JPH0437969B2 - - Google Patents

Info

Publication number
JPH0437969B2
JPH0437969B2 JP11825182A JP11825182A JPH0437969B2 JP H0437969 B2 JPH0437969 B2 JP H0437969B2 JP 11825182 A JP11825182 A JP 11825182A JP 11825182 A JP11825182 A JP 11825182A JP H0437969 B2 JPH0437969 B2 JP H0437969B2
Authority
JP
Japan
Prior art keywords
metal
metal layer
mim
manufacturing
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11825182A
Other languages
Japanese (ja)
Other versions
JPS599631A (en
Inventor
Takashi Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP57118251A priority Critical patent/JPS599631A/en
Publication of JPS599631A publication Critical patent/JPS599631A/en
Publication of JPH0437969B2 publication Critical patent/JPH0437969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1365Active matrix addressed cells in which the switching element is a two-electrode device

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 2枚の基板により液晶物質を挟持してなる電気
光学装置の少なくとも一方の基板に金属−絶縁体
−金属(以下MIM素子という)の構造より成る
非線形素子を設置した電気光学装置のMIM素子
の製造方法に関する。
[Detailed Description of the Invention] An electro-optical device comprising a liquid crystal material sandwiched between two substrates, and a nonlinear element having a metal-insulator-metal (hereinafter referred to as MIM element) structure installed on at least one of the substrates. The present invention relates to a method of manufacturing an MIM element for an optical device.

第1図は、MIM素子の代表的な形状を示し、
第2図は線aにおける断面図である。1は基板、
2は第1の金属であり、第1の金属2は、Al,
Ta等の金属で表面が均一に酸化でき、絶縁体と
なる金属であればよい。3は第3の金属であり、
Al,Ta,Cr,NiCr等所定の非線形特性が得られ
る金属であればよい。4は透明導電膜であり、
SnO2,ITO等が使用可能である。5は絶縁体で
ある。
Figure 1 shows a typical shape of an MIM element,
FIG. 2 is a sectional view taken along line a. 1 is the board,
2 is a first metal, and the first metal 2 is Al,
Any metal such as Ta that can be uniformly oxidized on the surface and serves as an insulator may be used. 3 is the third metal;
Any metal can be used, such as Al, Ta, Cr, NiCr, etc., which can provide the predetermined nonlinear characteristics. 4 is a transparent conductive film;
SnO 2 , ITO, etc. can be used. 5 is an insulator.

従来のMIM素子の製造方法は、第3図に示す
如く基板1上に第1の金属2を形成し、所定の形
状にパターニングする。次に第4図に示す如く第
1の金属2の表面を酸素ガスを含む高温雰囲気中
あるいは陽極酸化等の方法により均一に絶縁体5
を形成する。次に第5図に示す如く第3の金属3
を形成し、所定の形状にパターニングする。次に
第6図に示す如く透明導電膜4を形成し、所定の
形状にパターニングする。
In the conventional method of manufacturing an MIM element, as shown in FIG. 3, a first metal 2 is formed on a substrate 1 and patterned into a predetermined shape. Next, as shown in FIG. 4, the surface of the first metal 2 is uniformly coated with an insulator 5 in a high temperature atmosphere containing oxygen gas or by a method such as anodic oxidation.
form. Next, as shown in FIG.
is formed and patterned into a predetermined shape. Next, as shown in FIG. 6, a transparent conductive film 4 is formed and patterned into a predetermined shape.

このような製造方法により製造されたMIM素
子の代表的な特性を第7図に示す。縦軸は、
MIM素子に流れる電流Iであり、横軸はMIM素
子の印加電圧Vである。第7図より明らかなよう
にMIM素子に印加する電圧Vの向きにより流れ
る電流値Iが異なり、液晶層に直接電流が印加さ
れてしまうという欠点があつた。液晶物質に直流
電流を印加すると、液晶物質が劣化するのは公知
である。また更に、MIM素子を製造するために
はパターニング工程が3回あり、そのために価格
が高くなつてしまうという欠点があつた。また更
に3回のパターニングのために歩留りが悪くなつ
てしまうという欠点があつた。また更に同一ライ
ンに複数のMIM素子を設置した場合となり会う
MIM素子の配線が表面に絶縁体が形成された第
1の金属となるために、電気光学装置に組み立て
た場合、MIM素子間の配線が目立つてしまい、
電気光学装置の見栄えが悪くなつてしまうという
欠点があつた。
FIG. 7 shows typical characteristics of an MIM element manufactured by such a manufacturing method. The vertical axis is
It is the current I flowing through the MIM element, and the horizontal axis is the applied voltage V of the MIM element. As is clear from FIG. 7, the flowing current value I varies depending on the direction of the voltage V applied to the MIM element, and the disadvantage is that the current is directly applied to the liquid crystal layer. It is known that applying a direct current to a liquid crystal material causes it to deteriorate. Furthermore, the patterning process is required three times in order to manufacture the MIM element, which has the disadvantage of increasing the cost. Furthermore, there was a drawback that the yield was poor due to the three-time patterning process. Furthermore, if multiple MIM elements are installed on the same line, they will meet each other.
Since the wiring of the MIM element is made of the first metal with an insulator formed on the surface, the wiring between the MIM elements becomes conspicuous when assembled into an electro-optical device.
The drawback was that the appearance of the electro-optical device deteriorated.

本発明はかかる欠点を除去したもので、その目
的は、2回のパターニング工程でMIM素子を製
造する方法を提供するものである。
The present invention eliminates these drawbacks and aims to provide a method for manufacturing MIM devices using two patterning steps.

以下実施例に基づいて本発明を詳しく説明す
る。
The present invention will be described in detail below based on Examples.

第8図から第18図は本発明の製造方法を示す
図である。第8図に示す様に、基板6に透明導電
膜7と第1の金属8を所定の膜厚で形成する。次
に第4図に示すように所定の形状にパターニング
し、透明導電膜7および第1の金属8を同じ形状
にエツチングする。
8 to 18 are diagrams showing the manufacturing method of the present invention. As shown in FIG. 8, a transparent conductive film 7 and a first metal 8 are formed on a substrate 6 to a predetermined thickness. Next, as shown in FIG. 4, it is patterned into a predetermined shape, and the transparent conductive film 7 and first metal 8 are etched into the same shape.

第9図はパターニング形状の一例である。第1
0図は第9図の線bにおける断面図である。次に
第11図に示すように、第1の金属と同一材料の
第2の金属13を所定の厚さに形成する。次に第
12図に示すように第2の金属13及び第1の金
属8の表面を所定の厚さだけ酸化し絶縁体9を形
成する。この時斜線部で示す部分は完全に酸化さ
れるように、第2の金属13の厚さあるいは絶縁
体9の厚さを調整する。次に第13図に示すよう
に第3の金属10を所定の厚さに形成する。次に
第15図に示すように所定の形状に第3の金属1
0をパターニングする。第14図斜線部は第3の
金属10のパターン形状の一例である。次に第1
6図に示すようにパターニングした第3の金属1
0をマスクとし、絶縁体9及び第1の金属8を除
去する。すなわち第14図の斜線部以外の絶縁体
9及び第1の金属8は除去される。
FIG. 9 is an example of a patterning shape. 1st
FIG. 0 is a sectional view taken along line b in FIG. Next, as shown in FIG. 11, a second metal 13 made of the same material as the first metal is formed to a predetermined thickness. Next, as shown in FIG. 12, the surfaces of the second metal 13 and first metal 8 are oxidized to a predetermined thickness to form an insulator 9. At this time, the thickness of the second metal 13 or the thickness of the insulator 9 is adjusted so that the shaded area is completely oxidized. Next, as shown in FIG. 13, a third metal 10 is formed to a predetermined thickness. Next, as shown in FIG.
Pattern 0. The shaded area in FIG. 14 is an example of the pattern shape of the third metal 10. Then the first
6. Third metal 1 patterned as shown in Figure 6
0 as a mask, the insulator 9 and first metal 8 are removed. That is, the insulator 9 and the first metal 8 other than the shaded area in FIG. 14 are removed.

第17図は第14図の線Cにおける断面図であ
る。以上の様な方法によりMIM素子を形成でき
るという利点がある。また更に、パターニング工
程が2回であるために歩留りがよくなり価格を低
くできるという利点がある。また更に同一ライン
に複数のMIM素子を設置すると、隣り合うMIM
素子の配線が透明導電膜となり、電気光学装置の
見栄えが良くなるという利点がある。また更に第
18図に示すように同時に11,12の部分に
MIM素子が形成でき12のMIM素子と11の
MIM素子は逆局性で直列に接続されているため
に、無極性となり液晶層に直流電流が印加される
のを防ぐことができるという利点がある。
FIG. 17 is a sectional view taken along line C in FIG. 14. The method described above has the advantage of being able to form MIM elements. Furthermore, since the patterning process is performed twice, there is an advantage that the yield can be improved and the price can be lowered. Furthermore, if multiple MIM elements are installed on the same line, adjacent MIM elements
There is an advantage that the wiring of the element becomes a transparent conductive film, and the appearance of the electro-optical device improves. Furthermore, as shown in Figure 18, at the same time the parts 11 and 12
12 MIM elements and 11 MIM elements can be formed.
Since MIM elements are connected in series with opposite polarity, they have the advantage of being nonpolar and preventing direct current from being applied to the liquid crystal layer.

本発明はMIM素子を設置した電気光学装置を
安価に歩留りよく製造する方法として特に有効な
ものである。
The present invention is particularly effective as a method for manufacturing an electro-optical device equipped with an MIM element at low cost and with a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMIM素子の代表的な形状であり、第
2図は線aでの断面図である。第3図から第6図
までは従来の製造方法を示す。第7図はMIM素
子の代表的な特性であり、横軸はMIM素子の印
加電圧Vであり、縦軸はMIM素子に流れる電流
Iである。第8図から第18図本発明による
MIM素子の製造方法を示し、第10図から第1
3図及び第17図は第9図の線bにおける断面図
であり、第15図、第16図は第14図の線cに
おける断面図である。 1,6……基板、2,8……第1の金属、13
……第2の金属、3,10……第3の金属、4,
7……透明導電膜、5,9……絶縁体。
FIG. 1 shows a typical shape of an MIM element, and FIG. 2 is a cross-sectional view taken along line a. 3 to 6 show a conventional manufacturing method. FIG. 7 shows typical characteristics of the MIM element, where the horizontal axis is the voltage V applied to the MIM element, and the vertical axis is the current I flowing through the MIM element. Figures 8 to 18 According to the present invention
The manufacturing method of the MIM element is shown in Figures 10 to 1.
3 and 17 are cross-sectional views taken along line b in FIG. 9, and FIGS. 15 and 16 are cross-sectional views taken along line c in FIG. 14. 1, 6... Substrate, 2, 8... First metal, 13
...Second metal, 3,10...Third metal, 4,
7...Transparent conductive film, 5, 9...Insulator.

Claims (1)

【特許請求の範囲】 1 a 1対の基板間に電気光学物質が挾持さ
れ、該1対の基板の少なくとも一方の基板に金
属−絶縁体−金属の構造よりなる非線形素子が
形成されてなる電気光学装置の製造方法におい
て、 b 該1対の基板の少なくとも一方の基板上に、
透明導電膜と第1の金属層を所定の厚みに形成
し、該透明導電膜と該第1の金属層を同一形状
の所定の形状にパターニングし、更に該第1の
金属層と同一材料の第2の金属層を基板全面に
形成する工程、 c 次に、少なくとも該第2の金属層を酸化して
絶縁層を形成する工程、 d 次に、第3の金属層を基板全面に形成し、該
第3の金属層を所定の形状にパターニングする
工程、 e パターニングされた該第3の金属層をマスク
にし、該絶縁層及び該第1の金属層を除去する
工程、 からなることを特徴とする電気光学装置の製造方
法。
[Scope of Claims] 1a An electric device in which an electro-optical material is sandwiched between a pair of substrates, and a nonlinear element having a metal-insulator-metal structure is formed on at least one of the pair of substrates. In the method for manufacturing an optical device, b. on at least one of the pair of substrates,
A transparent conductive film and a first metal layer are formed to a predetermined thickness, the transparent conductive film and the first metal layer are patterned into the same predetermined shape, and a layer of the same material as the first metal layer is formed. a step of forming a second metal layer over the entire surface of the substrate; c. Next, a step of oxidizing at least the second metal layer to form an insulating layer; d. Next, forming a third metal layer over the entire surface of the substrate. , patterning the third metal layer into a predetermined shape; e. removing the insulating layer and the first metal layer using the patterned third metal layer as a mask. A method for manufacturing an electro-optical device.
JP57118251A 1982-07-07 1982-07-07 Manufacture of electrooptic device Granted JPS599631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57118251A JPS599631A (en) 1982-07-07 1982-07-07 Manufacture of electrooptic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57118251A JPS599631A (en) 1982-07-07 1982-07-07 Manufacture of electrooptic device

Publications (2)

Publication Number Publication Date
JPS599631A JPS599631A (en) 1984-01-19
JPH0437969B2 true JPH0437969B2 (en) 1992-06-23

Family

ID=14731978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57118251A Granted JPS599631A (en) 1982-07-07 1982-07-07 Manufacture of electrooptic device

Country Status (1)

Country Link
JP (1) JPS599631A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134070A (en) * 1984-12-05 1986-06-21 Matsushita Electric Ind Co Ltd Thin film transistor array

Also Published As

Publication number Publication date
JPS599631A (en) 1984-01-19

Similar Documents

Publication Publication Date Title
US5234541A (en) Methods of fabricating mim type device arrays and display devices incorporating such arrays
US5258864A (en) Method of fabricating MIM device arrays using a single exposure and lift-off process
JPS6349914B2 (en)
JPH0437969B2 (en)
CA1232085A (en) Electrically conductive materials for devices
JP2990815B2 (en) Liquid crystal display device and method of manufacturing the same
JP3076483B2 (en) Method for manufacturing metal wiring board and method for manufacturing thin film diode array
US4701997A (en) Method of making photo-electric converting elements
JPH0345930A (en) Two-terminal type nonlinear element
JPH06308539A (en) Production of matrix array substrate
JPH0720499A (en) Nonlinear element and its production and element substrate for electro-optical device having the nonlinear element as well as electro-optical device
JPH0643494A (en) Production of electrooptical device
JP2980803B2 (en) Method of forming metal wiring
JPH0346632A (en) Production of reflection type mim active matrix substrate
JPH0352277A (en) Manufacture of nonlinear element
JPH0326367B2 (en)
JPS58168032A (en) Manufacture of electrooptic device
JPH0462050B2 (en)
JPS61184881A (en) Manufacture of thin film transistor
JPH0418284B2 (en)
JPH0342632A (en) Production of liquid crystal display panel of active matrix
JPH0346633A (en) Production of nonlinear element
JPH029325B2 (en)
JPS628125A (en) Production of liquid crystal display device and its substrate
JPH0476091B2 (en)