JPH0418284B2 - - Google Patents

Info

Publication number
JPH0418284B2
JPH0418284B2 JP56067997A JP6799781A JPH0418284B2 JP H0418284 B2 JPH0418284 B2 JP H0418284B2 JP 56067997 A JP56067997 A JP 56067997A JP 6799781 A JP6799781 A JP 6799781A JP H0418284 B2 JPH0418284 B2 JP H0418284B2
Authority
JP
Japan
Prior art keywords
metal
insulating film
transparent
electrode
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56067997A
Other languages
Japanese (ja)
Other versions
JPS57182779A (en
Inventor
Taketomi Kamikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP56067997A priority Critical patent/JPS57182779A/en
Publication of JPS57182779A publication Critical patent/JPS57182779A/en
Publication of JPH0418284B2 publication Critical patent/JPH0418284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は非線形抵抗素子であるMIM素子を用
いた液晶表示装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid crystal display device using an MIM element, which is a nonlinear resistance element.

本発明の目的は、美しく読み取りやすい表示を
提供することであり、他の目的は表示画素の高密
度化をおこなうことにある。
An object of the present invention is to provide a display that is beautiful and easy to read, and another object is to increase the density of display pixels.

液晶表示装置は、構造が簡単であること、低電
圧駆動が可能であること、そして受光素子である
ため明るい場所でも鮮明な表示が得られること等
の長所を持ち、電子時計や電卓の表示装置として
広く用いられている。しかしながら、従来の液晶
表示装置には、マルチプレツクス駆動に限界があ
つて最大30桁程度のマルチプレツクス駆動しかで
きないという欠点があつた。この欠点を取り除く
方法については様々な考案がなされているが、
MIM素子を用いる方法はその中でも特に有望視
されているもののひとつである。第1図は、従来
のMIM素子を用いた液晶表示装置の構造を示し
ており、1は上偏光板、2は上透明基板、3は上
基板透明電極、4は液晶層、5は表面酸化処理さ
れた金属電極、6は画素透明電極、7は5の金属
電極表面と6の画素透明電極を電気的に結合する
ための金属電極、8は下透明基板、および9は下
偏光板である。MIM素子は表面酸化処理された
金属電極5ともう一方の金属電極7の接合部分に
形成されており、金属電極5の材料としてはタン
タル、または金属電極7の材料としては金および
ニクロムが一般的に用いられている。第2図は、
従来のMIM素子を用いた液晶表示装置を正面か
ら見た様子を示しており、図中の番号は第1図の
それと対応している。第2図から、従来のMIM
素子を用いた液晶表示装置を正面から見ると、金
属電極5が表示面内を走つていることがわかる。
金属電極5は、たとえばタンタル電極の場合銀白
色であるというように不透明であり、表示面の外
観を劣下させる原因となる。さらに、この不透明
電極は、画素と画素の間を走つているから画素間
隔の狭さに限界を設けることになり、画素の高密
度化をおこなうことに対する困難の原因となる。
Liquid crystal display devices have the advantages of a simple structure, can be driven at low voltage, and because they are light-receiving elements, they can provide clear displays even in bright places, and are used as display devices for electronic watches and calculators. It is widely used as However, conventional liquid crystal display devices have a drawback in that there is a limit to multiplex driving, and only a maximum of about 30 digits can be multiplexed. Various ideas have been devised to eliminate this drawback, but
Among these methods, one method that uses MIM elements is considered to be particularly promising. Figure 1 shows the structure of a liquid crystal display device using a conventional MIM element. 1 is an upper polarizing plate, 2 is an upper transparent substrate, 3 is an upper substrate transparent electrode, 4 is a liquid crystal layer, and 5 is a surface oxidized The treated metal electrode, 6 is a pixel transparent electrode, 7 is a metal electrode for electrically coupling the metal electrode surface of 5 and the pixel transparent electrode of 6, 8 is a lower transparent substrate, and 9 is a lower polarizing plate. . The MIM element is formed at the joint between a metal electrode 5 whose surface has been oxidized and another metal electrode 7, and the metal electrode 5 is generally made of tantalum, or the metal electrode 7 is made of gold and nichrome. It is used in Figure 2 shows
This figure shows a front view of a liquid crystal display device using a conventional MIM element, and the numbers in the figure correspond to those in FIG. 1. From Figure 2, we can see that the conventional MIM
When a liquid crystal display device using the element is viewed from the front, it can be seen that metal electrodes 5 run within the display surface.
The metal electrode 5 is opaque, for example, silvery white in the case of a tantalum electrode, which causes deterioration in the appearance of the display surface. Furthermore, since this opaque electrode runs between pixels, it imposes a limit on the narrowness of the pixel spacing, making it difficult to increase the pixel density.

本発明は、これらふたつの欠点を同時に取り除
き、外観がよくしかも画素が高密度化された
MIM素子を用いた液晶表示装置を提供するもの
である。
The present invention eliminates these two drawbacks at the same time, and achieves a good appearance and high pixel density.
The present invention provides a liquid crystal display device using MIM elements.

以下、実施例を図面を用いて具体的に説明して
いく。
Hereinafter, embodiments will be specifically described using the drawings.

第3図は、本発明の実施例において基板上に形
成されたMIM素子とその周辺部の構造を示す図
であり、また第4図はそれを正面方向から見た様
子を示す図である。第3図において、10は第1
層絶縁膜、11は第2層絶縁膜であり、さらに第
3図および第4図において、12は透明電極、ま
た13は絶縁膜に設けられたスルーホールであ
る。MIM素子は従来の場合と同様に金属電極5
の表面と金属電極7の接合部分に形成されてい
る。第3図および第4図に示す構造においては、
MIM素子自身の部分を除き従来画素間を走つて
いた不透明電極は絶縁層下の透明電極12におき
かえられているから、外観上の見苦しさはなく、
さらに画素間隔をひじように狭くすることが可能
になる。したがつて本発明によれば美しく読み取
りやすい表示を提供することが可能になるのであ
る。また透明電極12の巾は透明画素電極6のそ
れと同程度まで広くすることができるので、従来
のように画素と画素の狭い間を走つている細い電
極の場合と比較して電気抵抗を低くすることがで
きるという長所をも持つている。
FIG. 3 is a diagram showing the structure of an MIM element formed on a substrate and its surrounding area in an embodiment of the present invention, and FIG. 4 is a diagram showing the state seen from the front. In Figure 3, 10 is the first
In the layer insulating film, 11 is a second layer insulating film, and in FIGS. 3 and 4, 12 is a transparent electrode, and 13 is a through hole provided in the insulating film. The MIM element has a metal electrode 5 as in the conventional case.
It is formed at the junction between the surface of the metal electrode 7 and the metal electrode 7. In the structure shown in FIGS. 3 and 4,
Except for the MIM element itself, the opaque electrode that conventionally ran between pixels has been replaced with a transparent electrode 12 under the insulating layer, so there is no unsightly appearance.
Furthermore, it becomes possible to make the pixel spacing as narrow as an elbow. Therefore, according to the present invention, it is possible to provide a display that is beautiful and easy to read. Furthermore, since the width of the transparent electrode 12 can be made as wide as that of the transparent pixel electrode 6, the electrical resistance can be lowered compared to the conventional thin electrode that runs between narrow spaces between pixels. It also has the advantage of being able to

次に、本発明において新しく導入された絶縁膜
10および11、透明電極12およびスルーホー
ル13について、それらの材料、製造方法、役割
等について実施例にしたがつて述べる。実施例に
おいては、絶縁膜10は二酸化ケイ素SiO2を、
また絶縁膜11は酸化タンタルTa2O5をともにス
パツタ法を用いて形成した。絶縁膜は、本来透明
電極12と金属電極7あるいは透明画素電極6が
電気的につながらないようにすることが目的であ
るが、さらに本発明においては、透明度が高いこ
と、製造が簡単であること、そして基板や電極等
との密着性が良いこと等が望まれる。以上の点を
考慮しながら実験をおこなつた結果、絶縁膜とし
ては前記のSiO2とTa2O5の二層構造がもつとも優
れているという結論に到達した。すなわちSiO2
とTa2O5はともに絶縁性と透明性が優れており、
形成もスパツタ法によつて簡単におこなえる。
SiO2とTa2O5の役割の相異について述べると、
SiO2は絶縁性の確保であり、Ta2O5は主に金属電
極5との密着性の確保である。実施例では金属電
極5の材料としてタンタルを用いており、タンタ
ルとの密着性はSiO2よりTa2O5の方が優れている
ためTa2O5膜をSiO2膜の上に形成したものを絶縁
膜として用いた。したがつて金属電極の密着性を
あまり気にしない場合、あるいは金属電極5をタ
ンタル以外のSiO2との密着性がよい金属材料に
よつて形成する場合にはTa2O5から成る第2層絶
縁膜11は不要であり、SiO2から成る絶縁膜1
0だけでもよい。膜厚については、Ta2O5膜は金
属電極5との密着性の確保が主な役割であるから
一様に分布形成されていれば膜厚は特に問題にし
ないが、SiO2膜については高い絶縁性を確保す
るためには約8000Å以上の膜厚が必要である。こ
のようにSiO2の膜厚をかなり厚くすることは、
透明電極12と透明画素電極6が絶縁膜をはさん
で対向することによつてできる浮遊静電容量を小
さく押えることができるという点でも効果があ
る。つづいて透明電極12について説明する。透
明電極の材料としては、酸化スズSnO2と酸化イ
ンジウムIn2O3のふたつが一般的であるが、本実
施例ではIn2O3を用いた。SnO2を用いた場合に
は、SnO2を形成後に絶縁膜をスパツタするとき
にSnO2電極は電気抵抗が増大して変色するとい
う現象が発生するためSnO2を透明電極として用
いることはできない。一方、In2O3についてはこ
の現象を防ぐことができる。以上が本実施例で透
明電極12の材料としてIn2O3を用いた理由であ
る。最後にスルーホールについて述べる。スルー
ホールを形成するには透明電極12を形成後スル
ーホールを設けたい部分に耐熱レジストインクを
塗布してから絶縁膜10および11をスパツタ法
により形成すればよい。そして絶縁膜形成後に耐
熱レジストインクを剥離すればスルーホールが形
成されることになる。さらにその後金属電極5を
形成すれば、それと透明電極12はスルーホール
を通じてつながり、両者の電気的結合が完成す
る。
Next, the materials, manufacturing methods, roles, etc. of the insulating films 10 and 11, the transparent electrode 12, and the through hole 13, which are newly introduced in the present invention, will be described according to examples. In the embodiment, the insulating film 10 is made of silicon dioxide SiO2 ,
Further, the insulating film 11 was formed using tantalum oxide Ta 2 O 5 using a sputtering method. The purpose of the insulating film is originally to prevent electrical connection between the transparent electrode 12 and the metal electrode 7 or the transparent pixel electrode 6, but in the present invention, the insulating film is also highly transparent, easy to manufacture, It is also desired that the adhesive has good adhesion to the substrate, electrodes, etc. As a result of conducting experiments while taking the above points into consideration, we reached the conclusion that the above-mentioned two-layer structure of SiO 2 and Ta 2 O 5 is the most excellent as an insulating film. i.e. SiO2
and Ta 2 O 5 both have excellent insulation and transparency,
It can also be easily formed by the sputtering method.
Regarding the difference in the roles of SiO 2 and Ta 2 O 5 ,
SiO 2 is used to ensure insulation, and Ta 2 O 5 is used mainly to ensure adhesion with the metal electrode 5. In the example, tantalum is used as the material for the metal electrode 5, and since Ta 2 O 5 has better adhesion to tantalum than SiO 2 , a Ta 2 O 5 film was formed on a SiO 2 film. was used as an insulating film. Therefore, if you do not care much about the adhesion of the metal electrode, or if the metal electrode 5 is formed of a metal material other than tantalum that has good adhesion to SiO 2 , the second layer made of Ta 2 O 5 may be used. The insulating film 11 is unnecessary, and the insulating film 1 made of SiO 2
Just 0 is fine. Regarding the film thickness, the main role of the Ta 2 O 5 film is to ensure adhesion with the metal electrode 5, so the film thickness is not a particular problem as long as it is uniformly distributed, but for the SiO 2 film, To ensure high insulation, a film thickness of about 8000 Å or more is required. Increasing the SiO 2 film thickness considerably in this way
Another advantage is that the stray capacitance created by the transparent electrode 12 and the transparent pixel electrode 6 facing each other with an insulating film in between can be suppressed. Next, the transparent electrode 12 will be explained. Two common materials for the transparent electrode are tin oxide SnO 2 and indium oxide In 2 O 3 , and In 2 O 3 was used in this example. When SnO 2 is used, when an insulating film is sputtered after forming SnO 2 , a phenomenon occurs in which the electrical resistance of the SnO 2 electrode increases and discoloration occurs, so SnO 2 cannot be used as a transparent electrode. On the other hand, this phenomenon can be prevented for In 2 O 3 . The above is the reason why In 2 O 3 was used as the material for the transparent electrode 12 in this embodiment. Finally, let's talk about through holes. In order to form a through hole, after forming the transparent electrode 12, heat-resistant resist ink is applied to a portion where a through hole is desired, and then the insulating films 10 and 11 are formed by sputtering. Then, by peeling off the heat-resistant resist ink after forming the insulating film, a through hole will be formed. Furthermore, if the metal electrode 5 is formed thereafter, it will be connected to the transparent electrode 12 through the through hole, completing the electrical connection between the two.

以上、本発明におけるMIM素子周辺明の構造、
材料および製造方法等について詳しく述べてきた
が、このように本発明によれば一対の対向する透
明基板2,8間に封入された液晶、透明基板8上
に形成された透明電極12、透明電極12上を被
覆し且つ透明基板8表面に形成された絶縁膜、絶
縁膜上に複数個形成された金属7−金属酸化膜−
金属5の三層構造からなる非線形抵抗素子、各非
線形抵抗素子の金属7と導通し且つ絶縁膜上にマ
トリツクス状に形成された複数個の透明画素電極
6とを有し、絶縁膜に設けられたスルーホール1
3を通して透明電極12と非線形抵抗素子の金属
5とが導通していることを特徴とすることによつ
て、比較的簡単な構造を用いて外観が美しく画素
が高密度化したMIM素子を用いた液晶表示装置
を提供することができ、特に美しさと高密度表示
を求められるMIM素子を用いた液晶表示装置に
応用すれば効果は大きい。
As described above, the structure of the light surrounding the MIM element in the present invention,
Although the materials and manufacturing methods have been described in detail, according to the present invention, the liquid crystal sealed between the pair of opposing transparent substrates 2 and 8, the transparent electrode 12 formed on the transparent substrate 8, and the transparent electrode An insulating film covering 12 and formed on the surface of the transparent substrate 8, and a plurality of metals 7 - metal oxide films - formed on the insulating film.
The nonlinear resistance element has a three-layer structure of metal 5, and a plurality of transparent pixel electrodes 6 are electrically connected to the metal 7 of each nonlinear resistance element and formed in a matrix on an insulating film, and are provided on the insulating film. through hole 1
The transparent electrode 12 and the metal 5 of the nonlinear resistance element are electrically connected through the MIM element 3, so that an MIM element with a relatively simple structure and beautiful appearance and high pixel density is used. It is possible to provide a liquid crystal display device, and the effect will be particularly great if applied to a liquid crystal display device using an MIM element that requires beauty and high-density display.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のMIM素子を用いた液晶表示装
置の構造を示す図。第2図は従来のMIM素子を
用いた液晶表示装置を正面から見た様子を示す
図。第3図は本発明におけるMIM素子周辺部の
構造を示す図。第4図は本発明におけるMIM素
子の周辺部を正面から見た様子を示す図。 1……上偏光板、2……上透明基板、3……上
基板透明電極、4……液晶層、5……表面酸化処
理された金属電極、6……画素透明電極、7……
金属電極5の表面と画素透明電極6を電気的に結
合するための金属電極、8……下透明基板、9…
…下偏光板、10……第1層絶縁膜、11……第
2層絶縁膜、12……透明電極、13……スルー
ホール。
FIG. 1 is a diagram showing the structure of a liquid crystal display device using a conventional MIM element. FIG. 2 is a diagram showing a front view of a liquid crystal display device using a conventional MIM element. FIG. 3 is a diagram showing the structure of the peripheral part of the MIM element in the present invention. FIG. 4 is a diagram showing the peripheral part of the MIM element according to the present invention viewed from the front. DESCRIPTION OF SYMBOLS 1... Upper polarizing plate, 2... Upper transparent substrate, 3... Upper substrate transparent electrode, 4... Liquid crystal layer, 5... Surface oxidized metal electrode, 6... Pixel transparent electrode, 7...
A metal electrode for electrically coupling the surface of the metal electrode 5 and the pixel transparent electrode 6, 8...lower transparent substrate, 9...
... lower polarizing plate, 10 ... first layer insulating film, 11 ... second layer insulating film, 12 ... transparent electrode, 13 ... through hole.

Claims (1)

【特許請求の範囲】 1 一対の対向する透明基板2,8間に封入され
た液晶、前記透明基板8上に形成された透明電極
12、前記透明電極12上を被覆し且つ前記透明
基板8表面に形成された絶縁膜、前記絶縁膜上に
複数個形成された金属7−金属酸化膜−金属5の
三層構造からなる非線形抵抗素子、前記各非線形
抵抗素子の金属7と導通し且つ前記絶縁膜上にマ
トリツクス状に形成された複数個の透明画素電極
6とを有し、 前記絶縁膜に設けられたスルーホール13を通
して前記透明電極12と前記非線形抵抗素子の金
属5とが導通していることを特徴とする液晶表示
装置。
[Scope of Claims] 1. A liquid crystal sealed between a pair of opposing transparent substrates 2 and 8, a transparent electrode 12 formed on the transparent substrate 8, and a liquid crystal that covers the transparent electrode 12 and that covers the surface of the transparent substrate 8. an insulating film formed on the insulating film, a nonlinear resistance element having a three-layer structure of metal 7 - metal oxide film - metal 5 formed on the insulating film, and electrically conductive with the metal 7 of each of the nonlinear resistance elements and insulating the metal 7; It has a plurality of transparent pixel electrodes 6 formed in a matrix on a film, and the transparent electrode 12 and the metal 5 of the nonlinear resistance element are electrically connected through a through hole 13 provided in the insulating film. A liquid crystal display device characterized by:
JP56067997A 1981-05-06 1981-05-06 Liquid crystal display unit Granted JPS57182779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56067997A JPS57182779A (en) 1981-05-06 1981-05-06 Liquid crystal display unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56067997A JPS57182779A (en) 1981-05-06 1981-05-06 Liquid crystal display unit

Publications (2)

Publication Number Publication Date
JPS57182779A JPS57182779A (en) 1982-11-10
JPH0418284B2 true JPH0418284B2 (en) 1992-03-27

Family

ID=13361102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56067997A Granted JPS57182779A (en) 1981-05-06 1981-05-06 Liquid crystal display unit

Country Status (1)

Country Link
JP (1) JPS57182779A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247687A (en) * 1984-05-23 1985-12-07 シャープ株式会社 Manufacture of liquid crystal display element
JPS60247686A (en) * 1984-05-23 1985-12-07 シャープ株式会社 Manufacture of liquid crystal display element

Also Published As

Publication number Publication date
JPS57182779A (en) 1982-11-10

Similar Documents

Publication Publication Date Title
JPS60172131U (en) Color LCD display
US4572615A (en) Multiplexable metal-insulator-metal liquid crystal cell
TW200539317A (en) Transflective liquid crystal display
JPH0576613B2 (en)
US4810061A (en) Liquid crystal element having conductive wiring part extending from top of transistor light shield to edge
JPH04309925A (en) Active matrix color liquid crystal display element
JP2702294B2 (en) Active matrix substrate
JPH0418284B2 (en)
JPH0425700B2 (en)
JP2759677B2 (en) Electro-optic display cell
JP3000776B2 (en) Liquid crystal display
US5739547A (en) Reflection type display
JPS6112271B2 (en)
JPS5936225A (en) Liquid crystal display device and its production
CN114236922B (en) Reflective array substrate, manufacturing method thereof and reflective display panel
JP2870043B2 (en) Thin film transistor matrix and method of manufacturing the same
JP3229905B2 (en) Liquid crystal display panel and manufacturing method thereof
JPS59129833A (en) Liquid crystal display element
JP3052361B2 (en) Active matrix liquid crystal display device and manufacturing method thereof
JP2520592B2 (en) Liquid crystal display element
JP2590166Y2 (en) Double electrochromic device
JPS6269239A (en) Liquid crystal cell
JPH0895077A (en) Liquid crystal display device
KR20010010518A (en) IPS mode Liquid crystal display and method for fabricating the same
JPH05307183A (en) Liquid crystal element