JP2769617B2 - Manufacturing method of liquid crystal display device - Google Patents

Manufacturing method of liquid crystal display device

Info

Publication number
JP2769617B2
JP2769617B2 JP62211906A JP21190687A JP2769617B2 JP 2769617 B2 JP2769617 B2 JP 2769617B2 JP 62211906 A JP62211906 A JP 62211906A JP 21190687 A JP21190687 A JP 21190687A JP 2769617 B2 JP2769617 B2 JP 2769617B2
Authority
JP
Japan
Prior art keywords
conductive layer
metal
insulating film
substrate
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62211906A
Other languages
Japanese (ja)
Other versions
JPS6455539A (en
Inventor
靖 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62211906A priority Critical patent/JP2769617B2/en
Publication of JPS6455539A publication Critical patent/JPS6455539A/en
Application granted granted Critical
Publication of JP2769617B2 publication Critical patent/JP2769617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示装置の製造方法に関する。 〔従来の技術〕 従来の液晶表示装置の、非線形素子パターン平面図を
第4図に、非線形素子の断面構造図を、第5図に示す。
ここで第5図は、第4図のP−P′部分の断面を示すも
のである。第4図に示すように、非線形素子7は、第1
の金属3と、第2の金属5のクロス部分に形成されてお
り、その断面構造を第5図に示す。非線形素子は、基板
1上に形成された、第1の金属3と、第2の金属5によ
って、絶縁膜4を挟んだ構造になっていた。また、表示
用電極6は、第2の金属5と直接接続した構造であっ
た。 〔発明が解決しようとする問題点〕 しかし従来技術では、基板1と第1の金属3との密着
力が弱く、製造工程途中で第1の金属の一部または大部
分が剥れたり、それに伴って第2の金属が第1の金属の
断差部分で断線したりするという問題点を有し、歩留り
を低下させる要因となっていた。 そこで本発明は、この様な問題点を解決するもので、
その目的とするところは、第1の金属が基板から剥れた
り、それに伴って第2の金属が第1の金属の断差部分で
断線したりすることが無く、安定した歩留りで製造でき
る構造を有する液晶表示装置を提供するところにある。 〔問題点を解決するための手段〕 本発明の液晶表示装置の製造方法は、一対の基板間に
液晶が挟持され、前記一対の基板の一方の基板の内面上
に第1の導電層と絶縁層と第2の導電層とを積層してな
る非線形素子と前記非線形素子に導電接続される画素電
極とが形成される液晶表示装置の製造方法において、 前記一方の基板の内面上に、直接下地絶縁膜を形成す
る工程と、 前記下地絶縁膜上に前記第1の導電層を形成しパター
ニングする工程と、 熱処理工程を含み前記第1の導電層上に前記絶縁層を
形成する工程と、 前記絶縁層上に前記第2の導電層を形成しパターニン
グする工程とを有してなり、 前記下地絶縁膜は、100〜10000Åの膜厚とし、前記熱
処理工程後の前記一方の基板の縮み量を前記第1の導電
層及び前記第2の導電層のパターニングの位置合わせの
マージンよりも少なくすることを特徴とする。 〔実施例〕 第1図は、本発明の液晶表示装置の一実施例を示す図
であり、非線形素子が形成された側の基板の断面構造を
示したものである。非線形素子は、基板1上に下地絶縁
膜2を100〜10000Åの範囲内で形成し、その上に第1の
金属3と第2の金属5によって、絶縁膜4を挟んだ構造
である。また表示用電極6は、第2の金属5と直接接続
した構造である。 上記構造の具体的な一例を次に述べる。ガラス基板上
に、第1の金属と同じ金属(タンタル)をスパッタリン
グで形成し、熱酸化法等によって下地絶縁膜(タンタル
酸化膜)を形成する。この下地絶縁膜の膜厚を100〜100
00Åの範囲に設定した。その上に第1の金属(タンタ
ル)を形成し、陽極酸化法によって絶縁膜を形成する。
その上に第2の金属(クロム)を形成し、これと導通す
るように、表示用電極(透明導電膜)を形成した構造で
ある。なお、下地絶縁膜は、酸化物の直接スパッタ、金
属スパッタ時に酸素を導入する反応性スパッタ等によっ
て形成した膜でもよい。 以上のような構造をとることによって、ガラス基板と
下地絶縁膜は酸化物同志であり、下地絶縁膜と第1の金
属は、同じ金属同志であるために、相互の密着性が格段
に向上する。 ここで、下地絶縁膜厚が100Å以下、10000Å以上の場
合について以下に説明する。第2図に下地絶縁膜厚と素
子耐圧との関係を示す。膜厚が100Å以上だと、素子耐
圧は22〜23Vで膜厚に関係なく、ほとんど安定する。し
かし、0〜100Åの場合は、素子耐圧が著しく低下する
傾向にある。これは、ガラス基板上にスパッタされた第
1の金属(タンタル)の膜ストレスの関係で、ガラス基
板との密着性が悪くなり、製造工程途中で第1の金属の
一部または大部分が剥れたりする場合が多く、そのため
に第1の金属の断差部分で第2の金属の形状に異常が生
じ、通電時に電荷集中を起こし、素子耐圧を低下させる
ためと考えられる。下地絶縁膜厚が0Åの場合、この傾
向は顕著である。0〜100Åの場合は、全く無い場合に
比較すると耐圧は向上するが、22〜23Vの耐圧を確保す
るには再現性が悪かったり、スパッタにおいて、100Å
以下の膜厚をコントロールすること自体も非常に困難で
ある。以上の理由により、下地絶縁膜厚の下限を100Å
に設定した。 ガラス基板と、第1の金属との密着性だけを問題にす
るならば、下地絶縁膜はいくら厚くても良いはずである
が、厚すぎると以下のような問題を生じる。第3図に、
下地絶縁膜厚と基板伸縮量との関係を示す。図は、基板
10cmに対する伸縮量を示してある。伸縮量のプラス側は
伸びる方向、マイナス側は縮む方向を表わしている。製
造工程中のアニール等による、ガラス基板の熱収縮と下
地絶縁膜のひっぱり応力の、相互の影響によって起こる
現象であると考えられるが、図のように、下地絶縁膜厚
が厚い程縮み量が増加する傾向にある。基板の縮み量が
大きいと、熱工程前のパターニングで、形成されたパタ
ーンと、熱工程後にパターニングされたパターンとにず
れが生じ、基板中心部は良いが、基板外周部の素子が形
成不可能になる等の問題が生じる。第1の金属で形成さ
れるパターンが熱工程前にパターニングされるものであ
り、第2の金属で形成されるパターンが熱工程後にパタ
ーニングされるものである。この2つのパターンは、若
干ずれても素子が形成されるようになっているが、その
マージンは±7.5μmである。第3図より、下地絶縁膜
厚が10000Åの時、10cmで5μm縮むため、30cmでは15
μm縮むことになる。基板中心をパターンずれ0とすれ
ば、基板の上下左右で7.5μmのずれを生じることにな
る。これは、マージンとして考慮してある±7.5μmと
同じ、限界値である。つまり、10000Å以上の膜厚の場
合は、基板の縮み量がパターン形成時のマージンを超え
てしまうことになる。以上の理由より、下地絶縁膜厚の
上限を10000Åに設定した。 〔発明の効果〕 以上述べたように、本発明によれば、下地絶縁膜を、
100〜10000Åの膜厚とし、熱処理工程後の一方の基板の
縮み量を第1の導電層及び第2の導電層のパターニング
の位置合わせのマージンよりも少なくすることにより、
非線形素子の製造工程に含まれる熱処理工程の前後にお
ける、非線形素子が形成される基板の縮み量を、非線形
素子のパターニングの位置合わせの所定の許容量以内に
するものであり、平面的に重なって形成されパターニン
グされる第1の導電層と第2の導電層とを精度よく形成
することができ、製造工程上の非線形素子の品質をより
高めることができるものである。 さらに、基板−下地絶縁膜−第1の導電層間の相互の
密着性が格段に向上するため、第1の導電層の形状も安
定することにより、それに平面的に重なって形成される
第2の導電層の形状に異状をきたすことなく、非線形素
子に電流を流す際に非線形素子の各層間において、電荷
集中の発生を防止でき、非線形素子自体の耐圧を安定さ
せることができるものである。
The present invention relates to a method for manufacturing a liquid crystal display device. [Prior Art] FIG. 4 shows a plan view of a non-linear element pattern of a conventional liquid crystal display device, and FIG. 5 shows a sectional structural view of the non-linear element.
Here, FIG. 5 shows a cross section taken along the line PP 'of FIG. As shown in FIG. 4, the nonlinear element 7
5 is formed at the cross portion of the metal 3 and the second metal 5, and the cross-sectional structure is shown in FIG. The nonlinear element has a structure in which an insulating film 4 is sandwiched between a first metal 3 and a second metal 5 formed on a substrate 1. The display electrode 6 had a structure directly connected to the second metal 5. [Problems to be Solved by the Invention] However, in the related art, the adhesion between the substrate 1 and the first metal 3 is weak, and a part or most of the first metal is peeled off during the manufacturing process, and Accordingly, there is a problem that the second metal is disconnected at a difference portion of the first metal, which has been a factor of reducing the yield. Therefore, the present invention solves such a problem.
The purpose is to provide a structure that can be manufactured with a stable yield without the first metal being peeled off from the substrate and the second metal being thereby disconnected at the cut portion of the first metal. Is to provide a liquid crystal display device having the following. [Means for Solving the Problems] In the method for manufacturing a liquid crystal display device of the present invention, a liquid crystal is sandwiched between a pair of substrates, and a first conductive layer is insulated on an inner surface of one of the pair of substrates. A method of manufacturing a liquid crystal display device in which a non-linear element formed by laminating a layer and a second conductive layer and a pixel electrode conductively connected to the non-linear element are formed. Forming an insulating film; forming the first conductive layer on the base insulating film and patterning; forming the insulating layer on the first conductive layer including a heat treatment step; Forming the second conductive layer on an insulating layer and patterning the second conductive layer. The base insulating film has a thickness of 100 to 10,000 Å, and the amount of shrinkage of the one substrate after the heat treatment step is reduced. Pattern of the first conductive layer and the second conductive layer Characterized by less than the margin of alignment training. Embodiment FIG. 1 is a view showing one embodiment of the liquid crystal display device of the present invention, and shows a cross-sectional structure of a substrate on a side where a nonlinear element is formed. The non-linear element has a structure in which a base insulating film 2 is formed on a substrate 1 within a range of 100 to 10,000 ° and a first metal 3 and a second metal 5 sandwich an insulating film 4 thereon. The display electrode 6 has a structure directly connected to the second metal 5. A specific example of the above structure will be described below. The same metal (tantalum) as the first metal is formed on a glass substrate by sputtering, and a base insulating film (tantalum oxide film) is formed by a thermal oxidation method or the like. The thickness of the base insulating film is 100 to 100
It was set in the range of 00 °. A first metal (tantalum) is formed thereon, and an insulating film is formed by anodic oxidation.
A second metal (chromium) is formed thereon, and a display electrode (transparent conductive film) is formed so as to be electrically connected to the second metal. Note that the base insulating film may be a film formed by direct sputtering of an oxide, reactive sputtering for introducing oxygen during metal sputtering, or the like. With the above structure, the glass substrate and the base insulating film are composed of the same oxide, and the base metal and the first metal are composed of the same metal. . Here, the case where the thickness of the base insulating film is 100 mm or less and 10000 mm or more will be described below. FIG. 2 shows the relationship between the thickness of the base insulating film and the withstand voltage of the element. When the film thickness is 100 ° or more, the device withstand voltage is 22 to 23 V and is almost stable regardless of the film thickness. However, in the case of 0 to 100 °, the withstand voltage of the element tends to be significantly reduced. This is because, due to the film stress of the first metal (tantalum) sputtered on the glass substrate, the adhesion to the glass substrate is deteriorated, and part or most of the first metal is peeled off during the manufacturing process. This is considered to be due to the fact that the shape of the second metal is abnormal in the first metal at the difference between the first metal and the second metal. This tendency is remarkable when the thickness of the base insulating film is 0 °. In the case of 0 to 100 °, the withstand voltage is improved as compared with the case of no case, but the reproducibility is poor to secure the withstand voltage of 22 to 23V, or 100 ° in spattering.
It is also very difficult to control the following film thickness itself. For the above reasons, the lower limit of the base insulating film thickness is 100 mm
Set to. If only the adhesion between the glass substrate and the first metal is considered as a problem, the underlying insulating film may be any thickness, but if it is too thick, the following problems occur. In FIG.
The relation between the thickness of the base insulating film and the amount of expansion / contraction of the substrate is shown. The figure shows the substrate
The amount of expansion and contraction for 10 cm is shown. The plus side of the amount of expansion and contraction indicates the direction of extension, and the minus side indicates the direction of contraction. It is thought to be a phenomenon caused by the mutual influence of the thermal shrinkage of the glass substrate and the tensile stress of the underlying insulating film due to annealing etc. during the manufacturing process, but as shown in the figure, the shrinkage amount increases as the thickness of the underlying insulating film increases. It tends to increase. If the amount of shrinkage of the substrate is large, the formed pattern and the pattern patterned after the thermal process are displaced by patterning before the thermal process, and the central portion of the substrate is good, but elements at the peripheral portion of the substrate cannot be formed. And other problems arise. The pattern formed of the first metal is patterned before the thermal process, and the pattern formed of the second metal is patterned after the thermal process. The two patterns are formed such that an element is formed even if they are slightly shifted, but the margin is ± 7.5 μm. From FIG. 3, it can be seen that when the thickness of the base insulating film is 10000 mm, the thickness is reduced by 5 μm at 10 cm.
μm. If the pattern shift is 0 at the center of the substrate, a shift of 7.5 μm occurs in the vertical and horizontal directions of the substrate. This is the same limit value as ± 7.5 μm considered as the margin. In other words, when the film thickness is 10,000 ° or more, the amount of shrinkage of the substrate exceeds the margin at the time of pattern formation. For the above reasons, the upper limit of the thickness of the base insulating film was set to 10,000 °. [Effects of the Invention] As described above, according to the present invention, the base insulating film is
By setting the thickness of the substrate to 100 to 10,000 mm and reducing the shrinkage amount of one of the substrates after the heat treatment step to less than the alignment margin for patterning the first conductive layer and the second conductive layer,
Before and after the heat treatment step included in the manufacturing process of the nonlinear element, the amount of shrinkage of the substrate on which the nonlinear element is formed is within a predetermined allowable amount for the alignment of the patterning of the nonlinear element. The first conductive layer and the second conductive layer to be formed and patterned can be accurately formed, and the quality of the nonlinear element in the manufacturing process can be further improved. Furthermore, since the mutual adhesion between the substrate, the base insulating film, and the first conductive layer is remarkably improved, the shape of the first conductive layer is also stabilized, and the second conductive layer is formed so as to overlap with the second conductive layer. It is possible to prevent charge concentration from occurring between the layers of the non-linear element when a current flows through the non-linear element without causing an abnormality in the shape of the conductive layer, and to stabilize the breakdown voltage of the non-linear element itself.

【図面の簡単な説明】 第1図は、本発明の液晶表示装置の一実施例を示す図で
あり、非線形素子が形成された側の基板の断面構造を示
す断面図。 第2図は、下地絶縁膜厚と素子耐圧の関係図。 第3図は、下地絶縁膜厚と、基板伸縮量の関係図。 第4図は、従来の非線形素子の平面図。 第5図は、従来の液晶表示装置における、非線形素子の
断面構造図。 1……基板 2……下地絶縁膜 3……第1の金属 4……絶縁膜 5……第2の金属 6……表示用電極 7……非線形素子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing one embodiment of a liquid crystal display device of the present invention, and is a cross-sectional view showing a cross-sectional structure of a substrate on which a nonlinear element is formed. FIG. 2 is a diagram showing a relationship between a base insulating film thickness and an element withstand voltage. FIG. 3 is a diagram showing a relationship between a base insulating film thickness and a substrate expansion / contraction amount. FIG. 4 is a plan view of a conventional nonlinear element. FIG. 5 is a sectional structural view of a nonlinear element in a conventional liquid crystal display device. DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Base insulating film 3 ... First metal 4 ... Insulating film 5 ... Second metal 6 ... Display electrode 7 ... Non-linear element

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−52680(JP,A) 特開 昭58−40527(JP,A) 特開 昭62−134628(JP,A) 特開 昭61−243613(JP,A) 特開 昭62−227130(JP,A) 特開 昭63−55529(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page       (56) References JP-A-58-52680 (JP, A)                 JP-A-58-40527 (JP, A)                 JP-A-62-134628 (JP, A)                 JP-A-61-243613 (JP, A)                 JP-A-62-227130 (JP, A)                 JP-A-63-55529 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.一対の基板間に液晶が挟持され、前記一対の基板の
一方の基板の内面上に第1の導電層と絶縁層と第2の導
電層とを積層してなる非線形素子と前記非線形素子に導
電接続される画素電極とが形成される液晶表示装置の製
造方法において、 前記一方の基板の内面上に、直接下地絶縁膜を形成する
工程と、 前記下地絶縁膜上に前記第1の導電層を形成しパターニ
ングする工程と、 熱処理工程を含み前記第1の導電層上に前記絶縁層を形
成する工程と、 前記絶縁層上に前記第2の導電層を形成しパターニング
する工程とを有してなり、 前記下地絶縁膜は、100〜10000Åの膜厚とし、前記熱処
理工程後の前記一方の基板の縮み量を前記第1の導電層
及び前記第2の導電層のパターニングの位置合わせのマ
ージンよりも少なくすることを特徴とする液晶表示装置
の製造方法。
(57) [Claims] A liquid crystal is sandwiched between a pair of substrates, and a non-linear element formed by laminating a first conductive layer, an insulating layer, and a second conductive layer on the inner surface of one of the pair of substrates, and a conductive element for the non-linear element. In a method for manufacturing a liquid crystal display device in which a pixel electrode to be connected is formed, a step of forming a base insulating film directly on the inner surface of the one substrate; and forming the first conductive layer on the base insulating film. Forming and patterning; including a heat treatment step; forming the insulating layer on the first conductive layer; and forming and patterning the second conductive layer on the insulating layer. The base insulating film has a thickness of 100 to 10,000 Å, and the shrinkage amount of the one substrate after the heat treatment step is larger than a margin for patterning alignment of the first conductive layer and the second conductive layer. Liquid crystal characterized by reducing A method for manufacturing a display device.
JP62211906A 1987-08-26 1987-08-26 Manufacturing method of liquid crystal display device Expired - Lifetime JP2769617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62211906A JP2769617B2 (en) 1987-08-26 1987-08-26 Manufacturing method of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62211906A JP2769617B2 (en) 1987-08-26 1987-08-26 Manufacturing method of liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS6455539A JPS6455539A (en) 1989-03-02
JP2769617B2 true JP2769617B2 (en) 1998-06-25

Family

ID=16613610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62211906A Expired - Lifetime JP2769617B2 (en) 1987-08-26 1987-08-26 Manufacturing method of liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2769617B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045752A1 (en) * 1997-04-09 1998-10-15 Seiko Epson Corporation Method of manufacturing liquid crystal device
JP6121149B2 (en) * 2012-11-28 2017-04-26 富士フイルム株式会社 Oxide semiconductor element, manufacturing method of oxide semiconductor element, display device, and image sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840527A (en) * 1981-09-03 1983-03-09 Seiko Epson Corp Production of substrate for liquid crystal panel
JPS5852680A (en) * 1981-09-24 1983-03-28 セイコーエプソン株式会社 Manufacture of liquid crystal panel substrate
JPS62134628A (en) * 1985-12-06 1987-06-17 Nec Corp Storage capacitor address diode type active matrix liquid crystal display device and its driving method
JPS62227130A (en) * 1986-03-28 1987-10-06 Nec Corp Active matrix type liquid crystal display device
JPS6355529A (en) * 1986-08-25 1988-03-10 Nec Corp Active matrix liquid crystal display device and its production

Also Published As

Publication number Publication date
JPS6455539A (en) 1989-03-02

Similar Documents

Publication Publication Date Title
JPH02156226A (en) Liquid crystal display element
JP2769617B2 (en) Manufacturing method of liquid crystal display device
JPH02240636A (en) Active matrix substrate and liquid crystal display element using the same
JPH01120068A (en) Thin-film transistor
JP2990815B2 (en) Liquid crystal display device and method of manufacturing the same
JP3076483B2 (en) Method for manufacturing metal wiring board and method for manufacturing thin film diode array
EP0775932B1 (en) Liquid crystal display
JPH02281237A (en) Electrode structure of display device
JP3363973B2 (en) Liquid crystal display device and manufacturing method thereof
JPH11326949A (en) Active matrix type liquid crystal display element
JP3006990B2 (en) Active matrix substrate and manufacturing method thereof
JP2812721B2 (en) Manufacturing method of nonlinear element
JPH03296024A (en) Mim liquid crystal panel and its manufacture
JPH01120539A (en) Liquid crystal display device
JPH0466919A (en) Production of liquid crystal display device
JPH0437969B2 (en)
JPH0357199B2 (en)
JPH06301064A (en) Mim-type nonlinear element and its production
JPH04273215A (en) Production of thin-film transistor array substrate
JPH0323894B2 (en)
JPH0342631A (en) Production of mim type nonlinear switching element
JPH04366814A (en) Liquid crystal display element substrate and liquid crystal display element formed by using this substrate.
JPS61153620A (en) Thin film non-linear type resistance element
JPH1039324A (en) Liquid crystal display device
JPH06308538A (en) Production of liquid crystal display device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10