JP2814034B2 - Method for manufacturing power control semiconductor element - Google Patents
Method for manufacturing power control semiconductor elementInfo
- Publication number
- JP2814034B2 JP2814034B2 JP4143474A JP14347492A JP2814034B2 JP 2814034 B2 JP2814034 B2 JP 2814034B2 JP 4143474 A JP4143474 A JP 4143474A JP 14347492 A JP14347492 A JP 14347492A JP 2814034 B2 JP2814034 B2 JP 2814034B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- power control
- conductivity type
- thyristor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Thyristors (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、サイリスタやトライ
アックなどの電力制御用半導体素子の製造に関するもの
であり、特に遮断時の漏れ電流が少ない半導体素子を得
ようとするものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the manufacture of a power control semiconductor device such as a thyristor and a triac, and more particularly to a semiconductor device having a small leakage current at the time of interruption.
【0002】[0002]
【従来の技術】従来のサイリスタの製造方法の一例を図
3によって説明すると、N型半導体ウエハ31の両面に
ガリウムを拡散することにより、図3(a)に示すよう
に両面にP型層32及び33が形成される。そして、P
型層32の一部にリンを選択拡散すると、図3(b)の
ようにN型層34が形成されて、N−P−N−Pの4層
構造が形成される。そこで、図3(c)に示すようにP
型層32の露出部分にゲート電極35を、N型層34上
にカソード36を、P型層33上にアノード37を設け
て、サイリスタが完成する。2. Description of the Related Art An example of a conventional method for manufacturing a thyristor will be described with reference to FIG. 3. Gallium is diffused on both sides of an N-type semiconductor wafer 31 to form a P-type layer 32 on both sides as shown in FIG. And 33 are formed. And P
When phosphorus is selectively diffused into a part of the mold layer 32, an N-type layer 34 is formed as shown in FIG. 3B, and a four-layer structure of NPNP is formed. Therefore, as shown in FIG.
The thyristor is completed by providing the gate electrode 35 on the exposed portion of the mold layer 32, the cathode 36 on the N-type layer 34, and the anode 37 on the P-type layer 33.
【0003】[0003]
【発明が解決しようとする課題】図4に示すように、上
述のサイリスタのカソード36とアノード37の間に直
列に単相半波電源41、負荷抵抗42及び電流測定回路
43を接続し、ゲード電極35とアノード37との間に
ゲート制御回路44を接続する。単相半波電源41の出
力電圧VDRは、図5(a)に示すように位相角0°に始
まり、位相角90°で最高値に達し、位相角180°で
0に戻り、これを繰り返す。ゲート開放状態で繰り返し
て印加できるオフ電圧VDRの最大許容瞬時値をピーク繰
り返しオフ電圧VDRM という。As shown in FIG. 4, a single-phase half-wave power supply 41, a load resistor 42 and a current measuring circuit 43 are connected in series between a cathode 36 and an anode 37 of the thyristor described above. A gate control circuit 44 is connected between the electrode 35 and the anode 37. The output voltage V DR of the single-phase half-wave power supply 41 starts at a phase angle of 0 °, reaches a maximum value at a phase angle of 90 °, returns to 0 at a phase angle of 180 ° as shown in FIG. repeat. Maximum permissible instantaneous value of the OFF voltage V DR that can be applied repeatedly with the gate open Repetitive peak off-state voltage V DRM a.
【0004】そこでゲート制御回路44を動作させ、図
5(b)のように位相角90°の位置でゲートパルス5
1を発生させてこれをゲート電極35に与えると、サイ
リスタは導通状態になって、図5(a)で斜線で示すよ
うに、位相角90°から180°までの間、カソード3
6とアノード37の間に電流が流れる。Then, the gate control circuit 44 is operated, and as shown in FIG.
1 is generated and applied to the gate electrode 35, the thyristor is turned on, and the cathode 3 is turned on during a phase angle of 90 ° to 180 ° as shown by oblique lines in FIG.
A current flows between 6 and the anode 37.
【0005】そこで、位相角が0°〜90°の遮断期間
におけるカソード36とアノード37との間の漏れ電流
IDRを調べると、図5(c)に示すように、ピーク繰り
返しオフ電圧VDRM の1/2〜2/3付近から急増す
る。この漏れ電流の増大は電力損失の増大をもたらす。
この発明は、ピーク繰り返しオフ電圧VDRM の近傍にお
ける漏れ電流の増大を抑制しようとするものである。[0005] Therefore, when the phase angle examine the leakage current I DR between the cathode 36 and the anode 37 in the cut-off period of 0 ° to 90 °, as shown in FIG. 5 (c), the peak repetition off voltage V DRM Rapidly increases from around 1/2 to 2/3. This increased leakage current results in increased power loss.
An object of the present invention is to suppress an increase in leakage current in the vicinity of a peak repetition off voltage V DRM .
【0006】[0006]
【課題を解決するための手段】この発明による電力制御
用半導体素子の製造においては、第1の導電型の半導体
の両面に不純物を拡散して第2の導電型の層を作り、そ
の少なくとも一方の面の一部分に不純物を選択拡散して
第1の導電型の層に戻した後、この選択拡散層の表層部
分をエッチングにより除去することを特徴とする。In the manufacture of a power control semiconductor device according to the present invention, impurities are diffused on both surfaces of a semiconductor of a first conductivity type to form a layer of a second conductivity type, and at least one of the layers is formed. After the impurity is selectively diffused into a part of the surface to return to the first conductivity type layer, the surface part of the selective diffusion layer is removed by etching.
【0007】この選択拡散層のエッチングの範囲は、同
層の厚さの1/4〜1/3程度が適当である。また、こ
のエッチングは、選択拡散層の表層部分だけでなく、こ
れに隣接する導電型式を異にする部分の表層に跨って実
施してもよい。The range of etching of the selective diffusion layer is suitably about 1/4 to 1/3 of the thickness of the layer. In addition, this etching may be performed not only on the surface layer of the selective diffusion layer but also on the surface layer of the adjacent portion having a different conductivity type.
【0008】[0008]
【作用】上述のピーク繰り返しオフ電圧VDRM の近傍に
おける漏れ電流IDRの増大は、選択拡散した不純物が、
選択拡散層の表面部分に集まっていることによるものと
考えられる。従って、選択拡散層の表層部分をエッチン
グによって除去することにより、不純物が集まっている
部分を取り除くため、不純物の集まりによる漏れ電流の
増大を防ぐことができる。[Action] increase in the leakage current I DR in the vicinity of the above-mentioned peak repetitive off voltage V DRM, the impurity is selected diffusion,
This is considered to be due to the fact that they are gathered on the surface portion of the selective diffusion layer. Therefore, by removing the surface layer portion of the selective diffusion layer by etching to remove the portion where impurities are gathered, it is possible to prevent an increase in leakage current due to the gathering of impurities.
【0009】[0009]
【実施例】図1(a)に示すように、厚さ900μmの
N型ウエハ1の両面から、100μmの深さまでガリウ
ムを拡散させてP型層2及び3を作る。次に、図1
(b)に示すように、P型層2の表面から20μmの深
さまでリンを選択拡散して、N型の選択拡散層4を作
る。更に、露出しているP型層2及び選択拡散層4を、
バッファドフッ酸によってエッチングし、図1(b)に
示す表面から5μmのレベル8までを取り除き、図1
(c)に示す構造を得る。As shown in FIG. 1A, gallium is diffused from both sides of a 900 μm thick N-type wafer 1 to a depth of 100 μm to form P-type layers 2 and 3. Next, FIG.
As shown in (b), phosphorus is selectively diffused from the surface of the P-type layer 2 to a depth of 20 μm to form an N-type selective diffusion layer 4. Further, the exposed P-type layer 2 and selective diffusion layer 4 are
Etching was performed with buffered hydrofluoric acid to remove the surface shown in FIG.
The structure shown in (c) is obtained.
【0010】最後に図(d)のように周壁9を処理して
メサ構造となし、P型層2の露出面にゲート電極5を、
N型選択拡散層4上にカソード電極6を、P型層3上に
アノード電極7をそれぞれ設けて、オフ電圧4000
V,1000Aのサイリスタを完成する。このサイリス
タの漏れ電流IDRは、図2に示すように繰り返しオフ電
圧VDRの0Vの近傍からピーク繰り返しオフ電圧VDRM
近傍に至るまで、一定して0.15mAであった。Finally, the peripheral wall 9 is treated to form a mesa structure as shown in FIG. 1D, and the gate electrode 5 is formed on the exposed surface of the P-type layer 2.
A cathode electrode 6 is provided on the N-type selective diffusion layer 4 and an anode electrode 7 is provided on the P-type layer 3, so that the off-state voltage 4000
V, 1000A thyristor is completed. Leakage current I DR of the thyristor, 0V peak repetitive off-state voltage V DRM from the vicinity of the repetitive-off voltage V DR, as shown in FIG. 2
It was 0.15 mA constantly until it reached the vicinity.
【0011】[0011]
【発明の効果】以上のように、この発明によるときは半
導体サイリスタのピーク繰り返しオフ電圧近傍における
漏れ電流の増大を抑制して電力損失を減少させることが
でき、同様な漏れ電流の増大現象が起きるトライアック
など、電力制御用半導体素子全般に応用して電力損失の
減少効果を得ることができる。As described above, according to the present invention, the power loss can be reduced by suppressing the increase of the leakage current in the vicinity of the peak repetition off-voltage of the semiconductor thyristor, and the same phenomenon of the increase of the leakage current occurs. The present invention can be applied to all power control semiconductor devices such as a triac to obtain an effect of reducing power loss.
【図1】この発明を実施したサイリスタ製造工程図であ
る。FIG. 1 is a thyristor manufacturing process diagram embodying the present invention.
【図2】図1の製造工程によって得たサイリスタのオフ
電圧対漏れ電流特性線図である。FIG. 2 is a graph showing off-voltage vs. leakage current characteristics of a thyristor obtained by the manufacturing process of FIG.
【図3】従来のサイリスタ製造工程図である。FIG. 3 is a view showing a conventional thyristor manufacturing process.
【図4】オフ電圧対漏れ電流特性の測定回路を示す図で
ある。FIG. 4 is a diagram showing a circuit for measuring off-state voltage versus leakage current characteristics.
【図5】図4の各部における電圧、電流の説明図であ
る。FIG. 5 is an explanatory diagram of voltage and current in each section of FIG.
1 N型(第1の導電型)半導体ウエハ 2 P型(第2の導電型)拡散層 3 P型(第2の導電型)拡散層 4 N型(第1の導電型)選択拡散層 5 ゲート電極 6 カソード電極 7 アノード電極 8 エッチングレベル Reference Signs List 1 N-type (first conductivity type) semiconductor wafer 2 P-type (second conductivity type) diffusion layer 3 P-type (second conductivity type) diffusion layer 4 N-type (first conductivity type) selective diffusion layer 5 Gate electrode 6 Cathode electrode 7 Anode electrode 8 Etching level
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 29/74 H01L 29/747──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 29/74 H01L 29/747
Claims (1)
拡散して第2の導電型の層を作る工程と、上記半導体の
少なくとも一方の面の第2の導電型の層の一部分に不純
物を選択拡散して第1の導電型の層に戻す工程と、この
選択拡散層の表層部分をエッチングにより除去する工程
とを有することを特徴とする電力制御用半導体素子の製
造方法。1. A step of diffusing impurities on both surfaces of a semiconductor of a first conductivity type to form a layer of a second conductivity type, and forming a layer of the second conductivity type on at least one surface of the semiconductor. A method for manufacturing a power control semiconductor device, comprising: a step of selectively diffusing an impurity to return to a first conductivity type layer; and a step of removing a surface portion of the selective diffusion layer by etching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4143474A JP2814034B2 (en) | 1992-05-07 | 1992-05-07 | Method for manufacturing power control semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4143474A JP2814034B2 (en) | 1992-05-07 | 1992-05-07 | Method for manufacturing power control semiconductor element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05315601A JPH05315601A (en) | 1993-11-26 |
JP2814034B2 true JP2814034B2 (en) | 1998-10-22 |
Family
ID=15339543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4143474A Expired - Fee Related JP2814034B2 (en) | 1992-05-07 | 1992-05-07 | Method for manufacturing power control semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2814034B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50153587A (en) * | 1974-05-29 | 1975-12-10 |
-
1992
- 1992-05-07 JP JP4143474A patent/JP2814034B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05315601A (en) | 1993-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07105496B2 (en) | Insulated gate bipolar transistor | |
US3280386A (en) | Semiconductor a.c. switch device | |
JP2950025B2 (en) | Insulated gate bipolar transistor | |
JP2814034B2 (en) | Method for manufacturing power control semiconductor element | |
US3877059A (en) | Single diffused monolithic darlington circuit and method of manufacture thereof | |
JP4668412B2 (en) | Improved photovoltaic power generation circuit | |
JPH06268226A (en) | Insulated gate bipolar transistor | |
JPS61285766A (en) | Manufacture of semiconductor device | |
US3196285A (en) | Photoresponsive semiconductor device | |
JPS584829B2 (en) | semiconductor integrated circuit | |
JPS6128224B2 (en) | ||
JPS61182259A (en) | Gate turn-off thyristor | |
KR100356792B1 (en) | Silicon on insulator device and method for fabricating the same | |
JP3267478B2 (en) | Zener zapping diode | |
JPH0136711B2 (en) | ||
JPH098062A (en) | Manufacture of semiconductor device | |
JP3199924B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2772740B2 (en) | Power control semiconductor device and method of manufacturing the same | |
JP2750037B2 (en) | Semiconductor device | |
GB2128022A (en) | Integrated transistors protected against overvoltages | |
JPH0832049A (en) | Semiconductor device | |
JPH06252415A (en) | Semiconductor device and manufacture thereof | |
KR100264519B1 (en) | Method for fabricating bipolar transistor | |
JPS59205762A (en) | Manufacture of semiconductor device | |
JPH0479147B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980707 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |