JPH0562473B2 - - Google Patents

Info

Publication number
JPH0562473B2
JPH0562473B2 JP56016133A JP1613381A JPH0562473B2 JP H0562473 B2 JPH0562473 B2 JP H0562473B2 JP 56016133 A JP56016133 A JP 56016133A JP 1613381 A JP1613381 A JP 1613381A JP H0562473 B2 JPH0562473 B2 JP H0562473B2
Authority
JP
Japan
Prior art keywords
semiconductor
electrode
layer
shaped
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56016133A
Other languages
Japanese (ja)
Other versions
JPS57130482A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP56016133A priority Critical patent/JPS57130482A/en
Publication of JPS57130482A publication Critical patent/JPS57130482A/en
Publication of JPH0562473B2 publication Critical patent/JPH0562473B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/062Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the metal-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 この発明は光電変換装置の光照射面側の構造に
関するものであつて、半導体基板とその上に該基
板とは異なる導電型の半導体層を設けて積層体の
半導体とし、この積層半導体上面の電極部領域は
平坦面を有し、該電極部以外の領域すなわち光電
変換領域にはV型または逆台形の溝を有してい
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure on the light irradiation surface side of a photoelectric conversion device, and includes a semiconductor substrate and a semiconductor layer having a conductivity type different from that of the substrate provided thereon to form a stacked semiconductor. The electrode region on the upper surface of the laminated semiconductor has a flat surface, and the region other than the electrode region, that is, the photoelectric conversion region has a V-shaped or inverted trapezoidal groove.

すなわち溝の淵部分となる半導体表面部分は半
導体基板とは異なる導電型のN+またはP+層より
なり、一方溝の内部は半導体基板そのものを露呈
せしめ、照射光を効率よく半導体内部に到らしめ
ている。
In other words, the semiconductor surface portion, which is the edge of the groove, is made of an N + or P + layer of a conductivity type different from that of the semiconductor substrate, while the inside of the groove exposes the semiconductor substrate itself, allowing irradiation light to efficiently reach the inside of the semiconductor. It's tight.

また電流を流し得る厚さの窒化珪素または炭化
珪素による5〜100Åの厚さの絶縁または半絶縁
膜を有せしめる場合、基板半導体とは逆導電型の
半導体層は電気的に見掛け上対抗電極から浮いて
おり、フローテイングチヤネルを構成するよう
に、設けるとともに、膜上の電極は半導体層に空
乏層を発生させる極性の電極を設けたことを特徴
としている。
In addition, when an insulating or semi-insulating film of 5 to 100 Å thick is formed of silicon nitride or silicon carbide to allow current to flow, a semiconductor layer of a conductivity type opposite to that of the substrate semiconductor is electrically apparently separated from the counter electrode. It is characterized in that it is provided so as to float and form a floating channel, and that the electrode on the film has a polarity that generates a depletion layer in the semiconductor layer.

さらに本発明は対抗電極部における半導体表面
は平面を有し、かつこの電極部以外の光照射面は
照射される光の反射効率を下げるため、その断面
形状がV型または逆台形の溝を設けたことを特徴
としている。
Furthermore, in the present invention, the semiconductor surface in the counter electrode part has a flat surface, and the light irradiation surface other than this electrode part is provided with a groove whose cross section is V-shaped or inverted trapezoid in order to reduce the reflection efficiency of the irradiated light. It is characterized by

本発明はかかるV型または逆台形の溝を半導体
表面に選択的に作り、かつ裏面の電極と形成の際
にその溝または溝上のきわめて薄い絶縁または半
絶縁膜が損傷してピンホール層が存在して対抗電
極とその直下の逆導電型等とが電気的にシヨート
しないようにするとともに、この5000Å以下好ま
しくは20〜200Åの厚さの逆導電型層と基板半導
体との接合にまで対抗電極の金属が拡散して、接
合を劣化させてしまわないように保証し、さらに
対抗電極がこの逆導電型層の下側の半導体に空乏
層を作り、開放電圧を向上せしめることを特徴と
している。
The present invention selectively forms such a V-shaped or inverted trapezoidal groove on the semiconductor surface, and when forming an electrode on the back surface, the groove or the extremely thin insulating or semi-insulating film on the groove is damaged, resulting in the existence of a pinhole layer. In addition to preventing electrical short-circuiting between the counter electrode and the opposite conductivity type layer immediately below it, the counter electrode also extends to the junction between the opposite conductivity type layer with a thickness of 5000 Å or less, preferably 20 to 200 Å, and the substrate semiconductor. This feature ensures that the metal does not diffuse and deteriorate the junction, and that the opposing electrode creates a depletion layer in the semiconductor below the opposite conductivity type layer, improving the open circuit voltage.

従来、V型溝が光照射面に無限にかつ均質に存
在する光電変換素子としてCNR(COMSAT
NON−REFRECTIDE SOLAR CELL)が知ら
れている。これはV型溝をシリコン半導体表面に
異方性エツチングを行い、かつこの溝が多数無限
に存在する表面に0.2〜0.3μmというきわめて浅
いPN接合をこの溝の全面に設け、この接合層に
対抗電極をオーム接触させて、この接合面で発生
した光起電力を取り出さんとしたものである。こ
のCNRは実験的にはAM0にて15%以上、AM1に
て18%の高い変換効率を得ている。しかしこのき
わめて浅い接合であるため、接合が簡単に破れて
PN接合部にて電気的シヨートまたはリークが発
生し、実用上の信頼性が得られていない。
Conventionally, CNR (COMSAT
NON-REFRECTIDE SOLAR CELL) is known. This is done by anisotropically etching a V-shaped groove on the surface of a silicon semiconductor, and then forming an extremely shallow PN junction of 0.2 to 0.3 μm on the entire surface of the surface, where many grooves exist infinitely, to counteract this bonding layer. The idea was to bring the electrodes into ohmic contact and extract the photovoltaic force generated at this joint surface. This CNR has experimentally achieved a high conversion efficiency of over 15% for AM0 and 18% for AM1. However, because the bond is extremely shallow, it can easily break.
Electric short or leak occurs at the PN junction, and practical reliability is not achieved.

さらに従来よりPN接合型装置は半導体基板に
微妙に制御された高い開放電圧を得るため、Pま
たはN層を高温にて高濃度拡散することにより作
製するものである。かかる装置においては拡散工
程、微妙なオーム接触用電極付等に多くのコスト
要因があり、その製造歩留まりも高くなかつた。
Furthermore, conventionally, PN junction type devices are manufactured by diffusing a P or N layer at high concentration at high temperature in order to obtain a finely controlled high open circuit voltage in a semiconductor substrate. In such a device, there are many cost factors such as the diffusion process and the attachment of delicate ohmic contact electrodes, and the manufacturing yield is not high.

またMIS型装置はきわめて薄い酸化珪素膜を光
照射面に形成し、その上面の対抗電極により高い
開放電圧を得ることができる。しかし電極部以外
の光照射部で、この絶縁膜が裏面の電極形成の際
または基板より変換素子を取り出すためにチツプ
化する際、機械損傷により劣化またはピンホール
または引つ掻き傷による欠陥を誘発し、電流の減
少の原因となり、特にこの光照射部での反転層
(インバージヨンレイヤー)を安定して作ること
が不可能であつた。
In addition, the MIS type device has an extremely thin silicon oxide film formed on the light irradiation surface, and can obtain a high open-circuit voltage by using a counter electrode on the top surface. However, in light irradiation areas other than the electrode area, this insulating film deteriorates due to mechanical damage or causes defects due to pinholes or scratches when forming electrodes on the back side or chipping to extract the conversion element from the substrate. However, this caused a decrease in current, and it was impossible to stably form an inversion layer, especially in the light irradiated area.

本発明はMIS型装置としての絶縁層を接合部の
劣化防止用バリアとして動作せしめる特徴と、浅
い拡散(シヤローデイフユージヨン)法による
PN接合型の装置の特徴とを合わせ持ち、かつそ
れぞれの欠点を相殺させたもので、きわめて理想
的な構造を有するものである。
The present invention is characterized by the fact that the insulating layer of the MIS type device acts as a barrier to prevent deterioration of the junction, and by the shallow diffusion method.
It has an extremely ideal structure, having both the features of the PN junction type device and canceling out the drawbacks of each.

即ち、光照射用の一導電型の半導体上面には、
それと逆導電型の半導体層を0.5μm以下の厚さ、
特に20〜2000Åに有せしめたもので、半導体表面
を導電型に反転させるために設けている。
That is, on the top surface of a semiconductor of one conductivity type for light irradiation,
and a semiconductor layer of the opposite conductivity type to a thickness of 0.5 μm or less,
In particular, it has a thickness of 20 to 2000 Å, and is provided to invert the conductivity type of the semiconductor surface.

さらにその上面に電流を流し得る厚さの絶縁ま
たは半絶縁膜を設け、その上面に開放電圧を決定
するための対抗電極を設けている。このため開放
電圧は半導体と電極との仕事関数差より決められ
る電圧が作られ、さらに、その下側の基板半導体
に対し逆導電型半導体層は外部電極と接触をして
いないため、フローテイング構造を有している。
加えてこの電極部間の光照射部において、この逆
導電型の半導体層を薄く、ここでの光照吸収によ
る変換効率の低下を防いでいる。またこの半導体
層はフローテイングであつたため、対抗電極方向
への横型電界が発生し、光照射により発生した一
方の電荷はこの半導体層を通つて横方向へのドリ
フトを助長させるいわゆるチヤネル構造を有して
いる。
Furthermore, an insulating or semi-insulating film having a thickness that allows current to flow is provided on the upper surface thereof, and a counter electrode for determining the open circuit voltage is provided on the upper surface. Therefore, the open circuit voltage is determined by the difference in work function between the semiconductor and the electrode.Furthermore, since the semiconductor layer of the opposite conductivity type to the underlying substrate semiconductor is not in contact with the external electrode, the floating structure have.
In addition, in the light irradiation part between the electrode parts, the semiconductor layer of the opposite conductivity type is made thin to prevent a reduction in conversion efficiency due to absorption of light here. In addition, since this semiconductor layer was floating, a lateral electric field was generated in the direction of the counter electrode, and one charge generated by light irradiation had a so-called channel structure that promoted drift in the lateral direction through this semiconductor layer. are doing.

この意味で本発明構造をフローテイングチヤネ
ル構造の光電変換装置といつても良い。
In this sense, the structure of the present invention may be referred to as a photoelectric conversion device having a floating channel structure.

また、この電極下にも同じに作られる半導体層
と半導体表面との接合部に関して、いわゆる従来
のPN接合型の場合は電極間のオーム接触用のた
めの電極半導体間に合金(アロイ)をさせるた
め、0.5〜1μmの接合深さを必要とする。このた
め本発明の如きその深さを0.5μm以下、特に20〜
500Åとした逆導電型半導体層を作ることは不可
能であつた。しかし本発明はかかるオーム接触用
電極を作らず、絶縁または半絶縁膜上に対抗電極
を設け、この膜の下側のPN接合の接合部にさら
にその空乏層をひろげるべき極性となる材料を用
いて、対抗電極を構成している。
In addition, regarding the junction between the semiconductor layer and the semiconductor surface, which is also made under this electrode, in the case of the so-called conventional PN junction type, an alloy is made between the electrode semiconductor for ohmic contact between the electrodes. Therefore, a bonding depth of 0.5 to 1 μm is required. Therefore, as in the present invention, the depth is 0.5 μm or less, especially 20 μm or less.
It was impossible to create a reverse conductivity type semiconductor layer with a thickness of 500 Å. However, in the present invention, such an ohmic contact electrode is not made, but a counter electrode is provided on an insulating or semi-insulating film, and a material with a polarity that should further expand the depletion layer is used at the junction of the PN junction under this film. This constitutes a counter electrode.

本発明は以上に加えて、この光照射面に対して
はV型または逆台形の溝を設け、その部分での照
射光の反射を防止させており、加えてこのV型溝
を従来知られていたPN接合型ではなく、MIS型
の光電変換装置に応用したものである。加えて対
抗電極部以外の表面に凹凸を有することにより
MIS型素子の製造保留まりの向上を図つたもの
で、以下に図面に従つて本発明の実施例を示す。
In addition to the above, the present invention provides a V-shaped or inverted trapezoidal groove on the light irradiation surface to prevent reflection of the irradiated light at that part. It was applied to an MIS type photoelectric conversion device, rather than the PN junction type that was previously used. In addition, by having irregularities on the surface other than the counter electrode part,
The present invention is intended to improve the manufacturing backlog of MIS type elements, and embodiments of the present invention will be described below with reference to the drawings.

実施例 1 第1図は本発明を実施するための光電変換装置
を作製するための縦断面図を示している。
Example 1 FIG. 1 shows a longitudinal cross-sectional view for producing a photoelectric conversion device for carrying out the present invention.

第1図Aにおいて、半導体基板として100面
またはその近傍の結晶方位(100面に対して±
15°以内とした)を有するシリコン半導体を用い
た。比抵抗は2〜50ΩcmのP型とした。この半導
体1の表面(図面上側)にデイツプ法により酸化
珪素を、また裏面(図面下側)にはデイツプ法に
よりボロンガラスを全面に形成し、湿酸素中にて
1000〜1200℃の温度にて酸化拡散し、P+層11
を2〜5μmの深さに裏面全面に形成した。さら
に半導体1の表面の酸化珪素を化学的に除去し
た。
In FIG. 1A, the semiconductor substrate has a crystal orientation of 100 plane or its vicinity (± with respect to 100 plane).
(within 15°) was used. The specific resistance was P type with a resistivity of 2 to 50 Ωcm. Silicon oxide was formed on the surface (upper side of the drawing) of this semiconductor 1 by the dip method, and boron glass was formed entirely on the back surface (lower side of the drawing) by the dip method.
Oxidation diffusion occurs at a temperature of 1000-1200℃, and the P + layer 11
was formed on the entire back surface to a depth of 2 to 5 μm. Furthermore, silicon oxide on the surface of the semiconductor 1 was chemically removed.

この後リンガラスまたは砒素ガラス23を同様
のデイツプ法により半導体1の表面に形成し、
700〜1000℃の温度にて酸化拡散し、基板とは逆
導電型半導体層7を0.5μm以下の厚さ例えば20〜
2000Å、特に200Åの厚さに形成した。
After that, phosphorus glass or arsenic glass 23 is formed on the surface of the semiconductor 1 by the same dip method.
The semiconductor layer 7 is oxidized and diffused at a temperature of 700 to 1000°C to form a semiconductor layer 7 of a conductivity type opposite to that of the substrate to a thickness of 0.5 μm or less, e.g.
It was formed to a thickness of 2000 Å, especially 200 Å.

裏面のP+層11は基板が十分オーム接触をす
る場合は、特に作る必要はない。
The P + layer 11 on the back side is not particularly necessary if the substrate makes sufficient ohmic contact.

さらにリンガラスまたは砒素ガラス被膜を少な
くともその上面において選択的に除去し残存領域
を21、22、23とした。第1図Aにおいて被膜21
は対抗電極を形成する領域であり、被膜22はV
型溝または逆台形の溝を作るための凸部に対応す
る領域である。この被膜22は被膜21に連続し
ており、V型溝を形成後この凸部のN+の領域が
電極下のN+の領域にまで連続するようにした。
被膜21の巾は10〜20μmにて外部引き出し端子
用被膜23に連なつている。
Furthermore, the phosphorus glass or arsenic glass coating was selectively removed at least on its upper surface to leave remaining areas 21, 22, and 23. In FIG. 1A, the coating 21
is a region forming a counter electrode, and the coating 22 is V
This is a region corresponding to a convex portion for forming a mold groove or an inverted trapezoidal groove. This coating 22 is continuous with the coating 21, and after forming the V-shaped groove, the N + region of this convex portion is continuous to the N + region under the electrode.
The width of the coating 21 is 10 to 20 μm, and the coating 21 is connected to the coating 23 for external lead-out terminals.

領域17は2〜10μm平方、代表的には5μm平方
の穴である。この領域17の周辺には網目状に被膜
22が2〜10μm巾、代表的には5μm巾にて形成
されている。この網目状の方向は結晶方位の11
0面に平行とし、矩形のV型または逆台形の溝が
異方性エツチングにて形成されるように合わせこ
んだ。
Area 17 is a hole 2-10 μm square, typically 5 μm square. Around this region 17, a mesh-like coating 22 is formed with a width of 2 to 10 μm, typically 5 μm. The direction of this mesh is the 11th crystal orientation.
The grooves were parallel to the 0 plane and aligned so that a rectangular V-shaped or inverted trapezoidal groove was formed by anisotropic etching.

この後、この第1図Aの構造の基板をWAP(水
8c.c.−エチレンジアミン17c.c.−ピロカクコール3
gの混合液)中にて70〜85℃の温度にて加熱エツ
チングを行つた。窒素でバブルすることにより空
気がWAP溶液に触れないように行つた。その結
果、100面は3300Å/分のエツチ速度を、また
111面は200Å/分を得た。酸化珪素21,2
2,23は30時間実施して20Å以下のエツチング
であり、十分なマスク作用を有していた。
After this, the substrate having the structure shown in FIG.
Heat etching was carried out at a temperature of 70 to 85° C. Air was prevented from coming into contact with the WAP solution by bubbling with nitrogen. As a result, an etch rate of 3300 Å/min was obtained for the 100th plane, and 200 Å/min for the 111th plane. silicon oxide 21,2
Nos. 2 and 23 were etched for 30 hours and had an etching depth of 20 Å or less, and had a sufficient masking effect.

以上のWAPによるエツチングを5分〜1時間、
代表的には10〜30分間行うと、第1図Aにおける
網目状のパターンを110面に平行にパターニン
グをすると領域17の部分が逆向きのピラミツド状
に正方形にエツチングされV型溝を作ることがで
きた。このエツチングの時間が5〜10分では逆向
きの台形(逆台形)溝が7の部分に形成され、領
域17と22との巾を調整することにより上向き台形
または上向きV型凸(逆V型)部が領域12に対応
して形成された。
Etching using WAP as described above for 5 minutes to 1 hour.
Typically, if this is done for 10 to 30 minutes, when the mesh pattern shown in Figure 1A is patterned parallel to the 110th plane, area 17 will be etched squarely in the shape of an inverted pyramid, creating a V-shaped groove. was completed. If this etching takes 5 to 10 minutes, an inverted trapezoidal (inverted trapezoid) groove will be formed in the part 7, and by adjusting the width of regions 17 and 22, an upward trapezoid or an upward V-shaped convex (inverted V-shaped) groove will be formed. ) was formed corresponding to region 12.

即ち領域17は2〜10μm平方、代表的には5μm
平方を有しているため、V型溝の深さは3μmと
なる。またN+の半導体層は0.5μm以下代表的に
は20〜2000μmを有しているため、このV型溝の
上部はN+の導電型を残存して有し、また大部分
はP型半導体であることがわかる。そしてN+
半導体層7,24,24′は酸化珪素マスク21,
22,23により保持されているため、互いに連
結し、電極部24にキヤリアを流す通路とするこ
とができる。
That is, area 17 is 2 to 10 μm square, typically 5 μm.
Since it has a square shape, the depth of the V-shaped groove is 3 μm. In addition, since the N + semiconductor layer has a thickness of 0.5 μm or less, typically 20 to 2000 μm, the upper part of this V-shaped groove still has the N + conductivity type, and most of it is a P-type semiconductor. It can be seen that it is. The N + semiconductor layers 7, 24, 24' are covered with a silicon oxide mask 21,
Since they are held by 22 and 23, they are connected to each other and can be used as a passage through which carriers flow through the electrode section 24.

また、櫛型電極の後に形成される電極部の上側
領域24,24′は最初にあつた如き平面を酸化珪素
マスクによりマスクされるため有していた。
Further, the upper regions 24, 24' of the electrode portions formed after the comb-shaped electrodes had the same flat surfaces as they had initially because they were masked by a silicon oxide mask.

この後、これらの半導体基板を弗酸中に浸漬し
て基板上の酸化珪素を除去し、その後十分清浄に
して第1図Bを得た。
Thereafter, these semiconductor substrates were immersed in hydrofluoric acid to remove silicon oxide on the substrates, and then sufficiently cleaned to obtain FIG. 1B.

即ち、N+領域は光を吸収しやすく、またP型
半導体は光より電子およびホールを作る。このう
ちの電子をN+領域7、24′に到らしめ、このN+
領域の抵抗が小さいため、効率よく電極部24に
誘導できる。即ち光照射面のすべてにN+層を作
るのではなく、キヤリアを通過および集合せしめ
る部分にのみN+層を作り、空乏層を大きくさせ
ている。
That is, the N + region easily absorbs light, and the P-type semiconductor creates electrons and holes more than light. The electrons among these are allowed to reach the N + region 7, 24′, and this N +
Since the resistance of the region is low, it can be efficiently guided to the electrode section 24. That is, instead of forming an N + layer on the entire surface irradiated with light, the N + layer is formed only on the portion where carriers pass through and collect, thereby enlarging the depletion layer.

そして光はN+層での吸収を避け、V溝または
逆台形の溝で有効に半導体内部に到らしめ、有効
に電子・ホールを発生させている。
The light avoids absorption in the N + layer and effectively reaches the interior of the semiconductor through the V-groove or inverted trapezoidal groove, effectively generating electrons and holes.

本発明は、この後、この基板表面に密接して窒
化珪素膜を5〜50Å特に10〜30Åの膜厚にプラズ
マ窒化法により形成した。即ち0.5〜50MHzの誘
導エネルギによりアンモニアまたは窒素と水素と
の混合気体をヘリユーム1〜20%に希釈して0.1
〜10torrの圧力中にて窒化をした。窒化温度は
150〜700℃特に400〜680℃にて窒化することによ
り窒化珪素被膜3を形成した。プラズマを使わ
ず、アンモニア雰囲気に基板を挿入し、単に熱の
みを加えて窒化珪素被膜を形成してもよい。かく
して窒化珪素被膜3が5〜100Åの厚さ、特に15
〜25Åの厚さに形成された。
In the present invention, a silicon nitride film was then formed closely on the surface of the substrate to a thickness of 5 to 50 Å, particularly 10 to 30 Å, by plasma nitriding. That is, ammonia or a mixture of nitrogen and hydrogen is diluted to 1 to 20% helium using induction energy of 0.5 to 50 MHz.
Nitriding was carried out at a pressure of ~10 torr. The nitriding temperature is
A silicon nitride film 3 was formed by nitriding at 150 to 700°C, particularly 400 to 680°C. The silicon nitride film may be formed by inserting the substrate into an ammonia atmosphere and simply applying heat without using plasma. Thus, the silicon nitride coating 3 has a thickness of 5 to 100 Å, in particular 15 Å.
formed to a thickness of ~25 Å.

裏面電極2としてアルミニユームをこの窒化膜
を除去した後真空蒸着法により形成し、半導体基
板とのオーム接触用のシンターを300〜600℃の温
度範囲にて不活性気体中で行つた。
After removing this nitride film, aluminum was formed as the back electrode 2 by vacuum evaporation, and sintering for ohmic contact with the semiconductor substrate was performed in an inert gas at a temperature range of 300 to 600°C.

第1図の工程において、この後、その表面に対
抗電極21、補助電極5として、マグネシユーム
(Mg)を真空蒸着をした。これはMgではなく、
Al、Be等4.0eV以下の仕事関数が小さい金属であ
ることが好ましかつた。Mg、Beにおいては酸化
しやすく、生成を150℃、1000時間の大気中の放
置で行われ、信頼性が低下してしまうため、
Mg、Beまたはそれらと半導体または他の金属と
の混合物を50〜5000Å特に500〜2000Åの上側に
アルミニユームを0.5〜3μmの厚さに形成し、さ
らに半導体用にNi、Cr、Cuを100〜1000Åの厚
さに形成する多重膜にした対抗電極21,5を形
成した。
In the process shown in FIG. 1, magnesium (Mg) was then vacuum-deposited on the surface as a counter electrode 21 and an auxiliary electrode 5. This is not Mg,
It is preferable to use a metal such as Al or Be with a small work function of 4.0 eV or less. Mg and Be are easily oxidized and are left in the atmosphere at 150°C for 1000 hours, reducing reliability.
Mg, Be, or a mixture of them and a semiconductor or other metal is formed on the upper side of 50 to 5000 Å, especially 500 to 2000 Å, and aluminum is formed to a thickness of 0.5 to 3 μm, and Ni, Cr, and Cu are further formed for semiconductors to a thickness of 100 to 1000 Å. Counter electrodes 21 and 5 were formed in the form of a multilayer film having a thickness of .

基板半導体1が以上の説明とは逆にN型である
場合はV型または逆台形の溝の上部に空乏層およ
びキヤリアの通路を構成するための半導体層7は
P+型となり、この対抗電極はPt、Au、Ni等の高
い仕事関数の材料を用いる。
Contrary to the above description, when the substrate semiconductor 1 is of N type, the semiconductor layer 7 for forming a depletion layer and a carrier path above the V-type or inverted trapezoidal groove is
It is P + type, and this counter electrode uses a material with a high work function such as Pt, Au, or Ni.

そしてこれらの材料を100Å〜1μm形成した。
しかしAu、Pt等においては、太陽電池を低価格
で作るために50〜200Åの厚さに形成し、その上
にAlを1〜3μm、Ni、Cuを0.1〜0.5μm形成し
た。
These materials were formed to a thickness of 100 Å to 1 μm.
However, in order to make solar cells at low cost, Au, Pt, etc. are formed to a thickness of 50 to 200 Å, and on top of that, Al is formed to a thickness of 1 to 3 μm, and Ni and Cu are formed to a thickness of 0.1 to 0.5 μm.

電流を通し得る厚さ(5〜100Å特に15〜30Å
の厚さ)の窒化珪素膜(Si3N4またはSi3N4-x
<X<4)はプラズマ窒化ではなく、グロー放電
CVD法で形成してもよい。その場合は裏面電極
を2枚互いに合わせた。その電極上に膜形成が行
われないようにした。またこの膜は他の還元雰囲
気で形成される被膜、例えばSiC1-x(0<X<1)
であつてもよい。
Thickness that allows electric current to pass (5 to 100 Å, especially 15 to 30 Å
silicon nitride film (Si 3 N 4 or Si 3 N 4-x 0
<X<4) is not plasma nitriding but glow discharge
It may be formed by CVD method. In that case, two back electrodes were placed together. Film formation was prevented from occurring on the electrode. This film can also be applied to other films formed in a reducing atmosphere, such as SiC 1-x (0<X<1).
It may be.

かくの如くにして絶縁または半絶縁膜3上に真
空蒸着した対抗電極となる被膜をフオトエツチン
グ法により半導体の表面が平坦面である櫛型電極
5および外部引き出し用パツド21の部分を除
き、他部のV型または逆台形の溝が形成された領
域17にある電極用材料を除去して形成した。
The film that will become the counter electrode thus vacuum-deposited on the insulating or semi-insulating film 3 is then photo-etched to remove the comb-shaped electrode 5, which has a flat semiconductor surface, and the external lead-out pad 21, and other parts. The electrode material in the region 17 where the V-shaped or inverted trapezoidal groove was formed was removed.

本発明の主なる構成は図面より明らかなごと
く、V型または逆台形の溝を有する領域上は対抗
電極が設けられておらず、また半導体上の平坦面
上にのみ対抗電極、外部引き出し電極21、引き
出しリード32が設けられている点である。
As is clear from the drawings, the main structure of the present invention is that no counter electrode is provided on the region having a V-shaped or inverted trapezoidal groove, and the counter electrode and the external extraction electrode 21 are provided only on the flat surface of the semiconductor. , a lead-out lead 32 is provided.

かくすることにより、対抗電極形成のフオトエ
ツチングの際は対抗電極5等の側周辺は平坦面で
あるため、そのパターンのきれが鋭く、残存する
金属がない。また電極下が平坦面であるため、窒
化珪素膜3のピンホールが少ない。外部よりの機
械ストレスによりリーク等が発生しにくい。さら
に光照射が行われるV型または逆台形の溝の領域
において、N+またはP+の半導体層がないため、
そこでの光吸収損失がなく、またV型または逆台
形の溝により効率よく光を内部に導入できる、入
射光により電子・ホールを有効に発生できる。
As a result, when photo-etching is performed to form the counter electrode, since the periphery of the counter electrode 5 and the like is a flat surface, the pattern is sharp and there is no remaining metal. Furthermore, since the surface under the electrode is flat, there are fewer pinholes in the silicon nitride film 3. Leakage is less likely to occur due to external mechanical stress. Furthermore, since there is no N + or P + semiconductor layer in the V-shaped or inverted trapezoidal groove region where light irradiation is performed,
There is no light absorption loss there, and the V-shaped or inverted trapezoidal grooves allow light to be efficiently introduced into the interior, and electrons and holes can be effectively generated by incident light.

またこの溝の部分に導体がないため、ピンホー
ル、リークが発生しても、物性上まつたく問題に
ならない等の特徴を有する。
Furthermore, since there is no conductor in this groove, even if a pinhole or leak occurs, it will not cause any problem in terms of physical properties.

第1図Dはこの上面に窒化珪素、酸化タンタ
ル、SiO等の反射防止膜10を600〜900Åの厚さ
に形成し、反応で照射光20の反射率を0.5〜2.0
%にまで下げ、きわめて理想照射にするととも
に、対抗電極等が機械損傷等で断線シヨートが起
きない保護膜とし、さらには対抗電極5と窒化珪
素膜3との界面に酸素、湿気が混入し、腐食等が
おきて信頼性の低下が発生することを防ぐことを
目的としている。このためかかる周辺部25にも
反射防止膜が完全にコートされるようプラズマ
CVD法により形成した。
In FIG. 1D, an antireflection film 10 made of silicon nitride, tantalum oxide, SiO, etc. is formed on this upper surface to a thickness of 600 to 900 Å, and the reflectance of the irradiated light 20 is reduced to 0.5 to 2.0 by reaction.
%, to achieve extremely ideal irradiation, and to provide a protective film that prevents the counter electrode from breaking due to mechanical damage, etc., and to prevent oxygen and moisture from entering the interface between the counter electrode 5 and the silicon nitride film 3. The purpose is to prevent a decrease in reliability due to corrosion, etc. Therefore, the plasma is applied so that the anti-reflection film is completely coated on the peripheral area 25.
Formed by CVD method.

この実施例において、AM1の条件下にて18.5
〜20.5%の変換効率を得、FFは0.82〜0.90を得る
ことができた。
In this example, under AM1 conditions 18.5
We were able to obtain a conversion efficiency of ~20.5% and a FF of 0.82-0.90.

光照射20がV型または逆台形の溝にて2回照
射されるため、反射防止膜を形成しなくても反射
率を12%以下にすることができた。
Since the light irradiation 20 was irradiated twice in the V-shaped or inverted trapezoidal groove, the reflectance could be reduced to 12% or less without forming an antireflection film.

本発明における対抗電極は櫛型としたが、これ
を網目状または魚骨状としてもよく、基本的に溝
を有する光照射面と対抗電極の存在することを選
択的に分離したことを特徴としている。
Although the counter electrode in the present invention is comb-shaped, it may also be mesh-shaped or fishbone-shaped, and is basically characterized by selectively separating the light irradiation surface having grooves and the presence of the counter electrode. There is.

実施例 2 第2図は本発明の他の実施例を示す。第1図と
同様にV型または逆台形の溝の上部にはN+また
はP+の半導体層7を有し、それにより半導体1
の上部に効率よく空乏層を作るため、かつこの空
乏層の電界により集められたキヤリアをN+また
はP+層で効率よく電極部5に移動している。ま
た光はV型溝で2回照射され、そこではN+また
はP+層がないため、効率よく半導体1の内部に
光を到らしめ得る。
Embodiment 2 FIG. 2 shows another embodiment of the invention. As shown in FIG .
In order to efficiently create a depletion layer above the depletion layer, carriers collected by the electric field of this depletion layer are efficiently transferred to the electrode section 5 through the N + or P + layer. Further, the light is irradiated twice in the V-shaped groove, and since there is no N + or P + layer there, the light can efficiently reach the inside of the semiconductor 1.

かかるV型または逆台形の溝を光照射面にのみ
設けるとともに、このV型または逆台形の溝下の
半導体層により逆転しやすくするため、この領域
即ち基板半導体1上面付近に逆導電型の0.5μm以
下特に20〜500Åの厚さの層7を設けている。加
えてこの上側には、絶縁または半絶縁膜3と対抗
電極5を設けている。
In order to provide such a V-shaped or inverted trapezoidal groove only on the light irradiation surface and to facilitate reversal by the semiconductor layer under this V-shaped or inverted trapezoidal groove, a 0.5 inverted conductivity type groove is provided in this region, that is, near the top surface of the substrate semiconductor 1. The layer 7 is provided with a thickness of less than .mu.m, in particular from 20 to 500 .ANG. In addition, an insulating or semi-insulating film 3 and a counter electrode 5 are provided on the upper side.

第2図の構造においてはV型または逆台形の溝
の上部にのみ逆導電型半導体層7を設け、かつこ
の半導体層をその上部で互いに連続して対抗電極
5下にまで延在せしめるパターンとすることが効
果的である。するとV型溝の下側の半導体中で光
照射により形成された電子およびホールの一方は
この逆導電型半導体層7に引き寄せられ、かつこ
の上部のフローテイングチヤネルを通つて対抗電
極下にまで損失をほとんどなしでドリフトさせる
ことができる。加えて、光照射がV型または逆台
形の溝の下部の半導体になされる場合、その照射
光はすべて逆導電型層による不純物散乱光の吸収
による損失がないことが特徴である。かかる特徴
により、本発明においては、珪素の理論限界とさ
れていた20%を越え、20.5%にまでAM1の条件
下で光電変換効率を得ることができた。図面では
反射防止膜としてSiOまたは酸化タンタルを700
〜900Åの厚さに形成させている。加えてかかる
構造においては、近赤外の波長の検出も可能とな
り、950nmの半導体レーザ光をも実用可能な程
度光応答特性を作ることができた。
In the structure shown in FIG. 2, the opposite conductivity type semiconductor layer 7 is provided only on the upper part of the V-shaped or inverted trapezoidal groove, and the pattern is such that the semiconductor layers are continuous with each other and extend below the counter electrode 5. It is effective to do so. Then, one of the electrons and holes formed by light irradiation in the semiconductor below the V-shaped groove is attracted to this opposite conductivity type semiconductor layer 7, and is lost through this upper floating channel to the bottom of the counter electrode. can be made to drift with little effort. In addition, when light is irradiated onto the semiconductor below the V-shaped or inverted trapezoidal groove, the irradiated light is characterized in that there is no loss due to absorption of impurity scattered light by the reverse conductivity type layer. Due to these characteristics, in the present invention, it was possible to obtain a photoelectric conversion efficiency of 20.5% under AM1 conditions, exceeding the theoretical limit of 20% for silicon. In the drawing, SiO or tantalum oxide is used as an anti-reflection coating.
It is formed to a thickness of ~900 Å. In addition, with this structure, it is also possible to detect near-infrared wavelengths, and we have been able to create photoresponse characteristics that are practical even for 950 nm semiconductor laser light.

この結果、AM1下での変換効率は18%にまで
向上できた。加えて、短波長光の代表である蛍光
灯(300lx)下での特性が、50mW/cm2であつた。
As a result, the conversion efficiency under AM1 was improved to 18%. In addition, the characteristics under fluorescent light (300 lx), which is a typical short wavelength light, was 50 mW/cm 2 .

以上の実施例より明らかな如く、本発明のフロ
ーテイングチヤネルMIS型光電変換装置はそのフ
ローテイングチヤネルの効果の大きさのみなら
ず、その形状すなわち電極部は平坦でありそれ以
外の部分は凹凸形状を持つことにより量産性に優
れ、MIS型において初めて量産保留まりを90%以
上に高めることができた。また信頼性に関して、
150℃1000時間放置試験下において、特に異常は
認められなかつた。
As is clear from the above embodiments, the floating channel MIS type photoelectric conversion device of the present invention not only has a large effect of the floating channel, but also its shape, that is, the electrode part is flat, and the other parts are uneven. This allows for excellent mass production, and for the first time in the MIS type, we were able to increase the mass production backlog to over 90%. Also regarding reliability,
No particular abnormality was observed during the 1000 hour storage test at 150°C.

本発明は珪素の単結晶を基本としたが、多結
晶、セミアモルフアス、アモルフアス構造の半導
体または高速急冷法、デントライト法で作製した
珪素等の半導体であつてもよい。また珪素の外に
ゲルマニユームその他化合物半導体であつてもよ
い。
Although the present invention is based on a silicon single crystal, semiconductors such as polycrystalline, semi-amorphous, or amorphous structure semiconductors, or silicon produced by a high-speed quenching method or a dentrite method may be used. Further, in addition to silicon, germanium or other compound semiconductors may be used.

またV型または逆台形の溝の平面のパターンは
本実施例の形(正方形)であるのみならず、長方
形または八角形等であつてもよい。
Further, the planar pattern of the V-shaped or inverted trapezoidal grooves is not only the shape of this embodiment (square) but may also be rectangular or octagonal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を製造するための実施例の縦断
面図を示す。第2図は本発明の他の光電変換装置
の縦断面図を示す。
FIG. 1 shows a longitudinal sectional view of an embodiment for manufacturing the invention. FIG. 2 shows a longitudinal cross-sectional view of another photoelectric conversion device of the present invention.

Claims (1)

【特許請求の範囲】 1 一導電型の半導体基板の上部に該半導体基板
とは逆の導電型を有する半導体層を設けて積層体
を構成し、 前記半導体層を前記半導体基板の上部に残存さ
せかつ該残存させた半導体層が互いに電気的に連
結するように、前記積層体の上面に前記半導体層
と前記半導体基板との界面を越え前記半導体基板
の内部にまで到る深さを有するV型または逆台形
の溝を設け、 前記積層体の上面に5〜100Åの厚さの窒化珪
素または炭化珪素の絶縁または半絶縁膜を設け、 前記残存させた半導体層の上面の前記絶縁また
は半絶縁膜の少なくとも一部の上面に電極を設け
たことを特徴とする光電変換装置。
[Claims] 1. A laminate is formed by providing a semiconductor layer having a conductivity type opposite to that of the semiconductor substrate on top of a semiconductor substrate of one conductivity type, and the semiconductor layer remains on the top of the semiconductor substrate. and a V-shape having a depth extending beyond the interface between the semiconductor layer and the semiconductor substrate and into the inside of the semiconductor substrate on the upper surface of the stack so that the remaining semiconductor layers are electrically connected to each other. Alternatively, an inverted trapezoidal groove is provided, an insulating or semi-insulating film of silicon nitride or silicon carbide with a thickness of 5 to 100 Å is provided on the upper surface of the stacked body, and the insulating or semi-insulating film is provided on the upper surface of the remaining semiconductor layer. A photoelectric conversion device characterized in that an electrode is provided on at least a portion of the upper surface of the photoelectric conversion device.
JP56016133A 1981-02-05 1981-02-05 Mis type photoelectric transducer Granted JPS57130482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56016133A JPS57130482A (en) 1981-02-05 1981-02-05 Mis type photoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56016133A JPS57130482A (en) 1981-02-05 1981-02-05 Mis type photoelectric transducer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4225070A Division JP2588464B2 (en) 1992-07-31 1992-07-31 Photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPS57130482A JPS57130482A (en) 1982-08-12
JPH0562473B2 true JPH0562473B2 (en) 1993-09-08

Family

ID=11907986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56016133A Granted JPS57130482A (en) 1981-02-05 1981-02-05 Mis type photoelectric transducer

Country Status (1)

Country Link
JP (1) JPS57130482A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106670A (en) * 1985-11-05 1987-05-18 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPH04211179A (en) * 1991-03-27 1992-08-03 Kanegafuchi Chem Ind Co Ltd Switching element
JP5078415B2 (en) * 2006-04-14 2012-11-21 シャープ株式会社 Method for manufacturing solar cell and method for manufacturing solar cell module
JP5173370B2 (en) * 2007-11-21 2013-04-03 シャープ株式会社 Method for manufacturing photoelectric conversion element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832946A (en) * 1971-08-31 1973-05-04
JPS5289489A (en) * 1975-12-18 1977-07-27 Nasa Solar battery and method of improving efficiency thereof
JPS5425187A (en) * 1977-07-28 1979-02-24 Rca Corp Photoelectric semiconductor
JPS5472977A (en) * 1977-11-18 1979-06-11 Stanford Res Inst Int Method of forming controlled crystalline semiconductor material surface pattern
JPS5473587A (en) * 1977-11-24 1979-06-12 Sharp Corp Thin film solar battery device
JPS5559784A (en) * 1978-10-23 1980-05-06 Hezel Rudolf Soalr battery
JPS561764B2 (en) * 1976-05-19 1981-01-16

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605967Y2 (en) * 1979-06-15 1985-02-25 株式会社東海理化電機製作所 Ingot conveying device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832946A (en) * 1971-08-31 1973-05-04
JPS5289489A (en) * 1975-12-18 1977-07-27 Nasa Solar battery and method of improving efficiency thereof
JPS561764B2 (en) * 1976-05-19 1981-01-16
JPS5425187A (en) * 1977-07-28 1979-02-24 Rca Corp Photoelectric semiconductor
JPS5472977A (en) * 1977-11-18 1979-06-11 Stanford Res Inst Int Method of forming controlled crystalline semiconductor material surface pattern
JPS5473587A (en) * 1977-11-24 1979-06-12 Sharp Corp Thin film solar battery device
JPS5559784A (en) * 1978-10-23 1980-05-06 Hezel Rudolf Soalr battery

Also Published As

Publication number Publication date
JPS57130482A (en) 1982-08-12

Similar Documents

Publication Publication Date Title
JP3722326B2 (en) Manufacturing method of solar cell
US5356488A (en) Solar cell and method for its manufacture
US7339110B1 (en) Solar cell and method of manufacture
US8404970B2 (en) Bifacial solar cells with back surface doping
JP5421701B2 (en) Crystalline silicon solar cell and manufacturing method thereof
JP2011507246A (en) Back electrode type solar cell having wide backside emitter region and method for manufacturing the same
GB2034973A (en) Solar cell with multi-layer insulation
CN115172477B (en) Solar cell and photovoltaic module
WO2011074280A1 (en) Photovoltaic device and method for preparation thereof
JPH0147025B2 (en)
TW201318030A (en) Semiconductor light detection device and method for fabricating the same
CN115188837A (en) Back contact solar cell, preparation method and cell module
TWI401810B (en) Solar cell
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
JP4486622B2 (en) Manufacturing method of solar cell
US8927854B2 (en) Solar cell and method for manufacturing the same
JPS6231834B2 (en)
JP2661676B2 (en) Solar cell
JP2005167291A (en) Solar cell manufacturing method and semiconductor device manufacturing method
JPH0562473B2 (en)
JP5014263B2 (en) Photovoltaic device and manufacturing method thereof
JP2588464B2 (en) Photoelectric conversion device
TWI484647B (en) Solar cell and module comprising the same
JP4212292B2 (en) Solar cell and manufacturing method thereof
EP4068392A1 (en) Photovoltaic device with passivated contact and corresponding method of manufacture