excellent shape freezing characteristic characterized by heating for 0 to 120 minutes
Manufacturing method for high-strength flanged steel sheet.

【0018】(10)Ar3変態温度以下の圧下率の合
計が25%以上で、かつ、Ar3以下の熱間圧延におい
て少なくとも1パス以上を摩擦係数が0.2以下となる
ように圧延することを特徴とする前記(9)に記載の形
状凍結性に優れた高伸びフランジ性鋼板の製造方法。 (11)前記(7)〜(10)のいずれかに記載の鋼板
を酸洗し、圧下率80%未満の冷間圧延を施した後、6
00℃〜(Ac3+100)℃の温度範囲に加熱し、冷
却することを特徴とする形状凍結性に優れた高伸びフラ
ンジ性鋼板の製造方法。
(10) The hot rolling at a temperature not higher than the Ar 3 transformation temperature is 25% or more, and at least one pass is rolled in hot rolling at an Ar 3 or lower so that the friction coefficient is 0.2 or lower. (9) The method for producing a high-stretch flangeable steel sheet having excellent shape freezing property according to the above (9). (11) After the steel sheet according to any of (7) to (10) is pickled and subjected to cold rolling at a rolling reduction of less than 80%,
A method for producing a high elongation flangeable steel sheet having excellent shape freezing characteristics, wherein the steel sheet is heated to a temperature range of 00 ° C. to (Ac 3 +100) ° C. and cooled.

【0019】[0019]

【発明の実施の形態】以下に、本発明の内容を詳細に説
明する。1/2板厚における板面の{100}<011
>〜{223}<110>方位群のX線ランダム強度比
の平均値、および、{554}<225>、{111}
<112>および{111}<110>の3つの結晶方
位のX線ランダム強度比の平均値:上記平均値は、本発
明で特に重要な特性値である。板厚中心位置での板面の
X線回折を行い、ランダム試料に対する各方位の強度比
を求めたときの、{100}<011>〜{223}<
110>方位群の平均値が3.0以上でなくてはならな
い。これが、3.0未満では形状凍結性が劣悪となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The contents of the present invention will be described below in detail. {100} <011 of the plate surface at 1/2 plate thickness
> To {223} <110> orientation group average X-ray random intensity ratio, and {554} <225>, {111}
Average value of X-ray random intensity ratio of three crystal orientations of <112> and {111} <110>: The average value is a particularly important characteristic value in the present invention. {100} <011> to {223} <when X-ray diffraction of the plate surface at the plate thickness center position is performed and the intensity ratio of each direction to the random sample is obtained.
110> The average value of the orientation group must be 3.0 or more. If it is less than 3.0, the shape freezing property is inferior.

【0020】この方位群に含まれる主な方位は、{10
0}<011>、{116}<110>、{114}<
110>、{113}<110>、{112}<110
>、{335}<110>、および、{223}<11
0>である。これら各方位のX線ランダム強度比は、
{110}極点図に基づきベクトル法により計算した3
次元集合組織や{110}、{100}、{211}、
{310}極点図のうち複数の極点図(好ましくは3つ
以上)を用いて、級数展開法で計算した3次元集合組織
から求めればよい。
The main azimuth included in this azimuth group is $ 10.
0 {011>, {116} <110>, {114} <
110>, {113} <110>, {112} <110
>, {335} <110>, and {223} <11
0>. The X-ray random intensity ratio in each of these directions is
3 calculated by vector method based on {110} pole figure
Dimensional textures, {110}, {100}, {211},
It may be obtained from a three-dimensional texture calculated by a series expansion method using a plurality of pole figures (preferably three or more) of the {310} pole figures.

【0021】たとえば、後者の方法における上記各結晶
方位のX線ランダム強度比には、3次元集合組織のφ2
=45゜断面における(001)[1−10]、(11
6)[1−10]、(114)[1−10]、(11
3)[1−10]、(112)[1−10]、(33
5)[1−10]、(223)[1−10]の強度をそ
のまま用ればよい。
For example, in the latter method, the X-ray random intensity ratio of each of the crystal orientations described above is expressed by φ2 of the three-dimensional texture.
(001) [1-10], (11)
6) [1-10], (114) [1-10], (11)
3) [1-10], (112) [1-10], (33)
5) The strengths of [1-10] and (223) [1-10] may be used as they are.

【0022】{100}<011>〜{223}<11
0>方位群のX線ランダム強度比の平均値とは、上記の
各方位の強度比の相加平均である。上記の全ての方位の
強度比を得ることができない場合には、{100}<0
11>、{116}<110>、{114}<110
>、{112}<110>、{223}<110>の各
方位の強度比の相加平均で代替しても良い。
{100} <011> to {223} <11
The average value of the X-ray random intensity ratios in the group of 0> azimuths is the arithmetic average of the intensity ratios in the respective directions. If the intensity ratios in all the above directions cannot be obtained, {100} <0
11>, {116} <110>, {114} <110
>, {112} <110>, and {223} <110> may be substituted by the arithmetic mean of the intensity ratios of the respective directions.

【0023】さらに、1/2板厚における板面の{55
4}<225>、{111}<112>および{11
1}<110>の3つの結晶方位のX線ランダム強度比
の平均値は3.5以下でなくてはならない。これが3.
5超であると、{100}<011>〜{223}<1
10>方位群の強度比が適正であっても、良好な形状凍
結性を得ることが困難となる。{554}<225>、
{111}<112>および{111}<110>のX
線ランダム強度比も上記の方法に従って計算した3次元
集合組織から求めれば良い。
Further, the thickness of the plate surface at the half plate thickness is
4 {225}, {111} <112> and {11
The average value of the X-ray random intensity ratio of three crystal orientations of 1} <110> must be 3.5 or less. This is 3.
If it exceeds 5, {100} <011> to {223} <1
10> Even if the intensity ratio of the orientation group is appropriate, it is difficult to obtain good shape freezing properties. {554} <225>,
X of {111} <112> and {111} <110>
The line random intensity ratio may also be obtained from the three-dimensional texture calculated according to the above method.

【0024】より望ましくは、{100}<011>〜
{223}<110>方位群のX線ランダム強度比の平
均値が4.0以上、{554}<225>、{111}
<112>および{111}<110>のX線ランダム
強度比の相加平均値が2.5未満である。以上述べた結
晶方位のX線強度が曲げ加工時の形状凍結性に対して重
要であることの理由は必ずしも明らかではないが、曲げ
変形時の結晶のすべり挙動と関係があるものと推測され
る。
More preferably, {100} <011>-
The average value of the X-ray random intensity ratio of the {223} <110> orientation group is 4.0 or more, {554} <225>, {111}
The arithmetic mean of the X-ray random intensity ratio of <112> and {111} <110> is less than 2.5. The reason why the X-ray intensity of the crystal orientation described above is important for shape freezing during bending is not necessarily clear, but it is presumed to be related to the slip behavior of the crystal during bending deformation. .

【0025】X線回折に供する試料は、機械研磨などに
よって鋼板を所定の板厚まで減厚し、次いで、化学研磨
や電解研磨などによって歪みを除去して、板厚1/2面
が測定面となるように作製する。鋼板の板厚中心層に偏
析帯や欠陥などが存在し、測定上不都合が生ずる場合に
は、板厚の3/8〜5/8の範囲で適当な面が測定面と
なるように上述の方法に従って試料を作製して、測定す
ればよい。当然のことであるが、上述のX線強度の限定
が板厚1/2近傍だけでなく、なるべく多くの厚みにわ
たって満たされることで、より一層、形状凍結性が良好
になる。
In the sample to be subjected to X-ray diffraction, the steel sheet is reduced to a predetermined thickness by mechanical polishing or the like, and then the distortion is removed by chemical polishing or electrolytic polishing. It is manufactured so that When a segregation zone or a defect is present in the thickness center layer of the steel sheet and inconvenience occurs in the measurement, the above-described method is performed so that an appropriate surface becomes the measurement surface in a range of / to / of the thickness. A sample may be prepared according to the method and measured. As a matter of course, the above-mentioned limitation of the X-ray intensity is satisfied not only in the vicinity of the plate thickness of about 近 傍 but also in as many thicknesses as possible, whereby the shape freezing property is further improved.

【0026】なお、{hkl}<uvw>で表される結
晶方位とは、板面の法線方向が<hkl>に平行で、圧
延方向が<uvw>と平行であることを示している。圧
延方向のr値(rL)および圧延方向と直角方向のr値
(rC):これらのr値は、本発明において重要であ
る。すなわち、本発明者等が鋭意検討の結果、上述した
種々の結晶方位のX線強度比が適正であっても、必ずし
も良好な形状凍結性が得られないことが判明した。上記
のX線強度比と同時に、rLおよびrCのうち少なくと
も1つが0.7以下であることが必須である。より好ま
しくは0.55以下である。
The crystal orientation represented by {hkl} <uvw> indicates that the normal direction of the sheet surface is parallel to <hkl> and the rolling direction is parallel to <uvw>. R value in the rolling direction (rL) and r value in the direction perpendicular to the rolling direction (rC): These r values are important in the present invention. That is, as a result of intensive studies by the present inventors, it has been found that even if the X-ray intensity ratios of the various crystal orientations described above are appropriate, good shape freezing properties cannot always be obtained. At the same time as the X-ray intensity ratio, it is essential that at least one of rL and rC is 0.7 or less. More preferably, it is 0.55 or less.

【0027】rLおよびrCの下限は特に定めることな
く、本発明の効果を得ることができる。r値はJIS5
号引張試験片を用いた引張試験により評価する。引張歪
みは、通常15%であるが、均一伸びが15%を下回る
場合には、均一伸びの範囲で、できるだけ15%に近い
歪みで評価すればよい。なお、曲げ加工を施す方向は加
工部品によって異なるので特に限定するものではない
が、r値が小さい方向に対して、垂直もしくは垂直に近
い方向に折り曲げる加工を主として行うことが好まし
い。
The effects of the present invention can be obtained without any particular lower limits for rL and rC. r value is JIS5
It is evaluated by a tensile test using a No. tensile test specimen. The tensile strain is usually 15%, but when the uniform elongation is less than 15%, the strain may be evaluated as close to 15% as possible within the uniform elongation range. Note that the direction in which the bending process is performed is not particularly limited because it differs depending on the processed component, but it is preferable to mainly perform the bending process in the direction in which the r value is small in a direction perpendicular or nearly perpendicular.

【0028】ところで、一般に集合組織とr値とは相関
があることが知られているが、本発明においては、既述
の結晶方位のX線強度比に関する限定と、r値に関する
限定とは互いに同義ではなく、両方の限定が同時に満た
されなくては、良好な形状凍結性を得ることはできな
い。 組織:穴拡げ性の観点から組織はフェライトまたはベイ
ナイトを面積率で最大相とする。ただし、フェライトと
ベイナイトの各々の集合組織を比べると、ベイナイト部
分で、形状凍結に有利な{100}<011>〜{22
3}<110>方位の集合組織が発達しやすい。この理
由は明らかではないが、ベイナイト組織が熱延中に形成
される形状凍結性に優位なオーステナイト集合組織を受
け継ぎやすいためと考えられる。
Although it is generally known that there is a correlation between the texture and the r-value, in the present invention, the above-described limitation on the X-ray intensity ratio of the crystal orientation and the limitation on the r-value are mutually different. It is not synonymous, and good shape freezing properties cannot be obtained unless both limitations are met at the same time. Structure: From the viewpoint of hole expandability, the structure has ferrite or bainite as a maximum phase in area ratio. However, comparing the respective textures of ferrite and bainite, {100} <011> to {22} which are advantageous for shape freezing in the bainite portion
A texture with a 3} <110> orientation is likely to develop. Although the reason for this is not clear, it is considered that the bainite structure is likely to inherit an austenite texture that is formed during hot rolling and is superior in shape freezing properties.

【0029】したがって、ベイナイトの占積率が大きい
方がより望ましい。この観点からはベイナイトの面積率
は35%超であることが望ましい。フェライトまたはベ
イナイトの面積率は板厚中央部を、光学顕微鏡により、
100〜500倍で5視野以上観察し、その平均値より
求めることとする。また、加工ままのフェライトまたは
ベイナイトは成形性を著しく損なうことから、ここで述
べる面積率には含まないものとする。
Therefore, it is more desirable that the space factor of bainite is large. From this viewpoint, the area ratio of bainite is desirably more than 35%. The area ratio of ferrite or bainite is determined by the optical microscope at the center of the plate thickness.
Observe at least 5 visual fields at 100 to 500 times, and determine from the average value. Further, as-processed ferrite or bainite significantly impairs the formability, and is not included in the area ratio described here.

【0030】その他の組織として、マルテンサイト、残
留オーステナイト、パーライトの面積率が5%超になる
と、伸びフランジ性が劣化する。したがって、これらの
組織の面積率の合計は5%以下とする。次に、成分組成
に係る限定条件について述べる。まず、前記(2)の成
分組成に係る限定条件について述べる。
As another structure, when the area ratio of martensite, retained austenite, and pearlite exceeds 5%, the stretch flangeability deteriorates. Therefore, the total area ratio of these tissues is 5% or less. Next, the limiting conditions relating to the component composition will be described. First, the limiting conditions relating to the component composition of the above (2) will be described.

【0031】Cの下限を0.0001%としたのは、実
用鋼で得られる下限値を用いることにしたからである。
Cが0.3%超になると、加工性や溶接性が悪くなるの
で、上限を0.3%とする。Siは鋼板の機械的強度を
高めるのに有効な元素であるが、3.5%超となると、
加工性が劣化したり、表面疵が発生したりするので、
3.5%を上限とする。一方、実用鋼でSiを0.00
1%未満とするのは困難であるので、0.001%を下
限とする。
The reason why the lower limit of C is set to 0.0001% is that the lower limit obtained in practical steel is used.
If C exceeds 0.3%, workability and weldability deteriorate, so the upper limit is made 0.3%. Si is an element effective in increasing the mechanical strength of a steel sheet, but when it exceeds 3.5%,
Since workability deteriorates and surface flaws occur,
The upper limit is 3.5%. On the other hand, in practical steel, 0.00
Since it is difficult to make the content less than 1%, the lower limit is made 0.001%.

【0032】Mnも鋼板の機械的強度を高めるのに有効
な元素であるが、3%超となると加工性が劣化するの
で、3%を上限とする。一方、実用鋼でMnを0.05
%未満とするのはコスト高となり、材質上のメリットも
ないので、0.05%を下限とする。また、Mn以外に
Sによる熱間割れの発生を抑制するTiなどの元素が十
分に添加されない場合には、質量%で、Mn/S≧20
となるMn量を添加することが望ましい。
Mn is also an effective element for increasing the mechanical strength of the steel sheet, but if it exceeds 3%, the workability deteriorates, so the upper limit is 3%. On the other hand, Mn was 0.05
If it is less than%, the cost is high and there is no merit in material, so the lower limit is 0.05%. When an element such as Ti that suppresses hot cracking due to S is not sufficiently added in addition to Mn, Mn / S ≧ 20 in mass%.
It is desirable to add an amount of Mn that becomes

【0033】PとSは、それぞれ0.2%以下、0.0
3%以下とする。これは加工性の劣化や、熱間圧延また
は冷間圧延時の割れを防ぐためである。Alは脱酸のた
めに0.01%以上添加する。しかし、多すぎると加工
性が低下したり、表面性状が劣悪となるので、上限を3
%とする。NとOは不純物であり、加工性を悪くさせな
いように、いずれも、0.01%以下とする。
P and S are 0.2% or less and 0.0%, respectively.
3% or less. This is to prevent deterioration of workability and cracks during hot rolling or cold rolling. Al is added at 0.01% or more for deoxidation. However, if the content is too large, the processability is deteriorated and the surface properties are deteriorated.
%. N and O are impurities, and both are set to 0.01% or less so as not to deteriorate workability.

【0034】前記(3)の発明において、Ti、Nb、
V、Cr、Bは、炭素、窒素の固定、析出強化、組織制
御、細粒強化などの機構を通じて材質を改善するので、
必要に応じて、それぞれ、0.005%以上、0.00
1%以上、0.001%以上、0.01%以上、0.0
001%以上添加することが望ましいが、過度に添加し
ても格段の効果はなく、むしろ、加工性や表面性状を劣
化させるので、Ti、Nb、V、Cr、およびBの上限
をそれぞれ1%、1%、1%、3%、および、0.01
%とした。
In the above invention (3), Ti, Nb,
V, Cr, and B improve the material through mechanisms such as fixation of carbon and nitrogen, precipitation strengthening, structure control, and fine grain strengthening.
0.005% or more and 0.00, respectively, as necessary
1% or more, 0.001% or more, 0.01% or more, 0.0
It is desirable to add 001% or more. However, excessive addition has no remarkable effect, but rather deteriorates workability and surface properties. Therefore, the upper limits of Ti, Nb, V, Cr, and B are each set to 1%. , 1%, 1%, 3% and 0.01
%.

【0035】前記(4)の発明において、Mo、Cu、
Ni、Snは、機械的強度を高めたり材質を改善する効
果があるので、必要に応じて、各成分とも0.001%
以上を添加することが望ましいが、過度の添加は逆に加
工性を劣化させるので、Mo、Cu、Ni、およびSn
の上限を、それぞれ、1%、3%、3%、0.2%とし
た。
In the above invention (4), Mo, Cu,
Ni and Sn have the effect of increasing the mechanical strength and improving the quality of the material.
It is desirable to add the above, but excessive addition adversely deteriorates the workability, so that Mo, Cu, Ni, and Sn are added.
Are 1%, 3%, 3%, and 0.2%, respectively.

【0036】前記(5)の発明において、Ca、およ
び、Remは、硫化物の形態を制御して、伸びフランジ
性を改善するので、必要に応じて、Ca、およびRem
を、それぞれ、0.0005%、および、0.001%
以上添加することが望ましい。しかし、過度に添加して
も格段の効果はなく、コスト高となるので、Caおよび
Remの上限をそれぞれ、0.005%および0.02
%とした。
In the above invention (5), Ca and Rem control the form of sulfide to improve stretch flangeability.
Are 0.0005% and 0.001%, respectively.
It is desirable to add above. However, excessive addition has no remarkable effect and increases the cost. Therefore, the upper limits of Ca and Rem are set to 0.005% and 0.02%, respectively.
%.

【0037】なお、本発明では特に限定しないが、脱酸
の目的や硫化物の形態制御の目的でMgを添加しても構わ
ない。 メッキ:メッキの種類は特に限定するものではなく、電
気めっき、溶融めっき、蒸着めっき等の何れでも、本発
明の効果が得られる。
Although not particularly limited in the present invention, Mg may be added for the purpose of deoxidation or for controlling the form of sulfide. Plating: The type of plating is not particularly limited, and the effects of the present invention can be obtained by any of electroplating, hot-dip plating, vapor deposition plating, and the like.

【0038】次に、製造方法について説明する。熱間圧
延に先行する製造方法は特に限定するものではない。す
なわち、高炉、転炉、電炉等による溶製に引き続き、各
種の2次製錬を行い、次いで、通常の連続鋳造、インゴ
ット法による鋳造の他、薄スラブ鋳造などの方法で鋳造
すればよい。
Next, the manufacturing method will be described. The production method prior to hot rolling is not particularly limited. That is, following the smelting by a blast furnace, a converter, an electric furnace, etc., various secondary smelting may be performed, and then casting may be performed by a method such as thin slab casting in addition to ordinary continuous casting, casting by an ingot method.

【0039】連続鋳造の場合には、一度、低温まで冷却
した後、再度加熱してから熱間圧延してもよいし、鋳造
スラブを連続的に熱延してもよい。原料にはスクラップ
を使用しても構わない。本発明の形状凍結性に優れた高
伸びフランジ性鋼板は、上記成分組成の鋼を鋳造した
後、熱間圧延後冷却まま、熱間圧延後熱処理、熱間圧延
後冷却・酸洗し冷延した後に、焼鈍、あるいは、熱延鋼
板もしくは冷延鋼板にめっきを施し、若しくは、溶融め
っきラインにて熱処理を施したまま、更には、これらの
鋼板に別途表面処理を施すことによっても得られる。
In the case of continuous casting, the steel sheet may be once cooled to a low temperature, heated again, and then hot-rolled, or the cast slab may be continuously hot-rolled. Scrap may be used as a raw material. The high elongation flangeable steel sheet excellent in shape freezing property of the present invention is obtained by casting a steel having the above-mentioned composition, then cooling after hot rolling, heat treatment after hot rolling, cooling after hot rolling, and pickling and cold rolling. After that, it can also be obtained by plating on a hot-rolled steel sheet or a cold-rolled steel sheet, or while performing a heat treatment in a hot-dip galvanizing line, and further subjecting these steel sheets to a separate surface treatment.

【0040】また前記(7)の発明に述べたように、熱
間圧延の後半に、Ar3変態温度以上(Ar3+100)
℃以下で合計25%以上の圧延が行われない場合には、
圧延されたオーステナイトの集合組織が十分に発達しな
いので、如何様な冷却を施しても、最終的に得られる熱
延鋼板の板面に、前記(1)の発明で述べた所定のX線
強度レベルの各結晶方位が得られない。したがって、
(Ar3+100)℃以下での圧下率の合計の下限値を
25%とした。
As described in the invention of (7), in the latter half of the hot rolling, the temperature is higher than the Ar 3 transformation temperature (Ar 3 +100).
If the rolling of 25% or more is not performed below ℃,
Since the texture of the rolled austenite is not sufficiently developed, the predetermined X-ray intensity described in the above (1) is applied to the surface of the finally obtained hot-rolled steel sheet regardless of any cooling. Each level of crystal orientation cannot be obtained. Therefore,
The lower limit of the total reduction ratio at (Ar 3 +100) ° C. or lower was 25%.

【0041】(Ar3+100)℃以下Ar3変態温度以
上での合計圧下率が高いほど、よりシャープな集合組織
の形成を期待できるので、圧下率の合計は、35%以上
とすることが好ましい。しかし、この圧下率の合計が9
7.5%を越えると、圧延機の剛性を過剰に高める必要
がでてきて、経済上のデメリットを生じる。それ故、圧
下率の合計は、望ましくは、97.5%以下とする。
Since the formation of a sharper texture can be expected as the total rolling reduction at (Ar 3 +100) ° C. or lower and the Ar 3 transformation temperature or higher is higher, the total rolling reduction is preferably 35% or more. . However, the sum of the rolling reduction is 9
If it exceeds 7.5%, it is necessary to excessively increase the rigidity of the rolling mill, which causes economical disadvantages. Therefore, the total rolling reduction is desirably 97.5% or less.

【0042】ここで前記(8)の発明に記したように、
(Ar3+100)℃以下Ar3変態温度以上の熱間圧延
時の熱間圧延ロールと鋼板との摩擦係数が0.2を越え
ている場合には、鋼板表面近傍における板面に、{11
0}面を主とする結晶方位が発達し、形状凍結性が劣化
する。それは、より良好な形状凍結性を指向する場合に
は、(Ar3+100)℃以下Ar3変態温度以上の熱間
圧延時における少なくとも1パスについて、熱間圧延ロ
ールと鋼板との摩擦係数を0.2以下とすることが望ま
しい。この摩擦係数は低ければ低いほど好ましく、さら
に良好な形状凍結性が要求される場合には、(Ar3
100)℃以下Ar3変態温度以上の熱間圧延の全パス
について、摩擦係数を0.15以下とすることが望まし
い。
Here, as described in the invention of the above (8),
(Ar 3 +100) ° C. or less When the friction coefficient between the hot-rolled roll and the steel sheet during hot rolling at the Ar 3 transformation temperature or more exceeds 0.2, the sheet surface near the steel sheet surface has a {11
The crystal orientation mainly including the 0 ° plane develops, and the shape freezing property deteriorates. In order to improve the shape freezing property, the coefficient of friction between the hot-rolled roll and the steel sheet is reduced to 0 in at least one pass during hot rolling at (Ar 3 +100) ° C. or lower and Ar 3 transformation temperature or higher. .2 or less. The lower the coefficient of friction, the more preferable. If a better shape freezing property is required, (Ar 3 +
The coefficient of friction is desirably set to 0.15 or less for all hot rolling passes at 100) ° C or lower and the Ar 3 transformation temperature or higher.

【0043】熱間圧延の仕上げ温度は、成形性の観点か
ら、Ar3変態温度以上とすることが必要である。仕上
げ温度の上限は特に定めないが、形状凍結性に優れた集
合組織をより鮮鋭にするため、(Ar3+50)℃以下と
することが好ましい。この様にして形成されたオーステ
ナイトの集合組織を最終的な熱延鋼板に受け継がせるた
めには、下記(1)式に示すTo温度以下で巻き取る必
要がある。従って、鋼の成分組成で決まるToを巻き取
り温度の上限とした。
The finishing temperature of the hot rolling must be equal to or higher than the Ar 3 transformation temperature from the viewpoint of formability. The upper limit of the finishing temperature is not particularly limited, but is preferably (Ar 3 +50) ° C. or lower in order to sharpen the texture having excellent shape freezing properties. In order to pass on the austenite texture formed in this way to the final hot-rolled steel sheet, it is necessary to wind it at a temperature not higher than the To temperature shown in the following equation (1). Therefore, To determined by the composition of the steel was set as the upper limit of the winding temperature.

【0044】このTo温度は、オーステナイトとオース
テナイトと同一成分のフェライトが同一の自由エネルギ
ーを持つ温度として、熱力学的に定義されるもので、C
以外の成分の影響も考慮して、(1)式を用いて簡易的
に計算することができる。To温度に及ぼす本発明に規
定されたこれら以外の成分の影響は、それほど大きくな
いので、ここでは無視した。
The To temperature is thermodynamically defined as the temperature at which austenite and ferrite of the same component as austenite have the same free energy.
In consideration of the influence of components other than the above, the calculation can be simply performed using the equation (1). The effect of the other components specified in the present invention on the To temperature was not so great and was ignored here.

【0045】 To=-650.4×C%+B …(1) ここで、Bは質量%で表現した鋼の成分で決まり下記の
ように表現できる。 B=-50.6×Mneq+894.3 Mneq=Mn%+0.24×Ni%+0.13×Si%+0.38×Mo%+0.55×Cr%+
0.16×Cu%-0.50×Al%-0.45×Co%+0.90×V% また、熱間圧延がAr3変態温度以下になる場合には、
加工前に生成したフェライトが加工され、強い圧延集合
組織が形成される。前記(9)の発明に記載のとおり、
この様な集合組織を最終的に形状凍結性に有利な集合組
織とするためには、高温で加工されたフェライトを、冷
却途中350〜Ac3変態温度で巻き取るか、もしく
は、いったん冷却した後に再度500〜Ac3変態温度
に加熱することによって回復・再結晶させる必要があ
る。
To = −650.4 × C% + B (1) Here, B is determined by the steel component expressed in mass% and can be expressed as follows. B = -50.6 × Mneq + 894.3 Mneq = Mn% + 0.24 × Ni% + 0.13 × Si% + 0.38 × Mo% + 0.55 × Cr% +
0.16 × Cu% -0.50 × Al% -0.45 × Co% + 0.90 × V% Also, if the hot rolling is below Ar 3 transformation temperature,
The ferrite generated before processing is processed, and a strong rolled texture is formed. As described in the invention of the above (9),
In order to finally make such a texture a texture advantageous for shape freezing properties, the ferrite processed at a high temperature is wound at a transformation temperature of 350 to Ac 3 during cooling, or once cooled. it is necessary to recover and recrystallization by heating again 500~Ac 3 transformation temperature.

【0046】Ar3変態温度以下での合計圧下率が25
%未満の場合には、再結晶温度以上で巻き取りを行った
り、冷却後再加熱して回復・再結晶処理を行っても、前
記(1)の発明で述べた所定のX線強度レベルの各結晶
方位が得られないので、25%をAr3変態温度以下に
おける合計圧下率の下限値とした。35%がより望まし
い下限値である。
The total rolling reduction below the Ar 3 transformation temperature is 25.
%, The coil may be wound at a temperature equal to or higher than the recrystallization temperature or may be cooled and reheated to perform the recovery / recrystallization treatment. Since each crystal orientation could not be obtained, 25% was set as the lower limit of the total rolling reduction below the Ar 3 transformation temperature. 35% is a more desirable lower limit.

【0047】また、一旦冷却した後、引き続き加熱する
際においては、加熱温度が500℃より低いと加工性が
劣化し、Ac3変態温度より高いと形状凍結性が低下す
るので、上記加熱温度は、500〜Ac3変態温度の範
囲に限定する。熱延終了温度は特に規定しないが、30
0℃未満になると圧延機への負荷が大きくなるので、3
00℃以上にすることが望ましい。
In the case of heating once after cooling, the workability is deteriorated if the heating temperature is lower than 500 ° C., and the shape freezing property is deteriorated if the heating temperature is higher than the Ac 3 transformation temperature. , 500 to Ac 3 transformation temperature. Although the hot rolling end temperature is not particularly specified, it is 30
If the temperature is lower than 0 ° C., the load on the rolling mill increases.
It is desirable that the temperature be set to 00 ° C. or higher.

【0048】ここで前記(10)の発明に記したよう
に、熱間圧延時の熱間圧延ロールと鋼板との摩擦係数が
0.2を越えている場合には、鋼板表面近傍における板
面に、{110}面を主とする結晶方位が発達し、形状
凍結性が劣化する。それ故、より良好な形状凍結性を指
向する場合には、Ar3以下の熱間圧延における少なく
とも1パスについては、ロールと鋼板との摩擦係数を
0.2以下とすることが好ましい。
Here, as described in the invention of (10) above, when the friction coefficient between the hot-rolling roll and the steel sheet during hot rolling exceeds 0.2, the sheet surface near the steel sheet surface is In addition, the crystal orientation mainly including the {110} plane develops, and the shape freezing property deteriorates. Therefore, in order to achieve a better shape freezing property, it is preferable that the friction coefficient between the roll and the steel sheet is 0.2 or less for at least one pass in the hot rolling at Ar 3 or less.

【0049】この摩擦係数は低ければ低いほど望まし
く、特に厳しい形状凍結性が要求される場合には、Ar
3以下の熱間圧延の全パスについて、摩擦係数を0.1
5以下とすることが望ましい。熱間圧延においては、粗
圧延後にシートバーを接合し、連続的に仕上げ圧延をし
てもよい。その際に、粗バーを一旦コイル状に巻き、必
要に応じて、保温機能を有するカバーに格納し、再度巻
き戻してから接合を行ってもよい。熱延鋼板には、必要
に応じて、スキンパス圧延を施してもよい。スキンパス
圧延には、加工成形時に発生するストレッチャーストレ
インの防止や形状矯正の効果があることは言うまでもな
い。
The lower the friction coefficient is, the more desirable it is. Particularly, when severe shape freezing property is required, Ar
The coefficient of friction was set to 0.1 for all hot rolling passes of 3 or less.
It is desirably 5 or less. In the hot rolling, the sheet bar may be joined after the rough rolling, and the finish rolling may be continuously performed. At this time, the coarse bar may be temporarily wound into a coil shape, and if necessary, stored in a cover having a heat retaining function, and may be rewound again before joining. The hot-rolled steel sheet may be subjected to skin pass rolling as necessary. It goes without saying that skin pass rolling has the effect of preventing stretcher strain generated at the time of working and correcting the shape.

【0050】この様にして得られた熱延鋼板を冷間圧延
し、焼鈍して最終的な薄鋼板とする際において、冷間圧
延の全圧下率が80%以上となる場合には、一般的な冷
間圧延−再結晶集合組織である板面に平行な結晶面のX
線回折積分面強度比の{111}面や{554}面成分
が高くなり、本発明の特徴である前記(1)の発明の結
晶方位の規定を満たさなくなるので、冷間圧延の圧下率
の上限を80%とする。
When the hot-rolled steel sheet thus obtained is cold-rolled and annealed to form a final thin steel sheet, if the total rolling reduction of the cold-rolled steel sheet is 80% or more, a general method is used. Cold rolling-X of the crystal plane parallel to the plate surface which is a recrystallization texture
The {111} plane and {554} plane components of the X-ray diffraction integrated plane intensity ratio are increased, and the crystal orientation of the invention (1), which is a feature of the present invention, is not satisfied. The upper limit is set to 80%.

【0051】形状凍結性を高めるためには、冷間圧下率
を70%以下に制限することが望ましい。冷間圧下率の
下限は、特に定めることなく本発明の効果を得ることが
できるが、結晶方位の強度を適当な範囲に制御するため
には、冷間圧下率は3%以上とすることが好ましい。こ
の様な範囲で冷間加工された冷延鋼板を焼鈍する際にお
いて、焼鈍温度が600℃未満の場合には、加工組織が
残留し成形性が著しく劣化するので、焼鈍温度の下限を
600℃とする。
In order to enhance the shape freezing property, it is desirable to limit the cold rolling reduction to 70% or less. The effect of the present invention can be obtained without any particular limitation on the lower limit of the cold reduction ratio. However, in order to control the strength of the crystal orientation in an appropriate range, the cold reduction ratio should be 3% or more. preferable. When the cold-rolled steel sheet cold-worked in such a range is annealed, if the annealing temperature is lower than 600 ° C, the work structure remains and the formability is significantly deteriorated. And

【0052】一方、焼鈍温度が過度に高い場合には、再
結晶によって生成したフェライトの集合組織が、オース
テナイトへ変態後、オーステナイトの粒成長によってラ
ンダム化され、最終的に得られるフェライトの集合組織
もランダム化される。特に、焼鈍温度が(Ac3+10
0)℃を越える場合にはそのような傾向が顕著となる。
従って、焼鈍温度は(Ac3+100)℃以下とする。
冷延鋼板には、必要に応じて、スキンパス圧延を施して
もよい。
On the other hand, if the annealing temperature is excessively high, the texture of the ferrite formed by recrystallization is transformed into austenite, and then randomized by austenite grain growth, and the texture of the finally obtained ferrite is also changed. Be randomized. In particular, when the annealing temperature is (Ac 3 +10
When the temperature exceeds 0) ° C., such a tendency becomes remarkable.
Therefore, the annealing temperature is set to (Ac 3 +100) ° C. or less.
The cold-rolled steel sheet may be subjected to skin pass rolling as necessary.

【0053】なお、本発明に係る鋼板は、曲げ加工だけ
でなく、曲げ、張り出し、絞り等、曲げ加工を主体とす
る複合成形にも適用できる。本発明の実施例を挙げて、
本発明の技術的内容について説明する。
The steel sheet according to the present invention can be applied not only to bending but also to composite forming mainly based on bending, such as bending, overhang, drawing, and the like. With examples of the present invention,
The technical contents of the present invention will be described.

【0054】[0054]

【実施例】(実施例)表1に示す成分組成を有するAか
らQまでの鋼を用いて検討した結果について説明する。
これらの鋼は、鋳造後、そのまま、もしくは、一旦室温
まで冷却された後に、900℃〜1300℃の温度範囲
に再加熱され、その後熱間圧延が施され、最終的には、
1.4mm厚、3mm厚もしくは8.0mm厚の熱延鋼
板とされた。3.0mm厚および8.0mm厚の熱延鋼
板は、冷間圧延することによって1.4mm厚とされ、
その後、連続焼鈍工程にて焼鈍が施された。これら1.
4mm厚の鋼板から50mm幅、270mm長さの試験
片を作製し、ポンチ幅78mm、ポンチ肩R5、ダイ肩
R5の金型を用いてハット曲げ試験を行った。曲げ試験
を行った試験片は三次元形状測定装置にて板幅中心部の
形状を測定し、図1に示した様に、点(1)と点(2)
の接線と、点(3)と点(4)の接線の交点の角度から
90°を引いた値の左右での平均値をスプリング・バッ
ク量とし、点(3)と点(5)間の曲率の逆数を左右で
平均化した値を壁そり量とし、左右の点(5)間の長さ
からポンチ幅を引いた値を寸法精度として、形状凍結性
を評価した。なお、曲げはr値の低い方向と垂直に折れ
線が入るように行った。
EXAMPLES (Examples) The results of investigations using steels A to Q having the component compositions shown in Table 1 will be described.
These steels, after casting, as they are, or once cooled to room temperature, are reheated to a temperature range of 900 ° C. to 1300 ° C., then hot-rolled, and finally,
It was a hot rolled steel sheet having a thickness of 1.4 mm, 3 mm or 8.0 mm. The hot-rolled steel sheets having a thickness of 3.0 mm and 8.0 mm are cold-rolled to have a thickness of 1.4 mm,
Thereafter, annealing was performed in a continuous annealing step. These 1.
A test piece having a width of 50 mm and a length of 270 mm was prepared from a steel plate having a thickness of 4 mm, and a hat bending test was performed using a die having a punch width of 78 mm, a punch shoulder R5, and a die shoulder R5. The test piece subjected to the bending test was measured for the shape at the center of the plate width by a three-dimensional shape measuring device, and as shown in FIG. 1, points (1) and (2) were obtained.
The average value on the left and right of the value obtained by subtracting 90 ° from the angle of the intersection of the tangent of the point (3) and the point (4) with the point (3) and the point (4) is defined as the amount of spring back, and the average between the points (3) and (5) is obtained. The value obtained by averaging the reciprocal of the curvature on the left and right was defined as the wall warpage amount, and the value obtained by subtracting the punch width from the length between the left and right points (5) was defined as the dimensional accuracy, and the shape freezing property was evaluated. The bending was performed so that a polygonal line was perpendicular to the direction in which the r value was low.

【0055】ところで、図2および図3に示す様に、ス
プリングバック量や壁そり量はBHF(しわ押さえ力)
によっても変化する。本発明の効果は、いずれのBHF
で評価を行ってもその傾向は変わらないが、実機で実部
品をプレスする際には、あまり高いBHFはかけられな
いので、今回はBHF29kNで各鋼種のハット曲げ試
験を行った。
As shown in FIGS. 2 and 3, the amount of springback and the amount of wall warpage are BHF (wrinkle holding force).
It also changes by. The effect of the present invention is
Although the tendency does not change even if the evaluation is carried out, since high BHF cannot be applied when an actual part is pressed with an actual machine, a hat bending test of each steel type was performed with BHF 29 kN this time.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【表3】 [Table 3]

【0059】表2および表3(表2の続き)に、各鋼板
の製造条件と、該製造条件が本発明の範囲内にあるか否
かを示した。「熱延温度1」は、熱延がAr3変態温度
以上で完了する場合において、(Ar3+100)℃以
下Ar3変態温度以上での圧下率の合計が25%以上で
ある場合には「○」、25%未満の場合には「×」とし
た。「熱延温度2」は、熱延がAr3変態温度以下の場
合で、Ar3温度以下の圧下率の合計が25%以上の場
合には「○」、25%未満の場合には「×」とした。
Tables 2 and 3 (continuation of Table 2) show the manufacturing conditions of each steel sheet and whether the manufacturing conditions are within the scope of the present invention. "Hot rolling temperature 1", when the hot rolling is completed at Ar 3 transformation temperature or more, when it is (Ar 3 +100) ° C. or less total reduction ratio in the Ar 3 transformation temperature or higher 25% or higher " ○ ”, and“ × ”when less than 25%. “Hot rolling temperature 2” is “○” when hot rolling is at or below the Ar 3 transformation temperature, and “○” when the total reduction ratio at or below Ar 3 temperature is at least 25%, and “×” when it is less than 25%. "

【0060】以上のいずれの場合にも、それぞれの温度
範囲で少なくとも1パス以上についての摩擦係数が0.
2以下の場合には「潤滑」の欄に「○」、全パスにおけ
る摩擦係数が0.2超の場合には「△」を記入とした。
熱延巻取は、全て(1)式で求まるTo温度以下とし
た。この様な熱延鋼板を1.4mm厚に冷延する場合、
冷延圧下率が80%以上の場合には「冷延圧下率」を
「×」とし、「80%未満」の場合には「○」とした。
In any of the above cases, the coefficient of friction for at least one or more passes in each temperature range is not less than 0.1.
In the case of 2 or less, “○” was entered in the “lubrication” column, and when the friction coefficient in all passes exceeded 0.2, “△” was entered.
The hot rolling was all performed at a temperature equal to or lower than the To temperature determined by the equation (1). When such a hot-rolled steel sheet is cold-rolled to a thickness of 1.4 mm,
When the cold rolling reduction was 80% or more, "cold rolling reduction" was set to "x", and when it was "less than 80%", "o" was set.

【0061】また、焼鈍温度が600℃以上(Ac3
100)℃以下の場合に「焼鈍温度」を「○」とし、そ
れ以外の場合を「×」とした。製造の条件として関係の
ない項目は「―」とした。熱延鋼板および冷延鋼板のい
ずれに対しても、スキンパス圧延を0.5〜1.5%の
範囲で施した。X線の測定は、鋼板の代表値として板厚
の7/16厚の位置で板面に平行なサンプルを作製し、
実施した。
When the annealing temperature is 600 ° C. or more (Ac 3 +
100 ° C. or lower, the “annealing temperature” was “○”, and the other cases were “×”. Items that are not relevant as manufacturing conditions are marked "-". Skin pass rolling was performed on both the hot-rolled steel sheet and the cold-rolled steel sheet in a range of 0.5 to 1.5%. For the measurement of X-ray, a sample parallel to the plate surface was prepared at a position of 7 / 16th of the plate thickness as a representative value of the steel plate,
Carried out.

【0062】穴拡げ試験は、1辺100mmの試験片の
中央に径10mmの打ち抜き穴を加工し、その初期穴を
頂角60°の円錐ポンチにて押し広げ、割れが鋼板を貫
通した時点での穴径dの初期穴径10mmに対する穴広
げ率λ(次式)で評価した。 λ={(d−10)/10}×100(%) 表4、および、表5に、前記の方法によって製造した
1.4mm厚の熱延鋼板と冷延鋼板の機械的特性値、穴
拡げ率、スプリング・バック量、壁そり量、および、寸
法精度を示す。表4中の鋼Hを除いた全鋼種において、
各鋼種の「−2」および「−3」の番号の実施例が本発
明に該当するもので、「−1」及び「−3」の番号の実
施例が発明外のものである。
In the hole expansion test, a punched hole having a diameter of 10 mm was formed in the center of a test piece having a side of 100 mm, and the initial hole was pushed and expanded with a conical punch having a vertex angle of 60 °. Was evaluated by the hole expansion ratio λ (the following formula) with respect to the initial hole diameter of 10 mm. λ = {(d-10) / 10} × 100 (%) Tables 4 and 5 show the mechanical property values and holes of the hot-rolled steel sheet and the cold-rolled steel sheet having a thickness of 1.4 mm manufactured by the above method. The expansion ratio, spring back amount, wall warpage amount, and dimensional accuracy are shown. In all steel types except steel H in Table 4,
Examples of numbers "-2" and "-3" of each steel type correspond to the present invention, and examples of numbers "-1" and "-3" are out of the invention.

【0063】組織は、鋼H以外は何れもマルテンサイ
ト、残留オーステナイト、パーライトの面積率が5%未
満で、フェライトまたはベイナイトを面積率で最大相と
するものであった。ただし、E−1、H、I−1、O−
1には、50〜100%の面積率で加工粒が残存してい
た。本発明の「−2」と「−3」の番号のものは、発明
外の「−1」と「−4」の番号のものに比べて、スプリ
ング・バック量、および、壁そり量が小さくなり、結果
として、寸法精度が向上していることがわかる。また、
本発明のものは、いずれのケースも、伸びフランジ性も
良好である。
The microstructure of each of the microstructures except steel H was such that the area ratio of martensite, retained austenite, and pearlite was less than 5%, and ferrite or bainite was the largest phase in area ratio. However, E-1, H, I-1, O-
In No. 1, processed grains remained at an area ratio of 50 to 100%. The number of "-2" and "-3" of the present invention is smaller in the amount of spring back and the amount of wall warp than the number of "-1" and "-4" other than the invention. It turns out that the dimensional accuracy is improved as a result. Also,
In any of the cases of the present invention, stretch flangeability is also good.

【0064】即ち、本発明で限定する各結晶方位のX線
ランダム強度比、r値、および組織を満たして、初めて
良好な形状凍結性を有する高伸びフランジ性鋼板を製造
することが可能になるのである。
That is, a high-stretch flangeable steel sheet having good shape freezing properties can be produced for the first time by satisfying the X-ray random intensity ratio, r value, and structure of each crystal orientation defined in the present invention. It is.

【0065】[0065]

【表4】 [Table 4]

【0066】[0066]

【表5】 [Table 5]

【0067】次に、表6に示す成分組成を有するR〜T
の鋼を用いて検討した結果について説明する。熱延は、
いずれの場合も、Ar3変態温度以上で完了し、(Ar3
+100)℃以下Ar3温度以上での圧下率の合計が3
5%になるように圧延を行った。鋼Rに関しては、この
条件を満足する範囲で仕上げ温度を2水準変化させた。
いずれの場合も潤滑は行っていない。スキンパス圧延は
1%の圧下率で行った。
Next, R to T having the component compositions shown in Table 6
The result of the study using the steel No. will be described. Hot rolling is
In each case, the reaction was completed at the Ar 3 transformation temperature or higher, and (Ar 3
(+100) ° C. or less The total rolling reduction at an Ar 3 temperature or more is 3
Rolling was performed to 5%. For steel R, the finishing temperature was changed by two levels within a range satisfying this condition.
No lubrication was performed in any case. Skin pass rolling was performed at a rolling reduction of 1%.

【0068】表7には、このような方法によって製造し
た1.4mm厚の熱延鋼板の組織分率、機械的特性値、
穴拡げ率、スプリング・バック量、壁そり量、および、
寸法精度を示した。鋼Rは、いずれの場合も、スプリン
グ・バック量、および、壁そり量が少なく、形状凍結性
が良好で、かつ、伸びフランジ性も良好である。また、
ベイナイト量の増加に伴い、形状凍結性はより向上して
いる。一方、鋼SおよびTは、マルテンサイト、残留オ
ーステナイトおよびパーライトの面積率が合計で5%を
越えているため、形状凍結性は良好なものの、伸びフラ
ンジ性が劣化している。
Table 7 shows the structural fraction, mechanical properties, and the like of the hot-rolled steel sheet having a thickness of 1.4 mm manufactured by the above method.
Hole expansion rate, spring back amount, wall warpage amount, and
The dimensional accuracy is shown. In any case, the steel R has a small amount of spring back and a small amount of wall warpage, has good shape freezing properties, and has good stretch flangeability. Also,
As the amount of bainite increases, the shape freezing property is further improved. On the other hand, steels S and T have a good shape freezing property but a deteriorated stretch flangeability because the total area ratio of martensite, retained austenite and pearlite exceeds 5%.

【0069】各結晶方位のX線ランダム強度比やr値
が、形状凍結性に重要であることの機構については、現
在のところ必ずしも明らかとはなっていない。おそら
く、曲げ変形時にすべり変形の進行を容易にすることに
より、結果的に、曲げ変形時のスプリング・バック量、
および、壁そり量が小さくなり、その結果、寸法精度、
すなわち、形状凍結性が向上したものと理解される。
The mechanism by which the X-ray random intensity ratio and the r value of each crystal orientation are important for shape freezing has not always been clarified at present. Possibly, by facilitating the progress of slip deformation during bending, the amount of spring back during bending,
And the amount of wall warpage is reduced, resulting in dimensional accuracy,
That is, it is understood that the shape freezing property is improved.

【0070】[0070]

【表6】 [Table 6]

【0071】[0071]

【表7】 [Table 7]

【0072】[0072]

【発明の効果】本発明により薄鋼板の集合組織とr値を
制御することにより、曲げ加工性は著しく向上し、ま
た、組織と炭化物を制御することにより、穴拡げ性と曲
げ加工性を両立でき、スプリング・バック量、および、
壁そり量が少なく、曲げ加工を主体とする形状凍結性
と、穴拡げ性に優れた薄鋼板を提供することができるよ
うになった。
By controlling the texture and r-value of a thin steel sheet according to the present invention, the bending workability is remarkably improved, and by controlling the structure and carbide, both hole expandability and bending workability are achieved. Yes, spring back amount, and
It has become possible to provide a thin steel sheet having a small amount of wall warpage, an excellent shape freezing property mainly by bending, and an excellent hole expanding property.

【0073】特に、従来は形状不良の問題から高強度鋼
板の適用が難しかった部品にも、高強度鋼板が使用でき
るようになる。自動車の軽量化を推進するためには、高
強度鋼板の使用は是非とも必要である。スプリング・バ
ック量、および、壁そり量が少なく、形状凍結性と穴拡
げ性に優れた高強度鋼板が適用できるようになると、自
動車車体の軽量化を、より一層推進することができる。
従って、本発明は、工業的に極めて高い価値のある発明
である。
In particular, high-strength steel sheets can be used even in parts where high-strength steel sheets have conventionally been difficult to apply due to the problem of poor shape. The use of high-strength steel sheets is absolutely necessary in order to promote weight reduction of automobiles. When a high-strength steel sheet having a small amount of spring back and a small amount of wall warpage and excellent in shape freezing property and hole expandability can be applied, weight reduction of an automobile body can be further promoted.
Therefore, the present invention is an industrially extremely valuable invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ハット曲げ試験に用いた試験片の断面を示す図
である。
FIG. 1 is a diagram showing a cross section of a test piece used for a hat bending test.

【図2】スプリングバック量とBHF(しわ押さえ力)
の関係を示す図である。
FIG. 2 Amount of springback and BHF (wrinkle holding force)
FIG.

【図3】壁そり量とBHF(しわ押さえ力)の関係を示
す図である。
FIG. 3 is a diagram illustrating a relationship between a wall warpage amount and a BHF (wrinkle holding force).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/58 C22C 38/58 (72)発明者 高橋 学 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 吉田 亨 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K037 EA00 EA01 EA02 EA04 EA05 EA06 EA11 EA13 EA15 EA16 EA17 EA18 EA19 EA20 EA22 EA23 EA25 EA27 EA28 EA31 EA32 EB02 EB06 EB07 EB08 EB09 EB11 FB03 FB07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/58 C22C 38/58 (72) Inventor Manabu Takahashi 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation (72) Inventor Toru Yoshida 20-1 Shintomi, Futtsu-shi, Chiba F-term (reference) in Nippon Steel Corporation Technology Development Division 4K037 EA00 EA01 EA02 EA04 EA05 EA06 EA11 EA13 EA15 EA16 EA17 EA18 EA19 EA20 EA22 EA23 EA25 EA27 EA28 EA31 EA32 EB02 EB06 EB07 EB08 EB09 EB11 FB03 FB07

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 フェライトまたはベイナイトを面積率で
最大相とし、パーライト、マルテンサイトおよび残留オ
ーステナイトの面積率が合計で5%以下である複合組織
鋼であり、かつ、少なくとも1/2板厚における板面の
{100}<011>〜{223}<110>方位群の
X線ランダム強度比の平均値が3.0以上で、かつ、
{554}<225>、{111}<112>および
{111}<110>の3つの結晶方位のX線ランダム
強度比の平均値が3.5以下であり、さらに、圧延方向
のr値および圧延方向と直角方向のr値のうち少なくと
も1つが0.7以下であることを特徴とする形状凍結性
に優れた高伸びフランジ性鋼板。
1. A steel sheet having a composite structure in which ferrite or bainite has a maximum area ratio of pearlite, martensite, and retained austenite in a total area ratio of 5% or less, and has a thickness of at least 1 /. The average value of the X-ray random intensity ratio of the {100} <011> to {223} <110> orientation group of the plane is 3.0 or more, and
The average value of the X-ray random intensity ratio of the three crystal orientations of {554} <225>, {111} <112> and {111} <110> is 3.5 or less, and further, the r value in the rolling direction and A high elongation flangeable steel sheet excellent in shape freezing property, wherein at least one of r values in a direction perpendicular to the rolling direction is 0.7 or less.
【請求項2】 質量%で、 C:0.0001%以上、0.3%以下、 Si:0.001%以上、3.5%以下、 Mn:0.05%以上、3%以下、 P:0.2%以下、 S:0.03%以下、 Al:0.01%以上、3%以下、 N:0.01%以下、 O:0.01%以下 を含有し、残部は鉄および不可避的不純物よりなること
を特徴とする請求項1に記載の形状凍結性に優れた高伸
びフランジ性鋼板。
2. In mass%, C: 0.0001% or more and 0.3% or less, Si: 0.001% or more and 3.5% or less, Mn: 0.05% or more and 3% or less, P : 0.2% or less, S: 0.03% or less, Al: 0.01% or more and 3% or less, N: 0.01% or less, O: 0.01% or less, with the balance being iron and The high elongation flangeable steel sheet having excellent shape freezing properties according to claim 1, comprising an unavoidable impurity.
【請求項3】 更に、質量%で、 Ti:1%以下、 Nb:1%以下、 V:1%以下、 Cr:3%以下、および、 B:0.01%以下 の1種または2種以上を含有することを特徴とする請求
項2に記載の形状凍結性に優れた高伸びフランジ性鋼
板。
3. One or two of the following by mass%: Ti: 1% or less, Nb: 1% or less, V: 1% or less, Cr: 3% or less, and B: 0.01% or less. The high elongation flangeable steel sheet having excellent shape freezing properties according to claim 2, comprising:
【請求項4】 更に、質量%で、 Mo:1%以下、 Cu:3%以下、 Ni:3%以下、および、 Sn:0.2%以下 の1種または2種以上を含有することを特徴とする請求
項2または3に記載の形状凍結性に優れた高伸びフラン
ジ性鋼板。
4. The composition according to claim 1, further comprising at least one of Mo: 1% or less, Cu: 3% or less, Ni: 3% or less, and Sn: 0.2% or less. The high elongation flangeable steel sheet having excellent shape freezing properties according to claim 2 or 3.
【請求項5】 更に、質量%で、 Ca:0.0005%以上、0.005%以下、およ
び、 Rem:0.001%以上、0.02%以下 の1種または2種を含有することを特徴とする請求項2
〜4の何れか1項に記載の形状凍結性に優れた高伸びフ
ランジ性鋼板。
5. The composition according to claim 1, further comprising at least one of Ca: 0.0005% or more and 0.005% or less, and Rem: 0.001% or more and 0.02% or less. 3. The method according to claim 2, wherein
5. A high elongation flangeable steel sheet excellent in shape freezing property according to any one of items 4 to 4.
【請求項6】 請求項1〜5の何れか1項に記載の鋼板
にめっきを施したことを特徴とする形状凍結性に優れた
高伸びフランジ性鋼板。
6. A high elongation flangeable steel sheet excellent in shape freezing property, wherein the steel sheet according to any one of claims 1 to 5 is plated.
【請求項7】 請求項1〜6の何れか1項に記載の鋼板
を製造するに当たり、Ar3変態温度〜(Ar3+10
0)℃の温度範囲における圧下率の合計が25%以上と
なるように制御し、Ar3変態温度以上で熱間圧延を終
了し、(1)式に示す鋼の化学成分で決まる臨界温度T
o以下でかつ350℃以上の温度で巻き取ることを特徴
とする形状凍結性に優れた高伸びフランジ性鋼板の製造
方法。 To=-650.4×C%+B …(1) ここで、Bは質量%で表現した鋼の成分より求まる。 B=-50.6×Mneq+894.3 Mneq=Mn%+0.24×Ni%+0.13×Si%+0.38×Mo%+0.55×Cr%+
0.16×Cu%-0.50×Al%-0.45×Co%+0.90×V%
7. In producing the steel sheet according to any one of claims 1 to 6, an Ar 3 transformation temperature to (Ar 3 +10
0) The total reduction in the temperature range of 0 ° C. is controlled to be 25% or more, the hot rolling is completed at the Ar 3 transformation temperature or more, and the critical temperature T determined by the chemical composition of the steel shown in the equation (1).
A method for producing a high-stretch flangeable steel sheet having excellent shape freezing properties, wherein the high-strength flangeable steel sheet is wound at a temperature of not more than o and at least 350 ° C. To = −650.4 × C% + B (1) Here, B is obtained from the steel component expressed in mass%. B = -50.6 × Mneq + 894.3 Mneq = Mn% + 0.24 × Ni% + 0.13 × Si% + 0.38 × Mo% + 0.55 × Cr% +
0.16 × Cu% -0.50 × Al% -0.45 × Co% + 0.90 × V%
【請求項8】 Ar3変態温度〜(Ar3+100)℃の
温度範囲における圧下率の合計が25%以上で、かつ、
(Ar3+100)℃以下の熱間圧延において少なくと
も1パス以上を摩擦係数が0.2以下となるように熱間
圧延を制御することを特徴とする請求項7に記載の形状
凍結性に優れた高伸びフランジ性鋼板の製造方法。
8. The total reduction in the temperature range from the Ar 3 transformation temperature to (Ar 3 +100) ° C. is 25% or more, and
8. The shape freezing property according to claim 7, wherein the hot rolling is controlled so that the friction coefficient becomes 0.2 or less in at least one pass in hot rolling at (Ar 3 +100) ° C. or less. Manufacturing method of high stretch flangeable steel sheet.
【請求項9】 請求項1〜6の何れか1項に記載の鋼板
を製造するに当たり、Ar3変態温度以下の圧下率の合
計が25%以上になるように熱間圧延を制御し、熱間圧
延を終了後、350〜Ac3変態温度で巻き取るか、ま
たは、一旦冷却後、500〜Ac3変態温度に10〜1
20分加熱することを特徴とする形状凍結性に優れた高
伸びフランジ性鋼板の製造方法。
9. In producing the steel sheet according to any one of claims 1 to 6, hot rolling is controlled so that the sum of the rolling reductions below the Ar 3 transformation temperature is 25% or more. after completion between rolling or winding in 350~Ac 3 transformation temperature, or, once cooled, the 500~Ac 3 transformation temperature 10 to 1
A method for producing a high elongation flangeable steel sheet having excellent shape freezing properties, characterized by heating for 20 minutes.
【請求項10】 Ar3変態温度以下の圧下率の合計が
25%以上で、かつ、Ar3変態温度以下の熱間圧延に
おいて少なくとも1パス以上を摩擦係数が0.2以下と
なるように圧延することを特徴とする請求項9に記載の
形状凍結性に優れた高伸びフランジ性鋼板の製造方法。
10. Rolling such that the total rolling reduction at or below the Ar 3 transformation temperature is 25% or more, and at least one pass or more in hot rolling at or below the Ar 3 transformation temperature has a friction coefficient of 0.2 or less. The method for producing a high-stretch flangeable steel sheet having excellent shape freezing properties according to claim 9.
【請求項11】 請求項7〜10のいずれか1項に記載
の鋼板を酸洗し、圧下率80%未満の冷間圧延を施した
後、600℃〜(Ac3+100)℃の温度範囲に加熱
し、冷却することを特徴とする形状凍結性に優れた高伸
びフランジ性鋼板の製造方法。
11. The temperature range of 600 ° C. to (Ac 3 +100) ° C. after pickling the steel sheet according to claim 7 and subjecting the steel sheet to cold rolling at a rolling reduction of less than 80%. A method for producing a high-stretch flangeable steel sheet having excellent shape freezing properties, characterized by heating and cooling.
JP2001196317A 2000-08-03 2001-06-28 High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same Expired - Fee Related JP3990553B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001196317A JP3990553B2 (en) 2000-08-03 2001-06-28 High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
CA002422753A CA2422753C (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof
US10/380,844 US6962631B2 (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof
KR1020037004171A KR100543956B1 (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof
EP01970195A EP1327695B1 (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof
CNB018160859A CN1208490C (en) 2000-09-21 2001-09-21 Steel plaster excellent in shape freezing property and method for production thereof
PCT/JP2001/008277 WO2002024968A1 (en) 2000-09-21 2001-09-21 Steel plate excellent in shape freezing property and method for production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-236139 2000-08-03
JP2000236139 2000-08-03
JP2001196317A JP3990553B2 (en) 2000-08-03 2001-06-28 High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002115025A true JP2002115025A (en) 2002-04-19
JP3990553B2 JP3990553B2 (en) 2007-10-17

Family

ID=26597322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196317A Expired - Fee Related JP3990553B2 (en) 2000-08-03 2001-06-28 High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same

Country Status (1)

Country Link
JP (1) JP3990553B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018857A1 (en) * 2001-08-24 2003-03-06 Nippon Steel Corporation Steel plate exhibiting excellent workability and method for producing the same
WO2005005670A1 (en) * 2003-06-26 2005-01-20 Nippon Steel Corporation High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
CN100374586C (en) * 2003-06-26 2008-03-12 新日本制铁株式会社 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
JP2008163390A (en) * 2006-12-28 2008-07-17 Nippon Steel Corp Steel sheet for irregularly-shaped can
JP2009108364A (en) * 2007-10-30 2009-05-21 Jfe Steel Corp High-strength steel sheet superior in deep drawability, and manufacturing method therefor
KR101024775B1 (en) 2008-08-28 2011-03-24 현대제철 주식회사 Cold-rolled steel sheet with good formability, and method for producing the same
US7981224B2 (en) * 2003-12-18 2011-07-19 Nippon Steel Corporation Multi-phase steel sheet excellent in hole expandability and method of producing the same
JP2012172203A (en) * 2011-02-22 2012-09-10 Nippon Steel Corp High strength hot rolled steel sheet having high ductility with excellent local deformability and less orientation dependence of formability
WO2012133636A1 (en) * 2011-03-31 2012-10-04 新日本製鐵株式会社 Bainite-containing high-strength hot-rolled steel plate with excellent isotropic workability and process for producing same
WO2012141265A1 (en) * 2011-04-13 2012-10-18 新日本製鐵株式会社 High-strength cold-rolled steel sheet with excellent local formability, and manufacturing method therefor
KR101405489B1 (en) 2011-12-23 2014-06-12 주식회사 포스코 Enameling steel sheet with surface defect free and manufacturing method thereof
JP2014141703A (en) * 2013-01-23 2014-08-07 Nippon Steel & Sumitomo Metal High strength hot rolled steel sheet excellent in appearance and balance between elongation and hole-expandability and method of producing the same
WO2015002190A1 (en) * 2013-07-01 2015-01-08 新日鐵住金株式会社 Cold-rolled steel plate, galvanized cold-rolled steel plate, and method for manufacturing said plates
US9194015B2 (en) 2002-08-20 2015-11-24 Kobe Steel, Ltd. Dual phase steel sheet with good bake-hardening properties
US9546413B2 (en) 2011-03-28 2017-01-17 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and production method thereof
US9631265B2 (en) 2011-05-25 2017-04-25 Nippon Steel Hot-rolled steel sheet and method for producing same
US10513749B2 (en) 2014-05-28 2019-12-24 Nippon Steel Corporation Hot-rolled steel sheet and production method of therefor

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8052807B2 (en) 2001-08-24 2011-11-08 Nippon Steel Corporation Steel sheet excellent in workability
US7749343B2 (en) 2001-08-24 2010-07-06 Nippon Steel Corporation Method to produce steel sheet excellent in workability
US7776161B2 (en) 2001-08-24 2010-08-17 Nippon Steel Corporation Cold-rolled steel sheet excellent in workability
WO2003018857A1 (en) * 2001-08-24 2003-03-06 Nippon Steel Corporation Steel plate exhibiting excellent workability and method for producing the same
US7534312B2 (en) 2001-08-24 2009-05-19 Nippon Steel Corporation Steel plate exhibiting excellent workability and method for producing the same
US9194015B2 (en) 2002-08-20 2015-11-24 Kobe Steel, Ltd. Dual phase steel sheet with good bake-hardening properties
US7485195B2 (en) 2003-06-26 2009-02-03 Nippon Steel Corporation High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
CN100374586C (en) * 2003-06-26 2008-03-12 新日本制铁株式会社 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
WO2005005670A1 (en) * 2003-06-26 2005-01-20 Nippon Steel Corporation High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
US7981224B2 (en) * 2003-12-18 2011-07-19 Nippon Steel Corporation Multi-phase steel sheet excellent in hole expandability and method of producing the same
JP4630268B2 (en) * 2006-12-28 2011-02-09 新日本製鐵株式会社 Steel plate for profile can
JP2008163390A (en) * 2006-12-28 2008-07-17 Nippon Steel Corp Steel sheet for irregularly-shaped can
JP2009108364A (en) * 2007-10-30 2009-05-21 Jfe Steel Corp High-strength steel sheet superior in deep drawability, and manufacturing method therefor
KR101024775B1 (en) 2008-08-28 2011-03-24 현대제철 주식회사 Cold-rolled steel sheet with good formability, and method for producing the same
JP2012172203A (en) * 2011-02-22 2012-09-10 Nippon Steel Corp High strength hot rolled steel sheet having high ductility with excellent local deformability and less orientation dependence of formability
US9670569B2 (en) 2011-03-28 2017-06-06 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet and production method thereof
US9546413B2 (en) 2011-03-28 2017-01-17 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and production method thereof
JP5376089B2 (en) * 2011-03-31 2013-12-25 新日鐵住金株式会社 Bainite-containing high-strength hot-rolled steel sheet excellent in isotropic workability and manufacturing method thereof
US9587287B2 (en) 2011-03-31 2017-03-07 Nippon Steel and Sumitomo Metal Corporation Bainite-containing-type high-strength hot-rolled steel sheet having excellent isotropic workability and manufacturing method thereof
US10364478B2 (en) 2011-03-31 2019-07-30 Nippon Steel Corporation Bainite-containing-type high-strength hot-rolled steel sheet having excellent isotropic workability and manufacturing method thereof
WO2012133636A1 (en) * 2011-03-31 2012-10-04 新日本製鐵株式会社 Bainite-containing high-strength hot-rolled steel plate with excellent isotropic workability and process for producing same
JP5408387B2 (en) * 2011-04-13 2014-02-05 新日鐵住金株式会社 High strength hot-rolled steel sheet with excellent local deformability and its manufacturing method
WO2012141265A1 (en) * 2011-04-13 2012-10-18 新日本製鐵株式会社 High-strength cold-rolled steel sheet with excellent local formability, and manufacturing method therefor
US9988697B2 (en) 2011-04-13 2018-06-05 Nippon Steel and Sumitomo Metal Corporation High-strength hot-rolled steel sheet having excellent local deformability and manufacturing method thereof
US9631265B2 (en) 2011-05-25 2017-04-25 Nippon Steel Hot-rolled steel sheet and method for producing same
US10167539B2 (en) 2011-05-25 2019-01-01 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for producing same
KR101405489B1 (en) 2011-12-23 2014-06-12 주식회사 포스코 Enameling steel sheet with surface defect free and manufacturing method thereof
JP2014141703A (en) * 2013-01-23 2014-08-07 Nippon Steel & Sumitomo Metal High strength hot rolled steel sheet excellent in appearance and balance between elongation and hole-expandability and method of producing the same
JPWO2015002190A1 (en) * 2013-07-01 2017-02-23 新日鐵住金株式会社 Cold-rolled steel sheet, galvanized cold-rolled steel sheet, and methods for producing them
WO2015002190A1 (en) * 2013-07-01 2015-01-08 新日鐵住金株式会社 Cold-rolled steel plate, galvanized cold-rolled steel plate, and method for manufacturing said plates
US9970074B2 (en) 2013-07-01 2018-05-15 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet, galvanized cold-rolled steel sheet and method of manufacturing the same
US10513749B2 (en) 2014-05-28 2019-12-24 Nippon Steel Corporation Hot-rolled steel sheet and production method of therefor

Also Published As

Publication number Publication date
JP3990553B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
EP2415894B1 (en) Steel sheet excellent in workability and method for producing the same
US7794552B2 (en) Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
US20190040482A1 (en) High-strength steel sheet and method for manufacturing the same
CA2762935A1 (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
JP3990553B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
JP4384523B2 (en) Low yield ratio type high-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
JP3990549B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
JP3898954B2 (en) Ferritic thin steel sheet with excellent shape freezing property and manufacturing method thereof
JP3569949B2 (en) Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance
JP4126007B2 (en) Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same
JP4102284B2 (en) {100} &lt;011&gt; Cold rolled steel sheet manufacturing method with excellent shape freezing property with developed orientation
JP4028719B2 (en) Squeezable burring high-strength thin steel sheet having excellent shape freezing property and manufacturing method thereof
CN115087756A (en) Hot rolled steel plate
JP4464748B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength alloyed hot-dip galvanized steel sheet excellent in shape freezing property and stretch flangeability, and methods for producing them
JP3532138B2 (en) Ferrite thin steel sheet excellent in shape freezing property and method for producing the same
JP3990550B2 (en) Low yield ratio type high strength steel plate with excellent shape freezing property and its manufacturing method
JP2003113440A (en) Drawable high-tension steel sheet superior in shape freezability and manufacturing method therefor
JP3908954B2 (en) Ferritic thin steel sheet with excellent shape freezing property and manufacturing method thereof
JP4189209B2 (en) Steel plate with excellent shape freezing property and method for producing the same
JP2004124123A (en) Low yield ratio type high strength cold rolled steel sheet having excellent workability and shape fixability, and production method therefor
JP3911226B2 (en) Method for producing cold-rolled steel sheet with excellent shape freezing property
JP4189194B2 (en) Cold-rolled steel sheet excellent in workability and shape freezing property and manufacturing method thereof
JP3990554B2 (en) Steel sheet with excellent shape freezing property and method for producing the same
JP2004250744A (en) High workability, high strength hot rolled steel sheet having excellent shape-fixability, and production method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3990553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees