JP2024036643A - 空調制御の学習装置および推論装置 - Google Patents
空調制御の学習装置および推論装置 Download PDFInfo
- Publication number
- JP2024036643A JP2024036643A JP2024017820A JP2024017820A JP2024036643A JP 2024036643 A JP2024036643 A JP 2024036643A JP 2024017820 A JP2024017820 A JP 2024017820A JP 2024017820 A JP2024017820 A JP 2024017820A JP 2024036643 A JP2024036643 A JP 2024036643A
- Authority
- JP
- Japan
- Prior art keywords
- parameter
- air conditioning
- learning
- equipment
- conditioning system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004378 air conditioning Methods 0.000 title claims abstract description 108
- 230000006870 function Effects 0.000 claims description 18
- 238000011156 evaluation Methods 0.000 claims description 7
- 230000005611 electricity Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 abstract description 21
- 101150049281 PRM1 gene Proteins 0.000 abstract description 18
- 230000006866 deterioration Effects 0.000 abstract description 6
- 101150106023 PRM2 gene Proteins 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000002787 reinforcement Effects 0.000 description 8
- 230000010365 information processing Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/48—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
【課題】先回り空調が行われる設備における加工精度および作業性の劣化を抑制する。【解決手段】学習装置100は、少なくとも1つの設備を含む工場の空調システムの制御を学習する。モデル生成部120は、学習用データを用いて、第1パラメータPrm1から、空調システムの空調の強度に関する第2パラメータPrm2を推論する学習済みモデルを生成する。第1パラメータPrm1は、少なくとも1つの設備の電力量、温度および湿度、少なくとも1つの設備の識別情報、少なくとも1つの設備によって生産される製品の品目、および第1パラメータが取得された時刻に関する情報を含む。【選択図】図3
Description
本開示は、空調制御の学習装置および推論装置に関する。
従来、空調対象の空間における温度が変化する前に空調を制御する構成(先回り空調)が知られている。たとえば、国際公開第2018/190334号(特許文献1)には、温度に加え、日射量を示す指標情報を入力、学習し、空調能力を制御することで、先回り空調を行う構成が開示されている。
特許文献1に開示されている構成においては、日射量という外部からのエネルギー流入量に着目しているが、設備の発熱という内部のエネルギー発生量は考慮されていない。工場内には、たとえば炉もしくはコンプレッサーといった発熱する設備が配置されている場合がある。空間温度の変化は、加工精度の悪化、もしくは作業者の身体的負荷増大による生産性悪化を引き起こすため、変化量の抑制が求められる。温度センサでは、検知、空調能力制御開始、および空間温度への反映の各段階が必要で、タイムラグが避けられない。生産計画もしくは生産投入実績に応じて設備の発熱量が変化する場合がある。発熱量に変化がある場合は温度のハンチング(オーバーシュート/アンダーシュート)発生への対応が困難である。さらに、単に生産設備の消費電力量を計測しても、品目に応じた変化は多様であり、前後の生産品目によっても電力量に差異があるため、外気温等の要因を含めすべての電力量と空間温度変化量のパターンを人手で網羅することは困難である。
本開示は、上述のような課題を解決するためになされたものであり、その目的は、先回り空調が行われる設備における加工精度および作業性の劣化を抑制することである。
本開示の一局面に係る学習装置は、少なくとも1つの設備を含む工場の空調システムの制御を学習する。学習装置は、第1データ取得部と、モデル生成部とを備える。第1データ取得部は、少なくとも1つの設備および空調システムの状態を表す第1パラメータと、空調システムの空調の強度に関する第2パラメータとを含む学習用データを取得する。モデル生成部は、学習用データを用いて、第1パラメータから、第2パラメータを推論する学習済みモデルを生成する。第1パラメータは、少なくとも1つの設備の電力量、温度および湿度、少なくとも1つの設備の識別情報、少なくとも1つの設備によって生産される製品の品目、および第1パラメータが取得された時刻に関する情報を含む。
本開示の他の局面に係る推論装置は、少なくとも1つの設備を含む工場の空調システムの制御を出力する。推論装置は、データ取得部と、推論部とを備える。データ取得部は、少なくとも1つの設備および空調システムの状態を表す第1パラメータを取得する。推論部は、第1パラメータから空調システムの空調の強度に関する第2パラメータを推論する学習済みモデルを用いて、データ取得部によって取得された第1パラメータから第2パラメータを出力する。第1パラメータは、少なくとも1つの設備の電力量、温度および湿度、少なくとも1つの設備の識別情報、少なくとも1つの設備によって生産される製品の品目、および第1パラメータが取得された時刻に関する情報を含む。
本開示に係る学習装置および推論装置によれば、第1パラメータが少なくとも1つの設備の電力量、温度および湿度、少なくとも1つの設備の識別情報、少なくとも1つの設備によって生産される製品の品目、および第1パラメータが取得された時刻に関する情報を含むことにより、先回り空調が行われる設備における加工精度および作業性の劣化を抑制することができる。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
図1は、実施の形態に係る学習装置100および推論装置200を備える管理サーバ10、および管理サーバ10によって制御される空調システム20および工場30の構成の一例を示すブロック図である。図1に示されるように、工場30は、設備Eq1,Eq2,Eq3,Eq4,Eq5を含む。ワークWrkは、設備Eq1~Eq4,Eq1,Eq5の順に作業工程を経由して製品Prdとして出荷される。設備Eq1~Eq5は、たとえば、水洗浄装置、乾燥炉、塗装装置、焼き付け炉、および検査装置をそれぞれ含む。
図2は、ワークWrkが製品Prdとなるまでの設備Eq1~Eq5の各々の熱負荷の相対的な大小関係を示す。図2に示されるように、ワークWrkから製品Prdを完成させる場合の設備Eq1~Eq5の各々の熱発生量は、大きく変化する。
再び図1を参照して、管理サーバ10は、情報処理システム11と、データ収集/処理システム12とを含む。情報処理システム11は、学習装置100と、推論装置200とを含む。管理サーバ10は、温湿度センサSn1,Sn3,Sn4,Sn11から、設備Eq1の温度および湿度、設備Eq3の温度および湿度、設備Eq4の温度および湿度、および室内機22の温度および湿度を無線通信によってそれぞれ取得する。管理サーバ10は、温湿度センサSn2から設備Eq2の温度および湿度を有線通信によって取得する。管理サーバ10は、温湿度センサSn10から室外機21の温度および湿度を空調コントローラ23を介して有線通信によって取得する。管理サーバ10は、生産現場の空調制御推定パラメータPrm1(第1パラメータ)を取得する。空調制御推定パラメータPrm1は、工場30に含まれる設備(生産設備)の電力量、温湿度、生産設備の識別情報、製品Prdの品目、および空調制御推定パラメータPrm1が取得された時刻に関する情報を含む。
空調システム20は、室外機21と、室内機22と、空調コントローラ23とを含む。室外機21は、工場30の外部に配置されている。室内機22および空調コントローラ23は、工場30内に配置されている。室外機21は、ファン、圧縮機、および熱交換器を含む。室内機22は、ファン、熱交換器および膨張弁を含む。空調コントローラ23は、サーモスタットを含む。空調コントローラ23は、管理サーバ10からの空調強度制御パラメータPrm2(第2パラメータ)を受けて、室外機21および室内機22を制御する。空調強度制御パラメータPrm2は、サーモスタットのON/OFF、圧縮機の回転周波数、ファンの風力、冷媒の蒸発温度、および冷媒の凝縮温度を含む。
図3は、図1の学習装置100の構成を示すブロック図である。図3に示されるように、学習装置100は、データ取得部110(第1データ取得部)と、モデル生成部120とを備える。データ取得部110は、および空調制御推定パラメータPrm1および空調強度制御パラメータPrm2を学習用データとして取得する。
モデル生成部120は、空調制御推定パラメータPrm1および空調強度制御パラメータPrm2を含む学習用データを用いて、空調強度制御を学習する。すなわち、モデル生成部120は、空調制御推定パラメータPrm1から空調強度制御パラ―メータPrm2を推論する学習済みモデルを生成する。モデル生成部120が用いる学習アルゴリズムは教師あり学習、教師なし学習、あるいは強化学習等の公知のアルゴリズムを用いることができる。以下では、一例として、強化学習(Reinforcement Learning)を適用した場合について説明する。強化学習では、或る環境内におけるエージェント(行動主体)が、現在の状態(環境のパラメータ)を観測し、取るべき行動を決定する。エージェントの行動により環境が動的に変化し、エージェントには環境の変化に応じて報酬が与えられる。エージェントはこれを繰り返し、一連の行動を通じて報酬が最も多く得られる行動方針を学習する。強化学習の代表的な手法として、Q学習(Q-learning)またはTD学習(TD-learning)が知られている。たとえば、Q学習の場合、行動価値関数Q(st,at)の一般的な更新式は以下の式(1)のように表される。
式(1)において、stは時刻tにおける環境の状態を表し、atは時刻tにおける行動を表す。行動atにより、状態はstからst+1に変わる。rt+1は状態の変化によって得られる報酬を表し、γは割引率を表し、αは学習係数を表す。なお、γは0<γ≦1の範囲であり、αは0<α≦1の範囲とする。空調強度制御パラメータPrm2が行動atとなり、生産現場の空調制御推定パラメータPrm1が状態stとなる。エージェントは、式(1)に示される行動価値関数Q(st,at)の更新を繰り返しながら、時刻tの状態stにおける最良の行動atを学習する。
式(1)で表される更新式は、時刻t+1における最も行動価値Q(評価値)の高い行動aのQ値が時刻tにおいて実行された行動aの行動価値Qよりも大きい場合、行動価値Qを大きくする。逆の場合、当該更新式は、行動価値Qを小さくする。換言すれば、時刻tにおける行動aの行動価値Qを、時刻t+1における最良の行動価値に近づけるように、行動価値関数Q(s,a)を更新する。それにより、或る環境における最良の行動価値が、それ以前の環境における行動価値に順次伝播していくようになる。
上記のように、強化学習によって学習済みモデルを生成する場合、モデル生成部120は、報酬計算部121と、関数更新部122とを備えている。報酬計算部121は、空調制御推定パラメータPrm1および空調強度制御パラメータPrm2を用いて報酬を計算する。報酬計算部121は、設定温度と工場30内の温度との乖離度合い(報酬基準)を用いて、報酬rを計算する。たとえば、設定温度と工場30内の温度との乖離度合いが前回よりも減少する場合には報酬rを増大させ(たとえば「1」の報酬を与える。)、他方、設定温度と工場30内の温度との乖離度合いが前回よりも増加する場合には報酬rを低減する(たとえば「-1」の報酬を与える。)。
関数更新部122は、報酬計算部121によって計算される報酬に従って、空調強度制御パラメータPrm2を決定するための関数を更新し、学習済みモデル記憶部140に出力する。たとえばQ学習の場合、式(1)で表される行動価値関数Q(st,at)が空調強度制御パラメータPrm2を算出するための関数として用いられる。
学習装置100は、以上のような学習を繰り返し実行する。学習済みモデル記憶部140は、関数更新部122によって更新された行動価値関数Q(st,at)である学習済みモデルを記憶する。
図4は、図3の学習装置100の学習処理を示すフローチャートである。以下ではステップを単にSと記載する。図4に示されるように、S101において、データ取得部110は、空調制御推定パラメータPrm1および空調強度制御パラメータPrm2を学習用データとして取得する。具体的には、データ取得部110は、工場30内に複数の設備があることを想定し、電力量には設備の識別情報および時間情報を付与し、温度および湿度には、当該温度および湿度が測定された位置情報および時間情報を付与する。
S102において、モデル生成部120は、空調制御推定パラメータPrm1および空調強度制御パラメータPrm2を用いて報酬を計算する。具体的には、報酬計算部121は、空調制御推定パラメータPrm1および空調強度制御パラメータPrm2を取得し、予め定められた報酬基準である設定温度と工場30内の温度との乖離度合に基づいて空調強度制御パラメータPrm2に対応する報酬を増加させるか(S103)または報酬を減じるか(S104)を判断する。報酬計算部121は、乖離度合いが閾値よりも小さい場合、S103において報酬を増大させる。一方、報酬計算部121は、乖離度合いが当該閾値よりも大きい場合、S104において報酬を減少させる。
なお、空調システムの消費電力量の目標消費電力量からの乖離度合を報酬基準として用いてもよい。この場合、当該乖離度合いが大きい程、報酬が減じられ、当該乖離度合いが小さい程、報酬が増加される。その結果、省エネルギーを実現することができる。また、報酬基準として、製品Prdの歩留まりが基準歩留まりより大きい場合に報酬を増加させ、小さい場合に報酬を減少させるという基準が用いられてもよい。その結果、製品Prdの品質を向上させることができる。
S105において、関数更新部122は、報酬計算部121によって計算された報酬および式(1)を用いて、学習済みモデル記憶部140が記憶する行動価値関数Q(st,at)を更新する。
学習装置100は、以上のS101からS105までのステップを繰り返し実行し、生成された行動価値関数Q(st,at)を学習済みモデルとして記憶する。なお、学習装置100においては、学習済みモデルを学習装置100の外部に設けられた学習済みモデル記憶部140に記憶する構成としたが、学習済みモデル記憶部140を学習装置100の内部に形成してもよい。
図5は、図1の推論装置200の構成を示すブロック図である。推論装置200は、データ取得部210と、推論部220とを含む。データ取得部210は、空調制御推定パラメータPrm1を取得する。推論部220は、学習済みモデル記憶部140に記憶されている学習済みモデルを利用して空調強度制御パラメータPrm2を推論する。すなわち、学習済みモデルにデータ取得部210が取得した生産現場の空調制御推定パラメータPrm1を入力することで、生産現場の空調制御推定パラメータPrm1に適した空調強度制御パラメータPrm2を推論することができる。なお、実施の形態では、図3のモデル生成部120で学習された学習済みモデルを用いて空調強度制御パラメータPrm2を推論する構成を説明したが、他の環境で学習された学習済みモデルを用いて空調強度制御パラメータを出力するようにしてもよい。
図6は、図5の推論装置200の推論処理を示すフローチャートである。図6に示されるように、S201において、データ取得部210は、生産現場の空調制御推定パラメータPrm1を取得する。S202において、推論部220は学習済みモデル記憶部140に記憶された学習済みモデルに生産現場の空調制御推定パラメータPrm1を入力し、空調強度制御パラメータPrm2を得て、S203において空調強度制御パラメータPrm2を空調システム20に出力する。S204において、空調システム20は、推論装置200から出力された空調強度制御パラメータPrm2を用いて、近い未来に予測される熱負荷変化量を緩和する強度となる空調制御を実施する。これにより、従来の温度センサを用いる空調制御(フィードバック)で避けられなかった設定温度との乖離、もしくはハンチング(オーバーシュートまたはアンダーシュート)という図7に示されるような課題に対し、設備の消費電力量等から推定される熱負荷変化に対処することができる空調制御を先回り(フィードフォワード)で実施することができる。その結果、図8に示されるように、設定温度との乖離を減少させることができるため、加工精度の低下、品質の低下、および作業者への負担軽減を実現することができる。
なお、本実施の形態では、推論部が用いる学習アルゴリズムに強化学習を適用した場合について説明したが、学習アルゴリズムは強化学習に限られるものではない。学習アルゴリズムについては、強化学習以外にも、教師あり学習、教師なし学習、または半教師あり学習等を適用することも可能である。
また、モデル生成部120に用いられる学習アルゴリズムとしては、特徴量そのものの抽出を学習する、深層学習(Deep Learning)を用いることもでき、他の公知の方法、たとえばニューラルネットワーク、遺伝的プログラミング、機能論理プログラミング、もしくはサポートベクターマシンなどに従って機械学習が実行されてもよい。
なお、学習装置100および推論装置200は、たとえば、ネットワークを介して空調システム20に接続される、空調システム20とは別個の装置であってもよい。また、学習装置100および推論装置200は、空調システム20に内蔵されていてもよい。さらに、学習装置100および推論装置200は、クラウドサーバ上に存在していてもよい。
また、モデル生成部120は、複数の空調システム20から取得される学習用データを用いて、空調強度制御を学習するようにしてもよい。なお、モデル生成部120は、同一のエリアで使用される複数の空調システム20から学習用データを取得してもよいし、異なるエリアで独立して動作する複数の空調システム20から収集される学習用データを利用して空調強度制御を学習してもよい。また、学習用データを収集する空調システム20を途中で学習対象に追加したり、学習対象から除去することも可能である。さらに、或る空調システム20に関して空調強度制御を学習した学習装置100を、これとは別の空調システム20に適用し、当該別の先回り空調システムに関して空調強度制御を再学習して更新するようにしてもよい。
図9は、図1の情報処理システム11のハードウェア構成を示すブロック図である。図9に示されるように、情報処理システム11は、処理回路51と、メモリ52(記憶部)と、入出力部53とを含む。処理回路51は、メモリ52に格納されるプログラムを実行するCPU(Central Processing Unit)を含む。処理回路51は、GPU(Graphics Processing Unit)を含んでもよい。情報処理システム11の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアあるいはファームウェアはプログラムとして記述され、メモリ52に格納される。処理回路51は、メモリ52に記憶されたプログラムを読み出して実行する。なお、CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいはDSP(Digital Signal Processor)とも呼ばれる。
メモリ52には、不揮発性または揮発性の半導体メモリ(たとえばRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、あるいはEEPROM(Electrically Erasable Programmable Read Only Memory))、および磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、あるいはDVD(Digital Versatile Disc)が含まれる。メモリ52には、たとえば、学習済みモデル、先回り空調プログラム、および機械学習プログラムが保存される。
入出力部53は、ユーザからの操作を受けるとともに、処理結果をユーザに出力する。入出力部53は、たとえば、マウス、キーボード、タッチパネル、ディスプレイ、およびスピーカを含む。
以上、実施の形態に係る学習装置および推論装置によれば、先回り空調が行われる設備における加工精度および作業性の劣化を抑制することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 管理サーバ、11 情報処理システム、12 データ収集/処理システム、20 空調システム、21 室外機、22 室内機、23 空調コントローラ、30 工場、51 処理回路、52 メモリ、53 入出力部、100 学習装置、110,210 データ取得部、120 モデル生成部、121 報酬計算部、122 関数更新部、140 学習済みモデル記憶部、200 推論装置、220 推論部、Eq1~Eq5 設備
Prd 製品、Sn1~Sn4,Sn10,Sn11 温湿度センサ、Wrk ワーク。
Prd 製品、Sn1~Sn4,Sn10,Sn11 温湿度センサ、Wrk ワーク。
Claims (4)
- 少なくとも1つの設備を含む工場の空調システムの制御を学習する学習装置であって、
前記少なくとも1つの設備および前記空調システムの状態を表す第1パラメータと、前記空調システムの空調の強度に関する第2パラメータとを含む学習用データを取得する第1データ取得部と、
前記学習用データを用いて、前記第1パラメータから、前記第2パラメータを推論する学習済みモデルを生成するモデル生成部とを備え、
前記第1パラメータは、前記少なくとも1つの設備の電力量、温度および湿度、前記少なくとも1つの設備の識別情報、前記少なくとも1つの設備によって生産される製品の品目、および前記第1パラメータが取得された時刻に関する情報を含み、
前記学習済みモデルは、前記第1パラメータと、前記第2パラメータの評価値とが関連付けられた関数を含み、
前記モデル生成部は、前記第2パラメータに従って制御された前記空調システムによる空調の下での前記工場内の温度と目標温度との乖離度合いに応じて前記第2パラメータの評価値を更新する、学習装置。 - 少なくとも1つの設備を含む工場の空調システムの制御を学習する学習装置であって、
前記少なくとも1つの設備および前記空調システムの状態を表す第1パラメータと、前記空調システムの空調の強度に関する第2パラメータとを含む学習用データを取得する第1データ取得部と、
前記学習用データを用いて、前記第1パラメータから、前記第2パラメータを推論する学習済みモデルを生成するモデル生成部とを備え、
前記第1パラメータは、前記少なくとも1つの設備の電力量、温度および湿度、前記少なくとも1つの設備の識別情報、前記少なくとも1つの設備によって生産される製品の品目、および前記第1パラメータが取得された時刻に関する情報を含み、
前記学習済みモデルは、前記第1パラメータと、前記第2パラメータの評価値とが関連付けられた関数を含み、
前記モデル生成部は、前記第2パラメータに従って制御された前記空調システムの消費電力量の変化に応じて前記第2パラメータの評価値を更新する、学習装置。 - 少なくとも1つの設備を含む工場の空調システムの制御を学習する学習装置であって、
前記少なくとも1つの設備および前記空調システムの状態を表す第1パラメータと、前記空調システムの空調の強度に関する第2パラメータとを含む学習用データを取得する第1データ取得部と、
前記学習用データを用いて、前記第1パラメータから、前記第2パラメータを推論する学習済みモデルを生成するモデル生成部とを備え、
前記第1パラメータは、前記少なくとも1つの設備の電力量、温度および湿度、前記少なくとも1つの設備の識別情報、前記少なくとも1つの設備によって生産される製品の品目、および前記第1パラメータが取得された時刻に関する情報を含み、
前記学習済みモデルは、前記第1パラメータと、前記第2パラメータの評価値とが関連付けられた関数を含み、
前記モデル生成部は、前記第2パラメータに従って制御された前記空調システムによる空調の下で生産された前記製品の歩留まりの変化に応じて前記第2パラメータの評価値を更新する、学習装置。 - 前記第1パラメータを取得する第2データ取得部と、
請求項1~3のいずれか1項に記載の学習装置によって生成された前記学習済みモデルを用いて、前記第2データ取得部によって取得された前記第1パラメータから前記第2パラメータを出力する推論部とを備える、推論装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024017820A JP2024036643A (ja) | 2020-03-27 | 2024-02-08 | 空調制御の学習装置および推論装置 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022510378A JPWO2021192279A1 (ja) | 2020-03-27 | 2020-03-27 | |
PCT/JP2020/014247 WO2021192279A1 (ja) | 2020-03-27 | 2020-03-27 | 空調制御の学習装置および推論装置 |
JP2024017820A JP2024036643A (ja) | 2020-03-27 | 2024-02-08 | 空調制御の学習装置および推論装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022510378A Division JPWO2021192279A1 (ja) | 2020-03-27 | 2020-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024036643A true JP2024036643A (ja) | 2024-03-15 |
Family
ID=77891028
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022510378A Pending JPWO2021192279A1 (ja) | 2020-03-27 | 2020-03-27 | |
JP2024017820A Withdrawn JP2024036643A (ja) | 2020-03-27 | 2024-02-08 | 空調制御の学習装置および推論装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022510378A Pending JPWO2021192279A1 (ja) | 2020-03-27 | 2020-03-27 |
Country Status (3)
Country | Link |
---|---|
JP (2) | JPWO2021192279A1 (ja) |
CN (1) | CN115280075A (ja) |
WO (1) | WO2021192279A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7414964B2 (ja) | 2020-03-27 | 2024-01-16 | 三菱電機株式会社 | 空調制御の学習装置および推論装置 |
JP2023077651A (ja) * | 2021-11-25 | 2023-06-06 | 国立大学法人京都大学 | コントローラ、制御方法、および制御プログラム |
JPWO2023162150A1 (ja) * | 2022-02-25 | 2023-08-31 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017098552A1 (ja) * | 2015-12-07 | 2017-06-15 | 三菱電機株式会社 | 制御装置、空気調和システムおよび空気調和機の制御方法 |
JP6059375B1 (ja) * | 2016-02-09 | 2017-01-11 | ファナック株式会社 | 生産制御システムおよび統合生産制御システム |
JP2019215109A (ja) * | 2018-06-11 | 2019-12-19 | ダイキン工業株式会社 | 空調システム |
CN109695944B (zh) * | 2018-11-29 | 2021-06-18 | 中国汽车工业工程有限公司 | 一种基于多模型深度学习的涂装新风空调的控制方法 |
-
2020
- 2020-03-27 JP JP2022510378A patent/JPWO2021192279A1/ja active Pending
- 2020-03-27 WO PCT/JP2020/014247 patent/WO2021192279A1/ja active Application Filing
- 2020-03-27 CN CN202080095729.5A patent/CN115280075A/zh not_active Withdrawn
-
2024
- 2024-02-08 JP JP2024017820A patent/JP2024036643A/ja not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
WO2021192279A1 (ja) | 2021-09-30 |
CN115280075A (zh) | 2022-11-01 |
JPWO2021192279A1 (ja) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024036643A (ja) | 空調制御の学習装置および推論装置 | |
JP5832644B2 (ja) | 殊にガスタービンまたは風力タービンのような技術システムのデータドリブンモデルを計算機支援で形成する方法 | |
Fu et al. | ED-DQN: An event-driven deep reinforcement learning control method for multi-zone residential buildings | |
JP2015232436A (ja) | 蒸気圧縮システムを制御するシステム及び方法 | |
JP2010515182A (ja) | コンピュータ支援によって技術システムを制御および/または調整する方法 | |
JP6901037B1 (ja) | 制御装置、制御方法及びプログラム | |
JP7006859B2 (ja) | 空調制御装置、空調システム、空調制御方法、空調制御プログラム | |
CN103246212A (zh) | 系统控制装置及系统控制方法 | |
CN117097227B (zh) | 电机的调速控制方法及相关装置 | |
CN113614743A (zh) | 用于操控机器人的方法和设备 | |
Homod et al. | Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent | |
CN115983438A (zh) | 数据中心末端空调系统运行策略确定方法及装置 | |
CN117469774B (zh) | 空调系统调控方法、装置、电子设备及存储介质 | |
Wang et al. | A Comparison of Classical and Deep Reinforcement Learning Methods for HVAC Control | |
Esrafilian-Najafabadi et al. | Transfer learning for occupancy-based HVAC control: A data-driven approach using unsupervised learning of occupancy profiles and deep reinforcement learning | |
JP5213749B2 (ja) | モデル関数更新処理装置および方法 | |
McKee et al. | Deep reinforcement learning for residential HVAC control with consideration of human occupancy | |
US20230366377A1 (en) | Method for controlling noise generated by a wind farm | |
JP5717950B2 (ja) | モデル関数処理装置および方法 | |
JP7309060B2 (ja) | 空調機器のメンテナンスの学習装置および推論装置 | |
JP7414964B2 (ja) | 空調制御の学習装置および推論装置 | |
WO2020121494A1 (ja) | 演算装置、アクション決定方法、及び制御プログラムを格納する非一時的なコンピュータ可読媒体 | |
WO2022101989A1 (ja) | 空気調和装置、および空気調和装置の学習装置 | |
JP6829271B2 (ja) | 測定動作パラメータ調整装置、機械学習装置及びシステム | |
CN107315573B (zh) | 建筑机电系统的控制方法、存储介质和终端设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240208 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20240712 |