JP2567643B2 - Photovoltaic device manufacturing method - Google Patents

Photovoltaic device manufacturing method

Info

Publication number
JP2567643B2
JP2567643B2 JP62320217A JP32021787A JP2567643B2 JP 2567643 B2 JP2567643 B2 JP 2567643B2 JP 62320217 A JP62320217 A JP 62320217A JP 32021787 A JP32021787 A JP 32021787A JP 2567643 B2 JP2567643 B2 JP 2567643B2
Authority
JP
Japan
Prior art keywords
layer
source gas
light
window layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62320217A
Other languages
Japanese (ja)
Other versions
JPH01161776A (en
Inventor
正幸 岩本
浩二 南
金雄 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP62320217A priority Critical patent/JP2567643B2/en
Publication of JPH01161776A publication Critical patent/JPH01161776A/en
Application granted granted Critical
Publication of JP2567643B2 publication Critical patent/JP2567643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は太陽光発電や光センサ等に利用される光起電
力装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a photovoltaic device used for photovoltaic power generation, an optical sensor, or the like.

(ロ)従来の技術 この種光起電力装置として、光照射を受けると主とし
て光電変換に寄与する光キャリアを発生する非晶質半導
体の光活性層と、該光活性層の光入射側前方に設けられ
たp型非晶質半導体の窓層と、該窓層の更に光入射側前
方に設けられた透光性導電酸化物の受光面電極と、上記
光活性層の背面側に配置された背面電極と、を備えたも
のは既に知られており、上記光活性層及び窓層は原料ガ
スをグロー放電等によるプラズマエネルギや低圧水銀ラ
ンプや紫外線レーザ等による光エネルギにより分解する
ことによって成膜される。即ち、上記光活性層及び窓層
はプラズマ化学的気相成長(Chemical Vaper Dipositio
n:CVD)法や光CVD法によって形成される。
(B) Conventional technology As this type of photovoltaic device, a photoactive layer of an amorphous semiconductor that generates photocarriers mainly contributing to photoelectric conversion when exposed to light, and a photoactive layer in front of the light incident side of the photoactive layer The window layer of the p-type amorphous semiconductor provided, the light-receiving surface electrode of the transparent conductive oxide provided in front of the light incident side of the window layer, and the back surface side of the photoactive layer were arranged. Those having a back electrode are already known, and the photoactive layer and the window layer are formed by decomposing the raw material gas with plasma energy such as glow discharge or light energy such as a low pressure mercury lamp or an ultraviolet laser. To be done. That is, the photoactive layer and the window layer are formed by plasma chemical vapor deposition.
n: CVD) method or optical CVD method.

窓層は主として光電変換動作する光活性層に対し、光
入射側前方に設けられているために、受光面電極を透過
して来た入射光を吸収することなく光活性層に導かなけ
ればならない。従って、当該窓層は光活性層に比して光
学的バンドギャップEgoptが広い、所謂ワイドバンドギ
ャップ材料が用いられ、現在Egoptが1.8〜2.1(eV)程
度のp型決定不純物であるボロン(B)をドーブした水
素化非晶質シリコンカーバイド(以下Bドープa−SiC:
Hと略記する)が好適に用いられる。斯るB−ドープa
−SiC:Hの成膜に際しては原料ガスとして、シリコン源
ガスとしてシラン(SiH4)、ジシラン(Si2H6)が、p
型決定不純物のボロン源ガスとしてジボラン(B2H6
が、そしてワイドバンド化のための炭素源ガスとしてメ
タン(CH4)、アセチレン(C2H2)等が用いられてい
た。
Since the window layer is provided mainly in front of the light incident side with respect to the photoactive layer that performs photoelectric conversion operation, the window layer must be guided to the photoactive layer without absorbing the incident light transmitted through the light-receiving surface electrode. . Therefore, a so-called wide bandgap material having a wider optical bandgap Egopt than that of the photoactive layer is used for the window layer, and boron (B) which is a p-type determining impurity with an Egopt of about 1.8 to 2.1 (eV) is currently used. ) Hydrogenated amorphous silicon carbide (hereinafter B-doped a-SiC:
(Abbreviated as H) is preferably used. Such B-dope a
-SiC: As a raw material gas during the deposition of the H, silane as a silicon source gas (SiH 4), disilane (Si 2 H 6), p
Diborane (B 2 H 6 ) as boron source gas for typing impurities
But then methane (CH 4) as a carbon source gas for the wide-band, acetylene (C 2 H 2) or the like has been used.

然し乍ら、ボロン源ガスとしてB2H6ガスを用いると、
窓層として要求される電気的特性と光学的特性を同時に
満足したBドープa−SiC:Hを得ることが難しいことが
本願出願人により見い出された。即ち、光学的バンドギ
ャップEgoptのワイド化を図ろうとすると炭素含有量が
ふえるために、電気伝導度が低下し、電気伝導度が低下
するからB含有量を多くすると、今度はEgoptが小さく
なる、という相い反する現像を招く。
However, if B 2 H 6 gas is used as the boron source gas,
It has been found by the applicant of the present application that it is difficult to obtain B-doped a-SiC: H that simultaneously satisfies the electrical and optical properties required for the window layer. That is, when attempting to widen the optical bandgap Egopt, the carbon content increases, so the electrical conductivity decreases, and the electrical conductivity decreases. Therefore, if the B content is increased, then Egopt becomes smaller. That leads to conflicting development.

そこで本願出願人は、斯る相い反する現像を同時に解
決する方策として、ボロン源ガスとしてB2H6ガスに代っ
てトリメチルボロン(B(CH3)3)を用いるとワイドバン
ドでありながら低抵抗なBドープa−SiC:Hが得られる
ことを発見し、特願昭60−168709号(特開昭62−29132
号公報)及び特願昭60−183349号(特開昭62−43120号
公報)として特許出願した。
Therefore, the applicant of the present application, as a measure to solve such conflicting developments at the same time, uses trimethylboron (B (CH 3 ) 3 ) in place of B 2 H 6 gas as a boron source gas, but it is a wide band. It was discovered that B-doped a-SiC: H with low resistance can be obtained, and Japanese Patent Application No. 60-168709 (Japanese Unexamined Patent Publication No. 62-29132).
Patent application) and Japanese Patent Application No. 60-183349 (Japanese Patent Application Laid-Open No. 62-43120).

ところが、斯るB(CH3)3をボロン源ガスとして得られ
たBドープa−SiC:H膜は単独の膜としては抵抗且つワ
イドバンドな光学的バンドギャップが得られるものの、
それを光起電力装置の窓層として用いたとき、膜の電気
的且つ光学的特性が改善されたほど、光電変換特性の上
昇を見ることができなかった。
However, the B-doped a-SiC: H film obtained by using B (CH 3 ) 3 as a boron source gas has a resistance and a wide band optical band gap as a single film,
When it was used as the window layer of a photovoltaic device, no improvement in the photoelectric conversion properties could be seen as the electrical and optical properties of the film were improved.

(ハ)発明が解決しようとする問題点 本発明製造方法はB(CH3)3をボロン源ガスとして得ら
れたp型非晶質半導体は膜の電気的且つ光学的特性が優
れているにも拘らず、光起電力装置の窓層として用いる
と、光電変換特性の上昇にあまり寄与しない点を解決し
ようとするものである。
(C) Problems to be Solved by the Invention In the manufacturing method of the present invention, the p-type amorphous semiconductor obtained by using B (CH 3 ) 3 as a boron source gas has excellent film electrical and optical characteristics. Nevertheless, it is intended to solve the problem that when it is used as a window layer of a photovoltaic device, it does not contribute much to an increase in photoelectric conversion characteristics.

(ニ)問題点を解決するための手段 本発明は光照射を受けると光電変換に寄与する光キャ
リアを発生する非晶質半導体の光活性層と、該光活性層
の光入射側前方に設けられたp型非晶質半導体の窓層
と、該窓層の更に光入射側前方に設けられた透光性導電
酸化物の受光面電極と、上記光活性層の背面側に配置さ
れた背面電極と、を備えた光起電力装置の製造方法であ
って、上記問題点を解決するために、上記窓層を構成す
るp型非晶質半導体は少なくともシリコン源ガスとボロ
ン源ガスを原料ガスとする化学的気相成長(CVD)法に
より形成され、その際に上記受光面電極と接する窓層の
第1成分薄層はボロン源ガスとしてジボラン(B2H6)ガ
スが用いられると共に、上記光活性層と接する窓層の第
2成分薄層はボロン源ガスとしてトリメチルボロン(B
(CH3)3)を用いたことを特徴とする。
(D) Means for Solving the Problems The present invention provides a photoactive layer of an amorphous semiconductor that generates photocarriers that contribute to photoelectric conversion when irradiated with light, and a photoactive layer provided in front of the light incident side of the photoactive layer. A p-type amorphous semiconductor window layer, a light-transmissive conductive oxide light-receiving surface electrode provided in front of the light incident side of the window layer, and a back surface disposed on the back surface side of the photoactive layer. In order to solve the above-mentioned problems, the p-type amorphous semiconductor forming the window layer contains at least a silicon source gas and a boron source gas as source gases. Is formed by a chemical vapor deposition (CVD) method, in which the first component thin layer of the window layer in contact with the light-receiving surface electrode uses diborane (B 2 H 6 ) gas as a boron source gas, and The second component thin layer of the window layer which is in contact with the photoactive layer is used as a boron source gas for trimethylne. Boron (B
(CH 3 ) 3 ) is used.

(ホ)作用 上述の如く窓層は受光面電極と接する第1成分薄層
と、光活性層と接する第2成分薄層とからなり、上記第
1成分薄層はCVD法により形成される際ボロン源ガスと
してB2H6ガスが用いられると共に、第2成分薄層はボロ
ン源ガスとしてB(CH3)3を用いることによって、電気的
且つ光学的特性に優れた第2成分薄層を光起電力装置の
窓層として用いても透光性導電酸化物の受光面電極との
間に少なくとも第1成分薄層が存在することとなり直接
接触するに至らない。
(E) Action As described above, the window layer is composed of the first component thin layer in contact with the light-receiving surface electrode and the second component thin layer in contact with the photoactive layer. When the first component thin layer is formed by the CVD method, By using B 2 H 6 gas as the boron source gas and using B (CH 3 ) 3 as the boron source gas as the second component thin layer, a second component thin layer having excellent electrical and optical characteristics can be obtained. Even when it is used as a window layer of a photovoltaic device, at least the first component thin layer exists between the light-transmitting conductive oxide and the light-receiving surface electrode, so that it does not come into direct contact.

(ヘ)実施例 第1図は本発明製造方法により製造された典型的な光
起電力装置の断面を示し、(1)は一方の主面(1a)を
受光面とする透光性且つ絶縁性の基板、(2)は該基板
(1)の他方の主面(1b)に被着されたIn2O3,SnO2,IT
O等に代表される透光性導電酸化物(以下TCOと略記す
る)の受光面電極、(3)は該受光面電極(2)と第1
成分薄層(31)が直接接触するp型非晶質半導体の窓
層、(4)は該窓層(3)の第2成分薄層(32)と直接
接触するi型或は実質的にi型の非晶質半導体の光活性
層、(5)は該光活性層(4)と直接接触するn型非晶
質半導体の高ドープ層、(6)は該高ドープ層(5)と
オーミック接触する背面電極で、上記基板(1)を介し
て光入射があると、主として光活性層(4)において自
由状態の電子及び正孔の光キャリアが発生し、窓層
(3)、光活性層(4)及び高ドープ層(5)によるpi
n接合電界に引かれて上記受光面電極(2)及び背面電
極(6)に集電され光起電力として取出される。
(F) Example FIG. 1 shows a cross section of a typical photovoltaic device manufactured by the manufacturing method of the present invention. (1) is a translucent and insulating material having one main surface (1a) as a light receiving surface. Substrate, (2) is In 2 O 3 , SnO 2 , IT deposited on the other main surface (1b) of the substrate (1).
A light receiving surface electrode of a transparent conductive oxide (hereinafter abbreviated as TCO) represented by O or the like, (3) is the light receiving surface electrode (2) and the first
A window layer of a p-type amorphous semiconductor in direct contact with the thin component layer (3 1 ), an i-type or a substantial layer in which (4) is in direct contact with the second component thin layer (3 2 ) of the window layer (3). A photoactive layer of an i-type amorphous semiconductor, (5) is a highly doped layer of an n-type amorphous semiconductor in direct contact with the photoactive layer (4), and (6) is a highly doped layer (5). When a light is incident on the back electrode in ohmic contact with the substrate (1), photocarriers of electrons and holes in a free state are generated mainly in the photoactive layer (4), and the window layer (3) is generated. , Pi due to photoactive layer (4) and highly doped layer (5)
The light is attracted by the n-junction electric field and is collected by the light-receiving surface electrode (2) and the back electrode (6) to be extracted as a photoelectromotive force.

而して、本発明製造方法の特徴は、窓層(3)の形成
の際に用いられるボロン源ガスが受光面電極(2)と接
する第1成分薄層(31)と、光活性層(4)と接する第
2成分層(32)とで異なるところにある。即ち、第1成
分薄層(31)にボロン源ガスにはB2H6ガスが用いられる
と共に、第2成分薄層(32)には電気的且つ光学的特性
がB2H6によるものより優れるB(CH3)3が用いられる。斯
る窓層(3)の具体的形成は以下の通りである。
The manufacturing method of the present invention is characterized in that the boron source gas used for forming the window layer (3) is in contact with the light-receiving surface electrode (2), the first component thin layer (3 1 ) and the photoactive layer. (4) and the second component layer (3 2 ) in contact therewith are different. That is, B 2 H 6 gas is used as the boron source gas for the first component thin layer (3 1 ), and the electrical and optical characteristics of the second component thin layer (3 2 ) depend on B 2 H 6 . B (CH 3 ) 3, which is superior to the one used. The specific formation of such a window layer (3) is as follows.

〔プラズマCVD法による窓層(3)の形成条件〕 (i)共通事項 13.56MHzの高周波電源を用いた容量結合型プラズマCV
D法 高周波電源:10〜50W(代表値30W) 基板温度:100〜300℃(代表値200℃) 反応圧力:0.01〜1.0Torr(代表値0.2Torr) (ii)第1成分薄層(31) シリコン源ガス:SiH4ガス1〜20SCCM(代表値5SCC
M) カーボン源ガス:CH4ガス1〜20SCCM(代表値10SCC
M) ボロン源ガス:B2H6ガス0.01〜0.05SCCM(代表値0.02
SCCM) 膜厚:5〜50Å(代表値20Å) (iii)第2成分薄層(32) シリコン源ガス:SiH4ガス1〜20SCCM(代表値10SCC
M) カーボン源ガス:CH4ガス1〜20SCCM(代表値5SCCM) ボロン源ガス:B(CH3)3 0.01〜0.05SCCM(代表値0.02
SCCM) 膜厚:100〜200Å(代表値150Å) 下表は斯るB2H6をボロン源として得られた第1成分薄
層(31)とB(CH3)3をボロン源として得られた第2成分
薄層(32)からなる窓層(3)を備えた本発明製造方法
により製造された光起電力装置の光電変換特性を測定し
たものである。表中Vocは開放電圧、Iscは短絡電流、FF
はフィルムファクタ、ηは光電変換効率を夫々示してい
る。そして表中の数値は本発明実施例とは窓層(3)の
みがボロン源として第1・第2成分薄層の全膜厚に対し
て全てB2H6ガスを用いて得られた以外共通の比較例1の
各特性を100として規格化してある。更に、比較例2と
して、第1・第2成分薄層の全膜に対して全てB(CH3)3
を用いて得られた窓層(3)を用い、それ以外は実施例
及び比較例1と共通とした光起電力装置についても測定
した。
[Formation condition of window layer (3) by plasma CVD method] (i) Common items Capacitively coupled plasma CV using 13.56MHz high frequency power supply
Method D High frequency power supply: 10 to 50 W (typical value 30 W) Substrate temperature: 100 to 300 ° C (typical value 200 ° C) Reaction pressure: 0.01 to 1.0 Torr (typical value 0.2 Torr) (ii) First component thin layer (3 1 ) Silicon source gas: SiH 4 gas 1 to 20SCCM (typical value 5SCC
M) Carbon source gas: CH 4 gas 1 to 20SCCM (typical value 10SCC
M) Boron source gas: B 2 H 6 gas 0.01 to 0.05 SCCM (typical value 0.02
SCCM) Film thickness: 5 to 50Å (typical value 20Å) (iii) Second component thin layer (3 2 ) Silicon source gas: SiH 4 gas 1 to 20SCCM (typical value 10SCC
M) Carbon source gas: CH 4 gas 1 to 20 SCCM (typical value 5 SCCM) Boron source gas: B (CH 3 ) 3 0.01 to 0.05 SCCM (typical value 0.02
SCCM) Film thickness: 100 to 200Å (typical value 150Å) The following table shows that B 2 H 6 was obtained as a boron source and the first component thin layer (3 1 ) and B (CH 3 ) 3 were obtained as a boron source. was one in which the photoelectric conversion characteristic of the second component thin layer (3 2) window layer (3) photovoltaic device manufactured by the manufacturing method of the present invention having a consisting measured. In the table, Voc is open circuit voltage, Isc is short circuit current, FF
Indicates the film factor, and η indicates the photoelectric conversion efficiency. The numerical values in the table are different from those of the examples of the present invention except that only the window layer (3) was obtained by using B 2 H 6 gas as the boron source for the total thickness of the first and second component thin layers. Each characteristic of the common comparative example 1 is standardized as 100. Further, as a comparative example 2, B (CH 3 ) 3 was used for all the films of the first and second component thin layers.
Using the window layer (3) obtained by using, a photovoltaic device having the same structure as in Example and Comparative Example 1 was measured.

このように本発明実施例は比較例1のみならず窓層
(3)が全てB(CH3)3を用いて形成された比較例2に対
してもそれを上回る光電変換特性が得られることが判
る。
As described above, in the example of the present invention, the photoelectric conversion characteristics exceeding that can be obtained not only in the comparative example 1 but also in the comparative example 2 in which the window layer (3) is all formed by using B (CH 3 ) 3. I understand.

次に窓層(3)を光CVD法により形成する実施例につ
いて簡単に説明する。使用される光源は紫外光を輻射す
る低圧水銀ランプで、その出力は基板面で約1mW/cm2
強度を備える。シリコン源は第1成分薄層(31)及び第
2成分薄層(32)共にジシラン(Si2H6)でその流量は
5〜40SCCM、代表的には20SCCMである。またカーボン源
としてはアセチレン(C2H2)が共通に用いられる。そし
て、ボロン源として第1成分薄層(31)では流量0.02〜
0.2SCCM、代表的には0.1SCCMのB2H 6ガスが用いられ、ま
た第2成分薄層(32)では0.02〜0.4SCCM、代表的には
0.2SCCMのB(CH3)3が使用される。尚、光CVD法の共通条
件は、基板温度100〜300℃、代表的には200℃、反応圧
力0.1〜10Torr、代表的には2Torrである。
Next, an example of forming the window layer (3) by the photo CVD method will be briefly described. The light source used is a low-pressure mercury lamp that radiates ultraviolet light, and its output has an intensity of about 1 mW / cm 2 at the substrate surface. The silicon source is disilane (Si 2 H 6 ) for both the first component thin layer (3 1 ) and the second component thin layer (3 2 ), and the flow rate thereof is 5 to 40 SCCM, typically 20 SCCM. Acetylene (C 2 H 2 ) is commonly used as a carbon source. Then, in the first component thin layer (3 1 ) as a boron source, the flow rate is 0.02 to
0.2 SCCM, typically 0.1 SCCM B 2 H 6 gas is used, and 0.02 to 0.4 SCCM, typically in the second component thin layer (3 2 ).
0.2 SCCM of B (CH 3 ) 3 is used. The common conditions of the photo-CVD method are a substrate temperature of 100 to 300 ° C., typically 200 ° C., a reaction pressure of 0.1 to 10 Torr, and typically 2 Torr.

また光CVD法にあっては、水銀を増感剤として用いて
も良く、また他の光源であっても良いことは明らかであ
る。
Further, in the photo CVD method, it is obvious that mercury may be used as a sensitizer and other light sources may be used.

斯る光CVD法による第1・第2成分薄層(31)(32
からなる窓層(3)を備えた光起電力装置にあっても、
先のプラズマCVD法による場合と同様に高い光電変換特
性を示した。
First and second component thin layers (3 1 ) (3 2 ) produced by such optical CVD method
In a photovoltaic device with a window layer (3) consisting of
It exhibited high photoelectric conversion characteristics as in the case of the plasma CVD method.

(ヘ)発明の効果 本発明製造方法は以上の説明から明らかな如く、窓層
は、受光面電極と接しボロン源ガスとしてB2H6ガスが用
いられた第1成分薄層と、光活性層と接し、ボロン源ガ
スとしてB(CH3)3が用いられた第2成分薄層と、からな
るので、電気的且つ光学的特性に優れた第2成分薄層を
光起電力装置の窓層として用いれもTCOの受光面電極と
直接接触するに至らず、斯る優れた膜特性を光電変換特
性の改善に反映させることができる。
(F) Effect of the Invention As is apparent from the above description, the manufacturing method of the present invention includes the first component thin layer in which the window layer is in contact with the light-receiving surface electrode and B 2 H 6 gas is used as the boron source gas, and the photoactive layer. A second component thin layer in contact with the layer and using B (CH 3 ) 3 as a boron source gas, and the second component thin layer having excellent electrical and optical characteristics is provided in the window of the photovoltaic device. Even when it is used as a layer, it does not come into direct contact with the light-receiving surface electrode of TCO, and such excellent film characteristics can be reflected in the improvement of photoelectric conversion characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明製造方法に基づき製造された光起電力装
置の典型例を示す模式的断面図である。 (1)……基板、(2)……受光面電極、(3)……窓
層、(31)……第1成分薄層、(32)……第2成分薄
層、(4)……光活性層、(6)……背面電極。
FIG. 1 is a schematic sectional view showing a typical example of a photovoltaic device manufactured based on the manufacturing method of the present invention. (1) ... Substrate, (2) ... Light-receiving surface electrode, (3) ... Window layer, (3 1 ) ... First component thin layer, (3 2 ) ... Second component thin layer, (4 ) ... Photoactive layer, (6) ... Back electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−29132(JP,A) 特開 昭62−43120(JP,A) 特開 昭63−284809(JP,A) 特開 昭62−33478(JP,A) 特開 昭63−185070(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 62-29132 (JP, A) JP 62-43120 (JP, A) JP 63-284809 (JP, A) JP 62- 33478 (JP, A) JP-A-63-185070 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光照射を受けると主として光電変換に寄与
する光キャリアを発生する非晶質半導体の光活性層と、
該光活性層の光入射側前方に設けられたp型非晶質半導
体の窓層と、該窓層の更に光入射側前方に設けられた透
光性導電酸化物の受光面電極と、上記光活性層の背面側
に配置された背面電極と、を備えた光起電力装置の製造
方法であって、上記窓層を構成するp型非晶質半導体は
少なくともシリコン源ガスとボロン源ガスを原料ガスと
する化学的気相成長(CVD)法により形成され、その際
に上記受光面電極と接する窓層の第1成分薄層はボロン
源ガスとしてジボラン(B2H6)ガスが用いられると共
に、上記光活性層と接する窓層の第2成分薄層はボロン
源ガスとしてトリメチルボロン(B(CH3)3)を用いたこ
とを特徴とする光起電力装置の製造方法。
1. A photoactive layer of an amorphous semiconductor which generates photocarriers mainly contributing to photoelectric conversion when exposed to light,
A window layer of a p-type amorphous semiconductor provided in front of the light incident side of the photoactive layer, a light receiving surface electrode of a transparent conductive oxide provided in front of the light incident side of the window layer, A method for manufacturing a photovoltaic device comprising a back electrode disposed on the back side of a photoactive layer, wherein the p-type amorphous semiconductor forming the window layer contains at least a silicon source gas and a boron source gas. Diborane (B 2 H 6 ) gas is used as the boron source gas for the first component thin layer of the window layer that is formed by the chemical vapor deposition (CVD) method using the source gas and is in contact with the light-receiving surface electrode at that time. At the same time, the second component thin layer of the window layer which is in contact with the photoactive layer uses trimethylboron (B (CH 3 ) 3 ) as a boron source gas.
JP62320217A 1987-12-17 1987-12-17 Photovoltaic device manufacturing method Expired - Fee Related JP2567643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320217A JP2567643B2 (en) 1987-12-17 1987-12-17 Photovoltaic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320217A JP2567643B2 (en) 1987-12-17 1987-12-17 Photovoltaic device manufacturing method

Publications (2)

Publication Number Publication Date
JPH01161776A JPH01161776A (en) 1989-06-26
JP2567643B2 true JP2567643B2 (en) 1996-12-25

Family

ID=18119027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320217A Expired - Fee Related JP2567643B2 (en) 1987-12-17 1987-12-17 Photovoltaic device manufacturing method

Country Status (1)

Country Link
JP (1) JP2567643B2 (en)

Also Published As

Publication number Publication date
JPH01161776A (en) 1989-06-26

Similar Documents

Publication Publication Date Title
AU761280B2 (en) Method of manufacturing amorphous silicon based thin film photoelectric conversion device
US5646050A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
JP4257332B2 (en) Silicon-based thin film solar cell
AU2005200023B2 (en) Photovoltaic device
EP1187223A2 (en) Photovoltaic device
JP3047666B2 (en) Method for forming silicon oxide semiconductor film
JPH05243596A (en) Manufacture of laminated type solar cell
JPWO2005109526A1 (en) Thin film photoelectric converter
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JP3248227B2 (en) Thin film solar cell and method of manufacturing the same
JP2692964B2 (en) Solar cell
US4857115A (en) Photovoltaic device
US4680607A (en) Photovoltaic cell
JP2567643B2 (en) Photovoltaic device manufacturing method
JP2680579B2 (en) Photovoltaic device
JP2003188400A (en) Crystalline silicon carbide film and manufacturing method thereof, and solar cell
JPH0122991B2 (en)
JP4187328B2 (en) Photovoltaic element manufacturing method
JPWO2006006368A1 (en) Method for manufacturing thin film photoelectric conversion device
JPH0719906B2 (en) Method for manufacturing semiconductor device
JP3245962B2 (en) Manufacturing method of thin film solar cell
JP2545066B2 (en) Semiconductor device
JP2744680B2 (en) Manufacturing method of thin film solar cell
JPH0685291A (en) Semiconductor device and its manufacture
JP2675323B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees