JP2525630B2 - Method for manufacturing thin film transistor - Google Patents

Method for manufacturing thin film transistor

Info

Publication number
JP2525630B2
JP2525630B2 JP62317701A JP31770187A JP2525630B2 JP 2525630 B2 JP2525630 B2 JP 2525630B2 JP 62317701 A JP62317701 A JP 62317701A JP 31770187 A JP31770187 A JP 31770187A JP 2525630 B2 JP2525630 B2 JP 2525630B2
Authority
JP
Japan
Prior art keywords
region
electrode
thin film
forming
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62317701A
Other languages
Japanese (ja)
Other versions
JPH01158775A (en
Inventor
和正 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62317701A priority Critical patent/JP2525630B2/en
Publication of JPH01158775A publication Critical patent/JPH01158775A/en
Application granted granted Critical
Publication of JP2525630B2 publication Critical patent/JP2525630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜トランジスタ(以下、TFTと示す。)の
製造方法に関する。
The present invention relates to a method for manufacturing a thin film transistor (hereinafter referred to as TFT).

〔従来の技術〕[Conventional technology]

従来のTFTにおいては、第2図に示される如く、高濃
度不純物領域(第1の領域)と低濃度不純物領域(第2
の領域)が接する構造であった。同図において、101は
絶縁基板、103はゲート絶縁膜、105は多結晶(非晶質)
シリコン中の低濃度不純物領域(第2の領域)、107は
ゲート電極、108は多結晶(非晶質)シリコ中の高濃度
不純物領域(第1の領域)、109は層間絶縁膜、110は配
線材料である。
In a conventional TFT, as shown in FIG. 2, a high concentration impurity region (first region) and a low concentration impurity region (second region) are formed.
Area) contacted each other. In the figure, 101 is an insulating substrate, 103 is a gate insulating film, and 105 is polycrystalline (amorphous).
Low-concentration impurity region in silicon (second region), 107 is a gate electrode, 108 is a high-concentration impurity region in polycrystalline (amorphous) silicon (first region), 109 is an interlayer insulating film, and 110 is It is a wiring material.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

TFTのしきい値電圧(以下、Vthと示す)を制御するた
め、前記第2の領域には、1017cm-3程度の不純物が混入
される。NchTFTの場合、第1の領域にはリン,ヒ素等の
不純物が混入され、N型半導体となっている。第2の領
域にP型半導体となる様なボロン等の不純物を混入した
場合、ゲートが零バイアス(TFTはオフ)の時、第1の
領域と第2の領域との間にポテンシャル障壁が形成され
るが、多結晶及び非晶質シリコンTFTの場合第1,第2の
領域の境界面近傍に形成される局在準位が多いためか、
リーク電流が大きくなる。一方、第2の領域にN型半導
体となる不純物を混入した場合、前記の理由と、更にポ
テンシャル障壁が小さくなる為、リーク電流は大きい。
結局、多結晶及び非晶質シリコンTFTのオフ状態のリー
ク電流を下げるには、第2の領域が真性半導体に近い状
態が良い。ところがこれではTFTのVthが制御出来ず、結
果的にリーク電流を増大させる場合がある。
In order to control the threshold voltage of TFT (hereinafter referred to as Vth), impurities of about 10 17 cm −3 are mixed in the second region. In the case of NchTFT, impurities such as phosphorus and arsenic are mixed in the first region to form an N-type semiconductor. When impurities such as boron that become a P-type semiconductor are mixed in the second region, a potential barrier is formed between the first region and the second region when the gate is at zero bias (TFT is off). However, in the case of polycrystalline and amorphous silicon TFTs, there are many localized levels formed near the boundary surface between the first and second regions.
The leak current becomes large. On the other hand, when an impurity that becomes an N-type semiconductor is mixed in the second region, the leak current is large because of the reason described above and the potential barrier is further reduced.
After all, in order to reduce the leak current in the off state of the polycrystalline and amorphous silicon TFTs, it is preferable that the second region is close to the intrinsic semiconductor. However, in this case, the Vth of the TFT cannot be controlled, and as a result, the leak current may increase.

本発明は以上の問題点を解決するもので、その目的と
するところは、Vthが制御出来、更にオフ状態のリーク
電流が小さい多結晶及び非晶質シリコンTFTを実現する
ことにある。
The present invention solves the above problems, and an object of the present invention is to realize a polycrystalline and amorphous silicon TFT in which Vth can be controlled and leakage current in the off state is small.

〔問題点を解決するための手段〕[Means for solving problems]

以上の問題点を解決するために、本発明の薄膜トラン
ジスタの製造方法は、(a)基板上に多結晶あるいは非
晶質シリコン薄膜を形成する工程、(b)前記多結晶あ
るいは非晶質シリコン薄膜上にゲート絶縁膜を形成する
工程、(c)薄膜トランジスタのゲート電極の一部を構
成する第1電極を、前記ゲート絶縁膜上に離間して2個
形成する工程、(d)前記第1電極をマスクとして前記
多結晶あるいは非晶質シリコン薄膜中に不純物を導入す
ることにより、ソース/ドレインとなる第1領域と、前
記離間して形成された2個の第1電極間にチャネルであ
る第2領域と、前記第1電極下に不純物が導入されない
第3領域とを形成する工程、(e)前記第1電極ととも
に前記薄膜トランジスタのゲート電極を構成する第2電
極を、前記第2領域上の前記ゲート絶縁膜上と前記第1
電極とに渡って形成する工程、(f)前記第1電極と前
記第2電極とをマスクとして前記第1領域に不純物を導
入する工程、を有する。
In order to solve the above problems, a method of manufacturing a thin film transistor according to the present invention includes (a) a step of forming a polycrystalline or amorphous silicon thin film on a substrate, and (b) the polycrystalline or amorphous silicon thin film. A step of forming a gate insulating film thereon, (c) a step of forming two first electrodes forming a part of a gate electrode of a thin film transistor on the gate insulating film with a space therebetween, (d) the first electrode Is used as a mask to introduce impurities into the polycrystalline or amorphous silicon thin film to form a channel between the first region to be a source / drain and the two first electrodes formed apart from each other. Forming a second region and a third region in which impurities are not introduced under the first electrode, (e) forming a second electrode that constitutes the gate electrode of the thin film transistor together with the first electrode, and forming the second region in the second region. Wherein the of the gate insulating film on the first
And (f) introducing impurities into the first region using the first electrode and the second electrode as a mask.

〔実施例〕〔Example〕

第1図(a)〜(e)は本発明の実施例のTFTの断面
図を製造工程順に並べたものである。同図(f)は同図
(c)または(d)の状態の平面図である。同図(a)
において、101は絶縁基板、102は絶縁基板101上に形成
される多結晶もしくは非晶質シリコン薄膜である。103
はゲート絶縁膜で、熱酸化法,CVD法等により形成され
る。104は低濃度不純物領域を形成する為のマスク電極
(第1電極)で、ゲート電極の一部となる。マスク電極
104には、多結晶シリコン等の材料が用いられる。同図
(b)において、105は低濃度不純物領域、106は更に低
濃度不純物の領域(第3領域)である。第1図(a)の
状態からイオン注入法や熱拡散法により低濃度不純物領
域105を形成する。106は真性半導体に近い状態である。
同図(c)において、107はゲート電極であり、多結晶
シリコン等の材料により形成される。この時の平面図が
同図(f)となる。同図(d)において108は高濃度不
純物領域である。同図(c)の状態からイオン注入法や
熱拡散法によりソース/ドレイン領域となる高濃度不純
物領域(第1の領域)108を形成する。チャネルとなる
低濃度不純物領域(第2の領域)105に比べ、108の不純
物濃度は3桁程度大きいため、第1の領域に当初逆タイ
プ半導体となる不純物が存在しても、108の形成工程で
所望の型の半導体とすることができる。同図(e)にお
いて、109は酸化シリコン等による層間絶縁膜、110はア
ルミニウム合金等による配線材料である。
1 (a) to 1 (e) are cross-sectional views of a TFT according to an embodiment of the present invention arranged in the order of manufacturing steps. FIG. 6F is a plan view of the state of FIG. FIG.
In, 101 is an insulating substrate, and 102 is a polycrystalline or amorphous silicon thin film formed on the insulating substrate 101. 103
Is a gate insulating film and is formed by a thermal oxidation method, a CVD method, or the like. Reference numeral 104 denotes a mask electrode (first electrode) for forming a low concentration impurity region, which becomes a part of the gate electrode. Mask electrode
A material such as polycrystalline silicon is used for 104. In FIG. 2B, 105 is a low concentration impurity region, and 106 is a further low concentration impurity region (third region). From the state shown in FIG. 1A, the low concentration impurity region 105 is formed by the ion implantation method or the thermal diffusion method. 106 is a state close to an intrinsic semiconductor.
In FIG. 7C, reference numeral 107 denotes a gate electrode, which is made of a material such as polycrystalline silicon. A plan view at this time is shown in FIG. In FIG. 3D, 108 is a high concentration impurity region. From the state shown in FIG. 3C, a high concentration impurity region (first region) 108 to be a source / drain region is formed by an ion implantation method or a thermal diffusion method. Since the impurity concentration of 108 is about three orders of magnitude higher than that of the low-concentration impurity region (second region) 105 that becomes a channel, even if the impurity that becomes an inverse type semiconductor initially exists in the first region, the step of forming 108 Thus, a desired type of semiconductor can be obtained. In FIG. 7E, 109 is an interlayer insulating film made of silicon oxide or the like, and 110 is a wiring material made of aluminum alloy or the like.

第3図に本発明の実施例におけるTFTのドレイン電流
対ゲート電圧特性を示す。同図(a)はドレイン電圧5
V,同図(b)はドレイン電圧16Vの場合で,それぞれの
図においては本発明の構造、は従来の構造における
TFT特性である。これらは、多結晶シリコンTFTの例であ
り、チャネル長L=6μm,チャネル幅W=10μm,第1の
領域にリンを1×1020cm-3,第2の領域にボロンを1×1
017cm-3混入している。第3図において明らかなように
本発明を用いることにより、オフ時のリーク電流が従来
に比べ2桁程度減少する。即ち、オンオフ比が2桁程度
向上する。
FIG. 3 shows the drain current-gate voltage characteristics of the TFT in the embodiment of the present invention. The drain voltage of FIG.
V, the figure (b) shows the case of a drain voltage of 16 V. In each figure, the structure of the present invention is
It has TFT characteristics. These are examples of polycrystalline silicon TFTs, which have a channel length L = 6 μm, a channel width W = 10 μm, phosphorus in the first region 1 × 10 20 cm −3 , and boron in the second region 1 × 1.
0 17 cm -3 It is mixed. As apparent from FIG. 3, by using the present invention, the leak current at the time of OFF is reduced by about two digits as compared with the conventional one. That is, the on / off ratio is improved by about two digits.

〔発明の効果〕〔The invention's effect〕

以上述べた如く本発明を用いることにより、Vthを制
御することが出来、更にオフ状態のリーク電流が小さ
い、即ちオンオフ比の大きい多結晶及び比晶質シリコン
TFTが実現された。
As described above, by using the present invention, Vth can be controlled, and the leakage current in the off state is small, that is, polycrystalline and non-crystalline silicon having a large on / off ratio.
TFT has been realized.

さらに、さらに、マスク電極の大きさから第3の領域
の大きさを一義的に決定できるので、高精度に第3の領
域の大きさを形成することができた。
Furthermore, since the size of the third region can be uniquely determined from the size of the mask electrode, the size of the third region can be formed with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(f)は本発明の実施例におけるTFTの
製造工程図。同図(f)は同図(c)または(d)の状
態における平面図。 第2図は従来のTFTの断面図。 第3図(a),(b)は本発明の実施例におけるTFTの
ドレイン電流対ゲート電圧特性を示した図。 101……絶縁基板 102……多結晶(非晶質)シリコン 103……ゲート絶縁膜 104……マスク電極(ゲート電極の一部) 105……低濃度不純物領域(第2の領域) 106……第2の領域105より更に低濃度不純物の領域(第
3の領域) 107……ゲート電極 108……高濃度不純物領域(第1の領域) 109……層間絶縁膜 110……配線材料
1A to 1F are manufacturing process diagrams of a TFT according to an embodiment of the present invention. FIG. 6F is a plan view in the state of FIG. Figure 2 is a sectional view of a conventional TFT. 3 (a) and 3 (b) are diagrams showing the drain current-gate voltage characteristics of the TFT in the embodiment of the present invention. 101 ... Insulating substrate 102 ... Polycrystalline (amorphous) silicon 103 ... Gate insulating film 104 ... Mask electrode (part of gate electrode) 105 ... Low-concentration impurity region (second region) 106 ... Region of lower concentration impurity than the second region 105 (third region) 107 ... Gate electrode 108 ... High concentration impurity region (first region) 109 ... Interlayer insulating film 110 ... Wiring material

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a)基板上に多結晶あるいは非晶質シリ
コン薄膜を形成する工程、 (b)前記多結晶あるいは非晶質シリコン薄膜上にゲー
ト絶縁膜を形成する工程、 (c)薄膜トランジスタのゲート電極の一部を構成する
第1電極を、前記ゲート絶縁膜上に離間して2個形成す
る工程、 (d)前記第1電極をマスクとして前記多結晶あるいは
非晶質シリコン薄膜中に不純物を導入することにより、
ソース/ドレインとなる第1領域と、前記離間して形成
された2個の第1電極間にチャネルとなる第2領域と、
前記第1電極下に不純物が導入されない第3領域とを形
成する工程、 (e)前記第1電極とともに前記薄膜トランジスタのゲ
ート電極を構成する第2電極を、前記第2領域上の前記
ゲート絶縁膜上と前記第1電極とに渡って形成する工
程、 (f)前記第1電極と前記第2電極とをマスクとして前
記第1領域に不純物を導入する工程、 を有する薄膜トランジスタの製造方法。
1. A process of forming a polycrystalline or amorphous silicon thin film on a substrate, a process of forming a gate insulating film on the polycrystalline or amorphous silicon thin film, and a thin film transistor. Forming two first electrodes forming a part of the gate electrode on the gate insulating film at a distance from each other, (d) using the first electrode as a mask in the polycrystalline or amorphous silicon thin film By introducing impurities,
A first region serving as a source / drain, and a second region serving as a channel between the two first electrodes formed apart from each other,
Forming a third region in which impurities are not introduced under the first electrode, (e) forming a second electrode that constitutes a gate electrode of the thin film transistor together with the first electrode, the gate insulating film on the second region A method of manufacturing a thin film transistor, comprising: a step of forming over the first electrode and the first electrode; (f) a step of introducing an impurity into the first region using the first electrode and the second electrode as a mask.
JP62317701A 1987-12-16 1987-12-16 Method for manufacturing thin film transistor Expired - Fee Related JP2525630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317701A JP2525630B2 (en) 1987-12-16 1987-12-16 Method for manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317701A JP2525630B2 (en) 1987-12-16 1987-12-16 Method for manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPH01158775A JPH01158775A (en) 1989-06-21
JP2525630B2 true JP2525630B2 (en) 1996-08-21

Family

ID=18091060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317701A Expired - Fee Related JP2525630B2 (en) 1987-12-16 1987-12-16 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP2525630B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241466A (en) * 1991-01-16 1992-08-28 Casio Comput Co Ltd Field effect type transistor
US5246870A (en) * 1991-02-01 1993-09-21 North American Philips Corporation Method for making an improved high voltage thin film transistor having a linear doping profile
EP0497427B1 (en) * 1991-02-01 1996-04-10 Koninklijke Philips Electronics N.V. Semiconductor device for high voltage application and method of making the same
KR100268861B1 (en) * 1991-12-23 2000-10-16 김영환 Structure of thin-film transistor and manufacturing method thereof
US5485019A (en) * 1992-02-05 1996-01-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US5480818A (en) * 1992-02-10 1996-01-02 Fujitsu Limited Method for forming a film and method for manufacturing a thin film transistor
JP3426043B2 (en) * 1994-09-27 2003-07-14 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US5548132A (en) 1994-10-24 1996-08-20 Micron Technology, Inc. Thin film transistor with large grain size DRW offset region and small grain size source and drain and channel regions
US5670399A (en) * 1995-12-06 1997-09-23 Micron Technology, Inc. Method of making thin film transistor with offset drain
JP2720862B2 (en) * 1995-12-08 1998-03-04 日本電気株式会社 Thin film transistor and thin film transistor array
US5753543A (en) * 1996-03-25 1998-05-19 Micron Technology, Inc. Method of forming a thin film transistor
JP4725544B2 (en) * 2007-03-27 2011-07-13 セイコーエプソン株式会社 Manufacturing method of electro-optical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104671A (en) * 1984-10-29 1986-05-22 Sharp Corp Field effect transistor

Also Published As

Publication number Publication date
JPH01158775A (en) 1989-06-21

Similar Documents

Publication Publication Date Title
US4841347A (en) MOS VLSI device having shallow junctions and method of making same
JP2525630B2 (en) Method for manufacturing thin film transistor
JPH02166762A (en) Compact cmos device and
US5861659A (en) Semiconductor device
EP0396948B1 (en) Bi-cmos integrated circuit
US5508545A (en) Semiconductor device including a pair of transistors having a common channel region, and method of making the same
JPS62155565A (en) Insulated-gate field effect transistor and manufacture thereof
JPS6251216A (en) Manufacture of semiconductor device
JPH0758785B2 (en) Method for manufacturing vertical field effect transistor
JPH0613606A (en) Semiconductor device
JPS63312674A (en) Thin film semiconductor device
JPH0728043B2 (en) Semiconductor device
JPH067556B2 (en) MIS type semiconductor device
JP2647748B2 (en) MIS transistor
JP2888055B2 (en) Thin film transistor
JP2914052B2 (en) Semiconductor device and manufacturing method thereof
JP2554361B2 (en) Method for manufacturing semiconductor device
JPH06275830A (en) Accumulation-type polycrystalline silicon thin-film transistor
JP3300238B2 (en) Semiconductor device and manufacturing method thereof
JPH0472770A (en) Manufacture of semiconductor device
JPH0521789A (en) Field effect type transistor and its manufacture
JPH04317376A (en) Semiconductor device
JP2765142B2 (en) Method for manufacturing semiconductor device
JPH04257267A (en) Manufacture of soi-structured semiconductor device
JPH02150058A (en) Bipolar cmos composite semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees