JP2706647B2 - 炭化水素の転化方法 - Google Patents

炭化水素の転化方法

Info

Publication number
JP2706647B2
JP2706647B2 JP8089195A JP8919596A JP2706647B2 JP 2706647 B2 JP2706647 B2 JP 2706647B2 JP 8089195 A JP8089195 A JP 8089195A JP 8919596 A JP8919596 A JP 8919596A JP 2706647 B2 JP2706647 B2 JP 2706647B2
Authority
JP
Japan
Prior art keywords
zeolite
sio
product
gel
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8089195A
Other languages
English (en)
Other versions
JPH08281119A (ja
Inventor
テイメン ケトシェール ウィッヘル
ペトルス フェルドウイン ヨハネス
Original Assignee
エクソン リサーチ アンド エンヂニアリングコムパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクソン リサーチ アンド エンヂニアリングコムパニー filed Critical エクソン リサーチ アンド エンヂニアリングコムパニー
Publication of JPH08281119A publication Critical patent/JPH08281119A/ja
Application granted granted Critical
Publication of JP2706647B2 publication Critical patent/JP2706647B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/32Type L
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/2206Catalytic processes not covered by C07C5/23 - C07C5/31
    • C07C5/226Catalytic processes not covered by C07C5/23 - C07C5/31 with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • C07C5/415Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L
    • C07C2529/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L containing iron group metals, noble metals or copper
    • C07C2529/62Noble metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、ゼオライトLを含
有する触媒を用いる炭化水素の転化方法、特に非環式炭
化水素の脱水素環化及び/又は異性化方法に関する。
【従来の技術】ゼオライトLは、かなり以前から吸着剤
として知られており、米国特許第3,216,789 号には、特
性的X線回折パターンを有する式
【化1】 0.9−1.3 M2/nO : Al2O3 : 5.2−6.9 S
iO2 : yH2O (上記式中、Mは原子価nの交換可能な陽イオンであ
り、yは0〜9である)のアルミノ珪酸塩として記載さ
れている。米国特許第3,216,789 号に記載されているゼ
オライトLの製造は、下記モル比
【化2】 K2O/(K2O+Na2O) 0.3
3−1 (K2O +Na2O) /SiO2 0.35−0.5 SiO2 /Al2O3 10−28 H20/(K2O+Na2O) 15−41 からなる反応混合物からゼオライトを結晶化することか
らなる。この反応混合物中のシリカ対アルミナ比は製造
されたゼオライト中の比よりかなり高い。
【0002】英国特許第1,202,511号は、反応成分モル
【化3】 K2O/(K2O+Na2O) 0.7
−1 (K2O +Na2O) /SiO2 0.23−0.35 SiO2 /Al2O3 6.7−9.5 H20/(K2O+Na2O) 10.5−50 からなる反応混合物中により低比率のシリカを用いる修
正されたゼオライトLを記載している。 H20/(K2O+Na
2O+SiO2+Al2O3 ) 比は、“ドライゲル”を与えるため
に、好ましくは6以下である。実施例6は組成2.75 K
2O : Al2O3 : 8.75SiO2:100 H20を有する結晶化ゲ
ルを用いてゼオライトLを得ているが、生成物の結晶化
度も純度も形態も示されていない。また、生成物が触媒
として有用であることも指示されておらず、ただ生成物
がモレキュラーシーブ型のゼオライトであることだけが
指示されている。フレティ (Frety)らは、C R Acad Sc
Paris, t275, Serie C-1215 中で、ゼオライトLの電子
顕微鏡検査を記載しており、粒子は極めて多種の寸法を
有する僅かに変形した円柱形で観察されると述べてい
る。
【0003】英国特許第1,393,365 号は、ゼオライトL
に関連しており、水以外のモル組成
【化4】 1.05±0.3 M2O : Al2O3 : 4.0 −7.
5 SiO2 (上記組成中、Mはカリウム、またはカリウムとナトリ
ウムとの混合物である)とゼオライトLのパターンと比
べたとき不一致があると言われるX線粉末回折パターン
とを有するゼオライトAG1を記載している。ゼオライ
トAG1は少なくとも1種のアルミニウム成分と少なく
とも1種の珪素成分と少なくとも1種のアルカリ金属成
分とを水性媒質中で反応させることによって製造され、
唯一つのまたは大部分の珪素成分が3.5−4.0のSiO2
M2O モル比を有する水ガラスであって下記の範囲
【0004】
【表1】 範囲1 SiO2 /Al2O3 7−14 (K2O +Na2O) /SiO2 0.25−0.85 K2O/(K2O+Na2O) 0.75−1.0 H20/(K2O+Na2O) 25−160 範囲2 SiO2 /Al2O3 14−20 (K2O +Na2O) /SiO2 0.25−0.85 K2O/(K2O+Na2O) 0.5−1.0 H20/(K2O+Na2O) 25−160 範囲3 SiO2 /Al2O3 20−40 (K2O +Na2O) /SiO2 0.25−1.0 K2O/(K2O+Na2O) 0.4−1.0 H20/(K2O+Na2O) 25−160
【0005】の1つの酸化物モル比を有する反応混合物
を与えると記載されている。範囲2に於いて、(K2O+Na
2O) /SiO2比が最大値0.85に近づくと、生成物はフィ
リップサイト (philipsite) で汚染されることが示され
ている。実施例10は組成
【化5】 2.71M2O : Al2O3 : 8.75 SiO2 : 84 H20 (ここで M2O は0.8 K2O+0.2 Na2O である)の反応
混合物を用いている。得られた生成物はゼオライトAG
1であるが、その生成物の結晶化度も形態も純度も指示
されてはおらず、その触媒性能も指示されていない。ヨ
ーロッパ特許第96479号は、特性的な形態と粒径と
を有し、芳香族化のような炭化水素転化に於ける触媒ベ
ースとして用いるのに特に有用であるゼオライトLを記
載しかつ特許請求している。このゼオライトは、下記表
Aの顕著なd(Å)値
【0006】
【表2】 表 A 16.1 ±0.4 7.52±0.05 6.00±0.04 4.57±0.04 4.35±0.04 3.91±0.02 3.47±0.02 3.28±0.02 3.17±0.02 3.07±0.02 2.91±0.02 2.65±0.02 2.46±0.02 2.42±0.01 2.19±0.01 を有するCuKα線によって得られるX線回折(XRD)
パターンを有しかつ平均直径が少なくとも0.1μm、好
ましくは少なくとも0.5μmの円柱形の形の微結晶から
なる。上記XRD線は本発明のゼオライトを特徴づける
ものでありかつ米国特許第3,216,789 号のゼオライトL
の特性として確認されているXRD線に対応している。
一般に、本発明の物質のXRDパターン中の10本の最
も顕著なピークは下記表B中に示される。
【0007】
【表3】 表 B 16.1 ±0.4 4.57±0.04 3.91±0.02 3.66±0.02 3.47±0.02 3.28±0.02 3.17±0.02 3.07±0.02 2.91±0.02 2.65±0.02 ヨーロッパ特許第96479号の記載は参照文として本
明細書に含まれるものとする。
【0008】ヨーロッパ特許第96479号中に指示さ
れているように、該特許に記載されているゼオライトの
合成は、競合相としてかかる系中で生長することが知ら
れている汚染物質ゼオライトWの量が最少になるように
行われることが好ましい。ヨーロッパ特許第96479
号に記載されている好ましい合成ゲルは下記のモル比
【化6】 2.6 K2O : Al2O3 : 10 SiO2 : 160 H
20 を有し、1つの成分のモル量を下記範囲内
【化7】 K2O : 2.4−3.0モル Al2O3 : 0.6−1.3モル SiO2 : 8−12モル H20 : 120−240モル で変化させることによってこのゲルが如何に変わり得る
かが論じられている。上記範囲内でシリカの量を減少す
るとゼオライトWの汚染が増加する傾向があるが、 K2O
の量を増加すると所望な円柱形形態よりもむしろクラム
形生成物を生成する傾向がある。また K2Oの量を減少す
ると無定形物質を生ずると記載されている。
【0009】ゼオライトLは、芳香族化反応に於ける触
媒ベースとして用いることができる。米国特許第4,104,
320 号は、ゼオライトLとVIII族金属とからなる触媒を
用いる水素の存在下に於ける脂肪族化合物の脱水素環化
を記載している。ヨーロッパ特許第96,479号に記載され
ている特別なゼオライトは、かかる芳香族化反応に於い
て顕著に有効であり、長い寿命を有する触媒を生成する
能力がある。しかし、ヨーロッパ特許第96479 号のみが
この改良された寿命性能を有する円柱形形態をもつゼオ
ライトLの製造を記載しており、その製造で遭遇される
問題は、大規模製造の許容範囲内でのゲル組成の小さな
変化が結晶化度が小さくかつ(あるいは)明確に定義さ
れた円柱形形態が少なくかつ(あるいは)ゼオライトW
のような他のゼオライトおよび(または)無定形相によ
る汚染が増加したより低品質の生成物をもたらす可能性
があることである。
【0010】
【発明の内容】今回、本発明者らは、先行技術の記載と
は反対に、ゲル組成を変化することによって得られる合
成ゲルパラメーターの特に狭く定義された範囲内で操作
することにより、ヨーロッパ特許第96479 号に記載され
ているような高度結晶性円柱形ゼオライト(他の先行技
術の製造法で製造されるどんなゼオライトLよりもより
高度に結晶性であることが知られている)を、不純物と
してのゼオライトWの生成の傾向が少なくしかも無定形
相も少なく製造することができ、このゼオライトLを含
有する触媒は、炭化水素の転化方法、特に非環式炭化水
素の脱水素環化及び/又は異性化方法に有効であること
を発見した。しかも、上記製造法は、起こり得る合成ゲ
ルの変化の結果として、例えば特に工業的規模での成分
混合に於ける変化による望ましくない汚染物質の生成の
可能性が少ない。従って、本発明は、下記の円柱形微結
晶からなるゼオライトLと1種以上の触媒活性金属を含
有する触媒炭化水素供給物とを適当な条件下に於いて接
触させて所望の転化を起こさせる、炭化水素供給物の転
化方法である。ここで、炭化水素供給物の転化方法に
は、非環式炭化水素の脱水素環化及び/又は異性化方法
が含まれ、この場合には、上記少なくとも0.4のアスペ
クト比を有する円柱形微結晶からなるゼオライトLであ
って交換可能な陽イオンMの少なくとも90%をアルカ
リ金属イオンとして有するゼオライトLを含み、かつ脱
水素活性を有する少なくとも1種のVIII族金属を含む触
媒と、非環式炭化水素とを、370〜600℃の温度に
おいて接触させて非環式炭化水素の少なくとも一部分を
芳香族炭化水素へ転化させるようにするのが好ましい。
このゼオライトLは、水と珪素源とアルミニウム源とか
らなり、下記のモル比(酸化物として示す)
【0011】
【化8】 (上記モル比中、Mは原子価nの陽イオンまたは陽イオ
ンの混合物であり、かつ好ましくはカリウムである)を
有する組成をもちかつ好ましくはMO/SiOの
モル比が少なくとも0.275(より好ましくは0.2
75−0.30)であるアルカリ性反応混合物を、少な
くとも75℃、好ましくは100−250℃、より好ま
しくは120℃〜225℃の温度に加熱して所望のゼオ
ライト生成物を製造する、アスペクト比(カーブした円
柱形側面の軸方向の長さ対円柱形直径の比)が少なくと
も0.4、好ましくは少なくとも0.5の円柱形微結晶
からなるゼオライトLである。本発明で用いるゼオライ
トは、好ましくはアルミノ珪酸塩であり、後述部分では
アルミノ珪酸塩に関して記載するが、他の元素置換が可
能であり、例えばアルミニウムはガリウム、硼素、鉄お
よび同様な3価元素で置換されることができ、かつ珪素
はゲルマウムまたは燐のような元素で置換されることが
できる。アルミノ珪酸塩は、好ましくは式I
【0012】
【化9】 (0.9−1.3) M2/nO : Al2O3 : xSiO2
(I) (上記式I中、Mは原子価nの陽イオンであり、xは5
〜7.5、好ましくは約5.7〜約7.4である)の組成(無
水形に於ける成分酸化物のモル比で示す)を有する。本
発明で用いるゼオライト物質は、鋭いピークを有する、
明確に定義されたX線回折パターン(結合剤または存在
する他の希釈剤無し)で示されるように高度の結晶化度
を有する。結晶化度は、本発明のゼオライト物質の22
0面(d=4.57±0.04Å)および221面(d=3.
91±0.02)からの反射のピーク面積を水晶の110
面(d=2.46±0.02)からの反射のピーク面積と比
較することによって、水晶標準に対してカリウム形(ゼ
オライトKL)として便利に測定することができる。ゼ
オライト物質の220および221反射の合計ピーク面
積の水晶の110反射のピーク面積に対する比は試料の
結晶化度の尺度である。異なる試料間の比較を与えかつ
陽イオン効果を除くため、ピーク面積測定は、好ましく
はゼオライトの同一陽イオン形について行われ、かつ好
ましくはカリウム形が選ばれた。
【0013】交換可能な陽イオンMは、非常に好ましく
はカリウムであるが、Mの一部分がアルカリ金属および
アルカリ土類金属、例えばナトリウムまたはルビジウム
またはセシウムのような他の陽イオンで置換されること
は可能である。一般式Iに於いて、x(SiO2:Al2O3
モル比)は、より好ましくは約6〜約7、最も好ましく
は約6.0〜約6.5である。上記方法によって製造される
ゼオライトは、典型的にはAl2O3 1モルにつき0〜9モ
ルの水で水和されることができる。以下で説明するよう
に触媒ベースとして用いられるとき、本発明で用いるゼ
オライトは、好ましくは最初に水を除去するためにカ焼
される。水性ゲルからの通常の製造に於いては、水和物
を最初に製造し、これを加熱することによって脱水する
ことができる。本発明で用いるゼオライトの走査電子顕
微鏡写真(SEM)は、これらの物質が極めて明瞭な結
晶形態を有することを示す。上記方法によって製造され
たゼオライトは、走査電子顕微鏡写真で、ヨーロッパ特
許第96479 号記載のような明瞭な円柱として見える。
“円柱(cylinder) ”および“円柱形 (cylindrical)”
という用語は、本明細書中に於いて、立体幾何学で定義
される実質的に柱体の形、すなわち定直線に対して距離
rに於いて平行に動いて定平面曲線を通る線によって作
られる面と該定直線を切る2枚の基底面であって好まし
くは定直線と交差する実質的に平行な平面である2枚の
基底面とによって境界される立体の形を有する粒子を記
述するために用いられる。アスペクト比は、平面曲線の
定直線方向の長さ対2rの比と定義される。本発明で用
いられる円柱形粒子は、好ましくは明確に定義された円
形円柱 (circular cylinder)(円形断面)であり、最
も好ましくは実質的に直円形円柱 (right circular cyl
inder)(基底が円柱軸に対して垂直な円形円柱)の形で
ある。
【0014】円柱形粒子は、ヨーロッパ特許第9647
9号中で、芳香族化触媒の触媒ベースとして用いるとき
触媒寿命を長くするという優れた性質があることが示さ
れている。このことは他の形態とは対照的であり、特
に、円柱形形態をもつ粒子はクラム様の形をもつ粒子よ
りも良好であることが示されている。“クラム”という
用語は、2つの一般に凸な面が接合してクラムシェルの
外観を与える粒子を記述するために用いている。本発明
で用いるゼオライトは、好ましくは微結晶の少なくとも
50%、より好ましくは70%、最も好ましくは85%
が円柱であることを特徴とする。円柱形粒子のアスペク
ト比は好ましくは0.5〜1.5である。本発明の重要
な1つの面は、上述したような触媒寿命を長くする性質
を有する円柱形粒子の製造手段を提供することである。
本明細書中の比較実施例中およびヨーロッパ特許第96
479号に示されているように、先行技術の方法は、同
上の明瞭な円柱形形態の製造には無効である。本発明で
用いるゼオライトのもう1つの特に驚くべき特徴は、円
柱の平均直径が少なくとも0.1μmである大型微結晶
を製造することである。円柱形粒子は、好ましくは少な
くとも0.5μm、より好ましくは0.7μmの平均直
径を有する。微結晶は、より好ましくは0.5〜4μ
m、最も好ましくは1.0〜3.0μmである。透過電
子線回析はこれらが集合体ではなく単結晶であることを
示している。所要アスペクト比に応じて、一定限界内で
反応混合物の組成を調節することによって円柱形形態を
有するゼオライトを製造することができかつこれらの限
界内で操作することによって狭い粒径分布で比較的大型
の円柱形粒子を得ることが可能である。
【0015】上記ゼオライトの製造方法は、ヨーロッパ
特許第96479 号記載の製造法よりも円柱形粒子の製造の
より一層の改良に関するものであり、特にゼオライトW
の生成の可能性の減少( ゼオライトWのシードによって
合成ゲルが汚染される条件下でも) しかつ大規模製造で
は不可避であるゲル組成の変化に影響されにくい製造法
を提供する。このことを達成するためには、特殊な狭い
ゲル組成が所要である。反応混合物または合成ゲルには
4種の主成分があり、かくして一般に アルミニウム 珪素 カリウム(随意に30モル%までアルカリ金属またはア
ルカリ土類金属で置換される) 水 があり、少なくとも0.4のアスペクト比を有する本発明
の所望の円柱形ゼオライトを、高い結晶化度とゼオライ
トWまたは無定形生成物のいずれかの生成の低い傾向で
得ようとするならば、これら4種の成分の相対比率およ
び選択される反応条件が重要である。
【0016】好ましいゲル組成は
【化10】 2.6−2.66 M2/nO : Al2O3 : 8.8−9.7 SiO2
: 145−155 H2O でありかつ好ましくはこの組成内で、シリカの量は9.0
−9.7、より好ましくは9.2−9.5、最も好ましくは9.
2−9.4の範囲内である。加えて、M2/nO/SiO2比が少な
くとも0.275、より好ましくは0.275−0.300、
最も好ましくは0.275−0.290である。ゼオライト
WはゼオライトL結晶化ゲル組成から生成される傾向が
ある。上記方法の利点は、生成物のゼオライトW含量が
最少になることである。生成物のゼオライト含量は、そ
のX線回折パターンで監視することができる。ゼオライ
トWのXRDパターン中の特性的な顕著な線は2θ=1
2.6°(d=7.09Å)にあるが、ゼオライトLのXR
Dパターン中の顕著な線は2θ=22.7°(d=3.91
Å)にある。これらのピークは両ゼオライトの混合物中
で不明瞭にならないので、2つのゼオライト型の相対比
率の決定にはこれらのピークの相対ピーク強度を比較し
なければならない。上記製造法は、ピーク高さ比(d=
7.09Å)/(d=3.91Å)が0.2以下、より好まし
くは0.1以下になるXRDパターンを有するゼオライト
を提供することが1つの好ましい特徴である。7.09Å
のd間隔の線がXRDパターン中に無いことによって証
明される生成物が実質的にゼオライトWを含まないこと
が極めて好ましい。
【0017】上記製造法が無定形および非ゼオライト物
質を実質的に含まない生成物を提供することも1つの特
徴である。以下、添付図面について本発明をさらに詳細
に、ただし説明のための例としてのみ説明する。上記製
造法によって、ゼオライトW汚染が最少で高度に結晶性
のゼオライトL生成物が得られ、かつさらに合成混合物
中に小さい変化の結果として低結晶性生成物またはゼオ
ライトWによる汚染を受けにくいという驚くべきことが
発見された。この後者の利益は、合成ゲルの製造が大量
の反応成分の混合を必要としかつ反応成分量および(ま
たは)流速の慎重な管理が顕著な実際的取扱い問題を提
起する大規模合成に於いて特に重要である。ゼオライト
Lのための合成ゲル中の K2O対SiO2のモル比に対する生
成物の結晶化度の感受性を、以下により詳細に説明する
ように研究した。その結果を図1にグラフに示してあ
る。図からわかるように、 K2O対SiO2比が0.25に向か
って減少するにつれて生成物の結晶化度は急激に減少す
る。これより高い比では、結晶化度が僅かに減少する傾
向があるが、生成物の結晶化度は、高い K2O/SiO2比に
対しては感受性がずっと低い。グラフ中、結晶化度はX
線回折スペクトル中の特性のピークのピーク高さで測定
され、任意の(100%)標準の百分率として示してあ
る。
【0018】図2は合成ゲル混合物の変化に対する生成
物のゼオライトW含量の感受性を示す。以下により詳細
に説明するように、ゼオライトL合成ゲルをゼオライト
W微結晶をシード添加してゼオライトWの生成を促進
し、異なる合成ゲル混合物について生成物中のゼオライ
トWの量を研究した。図2は、KO/SiOモル比
のとしてのゼオライトW/ゼオライトL比(生成物のX
線回折パターン中のそれぞれ2θ値12.5゜、22.
6゜に於けるピーク高さの比として示す)のグラフを示
す。この図は、驚異的にかつ先行技術の記載とは対照的
に、KO/SiOモル比加(ゲル中のSiO含量
を減少させることによって得られうる)がゼオライトW
生成プロセスの抵抗を顕著に増加させ、特に0.275
以上のKO/SiO比にて顕著に増加させ、かつ既
に示したようにこの領域は合成ゲル混合物の変化に対す
る生成物の結晶化度の感受性が低い領域であるので、高
品質でかつ固有的により安定で終始一貫した合成方法を
与えることを示している。反応成分の比率の変化に加え
て、反応条件の変化、特に結晶化温度の変化が可能であ
る。異なる温度を用いることにより、150℃の結晶化
温度のために上で定義した最適条件からさらにそらして
しかもなお所望の生成物を得ることができる。一般に、
上記製造法のために定義された広い反応成分比内で、高
い方の結晶化温度は珪素含量を下げることおよび(また
は)水含量を下げることおよび(または)カリウム含量
(かくしてアルカリ度)を上げることを可能にする。対
照的に、低い方の温度で操作すると核形成速度が減少す
る傾向があるが、これはアルカリ度を下げることおよび
(または)水含量を増すことおよび(または)予め生成
させたゼオライトLのシードを導入することによって対
抗させることができる。
【0019】上記ゼオライトの合成に於ては、反応混合
物の珪素源は一般にシリカであり、これは、E.I.デ
ュポン ド ネムール社(E.I.Dupont de
Nemours and Co.)から発売されてい
るルドックス(Ludox)HS40のようなシリカの
コロイド状懸濁液の形が通常最も便利である。コロイド
状シリカゾルは、汚染相をもたらすことが少ないので好
ましい。しかし、珪酸塩のような他の形を用いることも
できる。アルミニウム源は、例えば予めアルカリ中に溶
解させたAl・3HO反応媒質中へ導入される
アルミナでよい。しかし、アルミニウムを金属の形で導
入し、それをアルカリで溶解することも可能である。反
応混合物中のカリウムは、好ましくは水酸化カリウムと
して導入される。既述のように、反応混合物は少量の他
の金属陽イオンおよび塩形成性陰イオンを含むことがで
きるが、他のイオンの含量が増すにつれて他のアルミノ
珪酸塩が見出される傾向が増し、アルミノ珪酸塩の純度
の低い形が生ずることが発見された。例えば過剰のナト
リウムおよびルビジウムイオンはエリオナイト生成を有
利にし、セシウムイオンはポリサイト生成を有利にす
る。かくして、水酸化カリウムがカリウム源およびアル
カリ度源であることが最も好ましく、他のカリウム塩を
排除したときに最も純粋な生成物が得られた。
【0020】上述の製造法の生成物は、主としてゼオラ
イトLのカリウム形である。ゼオライト化学にとって通
常の方法で生成物のイオン交換をすることによって、N
aまたはHのような他の陽イオンを導入することができ
る。結晶化時間は結晶化温度に関係がある。結晶化は、
好ましくは150℃の領域で行われ、この温度に於い
て、結晶化時間は24〜96時間、典型的には48〜7
2時間であることができる。これより低温度ではより長
時間を必要とすることであり、かつ所望の生成物の良好
な収量を得るためにはアルカリ度の調節を必要とするこ
ともあり得るが、より高い温度を用いるときには24時
間未満の時間が可能である。200℃を越える温度では
8〜15時間が典型的である。結晶化は、一般に密閉オ
ートクレーブ内で行われ、かくして自生圧力下で行われ
る。一般に不便ではあるが、より高圧を用いることも可
能である。より低い圧力(および低温)はより長い結晶
化時間を必要とするであろう。上述した製造後、ゼオラ
イトは、常法で分離、洗浄、乾燥することができる。
記製造法で得た生成物は、好ましくは汚染結晶性物質お
よび無定形物質を実質的に含まない。しかし、これらの
生成物を触媒用途に用いる際には、付加的な結晶性物質
または無定形物質との組合わせが所望な場合があり得る
が、本発明はかかる組合せにも及ぶ。本発明者らは、
記方法によって製造されたゼオライトLが優れた触媒ベ
ースでありかつ広範囲の種々の触媒反応に於いて1種以
上の触媒活性金属と共に用いられ得ることを発見した。
前記方法によって製造されたゼオライトLの特別な結晶
形態は、触媒活性金属のための特別な安定ベースをもた
らしかつ金属触媒の失活に対して驚異的な抵抗を有する
ように思われる。加えて、本発明で用いるゼオライトL
は低酸度を示し、それがこの生成物を芳香族化のように
低酸部位強度が有利な触媒用途に特に好適なものにして
いる。
【0021】触媒活性金属は、例えば米国特許第4,104,
320 号記載のように白金のようなVIII族金属または錫ま
たはゲルマニウム、あるいは英国特許第2,004,764 号ま
たはベルギー国特許第888365号記載のように白金とレニ
ウムとの組合わせであることができる。後者の場合に
は、触媒は、適当な環境のために、米国特許第4,165,27
6 号および米国特許第4,206,040 号記載のように銀をあ
るいは米国特許第4,295,960 号および米国特許第4,231,
879 号記載のようにカドミウムを、あるいは英国特許第
1,600,927 号記載のように硫黄をも含むことができる。
本発明者らは、0.1〜6.0重量%、好ましくは0.1〜1.
5重量%の白金またはパラジウムを含む特に有利な触媒
組成物を発見した。この組成物は芳香族化に於いて優れ
た結果を与えるからである。0.4〜1.2重量%の白金が
特に好ましく、特にアルミノ珪酸塩のカリウム形と共に
用いるのが好ましい。この触媒は、ゼオライト物質と触
媒活性金属とからなる触媒にまで及ぶ。触媒の用いられ
る条件下で実質的に不活性であって結合剤として作用す
る1種以上の物質を本発明の触媒中に含有させることが
有用である場合もあり得る。かかる結合剤は、温度、圧
力、摩擦に対する触媒の抵抗を改良するように作用する
こともあり得る。
【0022】上記触媒は、炭化水素供給物を適当な条件
下で上記触媒と接触させて所望の転化を起こさせる炭化
水素供給物の転化方法に用いることができる。上記触媒
は、例えば芳香族化および(または)脱水素環化および
(または)異性化および(または)脱水素反応を含む反
応に有用である。上記触媒は、非環式炭化水素を、37
0℃〜600℃、好ましくは430℃〜550℃の温度
に於いて、少なくとも90%のアルカリ金属イオンのよ
うな交換可能な陽イオンMを有する上記のアルミノ珪酸
塩からなりかつ脱水素活性を有する少なくとも1種のVI
II族金属を含有する触媒と接触させて非環式炭化水素の
少なくとも一部分を芳香族炭化水素へ転化させる非環式
炭化水素の脱水素環化および(または)異性化方法に特
に有用である。脂肪族炭化水素は、直鎖または分枝鎖の
非環式炭化水素、特にヘキサンのようなパラフィンであ
ることができるが、おそらく少量の他の炭化水素と共に
一定範囲のアルカンを含むパラフィン留分のような炭化
水素の混合物を使用することができる。メチルシクロペ
ンタンのようなシクロ脂肪族炭化水素も使用することが
できる。1つの好ましい面に於いて、芳香族炭化水素、
特にベンゼンの製造法への供給物はヘキサンからなる。
触媒反応の温度は370〜600℃、好ましくは430
〜550℃であることができかつ常圧より過剰な圧力、
例えば2000KPa まで、好ましくは500〜1000
KPa が用いられる。芳香族炭化水素の生成には、水素
が、好ましくは10未満の水素対供給物比で用いられ
る。上記触媒を用いる方法は、好ましくはほかに米国特
許第4,104,320 号またはベルギー国特許第888365号また
はヨーロッパ特許第40119 号に記載の方法で行われる。
【0023】ヨーロッパ特許第96479 号中に示されてい
るように、円柱形形態を有するゼオライトLを用いる
と、ヨーロッパ特許第96479 号より前の技術に記載され
ている方法に従って製造されたゼオライトLで得られる
寿命と比べて非常に改良された触媒寿命を得ることがで
きる。次に、添付図面について、下記の製造および実施
例で、より詳細に、ただし説明のためにのみ、本発明を
説明する。比較実施例1 : ヨーロッパ特許第96479 号によるゼオ
ライトLの製造 純酸化物のモルで示される下記の組成 2.62 K2O : Al2O3 : 10 SiO2 : 164 H20 を有する合成ゲルを製造した。このゲルは、下記のよう
にして製造された。23.40gの水酸化アルミニウム
を、51.23gの水酸化カリウムペレット(純度86%
のKOH)の水100.2g中の水溶液中で沸騰すること
によって溶解して溶液Aをつくった。溶解後、水の損失
を補正した。225gのコロイド状シリカ〔ルドックス
(Ludox) HS40 〕を195.0gの水で希釈して別の溶
液、溶液Bを調製した。溶液Aと溶液Bを2分間混合し
てゲルを生成させ、ゲルが十分に堅くなる一寸前に15
0℃に予熱されたテフロンライニングしたオートクレー
ブに移し、72時間その温度に保って環化を起こさせ
た。
【0024】生成したゼオライトLは高度に結晶性であ
り、典型的なゼオライトLのX線回折(XRD)パター
ンを有していた。走査電子顕微鏡写真(SEM)は、こ
の生成物が、もっぱら明確に定義された円柱形結晶から
なりかつ2〜2.5μmの粒径を有することを示した。生
成物中のSiO2:Al2O3 比は6.3であり、 K2O:Al2O3
0.99と測定された。このゲル組成に基づく大規模製造
に於いては、ゲル組成の小変化によっても生成物の純度
および結晶化度が悪影響を受けるので、高品質のゼオラ
イト生成物が得られないことが見いだされた。また、ヨ
ーロッパ特許第96479 号に記載の合成ゲルは、特に、前
のバッチ合成から商業的反応器中に存在する可能性のあ
るWシードの痕跡で合成ゲルが汚染されるとき、ゼオラ
イトWを極めて生成しやすいようにも思われる。
【0025】実施例1: 結晶化度に及ぼす混合物の影
響 下の第1表に示す組成を有する一連の合成ゲルを用い
て、前記製造方法を繰返した。これらの合成からの生成
物をX線回折によって分析しかつ(2θ±0.1)19.
3、22.7、24.3、25.6、27.2、28.1、29.
2、30.7に於けるピークのピーク高さを合成すること
によって結晶化度を測定した。次に、各生成物の結晶化
度を、最も結晶性の生成物のピーク高さの合計の比(百
分率で与えられる)として示し、これらの百分率を、 K
2O/SiO2比に対して第1図に図示した。
【0026】
【表4】
【0027】実施例2: ゼオライトW含量に及ぼすゲ
ル混合物の影響下記ゲルの組成
【表5】 を用いて、前記製造方法を繰返した。各ゲルを、ゼオラ
イトW生成の促進に有効であることが示されている小ゼ
オライトW微結晶100重量ppmでシード添加した。
これらのゲルの結晶化の生成物のXRDスペクトルを、
2θが12.5゜(ゼオライトW)および22.6゜
(ゼオライトL)に於けるピークのピーク高さの比を測
定することによって解析した。この比をKO/SiO
モル比に対して図2ロットしてある。この図は、減少
したゼオライトW汚染を与えることに於ける本発明の製
造法の利点を示している。AおよびBは非常に低い結晶
化度(実施例1で用いた標準に対してそれぞれ33%お
よび38%)を与えたが、CおよびDは良好な結晶化度
(同じ標準に対してそれぞれ73%および76%)を与
えた。
【0028】比較実施例2および3: 英国特許第1,
393,365号の繰返し英国特許第1,393,36
5号の実施例10は、組成
【化11】 〔上記組成中、ゼオライトAG1の製造のためにはK
O/MO(すなわち+NaO)=0.8である〕を
有する合成混合物を記載している。英国特許第1,3,
365号は、この合成のために組成
【化12】 を有する水ガラス出発物質を明記している。しかし、か
かる珪素源の使用は、水ガラスが唯一のまたは大部分の
珪素源でなければならないという英国特許第1,39
3,365号の他の必要条件に従うことを不可能にす
る。指定された組成の合成混合物を、アルミン酸カリウ
ムとルドックス(Ludox)HS40とを原料として
用いて製造した。ナトリウムを含まない混合物を用い
て、同様な合成(英国特許第1,393,365号には
記載してない)をも行った。結果は第2表中に示してあ
る。生成物は不良の結晶化度を有し、円柱形形態を示さ
ず、クラム形であった。
【0029】比較実施例4: DT第1813099号
の実施例6の繰返し DT第1813099号(英国特許第1,202,511 号に相
当する) の実施例6に記載の組成
【化13】 2.75 K2O : Al2O3 : 8.7 SiO2 : 100
H20 を有する合成ゲルを製造した。7.37gの水酸化アルミ
ニウムを、水30.9g中に16.98gの水酸化カリウム
(純度86%KOH)を溶解した水溶液中に溶解して溶
液Aをつくった。アエロシル (Aerosil)200としての
シリカ25.04gを水55.4gと5分間混合して溶液B
とした。溶液Aと溶液Bとを1分間混合し、生成したパ
テ状ゲルを、オートクレーブ中で、140℃に於いて4
6.5時間加熱した。生成物を、実施例1のようにして分
離し、乾燥した。XRDおよびSEMは、生成物がゼオ
ライトWとゼオライトLの混合物であることを示した。
本発明の円柱形微結晶特性は観察されなかった。DI第
1813099号の方法は、本発明のものよりも乾燥し
たゲルを用いている。
【0030】
【表6】 第 2 表 ゲル組成 結晶化 生成物特性 温度 時間 粒径 Na2O K2O SiO2 H20 時間 セ゛オライト (μm) ──────────────────────────────────── 比較実施例2 ── 2.70 8.75 83.7 135 25 L クラム 0.5-1 比較実施例3 0.54 2.16 8.75 83.7 135 25 L クラム 0.5-1 ────────────────────────────────────
【図面の簡単な説明】
【図1】 合成ゲルの K2O/SiO2モル比の関数としての
ゼオライトL生成物の結晶化度のグラフである。
【図2】 ゼオライトWのシードを人為的に添加した合
成ゲルの K2O/SiO2モル比の関数としての合成生成物中
のゼオライトW対ゼオライトL表面のグラフである。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 5/41 9734−4H C07C 5/41

Claims (1)

  1. (57)【特許請求の範囲】 1.水と珪素源とアルミニウム源とからなり、かつ下記
    モル比(酸化物として示す) 2.63−2.67 M2/nO : Al2O3 : 8.8−9.7 SiO2 : 145−160 H2O (上記モル比中、Mは原子価nの陽イオンまたは陽イオ
    ンの混合物であり、M2/nO/SiO2のモル比は少なくとも0.
    275である)の組成を有するアルカリ性反応混合物を
    少なくとも75℃の温度に加熱して製造された、少なく
    とも0.4のアスペクト比を有する円柱形微結晶からなる
    ゼオライトLと1種以上の触媒活性金属を含有する触媒
    と、炭化水素供給物とを適当な条件下に於いて接触させ
    て所望の転化を起こさせる、炭化水素供給物の転化方
    法。 2.炭化水素供給物の転化方法が、非環式炭化水素の脱
    水素環化及び/又は異性化方法である請求項1記載の方
    法。 3. 0.1−1.5 重量%の白金を含む請求項1記載の方
    法。 4.反応混合物が組成 2.63−2.66 M2/nO : Al2O3 : 9.0−9.7 SiO2 : 145−155 H2O を有する請求項1記載の方法。 5.反応混合物が組成 2.64−2.66 M2/nO : Al2O3 : 9.2−9.5 SiO2 : 145−155 H2O を有する請求項2記載の方法。 6. M2/nO/SiO2のモル比が0.275−0.290である
    請求項1記載の方法。 7.温度が120℃〜225℃である請求項1記載の方
    法。 8.陽イオンMがカリウムである請求項1記載の方法。
JP8089195A 1984-12-17 1996-04-11 炭化水素の転化方法 Expired - Fee Related JP2706647B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8431760 1984-12-17
GB8431760 1984-12-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60284185A Division JP2557836B2 (ja) 1984-12-17 1985-12-17 ゼオライトlの製法

Publications (2)

Publication Number Publication Date
JPH08281119A JPH08281119A (ja) 1996-10-29
JP2706647B2 true JP2706647B2 (ja) 1998-01-28

Family

ID=10571292

Family Applications (3)

Application Number Title Priority Date Filing Date
JP60284185A Expired - Fee Related JP2557836B2 (ja) 1984-12-17 1985-12-17 ゼオライトlの製法
JP08089194A Expired - Fee Related JP3141085B2 (ja) 1984-12-17 1996-04-11 炭化水素転化用触媒
JP8089195A Expired - Fee Related JP2706647B2 (ja) 1984-12-17 1996-04-11 炭化水素の転化方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP60284185A Expired - Fee Related JP2557836B2 (ja) 1984-12-17 1985-12-17 ゼオライトlの製法
JP08089194A Expired - Fee Related JP3141085B2 (ja) 1984-12-17 1996-04-11 炭化水素転化用触媒

Country Status (13)

Country Link
US (1) US5051387A (ja)
EP (1) EP0185519B1 (ja)
JP (3) JP2557836B2 (ja)
AR (1) AR241871A1 (ja)
AT (1) ATE38211T1 (ja)
AU (1) AU581272B2 (ja)
BR (1) BR8506320A (ja)
CA (1) CA1248931A (ja)
DE (1) DE3565823D1 (ja)
EG (1) EG18115A (ja)
ES (1) ES8701133A1 (ja)
MX (2) MX169617B (ja)
NO (1) NO170924C (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8704365D0 (en) * 1987-02-25 1987-04-01 Exxon Chemical Patents Inc Zeolite l preparation
DE3869642D1 (de) * 1987-02-25 1992-05-07 Exxon Chemical Patents Inc Herstellung von zeolith-l.
GB8800045D0 (en) * 1988-01-04 1988-02-10 Exxon Chemical Patents Inc Zeolite l
GB8801067D0 (en) * 1988-01-19 1988-02-17 Exxon Chemical Patents Inc Zeolite l preparation
US5491119A (en) * 1989-10-30 1996-02-13 Exxon Chemical Patents Inc. Zeolite L
JP2606991B2 (ja) * 1991-10-03 1997-05-07 出光興産株式会社 失活触媒の再生方法
KR950020658A (ko) 1993-12-07 1995-07-24 새끼자와 다다시 자기디스크장치
AU724793B2 (en) * 1995-07-10 2000-09-28 Exxon Chemical Patents Inc. Zeolites and processes for their manufacture
CA2286696A1 (en) * 1997-04-18 1998-10-29 Scott A. Ramsey Naphtha reforming catalyst and process
US5980731A (en) * 1997-11-07 1999-11-09 Exxon Chemical Patents Inc. Naphtha reforming catalyst and process
US8816145B2 (en) 2007-06-21 2014-08-26 Exxonmobil Chemical Patents Inc. Liquid phase alkylation process
TWI483775B (zh) * 2011-09-16 2015-05-11 Exxonmobil Chem Patents Inc 經改善之mcm-56製法
US9573122B2 (en) 2014-08-29 2017-02-21 Chevron U.S.A. Inc. Small crystal LTL framework type zeolites
CN113753911B (zh) * 2021-09-03 2023-07-14 化学与精细化工广东省实验室 一种kl分子筛及其形貌调控合成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL238183A (ja) * 1962-08-03
FR1598506A (ja) * 1968-01-05 1970-07-06
BE789095A (fr) * 1971-09-23 1973-03-21 Ici Ltd Procede de preparation de zeolites
BE795105A (fr) * 1972-02-07 1973-08-07 Ici Ltd Nouveau procede de preparation de zeolites
FR2323664A1 (fr) * 1975-09-10 1977-04-08 Erap Procede de deshydrocyclisation d'hydrocarbures aliphatiques
US4544539A (en) * 1982-05-14 1985-10-01 Exxon Research & Engineering Co. Zeolite L with cylindrical morphology
GB8329973D0 (en) * 1983-11-10 1983-12-14 Exxon Research Engineering Co Recycled zeolite l preparation
CA1236817A (en) * 1983-11-10 1988-05-17 David E.W.. Vaughan Stoichiometric process for preparing a zeolite of the l type
GB8329972D0 (en) * 1983-11-10 1983-12-14 Exxon Research Engineering Co Zeolite l preparation from alumina rich gels

Also Published As

Publication number Publication date
NO170924C (no) 1992-12-30
MX169617B (es) 1993-07-15
ATE38211T1 (de) 1988-11-15
JP3141085B2 (ja) 2001-03-05
NO854983L (no) 1986-06-18
ES549964A0 (es) 1986-11-16
AU5128485A (en) 1986-06-26
CA1248931A (en) 1989-01-17
EG18115A (en) 1992-08-30
JPS61151019A (ja) 1986-07-09
EP0185519B1 (en) 1988-10-26
NO170924B (no) 1992-09-21
JPH08281119A (ja) 1996-10-29
AR241871A1 (es) 1993-01-29
BR8506320A (pt) 1986-08-26
DE3565823D1 (de) 1988-12-01
MXPA98008944A (es) 2004-08-24
EP0185519A2 (en) 1986-06-25
ES8701133A1 (es) 1986-11-16
US5051387A (en) 1991-09-24
JP2557836B2 (ja) 1996-11-27
AU581272B2 (en) 1989-02-16
JPH08294630A (ja) 1996-11-12
EP0185519A3 (en) 1987-02-04

Similar Documents

Publication Publication Date Title
EP0167755B1 (en) Improved zeolite l
EP0500763B1 (en) Zeolite l
JP2706647B2 (ja) 炭化水素の転化方法
US5491119A (en) Zeolite L
EP0142355B1 (en) Recycled zeolite l preparation
EP0280513B1 (en) Zeolite l preparation
EP0219354B1 (en) Improved zeolite l
JP2553143B2 (ja) ゼオライトlの合成
JPH0788217B2 (ja) 合成ゼオライト物質及びその製法
JPH0532327B2 (ja)
EP0142354B1 (en) Zeolite l preparation from alumina rich gels
EP0142353B1 (en) High temperature zeolite l preparation
US4593133A (en) Zeolite L
EP0323892B1 (en) Zeolite L
US5855863A (en) Zeolite L preparation
US5670130A (en) Zeolite L preparation
EP0357252B1 (en) Zeolite l preparation
JPH0310571B2 (ja)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees