JP2588464B2 - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JP2588464B2
JP2588464B2 JP4225070A JP22507092A JP2588464B2 JP 2588464 B2 JP2588464 B2 JP 2588464B2 JP 4225070 A JP4225070 A JP 4225070A JP 22507092 A JP22507092 A JP 22507092A JP 2588464 B2 JP2588464 B2 JP 2588464B2
Authority
JP
Japan
Prior art keywords
semiconductor
electrode
layer
substrate
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4225070A
Other languages
Japanese (ja)
Other versions
JPH05259489A (en
Inventor
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP4225070A priority Critical patent/JP2588464B2/en
Publication of JPH05259489A publication Critical patent/JPH05259489A/en
Application granted granted Critical
Publication of JP2588464B2 publication Critical patent/JP2588464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光電変換装置の作製方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a photoelectric conversion device.

【0002】この発明は光電変換装置の光照射面側の構
造に関するものであって、半導体上面の電極部領域は平
坦面を有し、該電極部以外の領域すなわち光電変換領域
にはV型または台形の溝を有している。さらにこの溝の
上部には半導体基板とは異なる導電型のN+ またはP+
層を設け、溝の内部は半導体基板そのものを露呈せし
め、照射光を効率よく半導体内部に到らしめている。
The present invention relates to a structure on a light irradiation surface side of a photoelectric conversion device, in which an electrode portion region on a semiconductor upper surface has a flat surface, and a region other than the electrode portion, that is, a V-shaped or It has a trapezoidal groove. Further, N + or P + of a conductivity type different from that of the semiconductor substrate is provided above the trench.
A layer is provided, and the inside of the groove exposes the semiconductor substrate itself, and the irradiation light efficiently reaches the inside of the semiconductor.

【0003】また電流を流し得る厚さの窒化珪素または
炭化珪素による5〜100 Åの厚さの絶縁または半絶縁膜
を有せしめる場合、基板半導体とは逆導電型の半導体層
は電気的に見掛け上対抗電極から浮いており、フロ−テ
ィングチャネルを構成するように、設けるとともに、膜
上の電極は半導体層に空乏層を発生させる極性の電極を
設けたことを特徴としている。
When an insulating or semi-insulating film of 5 to 100 mm thick made of silicon nitride or silicon carbide having a thickness capable of passing a current is provided, a semiconductor layer of a conductivity type opposite to that of a substrate semiconductor is electrically apparent. The semiconductor device is characterized in that the electrodes are provided so as to float from the upper counter electrode and constitute a floating channel, and the electrodes on the film are provided with electrodes having polarities for generating a depletion layer in the semiconductor layer.

【0004】さらに本発明は対抗電極部における半導体
表面は平面を有し、かつこの電極部以外の光照射面は照
射される光の反射効率を下げるため、その断面形状がV
型(逆V型溝を含んで本発明ではV型溝という)または
台形(逆台形またはV型と台形との混在した溝を総称し
て本発明では台形という)の溝を設けたことを特徴とし
ている。
Further, according to the present invention, the semiconductor surface in the counter electrode portion has a flat surface, and the light-irradiated surface other than this electrode portion has a V-shaped cross section in order to reduce the reflection efficiency of the irradiated light.
It is characterized in that a groove of a mold (including a reverse V-shaped groove and referred to as a V-shaped groove in the present invention) or a trapezoid (an inverted trapezoid or a mixed groove of a V-shaped and a trapezoid is generally referred to as a trapezoid in the present invention) is provided. And

【0005】本発明はかかるV型または台形溝を半導体
表面に選択的に作り、かつ裏面の電極と形成の際にその
溝または溝上のきわめて薄い絶縁または半絶縁膜が損傷
してピンホ−ル層が存在して対抗電極とその直下の逆導
電型等とが電気的にショ−トしないようにするととも
に、この5000Å以下好ましくは20〜200 Åの厚さの逆導
電型層と基板半導体との接合にまで対抗電極の金属が拡
散して、接合を劣化させてしまわないように保証し、さ
らに対抗電極がこの逆導電型層の下側の半導体に空乏層
を作り、開放電圧を向上せしめることを特徴としてい
る。
According to the present invention, such a V-shaped or trapezoidal groove is selectively formed on the surface of a semiconductor, and when the electrode is formed on the back surface, the groove or the extremely thin insulating or semi-insulating film on the groove is damaged so that a pinhole layer is formed. To prevent the counter electrode from being electrically short-circuited with the opposite conductivity type or the like immediately below the counter electrode, and to allow the opposite conductivity type layer having a thickness of 5000 mm or less, preferably 20 to 200 mm, and the substrate semiconductor to be electrically connected to each other. Ensure that the metal of the counter electrode does not diffuse to the junction and deteriorate the junction, and the counter electrode creates a depletion layer in the semiconductor below this reverse conductivity type layer, improving the open-circuit voltage It is characterized by.

【0006】[0006]

【従来の技術】従来、V型溝が光照射面に無限にかつ均
質に存在する光電変換素子としてCNR(COMSAT NON-REFRE
CTIDE SOLAR CELL) が知られている。これはV型溝をシ
リコン半導体表面に異方性エッチングを行い、かつこの
溝が多数無限に存在する表面に0.2 〜0.3 μmというき
わめて浅いPN接合をこの溝の全面に設け、この接合層に
対抗電極をオ−ム接触させて、この接合面で発生した光
起電力を取り出さんとしたものである。このCNR は実験
的にはAM0 にて15%以上、AM1 にて18%の高い変換効率
を得ている。しかしこのきわめて浅い接合であるため、
接合が簡単に破れてPN接合部にて電気的ショ−トまたは
リ−クが発生し、実用上の信頼性が得られていない。
2. Description of the Related Art Conventionally, a CNR (COMSAT NON-REFRE) has been used as a photoelectric conversion element in which a V-shaped groove exists infinitely and homogeneously on a light irradiation surface.
CTIDE SOLAR CELL) is known. In this method, a V-shaped groove is anisotropically etched on the surface of a silicon semiconductor, and a very shallow PN junction of 0.2 to 0.3 μm is provided on the entire surface of the groove where a large number of these grooves are present infinitely to oppose this bonding layer. The electrodes were brought into ohmic contact, and the photovoltaic power generated at this joint surface was extracted. This CNR has experimentally obtained a high conversion efficiency of 15% or more at AM0 and 18% at AM1. But because of this very shallow junction,
The junction is easily broken, causing an electrical short or leak at the PN junction, and no practical reliability has been obtained.

【0007】さらに従来よりPN接合型装置は半導体基板
に微妙に制御された高い開放電圧を得るため、Pまたは
N層を高温にて高濃度拡散することにより作製するもの
である。
Further, conventionally, a PN junction type device is manufactured by diffusing a P or N layer at a high temperature and a high concentration in order to obtain a finely controlled high open-circuit voltage on a semiconductor substrate.

【0008】[0008]

【発明が解決しようとする課題】かかる装置においては
拡散工程、微妙なオ−ム接触用電極付等に多くのコスト
要因があり、その製造歩留まりも高くなかった。
In such an apparatus, there are many cost factors due to the diffusion step, subtle electrode contact with electrodes, and the like, and the production yield is not high.

【0009】またMIS 型装置はきわめて薄い酸化珪素膜
を光照射面に形成し、その上面の対抗電極により高い開
放電圧を得ることができる。しかし電極部以外の光照射
部で、この絶縁膜が裏面の電極形成の際または基板より
変換素子を取り出すためにチップ化する際、機械損傷に
より劣化またピンホ−ルまたは引っ掻き傷による欠陥を
誘発し、電流の減少の原因となり、特にこの光照射部で
の反転層(インバ−ジョンレイヤ−)を安定して作るこ
とが不可能であった。
In the MIS type device, an extremely thin silicon oxide film is formed on the light irradiation surface, and a high open-circuit voltage can be obtained by the counter electrode on the upper surface. However, in a light irradiation part other than the electrode part, when this insulating film is formed into a chip for forming the electrode on the back surface or taking out the conversion element from the substrate, it is deteriorated due to mechanical damage and defects due to pinholes or scratches are induced. This causes a decrease in current, and in particular, it has been impossible to stably form an inversion layer (inversion layer) at the light irradiation portion.

【0010】本発明はMIS 型装置としての絶縁層を接合
部の劣化防止用バリアとして動作せしめる特徴と、浅い
拡散(シャロ−ディフュ−ジョン)法によるPN接合型の
装置の特徴とを合わせ持ち、かつそれぞれの欠点を相殺
させた、きわめて理想的な構造を有する光電変換装置の
作製方法を提供するものである。
The present invention has a feature that an insulating layer as an MIS type device operates as a barrier for preventing deterioration of a junction, and a feature of a PN junction type device by a shallow diffusion (shallow diffusion) method. Another object of the present invention is to provide a method for manufacturing a photoelectric conversion device having a very ideal structure, in which the respective disadvantages are offset.

【0011】[0011]

【課題を解決するための手段】即ち、光照射用のー導電
型の半導体上面には、それと逆導電型の半導体層を0.5
μm以下の厚さ、特に20〜2000Åに有せしめたもので、
半導体表面を導電型に反転させるために設けている。
In other words, a semiconductor layer of the opposite conductivity type is formed on the upper surface of a semiconductor of the conductivity type for light irradiation by 0.5 mm.
With a thickness of μm or less, especially 20 to 2000 mm,
It is provided to invert the semiconductor surface to the conductivity type.

【0012】さらにその上面に電流を流し得る厚さの絶
縁または半絶縁膜を設け、その上面に開放電圧を決定す
るための対抗電極を設けている。このため開放電圧は半
導体と電極との仕事関数差より決められる電圧が作ら
れ、さらに、その下側の基板半導体に対し逆導電型半導
体層は外部電極と接触をしていないため、フロ−ティン
グ構造を有している。加えてこの電極部間の光照射部に
おいて、この逆導電型の半導体層を薄く、ここでの光照
吸収による変換効率の低下を防いでいる。またこの半導
体層はフロ−ティングであったため、対抗電極方向への
横型電界が発生し、光照射により発生した一方の電荷は
この半導体層を通って横方向へのドリフトを助長させる
いわゆるチャネル構造を有している。
Further, an insulating or semi-insulating film having a thickness allowing current to flow is provided on the upper surface thereof, and a counter electrode for determining an open-circuit voltage is provided on the upper surface thereof. For this reason, the open circuit voltage is determined by the work function difference between the semiconductor and the electrode, and the opposite conductive type semiconductor layer is not in contact with the external electrode with respect to the underlying substrate semiconductor. It has a structure. In addition, in the light irradiating portion between the electrode portions, the semiconductor layer of the opposite conductivity type is made thin to prevent a reduction in conversion efficiency due to absorption of light. Also, since this semiconductor layer is floating, a horizontal electric field is generated in the direction of the counter electrode, and one of the charges generated by light irradiation has a so-called channel structure that promotes a drift in the horizontal direction through this semiconductor layer. Have.

【0013】この意味で本発明構造をフロ−ティングチ
ャネル構造の光電変換装置といっても良い。また、この
電極下にも同じに作られる半導体層と半導体表面との接
合部に関して、いわゆる従来のPN接合型の場合は電極間
のオ−ム接触用のための電極半導体間に合金(アロイ)
をさせるため、0.5 〜1μmの接合深さを必要とする。
このため本発明の如きその深さを0.5 μm以下、特に20
〜500 Åとした逆導電型半導体層を作ることは不可能で
あった。しかし本発明はかかるオ−ム接触用電極を作ら
ず、絶縁または半絶縁膜上に対抗電極を設け、この膜の
下側のPN接合の接合部にさらにその空乏層をひろげるべ
き極性となる材料を用いて、対抗電極を構成している。
In this sense, the structure of the present invention may be called a photoelectric conversion device having a floating channel structure. In the case of a so-called conventional PN junction type, an alloy (alloy) is formed between the electrode and the semiconductor for ohmic contact between the electrodes with respect to the junction between the semiconductor layer and the semiconductor surface which is also formed under the electrode.
Requires a junction depth of 0.5 to 1 .mu.m.
For this reason, as in the present invention, the depth is set to 0.5 μm or less, especially 20 μm.
It was not possible to form a reverse conductivity type semiconductor layer having a thickness of up to 500 mm. However, the present invention does not provide such an ohmic contact electrode, but provides a counter electrode on an insulating or semi-insulating film, and a material having a polarity to expand the depletion layer at the junction of the PN junction below the film. Are used to form a counter electrode.

【0014】本発明は以上に加えて、この光照射面に対
してはV型溝を設け、その部分での照射光の反射を防止
させており、加えてこのV型溝を従来知られていたPN接
合型ではなく、MIS 型の光電変換装置に応用したもので
ある。加えて対抗電極部以外の表面に凹凸を有すること
によりMIS 型素子の製造歩留まりの向上を図ったもの
で、以下に図面に従って本発明の実施例を示す。
According to the present invention, in addition to the above, a V-shaped groove is provided on the light irradiation surface to prevent reflection of irradiation light at the portion, and the V-shaped groove is conventionally known. Instead of a PN junction type, it is applied to an MIS type photoelectric conversion device. In addition, the production yield of the MIS type element is improved by having irregularities on the surface other than the counter electrode portion, and an embodiment of the present invention will be described below with reference to the drawings.

【0015】[0015]

【実施例】〔実施例1〕図1は本発明を実施するための
光電変換装置を作製するための縦断面図を示している。
[Embodiment 1] FIG. 1 is a longitudinal sectional view for manufacturing a photoelectric conversion device for carrying out the present invention.

【0016】図1(A) において、半導体基板として(10
0) 面またはその近傍の結晶方位((100)面に対して±15
°以内とした) を有するシリコン半導体を用いた。比抵
抗は2〜50ΩcmのP型とした。この半導体(1) の表面
(図面上側)にディップ法により酸化珪素を、また裏面
(図面下側)にはディップ法によりボロンガラスを全面
に形成し、湿酸素中にて1000〜1200℃の温度にて酸化拡
散し、P+ 層(11)を2〜5μmの深さに裏面全面に形成
した。さらに半導体(1) の表面の酸化珪素を化学的に除
去した。
In FIG. 1A, a semiconductor substrate (10
0) plane or its crystal orientation (± 15 with respect to (100) plane)
°). The P-type specific resistance was 2 to 50 Ωcm. Silicon oxide is formed on the front surface (upper side of the drawing) of the semiconductor (1) by dipping, and boron glass is formed on the entire back side (lower side of the drawing) by dipping. And a P + layer (11) was formed on the entire back surface to a depth of 2 to 5 μm. Further, silicon oxide on the surface of the semiconductor (1) was chemically removed.

【0017】この後リンガラスまたは砒素ガラス(23)を
同様のディップ法により半導体(1)の表面に形成し、700
〜1000℃の温度にて酸化拡散し、基板とは逆導電型半
導体層(7) を0.5 μm以下の厚さ例えば20〜2000Å、特
に200 Åの厚さに形成した。
Thereafter, phosphor glass or arsenic glass (23) is formed on the surface of the semiconductor (1) by the same dipping method,
Oxidized and diffused at a temperature of about 1000 ° C. to form a semiconductor layer (7) having a conductivity type opposite to that of the substrate to a thickness of 0.5 μm or less, for example, 20 to 2000 mm, particularly 200 mm.

【0018】裏面のP+ 層(11)は基板が十分オ−ム接触
をする場合は、特に作る必要はない。さらにリンガラス
または砒素ガラス被膜を少なくともその上面において選
択的に除去し残存領域を(21)(22)(23)とした。図1(A)
において被膜(21)は対抗電極を形成する領域であり、被
膜(22)はV型溝または台形を作るための凸部に対応する
領域である。この被膜(22)は被膜(21)に連続しており、
V型溝を形成後この凸部のN+ の領域が電極下のN+
領域にまで連続するようにした。被膜(21)の巾は10〜20
μmにて外部引き出し端子用被膜(23)に連なっている。
The P + layer (11) on the back surface does not need to be formed particularly when the substrate makes sufficient ohmic contact. Further, the phosphorus glass or arsenic glass coating was selectively removed on at least the upper surface thereof, and the remaining regions were defined as (21), (22) and (23). Fig. 1 (A)
In FIG. 7, the coating (21) is a region for forming a counter electrode, and the coating (22) is a region corresponding to a V-shaped groove or a projection for forming a trapezoid. This coating (22) is continuous with the coating (21),
After the formation of the V-shaped groove, the N + region of the projection was continued to the N + region under the electrode. The width of the coating (21) is 10-20
It is connected to the external lead terminal coating (23) at μm.

【0019】領域(17)は2〜10μm平方、代表的には5
μm平方の穴である。この領域(17)の周辺には網目状に
被膜(22)が2〜10μm巾、代表的には5μm巾にて形成
されている。この網目状の方向は結晶方位の(110) 面に
平行とし、矩形のV型または台形溝が異方性エッチング
にて形成されるように合わせこんだ。
The area (17) is 2 to 10 μm square, typically 5 to 10 μm.
It is a hole of μm square. Around this area (17), a coating (22) is formed in a mesh shape with a width of 2 to 10 μm, typically 5 μm. This mesh-like direction was parallel to the (110) plane of the crystal orientation, and was adjusted so that a rectangular V-shaped or trapezoidal groove was formed by anisotropic etching.

【0020】この後、この図1(A) の構造の基板をWAP
(水8cc −エチレンジアミン 17cc −ピロカクコ−ル3g
の混合液) 中にて70〜85℃の温度にて加熱エッチングを
行った。窒素でバブルすることにより空気がWAP 溶液に
触れないように行った。その結果、(100) 面は3300Å/
分のエッチ速度を、また(111) 面は200 Å/分を得た。
酸化珪素(21)(22)(23)は30時間実施して20Å以下のエッ
チングであり、十分なマスク作用を有していた。
Thereafter, the substrate having the structure shown in FIG.
(Water 8cc-Ethylenediamine 17cc-Pyrocaccol-3g
(Mixture of the above) was heated and etched at a temperature of 70 to 85 ° C. The air was kept away from the WAP solution by bubbling with nitrogen. As a result, the (100) plane is 3300Å /
Min, and the (111) plane obtained 200 l / min.
The silicon oxides (21), (22), and (23) were etched for 30 hours or less at 20 ° or less, and had a sufficient masking action.

【0021】以上のWAP によるエッチングを5分〜1時
間、代表的には10〜30分間行うと、図1(A) における網
目状のパタ−ンを(110) 面に平行にパタ−ニングをする
と領域(17)の部分が逆向きのピラミッド状に正方形にエ
ッチングされV型溝を作ることができた。このエッチン
グの時間が5〜10分では逆向きの台形溝が(7) の部分に
形成され、領域(17)と(22)との巾を調整することにより
上向き台形または上向きV型凸部が領域(12)に対応して
形成された。
When the above-mentioned etching by WAP is performed for 5 minutes to 1 hour, typically for 10 to 30 minutes, the mesh-like pattern in FIG. 1A is patterned in parallel to the (110) plane. As a result, the region (17) was etched into a pyramid-shaped square in the opposite direction to form a V-shaped groove. When the etching time is 5 to 10 minutes, an inverted trapezoidal groove is formed in the portion (7), and by adjusting the width of the regions (17) and (22), an upward trapezoidal or upward V-shaped convex portion is formed. It was formed corresponding to the region (12).

【0022】即ち領域(17)は2〜10μm平方、代
表的には5μm平方を有しているため、V型溝の深さは
3μmとなる。またNの半導体層は0.5μm以下代
表的には20〜2000を有しているため、このV型
溝の上部はNの導電型を残存して有し、また大部分は
P型半導体であることがわかる。そしてNの半導体層
(7)(24)(24’)は酸化珪素マスク(21)
(22)(23)により保持されているため、互いに連
結し、電極部(24)にキャリアを流す通路とすること
ができる。
That is, since the region (17) has a square of 2 to 10 μm, typically 5 μm, the depth of the V-shaped groove is 3 μm. Since the semiconductor layer of N + are to limited 0.5μm or less typically have a 20 to 2000 Å, the upper portion of the V-shaped groove has remained the conductivity type of the N +, also largely P It turns out that it is a type semiconductor. The N + semiconductor layers (7), (24) and (24 ′) are made of a silicon oxide mask (21).
(22) Since they are held by (23), they can be connected to each other to form a passage for flowing the carrier to the electrode portion (24).

【0023】また、櫛型電極の後に形成される電極部の
上側領域(24),(24')は最初にあった如き平面を酸化珪素
マスクによりマスクされるため有していた。
Further, the upper regions (24) and (24 ') of the electrode portion formed after the comb-shaped electrode have a plane as originally formed because it is masked by the silicon oxide mask.

【0024】この後、これらの半導体基板を弗酸中に浸
漬して基板上の酸化珪素を除去し、その後十分清浄にし
て図1(B) を得た。即ち、N+ 領域は光を吸収しやす
く、またP型半導体は光より電子およびホ−ルを作る。
このうちの電子をN+ 領域(7),(24') に到らしめ、この
+ 領域の抵抗が小さいため、効率よく電極部(24)に誘
導できる。即ち光照射面のすべてにN+ 層を作るのでは
なく、キャリアを通過および集合せしめる部分にのみN
+ 層を作り、空乏層を大きくさせている。そして光はN
+ 層での吸収を避け、V溝で有効に半導体内部に到らし
め、有効に電子・ホ−ルを発生させている。
Thereafter, these semiconductor substrates were immersed in hydrofluoric acid to remove silicon oxide on the substrates, and then sufficiently cleaned to obtain FIG. 1 (B). That is, the N + region easily absorbs light, and the P-type semiconductor produces electrons and holes rather than light.
Of these electrons, the electrons reach the N + regions (7) and (24 '), and since the resistance of the N + region is small, the electrons can be efficiently guided to the electrode portion (24). That is, instead of forming an N + layer on the entire light irradiation surface, N
+ Layer is created and the depletion layer is enlarged. And the light is N
The V-groove effectively avoids absorption in the + layer, effectively reaches the inside of the semiconductor, and effectively generates electrons and holes.

【0025】本発明は、この後、この基板表面に密接し
て窒化珪素膜を5〜100Å特に10〜30Åの膜厚に
プラズマ窒化法により形成した。即ち0.5〜50MH
zの誘導エネルギによりアンモニアまたは窒素と水素と
の混合気体をヘリューム1〜20%に希釈して0.1〜
10torrの圧力中にて窒化をした。窒化温度は15
0〜700℃特に400〜680℃にて窒化することに
より窒化珪素被膜(3)を形成した。プラズマを使わ
ず、アンモニア雰囲気に基板を挿入し、単に熱のみを加
えて窒化珪素被膜を形成してもよい。かくして窒化珪素
被膜(3)が5〜100Åの厚さ、特に10〜30Åの
厚さに形成された。
In the present invention, thereafter, a silicon nitride film is formed in close contact with the substrate surface to a thickness of 5 to 100 ( particularly, 10 to 30) by a plasma nitriding method. That is, 0.5 to 50 MH
A mixture of ammonia or a mixture of nitrogen and hydrogen is diluted to 1-20% helium with an induction energy of
Nitriding was performed at a pressure of 10 torr. Nitriding temperature is 15
The silicon nitride film (3) was formed by nitriding at 0 to 700 ° C, particularly 400 to 680 ° C. Instead of using plasma, the substrate may be inserted into an ammonia atmosphere, and only heat may be applied to form the silicon nitride film. Thus, the silicon nitride film (3) was formed to a thickness of 5 to 100 °, particularly 10 to 30 °.

【0026】裏面電極(2) としてアルミニュ−ムをこの
窒化膜を除去した後真空蒸着法により形成し、半導体基
板とのオ−ム接触用のシンタ−を300 〜600 ℃の温度範
囲にて不活性気体中で行った。
Aluminum is formed as a back electrode (2) by vacuum evaporation after removing this nitride film, and a sinter for ohmic contact with the semiconductor substrate is not formed at a temperature range of 300 to 600 ° C. Performed in active gas.

【0027】図1の工程において、この後、その表面に
対抗電極(21)、補助電極(5) として、マグネシュ−ム(M
g)を真空蒸着をした。これはMgではなく、Al、Be等4.0e
V 以下の仕事関数が小さい金属であることが好ましかっ
た。Mg、Beにおいては酸化しやすく、生成を150 ℃、10
00時間の大気中の放置で行われ、信頼性が低下してしま
うため、Mg、Beまたはそれらと半導体または他の金属と
の混合物を50〜5000Å特に500 〜2000Åの上側にアルミ
ニュ−ムを0.5 〜3μmの厚さに形成し、さらに半導体
用にNi、Cr、Cuを100 〜1000Åの厚さに形成する多重膜
にした対抗電極(21)、(5) を形成した。
In the step shown in FIG. 1, after that, a magnesium (M) is formed on the surface as a counter electrode (21) and an auxiliary electrode (5).
g) was vacuum deposited. This is not Mg, Al, Be, etc.4.0e
It was preferred that the metal have a small work function below V. Mg and Be are easily oxidized and produce at 150 ° C and 10 ° C.
Since it is left in the air for 00 hours and the reliability is lowered, Mg, Be or a mixture of them and a semiconductor or other metal is coated with aluminum over 0.5 to 5000 mm, especially 500 to 2000 mm. The counter electrodes (21) and (5) were formed to a thickness of about 3 μm and formed into a multilayer film of Ni, Cr and Cu for semiconductors in a thickness of 100 to 1000 °.

【0028】基板半導体(1)が以上の説明とは逆にN
型である場合はV型溝の上部に空乏層およびキャリアの
通路を構成するための半導体層(7)はP型となり、
この対抗電極はPt,Au,Ni等の高い仕事関数の材
料を用い。そしてこれらの材料を100Å〜1μm形
成した。しかしAu,Pt等においては、太陽電池を低
価格で作るために50〜200Åの厚さに形成し、その
上にAlを1〜3μm、Ni,Cuを0.1〜0.5μ
m形成した。
Contrary to the above description, the substrate semiconductor (1) is N
In the case of a semiconductor layer (7) for forming a depletion layer and a carrier path above the V-shaped groove, the semiconductor layer (7) is of P + type,
The counter electrode is Pt, Au, Ru a material of high work function such as Ni. These materials were formed at a thickness of 100 to 1 μm. However, in the case of Au, Pt, etc., in order to make a solar cell at a low cost, the solar cell is formed to a thickness of 50 to 200 [deg.]
m was formed.

【0029】電流を通し得る厚さ(5〜100 Å特に15〜30
Åの厚さ) の窒化珪素膜(Si3N4またはSi3N4-X 0<X<4)は
プラズマ窒化ではなく、グロ−放電CVD 法で形成しても
よい。その場合は裏面電極を2枚互いに合わせた。その
電極上に膜形成が行われないようにした。またこの膜は
他の還元雰囲気で形成される被膜、例えばSiC1-X(0<X<
1) であってもよい。
Thickness (5 to 100 mm, especially 15 to 30
The silicon nitride film (thickness of Å) (Si 3 N 4 or Si 3 N 4-X 0 <X <4) may be formed by glow discharge CVD instead of plasma nitriding. In that case, two back electrodes were combined with each other. A film was not formed on the electrode. In addition, this film is a film formed in another reducing atmosphere, for example, SiC 1-X (0 <X <
1).

【0030】かくの如くにして絶縁または半絶縁膜(3)
上に対抗電極を真空蒸着した被膜をフォトエッチング法
により半導体の表面が平坦面である櫛型電極(5) および
外部引き出し用パッド(21)の部分を除き、他部のV型ま
たは台形の溝が形成された領域(17)にある電極用材料を
除去して形成した。本発明の主なる構成は図面より明ら
かなごとく、V型または台形溝を有する領域上は対抗電
極が設けられておらず、また半導体上の平坦面上にのみ
対抗電極、外部引き出し電極(21)、引き出しリ−ド(32)
が設けられている点である。
The insulating or semi-insulating film as described above (3)
Except for the comb-shaped electrode (5) and the external lead-out pad (21) where the surface of the semiconductor is flat, a film obtained by vacuum-depositing a counter electrode on the top surface by photoetching is used. The electrode material in the region (17) where was formed was removed. As is clear from the drawings, the main structure of the present invention is such that a counter electrode is not provided on a region having a V-shaped or trapezoidal groove, and a counter electrode and an external lead electrode (21) are provided only on a flat surface on a semiconductor. , Drawer lead (32)
Is provided.

【0031】かくすることにより、対抗電極形成のフォ
トエッチングの際は対抗電極(5) 等の側周辺は平坦面で
あるため、そのパタ−ンのきれが鋭く、残存する金属が
ない。また電極下が平坦面であるため、窒化珪素膜(3)
のピンホ−ルが少ない。外部よりの機械ストレスにより
リ−ク等が発生しにくい。さらに光照射が行われるV型
または台形の溝の領域において、N+ またはP+ の半導
体層がないため、そこでの光吸収損失がなく、またV型
溝により効率よく光を内部に導入でき、入射光により電
子・ホ−ルを有効に発生できる。またこの溝の部分に導
体がないため、ピンホ−ル、リ−クが発生しても、物性
上まったく問題にならない等の特徴を有する。
Thus, during photo-etching for forming the counter electrode, the periphery of the counter electrode (5) and the like is flat, so that the pattern is sharp and there is no remaining metal. In addition, the silicon nitride film (3)
The number of pinholes is small. Leaks and the like hardly occur due to external mechanical stress. Further, in the region of the V-shaped or trapezoidal groove where light irradiation is performed, since there is no N + or P + semiconductor layer, there is no light absorption loss there, and light can be efficiently introduced into the V-shaped groove inside, Electrons and holes can be effectively generated by the incident light. In addition, since there is no conductor in the groove, even if pinholes and leaks occur, there is no problem in physical properties at all.

【0032】図1(D) はこの上面に窒化珪素、酸化タン
タル、SiO 等の反射防止膜(10)を600 〜900 Åの厚さに
形成し、反応で照射光(20)の反射率を0.5 〜2.0 %にま
で下げ、きわめて理想照射にするとともに、対抗電極等
が機械損傷等で断線ショ−トが起きない保護膜とし、さ
らには対抗電極(5) と窒化珪素膜(3) との界面に酸素、
湿気が混入し、腐食等がおきて信頼性の低下が発生する
ことを防ぐことを目的としている。このためかかる周辺
部(25)にも反射防止膜が完全にコ−トされるようプラズ
マCVD 法により形成した。
FIG. 1 (D) shows that an anti-reflection film (10) of silicon nitride, tantalum oxide, SiO, etc. is formed on this upper surface to a thickness of 600 to 900 mm, and the reflectance of the irradiation light (20) is increased by the reaction. It is reduced to 0.5 to 2.0% to achieve extremely ideal irradiation, and the counter electrode and the like are used as a protective film that does not cause a disconnection short due to mechanical damage and the like. Oxygen at the interface,
The purpose of the present invention is to prevent the deterioration of reliability from occurring due to the contamination of moisture due to moisture. For this reason, the antireflection film was formed by the plasma CVD method so as to completely coat the peripheral portion (25).

【0033】この実施例において、AM1 の条件下にて1
8.5〜20.5% の変換効率を得、FFは0.82〜0.90を得るこ
とができた。光照射(20)がV型溝にて2回照射されるた
め、反射防止膜を形成しなくても反射率を12%以下にす
ることができた。本発明における対抗電極は櫛型とした
が、これを網目状または魚骨状としてもよく、基本的に
溝を有する光照射面と対抗電極の存在することを選択的
に分離したことを特徴としている。
In this example, under the condition of AM1, 1
A conversion efficiency of 8.5-20.5% was obtained, and a FF of 0.82-0.90 was obtained. Since the light irradiation (20) was applied twice in the V-shaped groove, the reflectance could be reduced to 12% or less without forming an antireflection film. Although the counter electrode in the present invention is comb-shaped, it may be mesh-like or fish-bone-like, and is characterized by selectively separating the light irradiation surface having grooves and the existence of the counter electrode basically. I have.

【0034】〔実施例2〕図2は本発明の他の実施例を
示す。図1と同様にV型溝の上部にはN+ またはP+
半導体層(7) を有し、それにより半導体(1) の上部に効
率よく空乏層を作るため、かつこの空乏層の電界により
集められたキャリアをN+ またはP+ 層で効率よく電極
部(5) に移動している。また光はV型溝で2回照射さ
れ、そこではN+ またはP+ 層がないため、効率よく半
導体(1) の内部に光を到らしめ得る。
Embodiment 2 FIG. 2 shows another embodiment of the present invention. As in FIG. 1, an N + or P + semiconductor layer (7) is provided above the V-shaped groove, thereby efficiently forming a depletion layer above the semiconductor (1). Are efficiently transferred to the electrode section (5) in the N + or P + layer. In addition, light is irradiated twice in the V-shaped groove, in which there is no N + or P + layer, so that light can efficiently reach inside the semiconductor (1).

【0035】かかるV型溝を光照射面にのみ設けるとと
もに、このV型溝下の半導体層により逆転しやすくする
ため、この領域即ち基板半導体(1) 上面付近に逆導電型
の0.5 μm以下特に20〜500 Åの厚さの層(7) を設けて
いる。加えてこの上側には、絶縁または半絶縁膜(3) と
対抗電極(5) を設けている。
In order to provide such a V-shaped groove only on the light-irradiated surface and to make the semiconductor layer under the V-shaped groove more easily inverted, the opposite conductive type of 0.5 μm or less, particularly in the vicinity of the upper surface of the substrate semiconductor (1). A layer (7) with a thickness of 20 to 500 mm is provided. In addition, an insulating or semi-insulating film (3) and a counter electrode (5) are provided on the upper side.

【0036】図2の構造においてはV型溝の上部にのみ
逆導電型半導体層(7) を設け、かつこの半導体層をその
上部で互いに連続して対抗電極(5) 下にまで延在せしめ
るパタ−ンとすることが効果的である。するとV型溝の
下側の半導体中で光照射により形成された電子およびホ
−ルの一方はこの逆導電型半導体層(7) に引き寄せら
れ、かつこの上部のフロ−ティングチャネルを通って対
抗電極下にまで損失をほとんどなしでドリフトさせるこ
とができる。加えて、光照射がV型溝の下部の半導体に
なされる場合、その照射光はすべて逆導電型層による不
純物散乱光の吸収による損失がないことが特徴である。
かかる特徴により、本発明においては、珪素の理論限界
とされていた20%を越え、20.5%にまでAM1 の条件下で
光電変換効率を得ることができた。図面では反射防止膜
としてSiO または酸化タンタルを700 〜900 Åの厚さに
形成させている。加えてかかる構造においては、近赤外
の波長の検出も可能となり、950nm の半導体レ−ザ光を
も実用可能な程度光応答特性を作ることができた。
In the structure shown in FIG. 2, a semiconductor layer (7) of the opposite conductivity type is provided only above the V-shaped groove, and the semiconductor layers extend continuously below the counter electrode (5). It is effective to make the pattern. Then, one of the electron and the hole formed by light irradiation in the semiconductor below the V-shaped groove is attracted to the opposite conductivity type semiconductor layer (7) and opposed through the floating channel on the upper side. Drift with little loss under the electrode. In addition, when light irradiation is performed on the semiconductor below the V-shaped groove, the irradiation light is characterized in that there is no loss due to absorption of impurity scattered light by the opposite conductivity type layer.
Due to such characteristics, in the present invention, the photoelectric conversion efficiency was able to be obtained under the condition of AM1 up to 20.5%, exceeding the theoretical limit of silicon of 20%. In the drawing, SiO or tantalum oxide is formed to a thickness of 700 to 900 mm as an antireflection film. In addition, with this structure, near-infrared wavelengths can be detected, and photoresponse characteristics can be produced to the extent that 950 nm semiconductor laser light can be used.

【0037】[0037]

【発明の効果】以上の結果、AMl下での変換効率は1
8%にまで向上できた。加えて、短波長光の代表である
蛍光灯(300Lx)下での特性が、50μW/cm
であった。本発明のフローティングチャネルMIS型光
電変換装置はそのフローティングチャネルの効果の大き
さのみならず、その形状すなわち電極部は平坦でありそ
れ以外の部分は凹凸形状を持つことにより量産性に優
れ、MIS型において初めて量産歩留まりを90%以上
に高めることができた。また信頼性に関して、150℃
1000時間放置試験下において、特に異常は認められ
なかった。
As a result, the conversion efficiency under AM1 is 1
It was improved to 8%. In addition, the characteristic under a fluorescent lamp (300 Lx), which is a representative of short wavelength light, is 50 μW / cm 2.
Met. The floating channel MIS type photoelectric conversion device of the present invention is excellent not only in the magnitude of the effect of the floating channel, but also in its mass, that is, the electrode portion is flat and the other portions are uneven, so that mass production is excellent. For the first time, it was possible to increase the mass production yield to 90% or more. Regarding reliability, 150 ° C
No abnormalities were found under the 1000-hour standing test.

【0038】本発明は珪素の単結晶を基本としたが、多
結晶、セミアモルファス、アモルファス構造の半導体ま
たは高速急冷法、デントライト法で作製した珪素等の半
導体であってもよい。また珪素の外にゲルマニュ−ムそ
の他化合物半導体であってもよい。またV型または台形
溝の平面のパタ−ンは本実施例の形(正方形)であるの
みならず、長方形または八角形等であってもよい。
Although the present invention is based on a single crystal of silicon, it may be a semiconductor having a polycrystalline, semi-amorphous, or amorphous structure, or a semiconductor such as silicon manufactured by a rapid quenching method or a dentite method. In addition to silicon, germanium or other compound semiconductors may be used. The plane pattern of the V-shaped or trapezoidal groove is not limited to the shape (square) of this embodiment, but may be a rectangle or an octagon.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を製造するための実施例の縦断面図を示
す。
FIG. 1 shows a longitudinal section of an embodiment for producing the invention.

【図2】本発明の他の光電変換装置の縦断面図を示す。FIG. 2 is a longitudinal sectional view of another photoelectric conversion device of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一導電型の半導体基板と、該半導体基板と
は逆導電型の半導体層を前記基板上部に有し、前記基板
上部にはV型または逆台形の溝を設け、該溝の深さは前
記半導体層を前記半導体基板の上部に残存させつつも、
前記半導体層と前記半導体基板との界面を越え前記一導
電型の半導体の内部にまで到って設けられ、前記半導体
上面の対抗電極部は上記残存された半導体層を上部に有
する凸状部中、上面が台形となっている凸状部の上面に
設けられ、上記凸状部上部に残存する導電型の半導体層
は互いに連結して設けられたことを特徴とする光電変換
装置。
1. A semiconductor substrate of one conductivity type, and a semiconductor layer of a conductivity type opposite to the semiconductor substrate is provided on the upper portion of the substrate, and a V-shaped or inverted trapezoidal groove is provided on the upper portion of the substrate. Depth while leaving the semiconductor layer above the semiconductor substrate,
Wherein said over semiconductor layer and the interface between the semiconductor substrate provided led to the inside of the one conductivity type semiconductor, the counter electrode portion of the semiconductor top surface have a semiconductor layer which is the remaining upper
A conductive semiconductor layer provided on the upper surface of the convex portion having a trapezoidal upper surface and remaining on the convex portion.
Is a photoelectric conversion device provided in connection with each other .
JP4225070A 1992-07-31 1992-07-31 Photoelectric conversion device Expired - Lifetime JP2588464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4225070A JP2588464B2 (en) 1992-07-31 1992-07-31 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4225070A JP2588464B2 (en) 1992-07-31 1992-07-31 Photoelectric conversion device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56016133A Division JPS57130482A (en) 1981-02-05 1981-02-05 Mis type photoelectric transducer

Publications (2)

Publication Number Publication Date
JPH05259489A JPH05259489A (en) 1993-10-08
JP2588464B2 true JP2588464B2 (en) 1997-03-05

Family

ID=16823562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4225070A Expired - Lifetime JP2588464B2 (en) 1992-07-31 1992-07-31 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2588464B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871152B2 (en) 2012-06-13 2018-01-16 Mitsubishi Electric Corporation Solar cell and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159456A1 (en) * 2014-04-16 2015-10-22 三菱電機株式会社 Solar cell and solar cell manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124887A (en) * 1976-04-13 1977-10-20 Sony Corp Solar battery
JPS5919477B2 (en) * 1977-09-06 1984-05-07 三菱電機株式会社 Manufacturing method of thyristor
JPS5541781A (en) * 1978-09-19 1980-03-24 Seiko Instr & Electronics Ltd Solar battery
JPS6043668B2 (en) * 1979-07-06 1985-09-30 株式会社日立製作所 semiconductor equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871152B2 (en) 2012-06-13 2018-01-16 Mitsubishi Electric Corporation Solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
JPH05259489A (en) 1993-10-08

Similar Documents

Publication Publication Date Title
JP3722326B2 (en) Manufacturing method of solar cell
KR940010161B1 (en) Solar cell
US5053083A (en) Bilevel contact solar cells
US7741225B2 (en) Method for cleaning a solar cell surface opening made with a solar etch paste
US5356488A (en) Solar cell and method for its manufacture
KR100847741B1 (en) Point-contacted heterojunction silicon solar cell having passivation layer between the interface of p-n junction and method for fabricating the same
JPH09172196A (en) Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
AU2013200622B2 (en) Solar cell and method of manufacturing the same
JP2014239150A (en) Solar cell and solar cell module
TW201318030A (en) Semiconductor light detection device and method for fabricating the same
KR101383940B1 (en) Silicon solar cell and Method thereof
JP4486622B2 (en) Manufacturing method of solar cell
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
JPS6231834B2 (en)
JP5745653B2 (en) Photovoltaic device, manufacturing method thereof, and photovoltaic module
JP2005167291A (en) Solar cell manufacturing method and semiconductor device manufacturing method
JP2588464B2 (en) Photoelectric conversion device
JP3193287B2 (en) Solar cell
JP3207869B2 (en) Semiconductor device manufacturing and passivation method
JP5014263B2 (en) Photovoltaic device and manufacturing method thereof
JP2004281569A (en) Method for producing solar cell element
TW202224200A (en) Back-contact solar cell, and production thereof
JPH0562473B2 (en)
JP2004047824A (en) Solar cell and its manufacturing method
JP2004047825A (en) Solar cell