JP2518265B2 - Method for manufacturing RCo-lower 5 type sintered alloy magnet with excellent magnet characteristics - Google Patents

Method for manufacturing RCo-lower 5 type sintered alloy magnet with excellent magnet characteristics

Info

Publication number
JP2518265B2
JP2518265B2 JP62064918A JP6491887A JP2518265B2 JP 2518265 B2 JP2518265 B2 JP 2518265B2 JP 62064918 A JP62064918 A JP 62064918A JP 6491887 A JP6491887 A JP 6491887A JP 2518265 B2 JP2518265 B2 JP 2518265B2
Authority
JP
Japan
Prior art keywords
temperature
atmosphere
rco
magnet
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62064918A
Other languages
Japanese (ja)
Other versions
JPS63230835A (en
Inventor
耕一郎 森本
拓夫 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP62064918A priority Critical patent/JP2518265B2/en
Publication of JPS63230835A publication Critical patent/JPS63230835A/en
Application granted granted Critical
Publication of JP2518265B2 publication Critical patent/JP2518265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、保磁力(以下、iHcで示す)、残留磁束
密度(以下、Brで示す)、および最大エネルギー積(以
下、(BH)maxで示す)のいずれの磁石特性にもすぐれ
たRCo5型焼結合金磁石の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a coercive force (hereinafter, iHc), a residual magnetic flux density (hereinafter, Br), and a maximum energy product (hereinafter, (BH) max ). (Shown in)), it relates to a method for producing an RCo 5 type sintered alloy magnet which has excellent magnet characteristics.

〔従来の技術〕[Conventional technology]

従来、一般に、RCo5型焼結合金磁石は、アルニコ磁石
やフエライト磁石などに比べて、すぐれた磁石特性をも
つことから、小型化および軽量化が必要とされる各種の
電気電子機器を中心として広く実用に供されている。
Conventionally, RCo 5 type sintered alloy magnets generally have superior magnetic characteristics compared to alnico magnets and ferrite magnets, so they are mainly used in various electric and electronic devices that need to be made smaller and lighter. Widely used for practical use.

通常、このRCo5型焼結合金磁石(ただしRは希土類元
素およびYのうちの1種または2種以上を示す)は、平
均粒径が3〜5μm程度のRCo5型合金粉末を、磁場中に
てプレス成形して圧粉体とし、こを圧粉体を1100〜1200
℃の範囲内の所定温度で焼結し、焼結後の冷却過程で、
例えば800℃までを60℃/hrの冷却速度で冷却し、以後Ar
ガスの吹付けによる急冷の熱処理を施すことからなる基
本工程によつて製造されるが、この製造工程において、 (1) 焼結温度への昇温過程で、例えば800℃までを
真空中で昇温し、ついで水素雰囲気またはAr雰囲気にし
て昇温および焼結を行ない、Ar雰囲気の場合はそのまま
上記の熱処理を行ない、一方水素雰囲気の場合は、焼結
後、これをAr雰囲気にかえた状態で上記の熱処理を行な
う方法、 (2) 焼結温度への昇温過程で、例えば200℃までを
真空中で昇温し、ついで水素雰囲気にかえて焼結温度直
前まで昇温し、焼結はAr雰囲気で行ない、以後そのまま
のAr雰囲気中で上記の熱処理を行なう方法、 などが代表的方法として知られている。
Usually, this RCo 5 type sintered alloy magnet (where R represents one or more of rare earth elements and Y) is used to produce RCo 5 type alloy powder having an average particle size of about 3 to 5 μm in a magnetic field. By press forming into a green compact, which is then pressed from 1100 to 1200
Sintered at a predetermined temperature within the range of ℃, in the cooling process after sintering,
For example, cool up to 800 ℃ at a cooling rate of 60 ℃ / hr, then
It is manufactured by a basic process consisting of a quenching heat treatment by spraying gas. In this manufacturing process, (1) In the process of raising the temperature to the sintering temperature, for example, it is raised in vacuum up to 800 ° C. Heat, and then raise the temperature and sinter in a hydrogen atmosphere or Ar atmosphere, and in the case of Ar atmosphere, perform the above heat treatment as it is, while in a hydrogen atmosphere, after sintering, change this to Ar atmosphere (2) In the process of raising the temperature to the sintering temperature, e.g., raise the temperature to 200 ° C in a vacuum, then change to a hydrogen atmosphere and raise the temperature to just before the sintering temperature. A typical method is to perform the above heat treatment in an Ar atmosphere, and then perform the above heat treatment in the same Ar atmosphere.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記の(1)方法におけるAr雰囲気での焼結
では、結晶粒の成長がないので、iHcの高い磁石が得ら
れるものの、緻密化が不十分で、磁石の密度が低く、し
たがつてBrおよび(BH)maxの高いものが得られず、ま
た上記の(1)方法における水素雰囲気での焼結では、
これとは反対に焼結時に緻密化が進行し、高い密度の磁
石が得られるので、Brおよび(BH)maxのすぐれたもの
になるが、焼結時に雰囲気の水素によつて粒成長が促進
されることから、iHcは低いものとならざるを得ず、さ
らに、上記の(2)方法では、焼結温度近くまで水素雰
囲気中で昇温されるために、焼結時の圧粉体中に水素が
残留するのが避けられず、このため上記(1)方法の水
素雰囲気での焼結の場合に比べて、かなり抑制されるも
のの粒成長は避けられず、一方でAr雰囲気での焼結とな
るため、磁石の緻密化も不十分となることから、上記の
磁石特性のいずれも上記(1)方法で得られる値の中間
的値にとどまつているのが現状であり、このようにiH
c、Br、および(BH)maxのいずれの磁石特性にもすぐれ
たRCo5焼結合金磁石を製造することができないものであ
る。
However, in the sintering in Ar atmosphere in the above method (1), since crystal grains do not grow, a magnet having a high iHc can be obtained, but the densification is insufficient and the magnet density is low. High Br and (BH) max could not be obtained, and the sintering in the hydrogen atmosphere in the above method (1) resulted in
On the contrary, since densification progresses during sintering and a magnet with high density is obtained, Br and (BH) max are excellent, but grain growth is promoted by hydrogen in the atmosphere during sintering. Therefore, iHc is inevitably low, and in the above method (2), since the temperature is raised in a hydrogen atmosphere to a temperature close to the sintering temperature, in the green compact during sintering. It is unavoidable that hydrogen remains in the steel, and therefore, compared with the case of sintering in the hydrogen atmosphere of the above method (1), grain growth is inevitable, but grain growth is unavoidable, while firing in an Ar atmosphere. As a result, the densification of the magnet is insufficient, and therefore, at present, all of the above-mentioned magnet characteristics remain at an intermediate value between the values obtained by the above method (1). iH
It is impossible to produce an RCo 5 sintered alloy magnet having excellent magnet characteristics of c, Br, and (BH) max .

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等の、上述のような観点から、iH
c、Br、および(BH)maxのいずれの磁石特性にもすぐれ
たRCo5型焼結合金磁石を製造すべく研究を行なつた結
果、RCo5型焼結合金磁石を製造するに際して、その焼結
温度への昇温過程において、 (a) まず、圧粉体を、水素雰囲気中、常温〜200℃
の範囲内の所定温度に所定時間保持すると、前記圧粉体
は水素を吸蔵して水素化物を形成するようになり、 (b) この水素を吸蔵して水素化物を形成した状態
で、900℃以下の所定温度で、上記水素雰囲気をAr雰囲
気にかえると、 圧粉体中に吸蔵する水素が放出されるが、この水素放
出時に圧粉体を構成する原料粉末に存在していた結晶原
子の配置乱れが消滅して規則配置となり、この結果の結
晶原子の規則配置は焼結時における焼結性を著しく向上
させるものであるため、緻密化が進行し、焼結後の磁石
は高いBrおよび(BH)maxをもつようになり、一方焼結
はAr雰囲気で行なうので、上記のように水素雰囲気から
Ar雰囲気への変換を相対的に低温の900℃以下の温度で
行なうことによつて圧粉体よりの完全な脱水素をはかる
ことと合まつて、焼結時の粒成長が阻止されることか
ら、iHcも高くなるという知見を得たのである。
Therefore, from the above viewpoints of the present inventors, iH
As a result of conducting research to produce an RCo 5 type sintered alloy magnet that has excellent magnet characteristics of c, Br, and (BH) max , it was found that when burning the RCo 5 type sintered alloy magnet, (A) First, the green compact is heated to room temperature to 200 ° C in a hydrogen atmosphere during the temperature rising process to the binding temperature.
When kept at a predetermined temperature within a range of, for a predetermined time, the green compact occludes hydrogen to form a hydride, and (b) 900 ° C. in a state where the hydrogen is occluded to form a hydride. When the hydrogen atmosphere is changed to an Ar atmosphere at the following predetermined temperature, hydrogen occluded in the green compact is released, but at the time of this hydrogen release, the crystal atoms existing in the raw material powder forming the green compact are released. The disordered arrangement disappears to form a regular arrangement, and the resulting regular arrangement of crystal atoms significantly improves the sinterability during sintering, so densification progresses, and the magnet after sintering has a high Br and (BH) max , while sintering is performed in an Ar atmosphere, so as described above,
By performing conversion to Ar atmosphere at a relatively low temperature of 900 ° C or lower, complete dehydrogenation from the green compact is achieved, and grain growth during sintering is prevented. From this, we have found that iHc is also high.

この発明は、上記知見にもとづいてなされたものであ
つて、 RCo5型合金粉末を主体とする原料粉末より成形した圧
粉体を、1100〜1200℃の範囲内の所定温度で焼結してRC
o5型焼結合金磁石を製造するに際して、前記焼結温度へ
の昇温過程において、 (a) まず、上記圧粉体を、水素雰囲気中、常温〜20
0℃の範囲内の所定温度に所定時間保持し、水素を吸蔵
させて、これを水素化物とし、 (b) ついで、焼結時の結晶粒の成長を防止すると共
に、上記原料粉末の結晶原子における配置乱れを規則化
して焼結性の向上をはかるために、900℃以下の所定温
度で、上記水素雰囲気をAr雰囲気にかえ、完全な脱水素
を行なつて、残留水素をなくし、 引続いてAr雰囲気で上記温度での焼結を行なうことに
よつて、磁石特性のすぐれたRCo5型焼結合金磁石を製造
する方法に特徴を有するものである。
The present invention has been made based on the above findings, in which a green compact formed from a raw material powder mainly composed of RCo 5 type alloy powder is sintered at a predetermined temperature within a range of 1100 to 1200 ° C. RC
o When manufacturing a 5 type sintered alloy magnet, in the process of raising the temperature to the sintering temperature, (a) first, the green compact is heated in a hydrogen atmosphere at room temperature to 20 ° C.
It is kept at a predetermined temperature in the range of 0 ° C. for a predetermined time to occlude hydrogen to make it a hydride, and (b) then, to prevent the growth of crystal grains at the time of sintering and to prevent the crystal atoms of the raw material powder In order to improve the sinterability by regularizing the arrangement disorder in the, the above hydrogen atmosphere was changed to Ar atmosphere at a predetermined temperature of 900 ° C or less, complete dehydrogenation was performed to eliminate residual hydrogen, and This method is characterized by a method for producing a RCo 5 type sintered alloy magnet having excellent magnet characteristics by performing sintering at the above temperature in an Ar atmosphere.

つぎに、この発明の方法において、製造条件を上記の
通りに限定した理由を説明する。
Next, the reason why the manufacturing conditions are limited as described above in the method of the present invention will be described.

(a) 昇温過程における水素雰囲気保持温度 圧粉体の水素雰囲気からの水素吸蔵は常温で起るが、
その温度が200℃を越えると、圧粉体の水素吸蔵速度は
急激に低下、すなわち圧粉体を水素雰囲気中で200℃を
越えた温度に保持しても充分な水素吸蔵をはかることが
できないことから、その温度を常温〜200℃、望ましく
は常温〜100℃と定めた。また保持時間に時に制限はな
いが、通常30分以上の保持が必要である。
(A) Hydrogen atmosphere holding temperature in the temperature rising process Hydrogen absorption of the green compact from the hydrogen atmosphere occurs at room temperature,
If the temperature exceeds 200 ° C, the hydrogen absorption rate of the green compact decreases rapidly, that is, even if the green compact is kept at a temperature of over 200 ° C in a hydrogen atmosphere, sufficient hydrogen absorption cannot be achieved. Therefore, the temperature is determined to be room temperature to 200 ° C, preferably room temperature to 100 ° C. Although the holding time is not limited, it is usually necessary to hold it for 30 minutes or longer.

(b) 昇温過程における雰囲気切換え温度 昇温過程における水素雰囲気らかAr雰囲気の切換え
は、圧粉体が吸蔵した水素を焼結温度に昇温する間に完
全に放出して、焼結性の改善および粒成長の防止をはか
るために行なれるものであり、したがって、その変換温
度が900℃を越えて高くなると、水素の放出が完了し得
ないうちに焼結温度に到達し、残留水素の存在する状態
での焼結となるので、粒成長が起つて、所定の高いiHc
を確保することができなくなることから、その切換え温
度を900℃以下、望ましくは400℃以下と定めたのであ
る。
(B) Atmosphere switching temperature in the temperature raising process The switching of the hydrogen atmosphere or the Ar atmosphere in the temperature raising process completely releases the hydrogen absorbed by the green compact while the temperature is raised to the sintering temperature, and To improve the sintering temperature and prevent grain growth. Therefore, when the conversion temperature becomes higher than 900 ° C, the sintering temperature is reached before the release of hydrogen can be completed, and the residual hydrogen Since the sintering takes place in the presence of the above, grain growth occurs, and a high iHc
Therefore, the switching temperature is set to 900 ° C or lower, preferably 400 ° C or lower.

(c) 焼結温度 その温度が1100℃未満では、充分な焼結を行なうこと
ができず、緻密化が不十分となつて、所望のBrおよび
(BH)maxを得ることができず、一方その温度が1200℃
を越えると、粒成長が発生するようになつて、iHcの低
下を招くことから、その温度を1100〜1200℃と定めた。
(C) Sintering temperature If the temperature is less than 1100 ° C, sufficient sintering cannot be performed, densification is insufficient, and desired Br and (BH) max cannot be obtained. The temperature is 1200 ℃
If it exceeds, the grain growth will occur and the iHc will be lowered, so the temperature was set to 1100 to 1200 ℃.

〔実施例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明
する。
Next, the method of the present invention will be specifically described by way of Examples.

まず、高周波炉を用い、Arの雰囲気中で、重量比で、
Sm:28.5%、Pr:7.0%、Co:残りからなる組成をもつたRC
o5型合金溶湯を調製し、鋳造した後、スタンプミルにて
Ar雰囲気中で粉砕し、さらにアトライターミルを用いて
ダイフロン中で粉砕して、平均粒径:約4μmの原料粉
末を製造し、ついで、この原料粉末を、12KOeの磁界中
で配向させた状態で、配向方向と平行方行に2ton/cm2
圧力で圧縮して、直径:11mmφ×厚さ:10mmの厚さ方向に
配向した圧粉体を成形し、この圧粉体を、第1図の加熱
曲線にしたがい、T1を水素雰囲気保持温度、T2を水素雰
囲気からAr雰囲気への切換え温度とし、このT1およびT2
を第1表に示される種々の温度とすると共に、T1の保持
時間も同じく第1表に示される通り変化させた条件で、
Ar雰囲気中、480℃/hrの昇温速度で1120℃の焼結温度に
加熱し、以後Ar雰囲気中 で、前記焼結温度に1時間保持した後、60℃/hrの冷却
速度で800℃まで冷却し、800℃からはArガスの吹付けで
急冷することにより本発明法1〜15をそれぞれ実施し、
RCo5型焼結合金を製造した。
First, using a high frequency furnace, in an Ar atmosphere, in a weight ratio,
RC with a composition consisting of Sm: 28.5%, Pr: 7.0%, Co: balance
o Prepare a molten 5 type alloy, cast it, and then use a stamp mill.
Grinding in Ar atmosphere, then grinding in Daiflon using an attritor mill to produce a raw material powder with an average particle size of about 4 μm, and then the raw material powder was oriented in a magnetic field of 12 KOE. Then, it is compressed in a direction parallel to the orientation direction with a pressure of 2 ton / cm 2 to form a green compact oriented in a thickness direction of diameter: 11 mmφ × thickness: 10 mm. according heating curve of figure, a hydrogen atmosphere maintained temperature T 1, the T 2 from the hydrogen atmosphere switching temperature to the Ar atmosphere, the T 1 and T 2
At various temperatures shown in Table 1 , and the holding time of T 1 was also changed as shown in Table 1,
In Ar atmosphere, heated to a sintering temperature of 1120 ° C at a heating rate of 480 ° C / hr, and then in Ar atmosphere After holding at the sintering temperature for 1 hour, the method of the present invention 1 to 15 is carried out by cooling to 800 ° C. at a cooling rate of 60 ° C./hr and quenching from 800 ° C. by blowing Ar gas. Then
An RCo 5 type sintered alloy was produced.

また、比較の目的で、同じく第2図に示される加熱曲
線にしたがい、800℃までの昇温を真空中で行ない、以
後、焼結完了までを、Ar雰囲気(従来法1)とするか、
あるいは水素雰囲気(従来法2)とするかする以外は、
本発明法と同一の条件で従来法1、2を行ない、同じく
RCo5型焼結合金磁石を製造した。
Also, for the purpose of comparison, according to the heating curve shown in FIG. 2 as well, the temperature is raised to 800 ° C. in a vacuum, and thereafter the sintering is completed in an Ar atmosphere (conventional method 1).
Or, except that the hydrogen atmosphere (conventional method 2) is used,
Conventional methods 1 and 2 were performed under the same conditions as the method of the present invention, and
An RCo 5 type sintered alloy magnet was manufactured.

さらに、比較の目的で、水素雰囲気保持温度T1または
昇温過程の雰囲気切換え温度T2が、第1表に示される通
り、この発明の範囲から外れた条件で比較法1〜10を行
ない、RCo5型焼結合金磁石を製造した。
Further, for the purpose of comparison, as shown in Table 1 , the hydrogen atmosphere holding temperature T 1 or the atmosphere switching temperature T 2 in the temperature rising process is out of the range of the present invention, and Comparative methods 1 to 10 are performed. An RCo 5 type sintered alloy magnet was manufactured.

つぎに、この結果得られた各種のRCo5型焼結合金磁石
について密度を測定すると共に、磁石特性を測定した。
これらの測定結果を第1表に示した。
Next, the densities of the various RCo 5 type sintered alloy magnets obtained as a result were measured and the magnet characteristics were measured.
The results of these measurements are shown in Table 1.

〔発明の効果〕〔The invention's effect〕

第1表に示される結果から、本発明法1〜15によつて
製造されたRCo5型焼結合金磁石は、いずれも高密度を有
し、かつiHc、Br、および(BH)maxのいずれの磁気特性
にもすぐれているのに対して、従来法1、2、並びに比
較法1〜10で製造されたRCo5型焼結合金磁石は、前記の
磁石特性のうちの少なくともいずれかの特性が劣ること
が明らかである。
From the results shown in Table 1, all of the RCo 5 type sintered alloy magnets manufactured by the methods 1 to 15 of the present invention have high density and have any of iHc, Br, and (BH) max . While the RCo 5 type sintered alloy magnets manufactured by the conventional methods 1 and 2 and the comparative methods 1 to 10 have at least one of the above magnetic characteristics, Is clearly inferior.

上述のように、この発明の方法によれば、従来法では
具備させることが困難であつた、iHc、Br、および(B
H)maxのいずれの磁石特性にもすぐれたRCo5型焼結合金
磁石を製造することができるのである。
As described above, according to the method of the present invention, iHc, Br, and (B
It is possible to manufacture RCo 5 type sintered alloy magnets with excellent H) max magnet characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明法を示す加熱曲線図、第2図は従来法を
示す加熱曲線図である。
FIG. 1 is a heating curve diagram showing the method of the present invention, and FIG. 2 is a heating curve diagram showing the conventional method.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】RCo5型合金粉末(ただしRは希土類元素お
よびYのうちの1種または2種以上)を主体とする原料
粉末より成形した圧粉体を、Ar雰囲気中、1100〜1200℃
の範囲内の所定温度で焼結してRCo5型焼結合金磁石を製
造するに際して、前記焼結温度への昇温過程において、 (a) まず、上記圧粉体を、水素雰囲気中、常温〜20
0℃の範囲内の所定温度に所定時間保持し、水素を吸蔵
させて、これを水素化物とし、 (b) ついで、焼結時の結晶粒を成長を防止すると共
に、上記原料粉末の結晶原子における配置乱れを規則化
して、焼結性の向上をはかるために、900℃以下の所定
温度で、上記水素雰囲気をAr雰囲気にかえ、完全な脱水
素を行なつて、残留水素をなくすこと、 を特徴とする磁石特性のすぐれたRCo5型焼結合金磁石の
製造法。
1. A green compact formed from a raw material powder mainly composed of RCo 5 type alloy powder (where R is one or more kinds of rare earth elements and Y) is heated to 1100 to 1200 ° C. in an Ar atmosphere.
When manufacturing an RCo 5 type sintered alloy magnet by sintering at a predetermined temperature within the range of (1), (a) first, the green compact is heated in a hydrogen atmosphere at room temperature. ~ 20
It is kept at a predetermined temperature within the range of 0 ° C for a predetermined period of time to occlude hydrogen to make it a hydride, and (b) then, to prevent the growth of crystal grains at the time of sintering and to prevent the crystal atoms of the raw material powder In order to improve the sinterability by regularizing the arrangement disorder in, the hydrogen atmosphere is changed to an Ar atmosphere at a predetermined temperature of 900 ° C. or less, and complete dehydrogenation is performed to eliminate residual hydrogen, Of RCo 5 type sintered alloy magnet with excellent magnet characteristics.
JP62064918A 1987-03-19 1987-03-19 Method for manufacturing RCo-lower 5 type sintered alloy magnet with excellent magnet characteristics Expired - Lifetime JP2518265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62064918A JP2518265B2 (en) 1987-03-19 1987-03-19 Method for manufacturing RCo-lower 5 type sintered alloy magnet with excellent magnet characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62064918A JP2518265B2 (en) 1987-03-19 1987-03-19 Method for manufacturing RCo-lower 5 type sintered alloy magnet with excellent magnet characteristics

Publications (2)

Publication Number Publication Date
JPS63230835A JPS63230835A (en) 1988-09-27
JP2518265B2 true JP2518265B2 (en) 1996-07-24

Family

ID=13271906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62064918A Expired - Lifetime JP2518265B2 (en) 1987-03-19 1987-03-19 Method for manufacturing RCo-lower 5 type sintered alloy magnet with excellent magnet characteristics

Country Status (1)

Country Link
JP (1) JP2518265B2 (en)

Also Published As

Publication number Publication date
JPS63230835A (en) 1988-09-27

Similar Documents

Publication Publication Date Title
US3947295A (en) Hard magnetic material
CN1033623C (en) Method for producting rare earth alloy magnet powder
JPH07235439A (en) Manufacture of rare earth-iron-boron based sintered magnet or bonded magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP2518265B2 (en) Method for manufacturing RCo-lower 5 type sintered alloy magnet with excellent magnet characteristics
US4578125A (en) Permanent magnet
JPS6350444A (en) Manufacture of nd-fe-b sintered alloy magnet
JPS61295342A (en) Manufacture of permanent magnet alloy
JPH10256014A (en) Manufacture of rare-earth magnet powder of excellent magnetic anisotropy
JP2715378B2 (en) Method for producing Nd-Fe-B based sintered magnet
JPS5923803A (en) Production of magnet consisting of rare earth element
JPH0568841B2 (en)
JPS62170454A (en) Permanent magnet alloy and its manufacture
JPS61238938A (en) Sintering method for permanent magnet alloy
JPS6334606B2 (en)
JPS62181402A (en) R-b-fe sintered magnet and manufacture thereof
JPH08288113A (en) Manufacture of rare-earth magnetic material powder and rare-earth magnet
JPS61208809A (en) Manufacture of sintered magnet
JP2000021614A (en) Manufacture of rare earth magnet powder superior in magnetic anisotropy
JPS6119084B2 (en)
JPH11354362A (en) Method for sintering rare-earth iron boron series permanent magnet
JP3016098B2 (en) Manufacturing method of permanent magnet
JPH07335468A (en) Manufacture of rare-earth magnet
JPS5853055B2 (en) Manufacturing method of permanent magnet material
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same