JPH05259489A - Manufacture of photoelectric conversion device - Google Patents

Manufacture of photoelectric conversion device

Info

Publication number
JPH05259489A
JPH05259489A JP4225070A JP22507092A JPH05259489A JP H05259489 A JPH05259489 A JP H05259489A JP 4225070 A JP4225070 A JP 4225070A JP 22507092 A JP22507092 A JP 22507092A JP H05259489 A JPH05259489 A JP H05259489A
Authority
JP
Japan
Prior art keywords
semiconductor layer
semiconductor
substrate
type semiconductor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4225070A
Other languages
Japanese (ja)
Other versions
JP2588464B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP4225070A priority Critical patent/JP2588464B2/en
Publication of JPH05259489A publication Critical patent/JPH05259489A/en
Application granted granted Critical
Publication of JP2588464B2 publication Critical patent/JP2588464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve mass productivity and yield by forming a reverse-conductive type semiconductor layer on a mono-conductive type semiconductor substrate, and forming, on the reverse-conductive type semiconductor layer, V-shape or trapezoid-shape grooves extending to the mono-conductive type semiconductor layer beyond the reverse- conductive type semiconductor layer with the use of etching treatment. CONSTITUTION:Silicon oxide is formed on the surface of a substrate 1 consisting of semiconductors, and boron glass is formed all over the reverse side of the substrate. Then, a P<+>-type layer 11 is formed all over the reverse side of the substrate due to oxidization and diffusion in wet oxygen at high temperatures. Next. phosphorus glass or arsenic glass 23 is formed after silicon oxide on the surface of the substrate 1 is eliminated, and then a reverse-conductive type semiconductor 7 is formed by oxidizing and diffusing at high temperatures. Successively, the residual regions 21-23 are provided by eliminating selectively glass coating film, and V-shape or trapezoid-shape grooves are formed so that the projected portion of an N<+>-type region can be extended continuously to the portion of the N<+>-type region below an electrode under the coating film 22 by anisotropic etching. After that, a photoelectric conversion device is made by providing a silicon nitride coating film 3, an opposing electrode 21, a supplementary electrode 5, and a wiring lead 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光電変換装置の作製方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a photoelectric conversion device.

【0002】この発明は光電変換装置の光照射面側の構
造に関するものであって、半導体上面の電極部領域は平
坦面を有し、該電極部以外の領域すなわち光電変換領域
にはV型または台形の溝を有している。さらにこの溝の
上部には半導体基板とは異なる導電型のN+ またはP+
層を設け、溝の内部は半導体基板そのものを露呈せし
め、照射光を効率よく半導体内部に到らしめている。
The present invention relates to a structure on a light irradiation surface side of a photoelectric conversion device, in which an electrode region on the upper surface of a semiconductor has a flat surface, and a region other than the electrode region, that is, a photoelectric conversion region is V-shaped or It has a trapezoidal groove. Furthermore, on the upper part of this groove, N + or P + of a conductivity type different from that of the semiconductor substrate is used.
A layer is provided, and the inside of the groove exposes the semiconductor substrate itself so that irradiation light can efficiently reach the inside of the semiconductor.

【0003】また電流を流し得る厚さの窒化珪素または
炭化珪素による5〜100 Åの厚さの絶縁または半絶縁膜
を有せしめる場合、基板半導体とは逆導電型の半導体層
は電気的に見掛け上対抗電極から浮いており、フロ−テ
ィングチャネルを構成するように、設けるとともに、膜
上の電極は半導体層に空乏層を発生させる極性の電極を
設けたことを特徴としている。
When an insulating or semi-insulating film having a thickness of 5 to 100 Å made of silicon nitride or silicon carbide having a thickness capable of passing an electric current is provided, a semiconductor layer having a conductivity type opposite to that of the substrate semiconductor is electrically apparent. It is characterized in that it is provided so as to float from the upper counter electrode so as to form a floating channel, and that the electrode on the film is provided with an electrode having a polarity for generating a depletion layer in the semiconductor layer.

【0004】さらに本発明は対抗電極部における半導体
表面は平面を有し、かつこの電極部以外の光照射面は照
射される光の反射効率を下げるため、その断面形状がV
型(逆V型溝を含んで本発明ではV型溝という)または
台形(逆台形またはV型と台形との混在した溝を総称し
て本発明では台形という)の溝を設けたことを特徴とし
ている。
Further, according to the present invention, the semiconductor surface of the counter electrode portion has a flat surface, and the light irradiation surface other than this electrode portion reduces the reflection efficiency of the irradiated light, so that its cross-sectional shape is V.
It is characterized in that a groove of a mold (including a reverse V-shaped groove in the present invention is referred to as a V-shaped groove) or a trapezoidal groove (inverse trapezoidal or a mixed groove of V-shaped and trapezoidal is collectively referred to as a trapezoidal in the present invention) is provided. I am trying.

【0005】本発明はかかるV型または台形溝を半導体
表面に選択的に作り、かつ裏面の電極と形成の際にその
溝または溝上のきわめて薄い絶縁または半絶縁膜が損傷
してピンホ−ル層が存在して対抗電極とその直下の逆導
電型等とが電気的にショ−トしないようにするととも
に、この5000Å以下好ましくは20〜200 Åの厚さの逆導
電型層と基板半導体との接合にまで対抗電極の金属が拡
散して、接合を劣化させてしまわないように保証し、さ
らに対抗電極がこの逆導電型層の下側の半導体に空乏層
を作り、開放電圧を向上せしめることを特徴としてい
る。
According to the present invention, such a V-shaped or trapezoidal groove is selectively formed on the front surface of a semiconductor, and when forming an electrode on the back surface, the groove or an extremely thin insulating or semi-insulating film on the groove is damaged and the pinhole layer is formed. Exists so that the counter electrode and the reverse conductivity type directly below it are not electrically shorted, and the reverse conductivity type layer having a thickness of 5000 Å or less, preferably 20 to 200 Å and the substrate semiconductor. Guaranteeing that the metal of the counter electrode does not diffuse to the junction and deteriorates the junction, and the counter electrode forms a depletion layer in the semiconductor below this reverse conductivity type layer to improve the open circuit voltage. Is characterized by.

【0006】[0006]

【従来の技術】従来、V型溝が光照射面に無限にかつ均
質に存在する光電変換素子としてCNR(COMSAT NON-REFRE
CTIDE SOLAR CELL) が知られている。これはV型溝をシ
リコン半導体表面に異方性エッチングを行い、かつこの
溝が多数無限に存在する表面に0.2 〜0.3 μmというき
わめて浅いPN接合をこの溝の全面に設け、この接合層に
対抗電極をオ−ム接触させて、この接合面で発生した光
起電力を取り出さんとしたものである。このCNR は実験
的にはAM0 にて15%以上、AM1 にて18%の高い変換効率
を得ている。しかしこのきわめて浅い接合であるため、
接合が簡単に破れてPN接合部にて電気的ショ−トまたは
リ−クが発生し、実用上の信頼性が得られていない。
2. Description of the Related Art Conventionally, a CNR (COMSAT NON-REFRE) has been used as a photoelectric conversion element in which V-shaped grooves exist infinitely and uniformly on a light irradiation surface.
CTIDE SOLAR CELL) is known. This is because a V-shaped groove is anisotropically etched on the surface of a silicon semiconductor, and an extremely shallow PN junction of 0.2 to 0.3 μm is formed on the entire surface of this groove, which is infinitely present, to oppose this bonding layer. The electrodes are brought into ohmic contact with each other to take out the photoelectromotive force generated at this joint surface. This CNR is experimentally high at 15% or higher for AM0 and 18% for AM1. However, because of this extremely shallow junction,
The joint is easily broken and an electrical short or leak occurs at the PN joint, so that practical reliability is not obtained.

【0007】さらに従来よりPN接合型装置は半導体基板
に微妙に制御された高い開放電圧を得るため、Pまたは
N層を高温にて高濃度拡散することにより作製するもの
である。
Further, conventionally, in order to obtain a delicately controlled high open-circuit voltage in a semiconductor substrate, a PN junction type device has been manufactured by diffusing a P or N layer at a high temperature with a high concentration.

【0008】[0008]

【発明が解決しようとする課題】かかる装置においては
拡散工程、微妙なオ−ム接触用電極付等に多くのコスト
要因があり、その製造歩留まりも高くなかった。
In such a device, there are many cost factors such as the diffusion process and the provision of the subtle ohmic contact electrodes, and the manufacturing yield thereof is not high.

【0009】またMIS 型装置はきわめて薄い酸化珪素膜
を光照射面に形成し、その上面の対抗電極により高い開
放電圧を得ることができる。しかし電極部以外の光照射
部で、この絶縁膜が裏面の電極形成の際または基板より
変換素子を取り出すためにチップ化する際、機械損傷に
より劣化またピンホ−ルまたは引っ掻き傷による欠陥を
誘発し、電流の減少の原因となり、特にこの光照射部で
の反転層(インバ−ジョンレイヤ−)を安定して作るこ
とが不可能であった。
Further, in the MIS type device, a very thin silicon oxide film is formed on the light irradiation surface, and a high open circuit voltage can be obtained by the counter electrode on the upper surface. However, in the light irradiation part other than the electrode part, when this insulating film is formed into a chip for forming the electrode on the back surface or for taking out the conversion element from the substrate, it deteriorates due to mechanical damage and induces defects due to pinholes or scratches. However, this causes a decrease in current, and in particular, it has been impossible to stably form an inversion layer (inversion layer) at the light irradiation portion.

【0010】本発明はMIS 型装置としての絶縁層を接合
部の劣化防止用バリアとして動作せしめる特徴と、浅い
拡散(シャロ−ディフュ−ジョン)法によるPN接合型の
装置の特徴とを合わせ持ち、かつそれぞれの欠点を相殺
させた、きわめて理想的な構造を有する光電変換装置の
作製方法を提供するものである。
The present invention has both the characteristics of operating an insulating layer as a MIS type device as a barrier for preventing deterioration of a junction portion and the characteristics of a PN junction type device by a shallow diffusion method. In addition, the present invention provides a method for manufacturing a photoelectric conversion device having an extremely ideal structure in which the respective drawbacks are offset.

【0011】[0011]

【課題を解決するための手段】即ち、光照射用のー導電
型の半導体上面には、それと逆導電型の半導体層を0.5
μm以下の厚さ、特に20〜2000Åに有せしめたもので、
半導体表面を導電型に反転させるために設けている。
[Means for Solving the Problems] That is, a semiconductor layer of opposite conductivity type is formed on the upper surface of a light-conductivity type semiconductor for light irradiation.
It has a thickness of less than μm, especially 20 to 2000Å,
It is provided to invert the semiconductor surface to the conductivity type.

【0012】さらにその上面に電流を流し得る厚さの絶
縁または半絶縁膜を設け、その上面に開放電圧を決定す
るための対抗電極を設けている。このため開放電圧は半
導体と電極との仕事関数差より決められる電圧が作ら
れ、さらに、その下側の基板半導体に対し逆導電型半導
体層は外部電極と接触をしていないため、フロ−ティン
グ構造を有している。加えてこの電極部間の光照射部に
おいて、この逆導電型の半導体層を薄く、ここでの光照
吸収による変換効率の低下を防いでいる。またこの半導
体層はフロ−ティングであったため、対抗電極方向への
横型電界が発生し、光照射により発生した一方の電荷は
この半導体層を通って横方向へのドリフトを助長させる
いわゆるチャネル構造を有している。
Further, an insulating or semi-insulating film having a thickness capable of passing a current is provided on the upper surface thereof, and a counter electrode for determining an open circuit voltage is provided on the upper surface thereof. Therefore, the open circuit voltage is determined by the work function difference between the semiconductor and the electrode. Furthermore, since the semiconductor layer of the opposite conductivity type is not in contact with the external electrode with respect to the substrate semiconductor below, the floating voltage is generated. It has a structure. In addition, in the light irradiation part between the electrode parts, the semiconductor layer of the opposite conductivity type is made thin to prevent a decrease in conversion efficiency due to light absorption here. Further, since this semiconductor layer was floating, a horizontal electric field was generated in the direction of the counter electrode, and one charge generated by light irradiation had a so-called channel structure that promotes lateral drift through this semiconductor layer. Have

【0013】この意味で本発明構造をフロ−ティングチ
ャネル構造の光電変換装置といっても良い。また、この
電極下にも同じに作られる半導体層と半導体表面との接
合部に関して、いわゆる従来のPN接合型の場合は電極間
のオ−ム接触用のための電極半導体間に合金(アロイ)
をさせるため、0.5 〜1μmの接合深さを必要とする。
このため本発明の如きその深さを0.5 μm以下、特に20
〜500 Åとした逆導電型半導体層を作ることは不可能で
あった。しかし本発明はかかるオ−ム接触用電極を作ら
ず、絶縁または半絶縁膜上に対抗電極を設け、この膜の
下側のPN接合の接合部にさらにその空乏層をひろげるべ
き極性となる材料を用いて、対抗電極を構成している。
In this sense, the structure of the present invention may be called a photoelectric conversion device having a floating channel structure. Also, regarding the joint between the semiconductor layer and the semiconductor surface, which is also formed under this electrode, in the case of a so-called conventional PN junction type, an alloy (alloy) is used between electrode semiconductors for ohmic contact between the electrodes.
For this reason, a junction depth of 0.5 to 1 μm is required.
Therefore, as in the present invention, the depth is 0.5 μm or less, especially 20 μm.
It was not possible to make a reverse conductivity type semiconductor layer of ~ 500 Å. However, the present invention does not form such an ohmic contact electrode, but provides a counter electrode on an insulating or semi-insulating film, and a material having a polarity to further expand the depletion layer at the junction part of the PN junction below this film. Is used to form the counter electrode.

【0014】本発明は以上に加えて、この光照射面に対
してはV型溝を設け、その部分での照射光の反射を防止
させており、加えてこのV型溝を従来知られていたPN接
合型ではなく、MIS 型の光電変換装置に応用したもので
ある。加えて対抗電極部以外の表面に凹凸を有すること
によりMIS 型素子の製造歩留まりの向上を図ったもの
で、以下に図面に従って本発明の実施例を示す。
In addition to the above, in the present invention, a V-shaped groove is provided on the light irradiation surface to prevent reflection of irradiation light at that portion, and in addition, this V-shaped groove is conventionally known. It is applied to a MIS type photoelectric conversion device instead of the PN junction type. In addition, it is intended to improve the manufacturing yield of the MIS type element by having unevenness on the surface other than the counter electrode portion, and an embodiment of the present invention will be described below with reference to the drawings.

【0015】[0015]

【実施例】〔実施例1〕図1は本発明を実施するための
光電変換装置を作製するための縦断面図を示している。
[Embodiment 1] FIG. 1 is a vertical sectional view for producing a photoelectric conversion device for carrying out the present invention.

【0016】図1(A) において、半導体基板として(10
0) 面またはその近傍の結晶方位((100)面に対して±15
°以内とした) を有するシリコン半導体を用いた。比抵
抗は2〜50ΩcmのP型とした。この半導体(1) の表面
(図面上側)にディップ法により酸化珪素を、また裏面
(図面下側)にはディップ法によりボロンガラスを全面
に形成し、湿酸素中にて1000〜1200℃の温度にて酸化拡
散し、P+ 層(11)を2〜5μmの深さに裏面全面に形成
した。さらに半導体(1) の表面の酸化珪素を化学的に除
去した。
In FIG. 1A, a semiconductor substrate (10
Crystal orientation in or near the (0) plane (± 15 with respect to the (100) plane
A silicon semiconductor having a temperature of less than 90 ° was used. The specific resistance was 2 to 50 Ωcm of P type. Silicon oxide is formed on the front surface (upper side of the drawing) of this semiconductor (1) by the dipping method, and boron glass is formed on the entire back surface (lower side of the drawing) by the dipping method. Then, the P + layer (11) was formed on the entire back surface to a depth of 2 to 5 μm. Furthermore, silicon oxide on the surface of the semiconductor (1) was chemically removed.

【0017】この後リンガラスまたは砒素ガラス(23)を
同様のディップ法により半導体(1)の表面に形成し、700
〜1000℃の温度にて酸化拡散し、基板とは逆導電型半
導体層(7) を0.5 μm以下の厚さ例えば20〜2000Å、特
に200 Åの厚さに形成した。
Thereafter, phosphorus glass or arsenic glass (23) is formed on the surface of the semiconductor (1) by the same dip method, and 700
By oxidation and diffusion at a temperature of up to 1000 ° C., a semiconductor layer (7) having a conductivity type opposite to that of the substrate was formed to a thickness of 0.5 μm or less, for example, 20 to 2000 Å, especially 200 Å.

【0018】裏面のP+ 層(11)は基板が十分オ−ム接触
をする場合は、特に作る必要はない。さらにリンガラス
または砒素ガラス被膜を少なくともその上面において選
択的に除去し残存領域を(21)(22)(23)とした。図1(A)
において被膜(21)は対抗電極を形成する領域であり、被
膜(22)はV型溝または台形を作るための凸部に対応する
領域である。この被膜(22)は被膜(21)に連続しており、
V型溝を形成後この凸部のN+ の領域が電極下のN+
領域にまで連続するようにした。被膜(21)の巾は10〜20
μmにて外部引き出し端子用被膜(23)に連なっている。
The P + layer (11) on the back surface is not particularly required to be formed if the substrate makes a sufficient ohmic contact. Further, the phosphorous glass or arsenic glass coating film was selectively removed at least on the upper surface thereof to leave the remaining regions as (21) (22) (23). Figure 1 (A)
In, the coating film (21) is a region forming a counter electrode, and the coating film (22) is a region corresponding to a convex portion for forming a V-shaped groove or a trapezoid. This coating (22) is continuous with the coating (21),
After forming the V-shaped groove, the N + region of this convex portion was made continuous to the N + region under the electrode. The width of the coating (21) is 10 to 20
It is connected to the external lead-out terminal coating (23) by μm.

【0019】領域(17)は2〜10μm平方、代表的には5
μm平方の穴である。この領域(17)の周辺には網目状に
被膜(22)が2〜10μm巾、代表的には5μm巾にて形成
されている。この網目状の方向は結晶方位の(110) 面に
平行とし、矩形のV型または台形溝が異方性エッチング
にて形成されるように合わせこんだ。
The area (17) is 2 to 10 μm square, typically 5
It is a hole of square μm. Around the area (17), a mesh-like coating (22) is formed with a width of 2 to 10 μm, typically 5 μm. The direction of this mesh was parallel to the (110) plane of the crystal orientation, and was aligned so that a rectangular V-shaped or trapezoidal groove was formed by anisotropic etching.

【0020】この後、この図1(A) の構造の基板をWAP
(水8cc −エチレンジアミン 17cc −ピロカクコ−ル3g
の混合液) 中にて70〜85℃の温度にて加熱エッチングを
行った。窒素でバブルすることにより空気がWAP 溶液に
触れないように行った。その結果、(100) 面は3300Å/
分のエッチ速度を、また(111) 面は200 Å/分を得た。
酸化珪素(21)(22)(23)は30時間実施して20Å以下のエッ
チングであり、十分なマスク作用を有していた。
After that, the substrate having the structure shown in FIG.
(Water 8cc-Ethylenediamine 17cc-Pyrocacoque 3g
Etching was carried out at a temperature of 70 to 85 ° C. in a mixed solution). Air was kept out of contact with the WAP solution by bubbling with nitrogen. As a result, the (100) plane is 3300Å /
We obtained an etch rate of min and 200Å / min for the (111) plane.
Silicon oxides (21), (22) and (23) were etched for 20 hours or less after being carried out for 30 hours and had a sufficient masking action.

【0021】以上のWAP によるエッチングを5分〜1時
間、代表的には10〜30分間行うと、図1(A) における網
目状のパタ−ンを(110) 面に平行にパタ−ニングをする
と領域(17)の部分が逆向きのピラミッド状に正方形にエ
ッチングされV型溝を作ることができた。このエッチン
グの時間が5〜10分では逆向きの台形溝が(7) の部分に
形成され、領域(17)と(22)との巾を調整することにより
上向き台形または上向きV型凸部が領域(12)に対応して
形成された。
When the above WAP etching is performed for 5 minutes to 1 hour, typically 10 to 30 minutes, the mesh pattern shown in FIG. 1 (A) is patterned in parallel with the (110) plane. Then, the region (17) was etched into a square in a reverse pyramid shape to form a V-shaped groove. When the etching time is 5 to 10 minutes, the reverse trapezoidal groove is formed in the portion (7), and the upward trapezoidal or the upward V-shaped convex portion is formed by adjusting the widths of the regions (17) and (22). It was formed corresponding to the region (12).

【0022】即ち領域(17)は2〜10μm平方、代表的に
は5μm平方を有しているため、V型溝の深さは3μm
となる。またN+ の半導体層は0.5 μm以下代表的には
20〜2000μmを有しているため、このV型溝の上部はN
+ の導電型を残存して有し、また大部分はP型半導体で
あることがわかる。そしてN+ の半導体層(7)(24)(24')
は酸化珪素マスク(21)(22)(23)により保持されているた
め、互いに連結し、電極部(24)にキャリアを流す通路と
することができる。
That is, since the region (17) has a square of 2 to 10 μm, typically a square of 5 μm, the depth of the V-shaped groove is 3 μm.
Becomes The N + semiconductor layer is typically 0.5 μm or less
Since it has 20 to 2000 μm, the upper part of this V-shaped groove is N
It can be seen that the + type conductivity remains and most of the type is a P type semiconductor. And N + semiconductor layers (7) (24) (24 ')
Are held by the silicon oxide masks (21), (22) and (23), so that they can be connected to each other to form a passage through which carriers flow to the electrode part (24).

【0023】また、櫛型電極の後に形成される電極部の
上側領域(24),(24')は最初にあった如き平面を酸化珪素
マスクによりマスクされるため有していた。
Further, the upper regions (24) and (24 ') of the electrode portion formed after the comb-shaped electrode have the plane as originally described because it is masked by the silicon oxide mask.

【0024】この後、これらの半導体基板を弗酸中に浸
漬して基板上の酸化珪素を除去し、その後十分清浄にし
て図1(B) を得た。即ち、N+ 領域は光を吸収しやす
く、またP型半導体は光より電子およびホ−ルを作る。
このうちの電子をN+ 領域(7),(24') に到らしめ、この
+ 領域の抵抗が小さいため、効率よく電極部(24)に誘
導できる。即ち光照射面のすべてにN+ 層を作るのでは
なく、キャリアを通過および集合せしめる部分にのみN
+ 層を作り、空乏層を大きくさせている。そして光はN
+ 層での吸収を避け、V溝で有効に半導体内部に到らし
め、有効に電子・ホ−ルを発生させている。
After that, these semiconductor substrates were immersed in hydrofluoric acid to remove the silicon oxide on the substrates, and then sufficiently cleaned to obtain FIG. 1 (B). That is, the N + region easily absorbs light, and the P-type semiconductor makes electrons and holes rather than light.
Of these electrons, they reach the N + regions (7) and (24 '), and the resistance of this N + region is small, so that they can be efficiently guided to the electrode portion (24). That is, the N + layer is not formed on the entire light-irradiated surface, but N is formed only on the portion where carriers pass and collect.
The + layer is made and the depletion layer is enlarged. And the light is N
The absorption in the + layer is avoided and the V groove effectively reaches the inside of the semiconductor to effectively generate electrons and holes.

【0025】本発明は、この後、この基板表面に密接し
て窒化珪素膜を5〜50Å特に10〜30Åの膜厚にプラズマ
窒化法により形成した。即ち0.5 〜50MHz の誘導エネル
ギによりアンモニアまたは窒素と水素との混合気体をヘ
リュ−ム1〜20%に希釈して0.1 〜10torrの圧力中にて
窒化をした。窒化温度は150 〜700 ℃特に400 〜680℃
にて窒化することにより窒化珪素被膜(3) を形成した。
プラズマを使わず、アンモニア雰囲気に基板を挿入し、
単に熱のみを加えて窒化珪素被膜を形成してもよい。か
くして窒化珪素被膜(3) が5〜100 Åの厚さ、特に15〜
25Åの厚さに形成された。
In the present invention, thereafter, a silicon nitride film was formed in a film thickness of 5 to 50Å, particularly 10 to 30Å, in close contact with the surface of the substrate by the plasma nitriding method. That is, a mixed gas of ammonia or nitrogen and hydrogen was diluted to 1 to 20% of helium by inductive energy of 0.5 to 50 MHz and nitrided under a pressure of 0.1 to 10 torr. Nitriding temperature is 150 to 700 ℃, especially 400 to 680 ℃
A silicon nitride film (3) was formed by nitriding at.
Insert the substrate into the ammonia atmosphere without using plasma,
The silicon nitride film may be formed by simply applying heat. Thus, the silicon nitride film (3) has a thickness of 5-100Å, especially 15-
Formed to a thickness of 25Å.

【0026】裏面電極(2) としてアルミニュ−ムをこの
窒化膜を除去した後真空蒸着法により形成し、半導体基
板とのオ−ム接触用のシンタ−を300 〜600 ℃の温度範
囲にて不活性気体中で行った。
Aluminum is formed as the back electrode (2) by vacuum evaporation after removing the nitride film, and a sinter for ohmic contact with the semiconductor substrate is formed in the temperature range of 300 to 600 ° C. Performed in active gas.

【0027】図1の工程において、この後、その表面に
対抗電極(21)、補助電極(5) として、マグネシュ−ム(M
g)を真空蒸着をした。これはMgではなく、Al、Be等4.0e
V 以下の仕事関数が小さい金属であることが好ましかっ
た。Mg、Beにおいては酸化しやすく、生成を150 ℃、10
00時間の大気中の放置で行われ、信頼性が低下してしま
うため、Mg、Beまたはそれらと半導体または他の金属と
の混合物を50〜5000Å特に500 〜2000Åの上側にアルミ
ニュ−ムを0.5 〜3μmの厚さに形成し、さらに半導体
用にNi、Cr、Cuを100 〜1000Åの厚さに形成する多重膜
にした対抗電極(21)、(5) を形成した。
In the step shown in FIG. 1, thereafter, a counter electrode (21) and an auxiliary electrode (5), which are magnetism (M
g) was vacuum evaporated. This is not Mg, but Al, Be, etc. 4.0e
It was preferable that the metal had a work function of V or less and was small. In Mg and Be, it is easy to oxidize and the formation is 150 ℃, 10
Since it is left to stand in the atmosphere for 00 hours and its reliability deteriorates, Mg, Be or a mixture of them with a semiconductor or other metal is added to the upper side of 50 to 5000 Å, especially 500 to 2000 Å. The counter electrodes (21) and (5) were formed to have a thickness of ˜3 μm, and for the semiconductor, Ni, Cr, and Cu were formed into a multilayer film having a thickness of 100 to 1000 Å.

【0028】基板半導体(1) が以上の説明とは逆にN型
である場合はV型溝の上部に空乏層およびキャリアの通
路を構成するための半導体層(7) はP+ 型となり、この
対抗電極はPt,Au,Ni等の高い仕事関数の材料を用いるこ
とを表1に示してある。そしてこれらの材料を100 Å〜
1μm形成した。 しかしAu,Pt 等においては、太陽電
池を低価格で作るために50〜200 Åの厚さに形成し、そ
の上にAlを1〜3μm、Ni,Cu を0.1 〜0.5 μm形成し
た。
Contrary to the above description, when the substrate semiconductor (1) is N-type, the semiconductor layer (7) for forming a depletion layer and a carrier passage above the V-shaped groove is P + -type, It is shown in Table 1 that this counter electrode uses high work function materials such as Pt, Au, and Ni. And these materials are 100 Å ~
1 μm was formed. However, for Au, Pt, etc., a solar cell was formed to a thickness of 50 to 200 Å in order to make it at a low cost, and Al was formed thereon in the range of 1 to 3 µm and Ni and Cu were formed in the range of 0.1 to 0.5 µm.

【0029】電流を通し得る厚さ(5〜100 Å特に15〜30
Åの厚さ) の窒化珪素膜(Si3N4またはSi3N4-X 0<X<4)は
プラズマ窒化ではなく、グロ−放電CVD 法で形成しても
よい。その場合は裏面電極を2枚互いに合わせた。その
電極上に膜形成が行われないようにした。またこの膜は
他の還元雰囲気で形成される被膜、例えばSiC1-X(0<X<
1) であってもよい。
The thickness that allows the passage of electric current (5 to 100 Å, especially 15 to 30
The silicon nitride film (Si 3 N 4 or Si 3 N 4-X 0 <X <4) having a thickness of Å may be formed by a glow discharge CVD method instead of plasma nitriding. In that case, two back surface electrodes were aligned with each other. No film was formed on the electrode. Also, this film is a film formed in another reducing atmosphere, such as SiC 1-X (0 <X <
It may be 1).

【0030】かくの如くにして絶縁または半絶縁膜(3)
上に対抗電極を真空蒸着した被膜をフォトエッチング法
により半導体の表面が平坦面である櫛型電極(5) および
外部引き出し用パッド(21)の部分を除き、他部のV型ま
たは台形の溝が形成された領域(17)にある電極用材料を
除去して形成した。本発明の主なる構成は図面より明ら
かなごとく、V型または台形溝を有する領域上は対抗電
極が設けられておらず、また半導体上の平坦面上にのみ
対抗電極、外部引き出し電極(21)、引き出しリ−ド(32)
が設けられている点である。
Thus, the insulating or semi-insulating film (3)
The V-shaped or trapezoidal groove of the other part except for the comb-shaped electrode (5) and the pad (21) for external extraction whose surface of the semiconductor is a flat surface is formed by a photo-etching method on the coating on which the counter electrode is vacuum-deposited. It was formed by removing the electrode material in the region (17) in which was formed. As is clear from the drawings, the main structure of the present invention is that the counter electrode is not provided on the region having the V-shaped or trapezoidal groove, and the counter electrode and the external extraction electrode (21) are provided only on the flat surface on the semiconductor. , Drawer lead (32)
Is provided.

【0031】かくすることにより、対抗電極形成のフォ
トエッチングの際は対抗電極(5) 等の側周辺は平坦面で
あるため、そのパタ−ンのきれが鋭く、残存する金属が
ない。また電極下が平坦面であるため、窒化珪素膜(3)
のピンホ−ルが少ない。外部よりの機械ストレスにより
リ−ク等が発生しにくい。さらに光照射が行われるV型
または台形の溝の領域において、N+ またはP+ の半導
体層がないため、そこでの光吸収損失がなく、またV型
溝により効率よく光を内部に導入でき、入射光により電
子・ホ−ルを有効に発生できる。またこの溝の部分に導
体がないため、ピンホ−ル、リ−クが発生しても、物性
上まったく問題にならない等の特徴を有する。
Thus, in the photo-etching for forming the counter electrode, the periphery of the counter electrode (5) side is a flat surface, so that the pattern is sharp and no metal remains. In addition, since the underside of the electrode is a flat surface, the silicon nitride film (3)
There are few pinholes. Leaks are less likely to occur due to mechanical stress from the outside. Furthermore, since there is no semiconductor layer of N + or P + in the region of the V-shaped or trapezoidal groove where light irradiation is performed, there is no light absorption loss there, and the V-shaped groove allows efficient introduction of light into the inside. The incident light can effectively generate electrons and holes. Further, since there is no conductor in the groove portion, there is a feature that even if pinholes and leaks occur, there is no problem in physical properties.

【0032】図1(D) はこの上面に窒化珪素、酸化タン
タル、SiO 等の反射防止膜(10)を600 〜900 Åの厚さに
形成し、反応で照射光(20)の反射率を0.5 〜2.0 %にま
で下げ、きわめて理想照射にするとともに、対抗電極等
が機械損傷等で断線ショ−トが起きない保護膜とし、さ
らには対抗電極(5) と窒化珪素膜(3) との界面に酸素、
湿気が混入し、腐食等がおきて信頼性の低下が発生する
ことを防ぐことを目的としている。このためかかる周辺
部(25)にも反射防止膜が完全にコ−トされるようプラズ
マCVD 法により形成した。
In FIG. 1 (D), an antireflection film (10) of silicon nitride, tantalum oxide, SiO 2 or the like is formed on the upper surface to a thickness of 600 to 900 Å, and the reflectance of irradiation light (20) is shown by reaction. It is reduced to 0.5-2.0% to achieve extremely ideal irradiation, and the counter electrode is used as a protective film that does not cause disconnection shorts due to mechanical damage, and the counter electrode (5) and silicon nitride film (3). Oxygen at the interface,
The purpose is to prevent the deterioration of reliability caused by the inclusion of moisture and corrosion. For this reason, the antireflection film was also formed on the peripheral portion (25) by the plasma CVD method so that the antireflection film was completely coated.

【0033】この実施例において、AM1 の条件下にて1
8.5〜20.5% の変換効率を得、FFは0.82〜0.90を得るこ
とができた。光照射(20)がV型溝にて2回照射されるた
め、反射防止膜を形成しなくても反射率を12%以下にす
ることができた。本発明における対抗電極は櫛型とした
が、これを網目状または魚骨状としてもよく、基本的に
溝を有する光照射面と対抗電極の存在することを選択的
に分離したことを特徴としている。
In this example, 1 under the condition of AM1
The conversion efficiency was 8.5 to 20.5% and the FF was 0.82 to 0.90. Since the light irradiation (20) was applied twice in the V-shaped groove, the reflectance could be 12% or less without forming the antireflection film. Although the counter electrode in the present invention has a comb shape, it may have a mesh shape or a fish bone shape, which is characterized by selectively separating the light irradiation surface having a groove and the presence of the counter electrode. There is.

【0034】〔実施例2〕図2は本発明の他の実施例を
示す。図1と同様にV型溝の上部にはN+ またはP+
半導体層(7) を有し、それにより半導体(1) の上部に効
率よく空乏層を作るため、かつこの空乏層の電界により
集められたキャリアをN+ またはP+ 層で効率よく電極
部(5) に移動している。また光はV型溝で2回照射さ
れ、そこではN+ またはP+ 層がないため、効率よく半
導体(1) の内部に光を到らしめ得る。
[Embodiment 2] FIG. 2 shows another embodiment of the present invention. As in FIG. 1, a semiconductor layer (7) of N + or P + is provided on the upper part of the V-shaped groove, so that a depletion layer is efficiently formed on the upper part of the semiconductor (1) and the electric field of this depletion layer is The carriers collected by are efficiently moved to the electrode part (5) in the N + or P + layer. Further, the light is irradiated twice in the V-shaped groove, and since there is no N + or P + layer there, the light can efficiently reach the inside of the semiconductor (1).

【0035】かかるV型溝を光照射面にのみ設けるとと
もに、このV型溝下の半導体層により逆転しやすくする
ため、この領域即ち基板半導体(1) 上面付近に逆導電型
の0.5 μm以下特に20〜500 Åの厚さの層(7) を設けて
いる。加えてこの上側には、絶縁または半絶縁膜(3) と
対抗電極(5) を設けている。
In order to provide such a V-shaped groove only on the light-irradiated surface and to facilitate reversal by the semiconductor layer below this V-shaped groove, in this region, that is, near the upper surface of the substrate semiconductor (1), the reverse conductivity type of 0.5 μm or less is particularly preferable. A layer (7) with a thickness of 20 to 500 Å is provided. In addition, an insulating or semi-insulating film (3) and a counter electrode (5) are provided on the upper side.

【0036】図2の構造においてはV型溝の上部にのみ
逆導電型半導体層(7) を設け、かつこの半導体層をその
上部で互いに連続して対抗電極(5) 下にまで延在せしめ
るパタ−ンとすることが効果的である。するとV型溝の
下側の半導体中で光照射により形成された電子およびホ
−ルの一方はこの逆導電型半導体層(7) に引き寄せら
れ、かつこの上部のフロ−ティングチャネルを通って対
抗電極下にまで損失をほとんどなしでドリフトさせるこ
とができる。加えて、光照射がV型溝の下部の半導体に
なされる場合、その照射光はすべて逆導電型層による不
純物散乱光の吸収による損失がないことが特徴である。
かかる特徴により、本発明においては、珪素の理論限界
とされていた20%を越え、20.5%にまでAM1 の条件下で
光電変換効率を得ることができた。図面では反射防止膜
としてSiO または酸化タンタルを700 〜900 Åの厚さに
形成させている。加えてかかる構造においては、近赤外
の波長の検出も可能となり、950nm の半導体レ−ザ光を
も実用可能な程度光応答特性を作ることができた。
In the structure of FIG. 2, an opposite conductivity type semiconductor layer (7) is provided only on the upper portion of the V-shaped groove, and the semiconductor layers are continuously extended on the upper portion thereof to below the counter electrode (5). It is effective to use a pattern. Then, one of electrons and holes formed by light irradiation in the semiconductor below the V-shaped groove is attracted to the opposite conductivity type semiconductor layer (7), and counteracts through the floating channel above this. It can be drifted below the electrodes with little loss. In addition, when the light irradiation is performed on the semiconductor below the V-shaped groove, all the irradiation light is characterized by no loss due to absorption of impurity scattered light by the reverse conductivity type layer.
Due to such a feature, in the present invention, the photoelectric conversion efficiency could be obtained under the condition of AM1 exceeding 20% which was the theoretical limit of silicon and up to 20.5%. In the drawing, SiO or tantalum oxide is formed as an antireflection film to a thickness of 700 to 900 Å. In addition, in such a structure, it is possible to detect the wavelength of near infrared, and it is possible to make the photoresponse characteristic to the extent that 950 nm semiconductor laser light can be used practically.

【0037】[0037]

【発明の効果】以上の結果、AM1 下での変換効率は18%
にまで向上できた。加えて、短波長光の代表である蛍光
灯(300 Lx)下での特性が、50μmW/cm2 であった。本発
明のフロ−ティングチャネルMIS 型光電変換装置はその
フローティングチャネルの効果の大きさのみならず、そ
の形状すなわち電極部は平坦でありそれ以外の部分は凹
凸形状を持つことにより量産性に優れ、MIS 型において
初めて量産歩留まりを90%以上に高めることができた。
また信頼性に関して、150 ℃ 1000時間放置試験下にお
いて、特に異常は認められなかった。
As a result of the above, the conversion efficiency under AM1 is 18%.
I was able to improve to. In addition, the characteristic under a fluorescent lamp (300 Lx), which is a representative of short-wavelength light, was 50 μmW / cm 2 . The floating channel MIS type photoelectric conversion device of the present invention is excellent not only in the magnitude of the effect of the floating channel, but also in its shape, that is, the electrode portion is flat and the other portions have a concavo-convex shape, which is excellent in mass productivity. For the first time in the MIS type, the mass production yield could be increased to 90% or more.
Regarding the reliability, no abnormalities were found under the 150 ° C 1000-hour storage test.

【0038】本発明は珪素の単結晶を基本としたが、多
結晶、セミアモルファス、アモルファス構造の半導体ま
たは高速急冷法、デントライト法で作製した珪素等の半
導体であってもよい。また珪素の外にゲルマニュ−ムそ
の他化合物半導体であってもよい。またV型または台形
溝の平面のパタ−ンは本実施例の形(正方形)であるの
みならず、長方形または八角形等であってもよい。
Although the present invention is based on a single crystal of silicon, it may be a semiconductor having a polycrystalline, semi-amorphous or amorphous structure or a semiconductor such as silicon produced by the rapid quenching method or the dentrite method. In addition to silicon, germanium or other compound semiconductor may be used. Further, the V-shaped or trapezoidal groove plane pattern is not limited to the shape (square) of this embodiment, and may be rectangular or octagonal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を製造するための実施例の縦断面図を示
す。
1 shows a vertical cross-section of an embodiment for producing the invention.

【図2】本発明の他の光電変換装置の縦断面図を示す。FIG. 2 shows a vertical sectional view of another photoelectric conversion device of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年8月27日[Submission date] August 27, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ー導電型の半導体基板上に逆導電型の半導
体層を形成する工程と、該半導体層上にマスクを選択的
に形成し、前記マスクのない領域の半導体基板上部をエ
ッチング除去することにより、V型または台形の溝を形
成するとともに、前記溝は前記逆導電型の半導体層を越
えてー導電型の半導体層にまで至って形成することを特
徴とする光電変換装置作製方法
1. A step of forming a semiconductor layer of an opposite conductivity type on a semiconductor substrate of a conductivity type, a mask is selectively formed on the semiconductor layer, and an upper portion of the semiconductor substrate in a region without the mask is removed by etching. By doing so, a V-shaped or trapezoidal groove is formed, and the groove is formed beyond the semiconductor layer of the opposite conductivity type to reach the semiconductor layer of the conductivity type.
【請求項2】請求項1において逆導電型の半導体層を5
000Åまたはそれ以下の深さに形成し、この層は互い
に、外部引出し電極にまで連続して形成させたことを特
徴とする光電変換装置作製方法
2. A semiconductor layer of opposite conductivity type according to claim 1,
A method for manufacturing a photoelectric conversion device, characterized in that the layers are formed to a depth of 000 Å or less, and these layers are continuously formed up to the external extraction electrode.
JP4225070A 1992-07-31 1992-07-31 Photoelectric conversion device Expired - Lifetime JP2588464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4225070A JP2588464B2 (en) 1992-07-31 1992-07-31 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4225070A JP2588464B2 (en) 1992-07-31 1992-07-31 Photoelectric conversion device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56016133A Division JPS57130482A (en) 1981-02-05 1981-02-05 Mis type photoelectric transducer

Publications (2)

Publication Number Publication Date
JPH05259489A true JPH05259489A (en) 1993-10-08
JP2588464B2 JP2588464B2 (en) 1997-03-05

Family

ID=16823562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4225070A Expired - Lifetime JP2588464B2 (en) 1992-07-31 1992-07-31 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2588464B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159456A1 (en) * 2014-04-16 2015-10-22 三菱電機株式会社 Solar cell and solar cell manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186945A1 (en) 2012-06-13 2013-12-19 三菱電機株式会社 Solar cell and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124887A (en) * 1976-04-13 1977-10-20 Sony Corp Solar battery
JPS5440577A (en) * 1977-09-06 1979-03-30 Mitsubishi Electric Corp Manufacture of thyristor
JPS5541781A (en) * 1978-09-19 1980-03-24 Seiko Instr & Electronics Ltd Solar battery
JPS5610967A (en) * 1979-07-06 1981-02-03 Hitachi Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124887A (en) * 1976-04-13 1977-10-20 Sony Corp Solar battery
JPS5440577A (en) * 1977-09-06 1979-03-30 Mitsubishi Electric Corp Manufacture of thyristor
JPS5541781A (en) * 1978-09-19 1980-03-24 Seiko Instr & Electronics Ltd Solar battery
JPS5610967A (en) * 1979-07-06 1981-02-03 Hitachi Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159456A1 (en) * 2014-04-16 2015-10-22 三菱電機株式会社 Solar cell and solar cell manufacturing method
JP6058212B2 (en) * 2014-04-16 2017-01-11 三菱電機株式会社 Solar cell and method for manufacturing solar cell

Also Published As

Publication number Publication date
JP2588464B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
JP6746854B2 (en) Solar cell having emitter region containing wide bandgap semiconductor material
JP3722326B2 (en) Manufacturing method of solar cell
RU2468475C2 (en) Method of making silicon solar cell (versions) and corresponding solar cell
KR100847741B1 (en) Point-contacted heterojunction silicon solar cell having passivation layer between the interface of p-n junction and method for fabricating the same
US20080241987A1 (en) Method for fabricating a silicon solar cell structure having silicon nitride layers
TWI580058B (en) Solar cell
AU2013200622B2 (en) Solar cell and method of manufacturing the same
CN115188837A (en) Back contact solar cell, preparation method and cell module
JP4486622B2 (en) Manufacturing method of solar cell
KR20090017812A (en) Silicon solar cell and method thereof
JPS6231834B2 (en)
JP5745653B2 (en) Photovoltaic device, manufacturing method thereof, and photovoltaic module
JP3193287B2 (en) Solar cell
US5136348A (en) Structure and manufacturing method for thin-film semiconductor diode device
JP2928433B2 (en) Method for manufacturing photoelectric conversion element
JP2003152205A (en) Photoelectric conversion element and its manufacturing method
JP2588464B2 (en) Photoelectric conversion device
JP2005167291A (en) Solar cell manufacturing method and semiconductor device manufacturing method
JP3207869B2 (en) Semiconductor device manufacturing and passivation method
JPH0562473B2 (en)
EP0263711A2 (en) Manufacturing method for thin-film semiconductor diode device
EP4333080A1 (en) Contact structure applied to tunneling type solar cell, solar cell having contact structure and manufacturing method therefor
TWI717930B (en) Silicon-based solar cell and method of manufacturing the same
EP4068392A1 (en) Photovoltaic device with passivated contact and corresponding method of manufacture
JP2003158275A (en) Photoelectric conversion element and its manufacturing method