WO2022101989A1 - 空気調和装置、および空気調和装置の学習装置 - Google Patents

空気調和装置、および空気調和装置の学習装置 Download PDF

Info

Publication number
WO2022101989A1
WO2022101989A1 PCT/JP2020/041935 JP2020041935W WO2022101989A1 WO 2022101989 A1 WO2022101989 A1 WO 2022101989A1 JP 2020041935 W JP2020041935 W JP 2020041935W WO 2022101989 A1 WO2022101989 A1 WO 2022101989A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
thermistors
target
blowout
suction
Prior art date
Application number
PCT/JP2020/041935
Other languages
English (en)
French (fr)
Inventor
一平 篠田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/041935 priority Critical patent/WO2022101989A1/ja
Priority to EP20961517.8A priority patent/EP4246050A4/en
Publication of WO2022101989A1 publication Critical patent/WO2022101989A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts

Definitions

  • This disclosure relates to an air conditioner and a learning device for an air conditioner.
  • an air conditioner is equipped with multiple indoor units and each indoor unit can be thermo-off operated.
  • a plurality of indoor units having an indoor heat exchanger and an indoor expansion valve individually and an outdoor unit having an outdoor expansion valve are connected by a liquid refrigerant connecting pipe and a gas refrigerant connecting pipe. It has a connected refrigerant circuit.
  • Each indoor unit individually performs a thermo-off operation.
  • thermo-off operation it is determined whether or not the thermo-off operation is performed for each indoor unit. Since each indoor unit autonomously operates in thermo-off operation, when a certain indoor unit operates in thermo-off operation, the outdoor unit keeps the high pressure and low pressure of the compressor within the operating range, so that the circulation amount of the refrigerant for the indoor unit is reduced. I need to let you. As a result, when the air conditioner as a whole is viewed, the circulation amount of the refrigerant drops sharply, and the temperature of the blown air is disturbed.
  • an object of the present disclosure is to provide an air conditioner capable of stabilizing a temperature of blown air, and a learning device for the air conditioner, which are provided with a plurality of indoor units capable of thermo-off operation.
  • the outdoor unit includes a compressor and an outdoor heat exchange air.
  • the indoor unit includes a plurality of indoor units and a fan.
  • Each indoor unit includes a controller, an indoor heat exchanger, an electronic expansion valve, a suction thermistor for detecting the suction air temperature, and a blowout thermistor for detecting the blowout air temperature, and the detection temperature of the blowout thermistor is a reference value.
  • the thermo-off operation is performed.
  • the air conditioner is one of a plurality of indoor units over a period of time in the future due to factors including set temperature, detection temperature of multiple suction thermistors, and detection temperature of multiple blowout thermistors over a period of time in the past. Further comprises a first inference device for inferring whether or not the thermo-off operation is performed.
  • This disclosure is a learning device for an air conditioner including an indoor unit and an outdoor unit.
  • the outdoor unit includes a compressor and an outdoor heat exchange air.
  • the indoor unit includes a plurality of indoor units and a fan.
  • Each indoor unit includes a controller, an indoor heat exchanger, an electronic expansion valve, a suction thermistor for detecting the suction air temperature, and a blowout thermistor for detecting the blowout air temperature, and the detection temperature of the blowout thermistor is a reference value. When it reaches, the thermo-off operation is performed.
  • the learning device of the air conditioner has factor data including the set temperature, the detection temperature of the plurality of suction thermistors, and the detection temperature of the plurality of blowout thermistors in the first period, and the second period after the first period.
  • It includes a first model generation unit that generates a first trained model for outputting the prediction.
  • the temperature of the blown air can be stabilized in an air conditioner equipped with a plurality of indoor units capable of thermo-off operation.
  • FIG. It is a figure which shows the example of the 1st reasoning, the 2nd reasoning, and the air conditioning control at the time of a heating operation of an air conditioner. It is a figure for demonstrating the 1st trained model of Embodiment 2.
  • FIG. It is a figure for demonstrating the 2nd trained model of Embodiment 2.
  • FIG. It is a figure for demonstrating the 1st trained model of Embodiment 3.
  • FIG. It is a figure for demonstrating the 2nd trained model of Embodiment 3.
  • FIG. It is a figure which shows the hardware composition of the learning apparatus 11, the inference apparatus 31, or the main controller 51.
  • FIG. 1 is a diagram showing a configuration of an air conditioner according to an embodiment.
  • the air conditioner includes an outdoor unit 2, an indoor unit 1, a learning device 11, a learned model storage device 21, an inference device 31, a data storage device 71, and a main controller 51.
  • the outdoor unit 2 includes a compressor 10 and an outdoor heat exchanger 9.
  • the indoor unit 1 includes a first indoor unit 20a, a second indoor unit 20b, and a fan 5.
  • the first indoor unit 20a detects the temperature of the air sucked into the first controller 6a, the first indoor heat exchanger 3a, the first electronic expansion valve 4a, and the first indoor unit 20a.
  • a suction thermistor 7a of 1 and a first blowout thermistor 8a for detecting the temperature of blown air from the first indoor unit 20a are provided.
  • the first controller 6a is connected to a first indoor heat exchanger 3a, a first electronic expansion valve 4a, a first suction thermistor 7a, a first blowout thermistor 8a, and a fan 5.
  • the second indoor unit 20b detects the temperature of the suction air into the second controller 6b, the second indoor heat exchanger 3b, the second electronic expansion valve 4b, and the second indoor unit 20b.
  • the suction thermistor 7b of 2 and the second blowing thermistor 8b for detecting the temperature of the blowing air from the second indoor unit 20b are provided.
  • the second controller 6b is connected to a second indoor heat exchanger 3b, a second electronic expansion valve 4b, a second suction thermistor 7b, a second blowout thermistor 8b, and a fan 5.
  • FIG. 1 shows the flow of the refrigerant during the cooling operation of the air conditioner.
  • the first indoor unit 20a operates in a thermo-off operation.
  • the first controller 6a sets the first electronic expansion valve 4a to fully closed and notifies the outdoor unit 2 that the thermo-off operation has been switched to.
  • the outdoor unit 2 lowers the upper limit of the frequency of the compressor 10 and lowers the actual operating frequency of the compressor 10.
  • the second indoor unit 20b is thermo-off operated when the detection temperature of the second blowout thermistor 8b reaches the reference value.
  • the second controller 6b sets the second electronic expansion valve 4b to fully closed, stops the fan 5, and notifies the outdoor unit 2 that the thermo-off operation has been switched to.
  • the outdoor unit 2 lowers the upper limit of the frequency of the compressor 10 and lowers the actual operating frequency of the compressor 10.
  • FIG. 2 is a diagram showing an example of a thermo-off operation during a cooling operation of an air conditioner.
  • the capacity is excessive with respect to the load, and the blowing temperature drops.
  • the blowout temperature reaches the lower limit reference value TL
  • the first indoor unit 20a or the second indoor unit 20b is thermo-off operated.
  • the frequency of the compressor 10 is also lowered in order to prevent a significant drop in low pressure.
  • the blowout temperature rises sharply, and after hunting, it converges to the set temperature set by the remote controller.
  • FIG. 3 is a diagram showing an example of a thermo-off operation during a heating operation of an air conditioner.
  • the capacity is excessive with respect to the load, and the blowing temperature rises.
  • the blowing temperature reaches the upper limit reference value TH
  • the first indoor unit 20a or the second indoor unit 20b is thermo-off operated. After that, the blowout temperature rises sharply, and after hunting, it converges to the set temperature set by the remote controller.
  • the data storage device 71 has one of a set temperature, a detection temperature of a plurality of suction thermistors 7a and 7b, a detection temperature of a plurality of blowout thermistors 8a and 8b, and a plurality of indoor units 20a and 20b for each time t. Stores data indicating whether or not the thermo-off operation was performed.
  • FIG. 4 is a diagram showing the configuration of the learning device 11.
  • the learning device 11 includes a first learning device 12 and a second learning device 13.
  • the trained model storage device 21 includes a first trained model storage device 22 and a second trained model storage device 23.
  • the first trained model storage device 22 stores the first trained model.
  • FIG. 5 is a diagram for explaining the first trained model of the first embodiment.
  • the first trained model of the first embodiment has a future due to factors including a set temperature, detection temperatures of a plurality of suction thermistors 7a and 7b, and detection temperatures of a plurality of blowout thermistors 8a and 8b in a certain period in the past.
  • This is a model for outputting a prediction as to whether or not any one of the plurality of indoor units 20a and 20b is in thermistor-off operation in a certain period of time.
  • the second trained model storage device 23 stores the second trained model.
  • FIG. 6 is a diagram for explaining the second trained model of the first embodiment.
  • the second trained model of the first embodiment has a target superheat degree and a target supercooling from a state including a set temperature, a detection temperature of a plurality of suction thermistors 7a and 7b, and a detection temperature of a plurality of blowout thermistors 8a and 8b. It is a model for outputting the action including the degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target refrigerant condensation temperature.
  • the first learning device 12 includes a first data acquisition unit 14 and a first model generation unit 15.
  • FIG. 7 is a diagram for explaining an example of acquiring the first learning data during the cooling operation of the air conditioner.
  • FIG. 8 is a diagram for explaining an example of acquiring first learning data during the heating operation of the air conditioner.
  • the first data acquisition unit 14 detects the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the detection of the plurality of blowout thermistors 8a and 8b in the first period (t1 to t1 + ⁇ Tx) from the data storage device 71. Includes factor data including temperature and prediction data of whether or not any one of the plurality of indoor units 20a and 20b is thermo-off operated in the second period (t1 + ⁇ Tx to t1 + ⁇ Ty) after the first period. Acquire the first training data.
  • the first data acquisition unit 14 acquires a plurality of first learning data by changing t1.
  • the first model generation unit 15 uses the first learning data acquired by the first data acquisition unit 14 to set the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the plurality of detection temperatures in the past fixed period. First learned to output a prediction of whether or not any one of the plurality of indoor units 20a and 20b will be thermo-off operation within a certain period in the future from the factors including the detection temperature of the blowout thermistors 8a and 8b. Generate a model. The first model generation unit 15 stores the generated first trained model in the first trained model storage device 22.
  • the learning algorithm used by the first model generation unit 15 known algorithms such as supervised learning, unsupervised learning, and reinforcement learning can be used. As an example, a case where a neural network is applied will be described.
  • FIG. 9 is a diagram showing the configuration of the neural network.
  • the first model generation unit 15 is, for example, according to a neural network model, by so-called supervised learning, a set temperature, a detection temperature of a plurality of suction thermistors 7a, 7b, and a plurality of blowout thermistors 8a, 8b in a certain period in the past. From the factors including the detected temperature of the above, the prediction of whether or not any one of the plurality of indoor units 20a and 20b will be thermo-off operated within a certain period in the future is learned.
  • supervised learning by giving a set of data (first learning data) of input and result (label) to the first learning device 12, the features in the first learning data are learned. A method of inferring the result from the input.
  • a neural network is composed of an input layer consisting of a plurality of neurons, an intermediate layer (hidden layer) consisting of a plurality of neurons, and an output layer consisting of a plurality of neurons.
  • the intermediate layer may be one layer or two or more layers.
  • the values are multiplied by the weights W1 (w11 to w16) and input to the intermediate layers (Y1 to Y2). Then, the result is further multiplied by the weight W2 (w21 to w26) and output from the output layer (Z1 to Z3). This output result depends on the values of the weights W1 and W2.
  • the neural network performs the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the plurality of detection temperatures in the past fixed period by so-called supervised learning.
  • the neural network inputs the set temperature in the past fixed period, the detection temperature of the plurality of suction thermistors 7a and 7b, and the detection temperature of the plurality of blowout thermistors 8a and 8b to the input layer, and outputs the neural network from the output layer.
  • the result is learned by adjusting the weights W1 and W2 so that the result approaches the prediction (correct answer) of whether or not one of the plurality of indoor units 20a and 20b operates in the thermo-off within a certain period in the future. ..
  • the first model generation unit 15 generates a trained model by executing the above learning, and outputs the trained model to the first trained model storage device 22.
  • FIG. 10 is a flowchart showing the first learning procedure by the first learning device 12.
  • step b1 the first data acquisition unit 14 from the data storage device 71, in the first period (t1 to t1 + ⁇ Tx), the set temperature, the detection temperatures of the plurality of suction thermistors 7a, 7b, and the plurality of blowout thermistors 8a. , Factor data including the detected temperature of 8b, and prediction of whether or not any of the plurality of indoor units 20a and 20b is thermo-off operated in the second period (t1 + ⁇ Tx to t1 + ⁇ Ty) after the first period. Acquire the first training data including the data.
  • the first data acquisition unit 14 acquires a plurality of first learning data by changing t1.
  • step b2 the first model generation unit 15 detects the set temperature and the plurality of suction thermistors 7a and 7b in a certain period in the past by using the first learning data acquired by the first data acquisition unit 14. A th. Generate a trained model of 1.
  • step b3 the first model generation unit 15 stores the generated first trained model in the first trained model storage device 22.
  • the second learning device 13 includes a second data acquisition unit 16 and a second model generation unit 17.
  • the second data acquisition unit 16 includes a set temperature, a detection temperature of the plurality of suction thermistors 7a and 7b, and a detection temperature of the plurality of blowout thermistors 8a and 8b, and a target superheat degree and a target supercooling in this state. Second learning data including the degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the behavior including the target refrigerant condensation temperature is acquired.
  • the second model generation unit 17 uses the second training data acquired by the second data acquisition unit 16 to set the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the plurality of blowout thermistors 8a.
  • the second model generation unit 17 stores the generated second trained model in the second trained model storage device 23.
  • a known algorithm such as reinforcement learning can be used.
  • reinforcement learning an agent (behavior) in a certain environment observes the current state (environmental parameters) and decides the action to be taken. The environment changes dynamically depending on the behavior of the agent, and the agent is rewarded according to the change in the environment. The agent repeats this process and learns the action policy that gives the most reward through a series of actions.
  • Q-learning or TD learning Temporal Difference Learning
  • the general update formula of the action value function Q (s, a) is expressed by the formula (1).
  • st represents the state of the environment at time t, and at represents the action at time t.
  • the state changes to st + 1 depending on the action at. rt + 1 represents the reward received by the change of the state, ⁇ represents the discount rate, and ⁇ represents the learning coefficient.
  • is in the range of 0 ⁇ ⁇ 1 and ⁇ is in the range of 0 ⁇ ⁇ 1.
  • the set temperature, the detection temperature of the plurality of suction thermistors 7a and 7b, and the detection temperature of the plurality of blowout thermistors 8a and 20b are the states st.
  • the target superheat degree, the target supercooling degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target refrigerant condensation temperature are the action at.
  • Q-learning the best action at in the state st at time t is learned.
  • the second model generation unit 17 includes a reward calculation unit 18 and a function update unit 19.
  • the reward calculation unit 18 performs actions including a target superheat degree, a target supercooling degree, a set frequency of the compressor 10, a target refrigerant evaporation temperature, and a target refrigerant condensation temperature, a set temperature, and detection temperatures of a plurality of suction thermistors 7a and 7b. , And the condition including the detection temperatures of the plurality of blowout thermistors 8a, 8b, and the reward is calculated.
  • the reward calculation unit 18 calculates the reward r based on the difference between the set temperature and the blown air temperature.
  • the blown air temperature can be any one of the detected temperatures of the plurality of blown thermistors 8a and 8b, or an average.
  • the reward calculation unit 18 increases the reward r (for example, gives a reward of "1") when the difference between the set temperature and the blown air temperature decreases, and on the other hand, the set temperature and the blown air temperature. If the difference increases, the reward r is reduced (for example, a reward of "-1" is given).
  • the function update unit 19 determines an action including a target superheat degree, a target supercooling degree, a set frequency of the compressor 10, a target refrigerant evaporation temperature, and a target refrigerant condensation temperature according to the reward calculated by the reward calculation unit 18. Is updated and output to the second trained model storage device 23.
  • the function update unit 19 uses the action value function Q (st, at) represented by the equation (1) as a target superheat degree, a target supercooling degree, a set frequency of the compressor 10, and a target refrigerant evaporation. Used as a function to calculate behavior including temperature and target refrigerant condensation temperature.
  • the second trained model storage device 23 stores the action value function Q (st, at) updated by the function update unit 19, that is, the second trained model.
  • FIG. 11 is a flowchart showing a second learning procedure by the second learning device 13.
  • the second data acquisition unit 16 includes a set temperature, detection temperatures of the plurality of suction thermistors 7a and 7b, and detection temperatures of the plurality of blowout thermistors 8a and 8b, and a target superheat degree in this state.
  • Second learning data including the target supercooling degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the behavior including the target refrigerant condensation temperature.
  • step d2 the second model generation unit 17 calculates the reward based on the second learning data. Specifically, the reward calculation unit 18 determines whether to increase or decrease the reward based on the difference between the set temperature and the blown air temperature.
  • step S103 When the reward calculation unit 18 determines that the reward is to be increased, the process proceeds to step S103.
  • the reward calculation unit 18 determines that the reward is to be reduced, the process proceeds to step S104.
  • step d3 the reward calculation unit 18 increases the reward.
  • step d4 the reward calculation unit 18 reduces the reward.
  • step d5 the function update unit 19 has an action value function Q (st,) represented by the equation (1) stored in the second trained model storage device 23 based on the reward calculated by the reward calculation unit 18. at) is updated.
  • the second learning device 13 repeatedly executes the above steps d1 to d5, and stores the generated action value function Q (st, at) as the second learned model.
  • FIG. 12 is a diagram showing the configuration of the inference device 31.
  • the inference device 31 includes a first inference device 32 and a second inference device 33.
  • the first inference device 32 includes a first data acquisition unit 34 and a first inference unit 35.
  • the first data acquisition unit 34 acquires factor data including the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the detection temperatures of the plurality of blowout thermistors 8a and 8b in the past fixed period.
  • the past fixed period can be a period of (t0- ⁇ Tx to t0) when the current time is t0.
  • the first inference unit 35 inputs the factor data acquired by the first data acquisition unit 34 into the first trained model stored in the first trained model storage device 22, and is constant in the future. During the period, the prediction of whether or not any one of the plurality of indoor units 20a and 20b operates in the thermo-off operation is output.
  • FIG. 13 is a flowchart showing the first inference procedure by the first inference device 32.
  • the first data acquisition unit 34 acquires factor data including the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the detection temperatures of the plurality of blowout thermistors 8a and 8b in the past fixed period. do.
  • the first inference unit 35 inputs the factor data acquired by the first data acquisition unit 34 into the first trained model stored in the first trained model storage device 22. Then, in a certain period in the future, a prediction of whether or not any one of the plurality of indoor units 20a and 20b will be thermo-off operated is output.
  • step c4 if any one of the plurality of indoor units 20a and 20b is predicted to be thermo-off operated in a certain period in the future, the process proceeds to step c5, and in a certain period in the future, the plurality of indoor units 20a , 20b, the process ends when it is predicted that the thermo-off operation will not be performed.
  • the second inference device 33 executes the inference process described below.
  • the second inference device 33 includes a second data acquisition unit 36 and a second inference unit 37.
  • the second data acquisition unit 36 acquires a state including a set temperature, detection temperatures of a plurality of suction thermistors 7a and 7b, and detection temperatures of a plurality of blowout thermistors 8a and 8b.
  • the second inference unit 37 uses the second trained model stored in the second trained model storage device 23 to obtain the target superheat degree from the state acquired by the second data acquisition unit 36.
  • the behavior including the target supercooling degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target refrigerant condensation temperature is inferred.
  • the second inference unit 37 reads the action value function Q (st, at) from the second trained model storage device 23 as the second trained model.
  • the second inference unit 37 has an action value function Q (s, a) with respect to the state st including the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the detection temperatures of the plurality of blowout thermistors 8a and 8b. Based on, the action at including the target superheat degree, the target supercooling degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target refrigerant condensation temperature is obtained.
  • the main controller 51 is based on an action at including a target superheat degree, a target supercooling degree, a set frequency of the compressor 10, a target refrigerant evaporation temperature, and a target refrigerant condensation temperature output from the second inference unit 37. Control the harmonizer.
  • the main controller 51 controls the electronic expansion valves 4a and 4b so that the superheat degree of the liquid refrigerant immediately after the indoor heat exchangers 3a and 3b becomes the target superheat degree during the cooling operation of the air conditioner.
  • the main controller 51 controls the electronic expansion valves 4a and 4b so that the supercooling degree of the liquid refrigerant immediately after the indoor heat exchangers 3a and 3b becomes the target supercooling degree during the heating operation of the air conditioner. ..
  • FIG. 14 is a flowchart showing a second inference procedure by the second inference device 33.
  • the second data acquisition unit 36 acquires a state including the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the detection temperatures of the plurality of blowout thermistors 8a and 8b.
  • the second inference unit 37 uses the second trained model stored in the second trained model storage device 23 from the state acquired by the second data acquisition unit 36.
  • the behavior including the target superheat degree, the target supercooling degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target refrigerant condensation temperature is inferred.
  • step e3 the second reasoning unit 37 outputs the obtained target superheat degree, target supercooling degree, set frequency of the compressor 10, target refrigerant evaporation temperature, and target refrigerant condensation temperature to the main controller 51.
  • step e4 the main controller 51 controls the air conditioner based on the target superheat degree, the target supercooling degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target refrigerant condensation temperature.
  • FIG. 15 is a diagram showing an example of the first inference, the second inference, and the air conditioning control during the cooling operation of the air conditioner.
  • FIG. 16 is a diagram showing an example of the first inference, the second inference, and the air conditioning control during the heating operation of the air conditioner.
  • the first inference device 32 inputs the factor data in the past fixed period (ta- ⁇ Tx to ta) into the first trained model at the time ta. It is predicted that any one of the plurality of indoor units 20a and 20b will be thermo-off operated.
  • the second inference device uses the second trained model stored in the second trained model storage device 23 to set the set temperature and the detection temperatures of the plurality of suction thermistors 7a and 7b. , And the state including the detection temperatures of the plurality of blowout thermistors 8a and 8b, the behavior including the target superheat degree, the target supercooling degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target refrigerant condensation temperature is inferred.
  • the main controller 51 controls the air conditioner based on the target superheat degree, the target supercooling degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target refrigerant condensation temperature.
  • the outlet temperature does not reach the lower limit reference value TL, so that the outlet temperature reaches the set temperature without the first indoor unit 20a or the second indoor unit 20b being thermo-off operated. ..
  • the outlet temperature does not reach the upper limit reference value TH, so that the outlet temperature reaches the set temperature without the first indoor unit 20a or the second indoor unit 20b being thermo-off operated.
  • the air conditioner of the present embodiment is based on factors including the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the detection temperatures of the plurality of blowout thermistors 8a and 8b in the past fixed period. , Outputs a prediction of whether or not any one of the plurality of indoor units 20a and 20b will be thermo-off operated in a certain period in the future. Thereby, in an air conditioner including a plurality of indoor units capable of thermo-off operation, it is possible to predict that each indoor unit will operate in thermo-off.
  • the air conditioner of the present embodiment further includes a set temperature, detection temperatures of the plurality of suction thermistas 7a and 7b, and detection temperatures of the plurality of blowout thermistas 8a and 8b, and thus has a target superheat degree and a target supercooling degree.
  • the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target refrigerant condensation temperature are output. Thereby, the air conditioner can control the blown air temperature to be stable at the set temperature without operating the indoor unit in a thermo-off operation.
  • FIG. 17 is a diagram for explaining the first trained model of the second embodiment.
  • the first trained model of the second embodiment includes a set temperature, a detection temperature of a plurality of suction thermistors 7a and 7b, and a detection temperature of a plurality of blowout thermistors 8a and 8b in a certain period in the past, and a certain period in the future.
  • the forecast of the outside air temperature and the forecast of the weather in a certain period in the future for example, the forecast for a certain period such as within 10 minutes or within 1 hour from the present can be obtained through the Internet or the like.
  • FIG. 18 is a diagram for explaining the second trained model of the second embodiment.
  • the second trained model of the second embodiment has a target superheat degree and a target supercooling from a state including a set temperature, a detection temperature of a plurality of suction thermistors 7a and 7b, and a detection temperature of a plurality of blowout thermistors 8a and 8b. It is a model for outputting the action including the degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target refrigerant condensation temperature.
  • the first learning device 12 will be described.
  • the first data acquisition unit 14 has a set temperature, detection temperatures of the plurality of suction thermistors 7a and 7b, detection temperatures of the plurality of blowout thermistors 8a and 8b, and a first detection temperature in the first period (t1 to t1 + ⁇ Tx).
  • Factor data including outside air temperature forecast and weather forecast in the second period (t1 + ⁇ Tx to t1 + ⁇ Ty) after the period, and of the plurality of indoor units 20a and 20b in the second period (t1 + ⁇ Tx to t1 + ⁇ Ty).
  • Acquire the first training data including the prediction data of whether or not any of the above is thermistor-off operation.
  • the first data acquisition unit 14 acquires a plurality of first learning data by changing t1.
  • the first model generation unit 15 uses the first training data acquired by the first data acquisition unit 14 to set the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the plurality of detection temperatures in the past fixed period. Due to factors including the detection temperature of the blowout thermistors 8a and 8b, the forecast of the outside air temperature in the future fixed period, and the forecast of the weather, any of the plurality of indoor units 20a and 20b within the fixed period in the future. Generates a first trained model that outputs a prediction of whether or not to run thermistor off. The first model generation unit 15 stores the generated first trained model in the first trained model storage device 22.
  • the second learning device 13 will be described.
  • the second data acquisition unit 16 includes a set temperature, a detection temperature of the plurality of suction thermistors 7a and 7b, and a detection temperature of the plurality of blowout thermistors 8a and 8b, and a target superheat degree and a target supercooling in this state.
  • Second learning data including the degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the behavior including the target refrigerant condensation temperature is acquired.
  • the second model generation unit 17 uses the second training data acquired by the second data acquisition unit 16 to set the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the plurality of blowout thermistors 8a.
  • the reward calculation unit 18 performs actions including a target superheat degree, a target supercooling degree, a set frequency of the compressor 10, a target refrigerant evaporation temperature, and a target refrigerant condensation temperature, a set temperature, and detection temperatures of a plurality of suction thermistors 7a and 7b. , And the condition including the detection temperatures of the plurality of blowout thermistors 8a, 8b, and the reward is calculated.
  • the reward calculation unit 18 calculates the reward r based on the difference between the set temperature and the blown air temperature.
  • the function update unit 19 determines an action including a target superheat degree, a target supercooling degree, a set frequency of the compressor 10, a target refrigerant evaporation temperature, and a target refrigerant condensation temperature according to the reward calculated by the reward calculation unit 18. Is updated and output to the second trained model storage device 23.
  • the first inference device 32 will be described.
  • the first data acquisition unit 34 is a set temperature in a certain period in the past, a detection temperature of a plurality of suction thermistors 7a and 7b, a detection temperature of a plurality of blowout thermistors 8a and 8b, and an outside air temperature in a certain period in the future. Get factor data including forecasts and weather forecasts.
  • the first inference unit 35 inputs the factor data acquired by the first data acquisition unit 34 into the first trained model stored in the first trained model storage device 22, and is constant in the future. During the period, the prediction of whether or not any one of the plurality of indoor units 20a and 20b operates in the thermo-off operation is output.
  • the second inference device 33 will be described.
  • the second data acquisition unit 36 acquires a state including a set temperature, detection temperatures of the plurality of suction thermistors 7a and 7b, and detection temperatures of the plurality of blowout thermistors 8a and 8b.
  • the second inference unit 37 uses the second trained model stored in the second trained model storage device 23 to obtain the target superheat degree from the state acquired by the second data acquisition unit 36.
  • the behavior including the target supercooling degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target refrigerant condensation temperature is inferred.
  • the second inference unit 37 reads the action value function Q (st, at) from the second trained model storage device 23 as the second trained model.
  • the second inference unit 37 has an action value function Q (s, a) with respect to the state st including the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the detection temperatures of the plurality of blowout thermistors 8a and 8b. Based on, the action at including the target superheat degree, the target supercooling degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target refrigerant condensation temperature is obtained.
  • the main controller 51 is an air conditioner based on the obtained target superheat degree, target supercooling degree, set frequency of the compressor 10, target refrigerant evaporation temperature, and target refrigerant condensation temperature in the same manner as in the first embodiment. To control.
  • the temperature of the blown air can be stabilized regardless of the weather.
  • FIG. 19 is a diagram for explaining the first trained model of the third embodiment.
  • the first trained model of the third embodiment includes a set temperature, a detection temperature of a plurality of suction thermistors 7a and 7b, and a detection temperature of a plurality of blowout thermistors 8a and 8b in a certain period in the past, and a certain period in the future.
  • the forecast for a certain period such as within 10 minutes or within 1 hour from the present shall be obtained through the Internet or the like. Can be done.
  • FIG. 20 is a diagram for explaining the second trained model of the third embodiment.
  • the second trained model of the third embodiment has a target superheat degree and a compressor 10 from a state including a set temperature, detection temperatures of a plurality of suction thermistors 7a and 7b, and detection temperatures of a plurality of blowout thermistors 8a and 8b. It is a model for outputting the behavior including the set frequency, the target refrigerant evaporation temperature, and the target humidity.
  • the first learning device 12 will be described.
  • the first data acquisition unit 14 has a set temperature, detection temperatures of the plurality of suction thermistors 7a and 7b, detection temperatures of the plurality of blowout thermistors 8a and 8b, and a first detection temperature in the first period (t1 to t1 + ⁇ Tx).
  • Factor data including outside air temperature forecast, outside air humidity forecast and weather forecast in the second period (t1 + ⁇ Tx to t1 + ⁇ Ty) after the period, and multiple indoor units in the second period (t1 + ⁇ Tx to t1 + ⁇ Ty).
  • the first training data including the prediction data of whether or not any one of 20a and 20b is thermo-off operation is acquired.
  • the first data acquisition unit 14 acquires a plurality of first learning data by changing t1.
  • the first model generation unit 15 uses the first training data acquired by the first data acquisition unit 14 to set the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the plurality of detection temperatures in the past fixed period. Due to factors including the detection temperature of the blowout thermistors 8a and 8b and the forecast of the outside air temperature, the forecast of the outside air humidity, and the forecast of the weather in a certain period in the future, a plurality of indoor units 20a, Generate a first trained model that outputs a prediction of whether any of 20b will be thermo-off. The first model generation unit 15 stores the generated first trained model in the first trained model storage device 22.
  • the second learning device 13 will be described.
  • the second data acquisition unit 16 includes a set temperature, a detection temperature of the plurality of suction thermistors 7a and 7b, and a detection temperature of the plurality of blowout thermistors 8a and 8b, a target superheat degree in this state, and an outdoor unit 2.
  • the second training data including the set frequency of the compressor 10 of the compressor 10, the target refrigerant evaporation temperature, and the behavior including the target humidity is acquired.
  • the second model generation unit 17 uses the second learning data acquired by the second data acquisition unit 16 to set the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the plurality of blowout thermistors 8a. From the state including the detected temperature of 8b, a second trained model for outputting the behavior including the target supercooling degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target humidity is generated.
  • the reward calculation unit 18 performs actions including a target superheat degree, a target supercooling degree, a set frequency of the compressor 10, a target refrigerant evaporation temperature, and a target refrigerant condensation temperature, a set temperature, and detection temperatures of a plurality of suction thermistors 7a and 7b. , And the condition including the detection temperatures of the plurality of blowout thermistors 8a, 8b, and the reward is calculated.
  • the reward calculation unit 18 calculates the reward r based on the difference between the set temperature and the blown air temperature.
  • the function update unit 19 determines an action including a target superheat degree, a target supercooling degree, a set frequency of the compressor 10, a target refrigerant evaporation temperature, and a target refrigerant condensation temperature according to the reward calculated by the reward calculation unit 18. Is updated and output to the second trained model storage device 23.
  • the first inference device 32 will be described.
  • the first data acquisition unit 34 is a set temperature in a certain period in the past, a detection temperature of a plurality of suction thermistors 7a and 7b, a detection temperature of a plurality of blowout thermistors 8a and 8b, and an outside air temperature in a certain period in the future. Get factor data including forecasts and weather forecasts.
  • the first inference unit 35 inputs the factor data acquired by the first data acquisition unit 34 into the first trained model stored in the first trained model storage device 22, and is constant in the future. During the period, the prediction of whether or not any one of the plurality of indoor units 20a and 20b operates in the thermo-off operation is output.
  • the second inference device 33 will be described.
  • the second data acquisition unit 36 acquires a state including a set temperature, detection temperatures of the plurality of suction thermistors 7a and 7b, and detection temperatures of the plurality of blowout thermistors 8a and 8b.
  • the second inference unit 37 uses the second trained model stored in the second trained model storage device 23 to obtain the target overheating degree from the state acquired by the second data acquisition unit 36.
  • the behavior including the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target humidity is inferred.
  • the second inference unit 37 reads the action value function Q (st, at) from the second trained model storage device 23 as the second trained model.
  • the second inference unit 37 has an action value function Q (s, a) with respect to the state st including the set temperature, the detection temperatures of the plurality of suction thermistors 7a and 7b, and the detection temperatures of the plurality of blowout thermistors 8a and 8b. Based on, the action at including the target superheat degree, the set frequency of the compressor 10, the target refrigerant evaporation temperature, and the target humidity is obtained.
  • the main controller 51 controls the air conditioner based on the obtained target superheat degree, the set frequency of the compressor 10, and the target refrigerant evaporation temperature in the same manner as in the first embodiment. Further, the main controller 51 controls the cooling operation or the dehumidifying operation so that the indoor humidity reaches the target humidity.
  • the learning device 11 and the inference device 31 are provided inside the air conditioner, but may be connected to the air conditioner through a network and may be separate devices from the air conditioner. Further, the learning device 11 and the inference device 31 may exist on the cloud server.
  • FIG. 21 is a diagram showing a hardware configuration of the learning device 11, the inference device 31, or the main controller 51.
  • the learning device 11, the inference device 31, and the main controller 51 can configure the corresponding operation with the hardware or software of the digital circuit.
  • the functions of the learning device 11, the inference device 31, and the main controller 51 are realized by using software, the learning device 11, the inference device 31, and the main controller 51 are, for example, as shown in FIG. 21, the bus 5003.
  • the processor 5002 and the memory 5001 connected by the above are provided, and the program stored in the memory 5001 can be executed by the processor 5002.
  • the first model generation unit 15 and the second model generation unit 17 have been first trained according to the first training data and the second training data created in the plurality of air conditioners, respectively.
  • a model, a second trained model may be generated. Even if the first model generation unit 15 and the second model generation unit 17 acquire the first training data and the second training data from a plurality of air conditioners used in the same area, respectively.
  • the first training data and the second training data may be acquired from a plurality of air conditioners operating independently in different areas. It is also possible to add or remove the first learning data and the air conditioner for collecting the second learning data to the target on the way.
  • the first trained data and the second trained data of one air conditioner are used to generate a first trained model and a second trained model of another air conditioner.
  • the first trained model and the second trained model may be used to update (re-learn) the first trained model and the second trained model.
  • the first inference unit 35 uses the first trained model to obtain a plurality of indoor units from the factor data acquired by the first data acquisition unit 34 in a certain period in the future. It is assumed that the prediction of whether or not any one of 20a and 20b operates in the thermo-off operation is output, but the present invention is not limited to this.
  • the first reasoning unit 35 may use the factor data acquired by the first data acquisition unit 34 based on rule-based reasoning or case-based reasoning to obtain a plurality of indoor units 20a and 20b in a certain period in the future. It may be possible to output a prediction as to whether or not one of them operates the thermo-off.
  • the second inference unit 37 uses the second trained model to obtain the target superheat degree, the target supercool degree, and the compressor 10 from the state acquired by the second data acquisition unit 36. Behaviors including, but not limited to, set frequencies, target refrigerant evaporation temperatures, and target refrigerant condensation temperatures have been inferred.
  • the second inference unit 37 has a target superheat degree, a target overcooling degree, and a set frequency of the compressor 10 from the state acquired by the second data acquisition unit 36 based on rule-based inference or case-based inference.
  • Target refrigerant evaporation temperature, and target refrigerant condensation temperature may be included in the transition theory. The same applies to the second and third embodiments.
  • the factors of the first trained model include, but are not limited to, the set temperature in the past fixed period.
  • the factor of the first trained model may be the difference between each of the detected temperatures of the plurality of blowout thermistors in the past fixed period and the set temperature in the past fixed period.
  • the state of the second trained model includes, but is not limited to, the set temperature.
  • the factor of the second trained model may be the difference between each of the detected temperatures of the plurality of blowout thermistors and the set temperature.
  • the number of indoor units is two, but the number is not limited to this.
  • the number of indoor units may be 3 or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

室内ユニット(20a、20b)は、制御器(6a、6b)と、室内熱交換器(3a、3b)と、電子膨張弁(4a、4b)と、吸込空気温度を検出する吸込サーミスタ(7a、7b)と、吹出空気温度を検出する吹出サーミスタ(8a、8b)とを含み、吹出サーミスタ(8a、8b)の検出温度が基準値に達すると、サーモオフ運転する。空気調和装置は、過去の一定期間における、設定温度、複数の吸込サーミスタ(7a、7b)の検出温度、および複数の吹出サーミスタ(8a、8b)の検出温度を含む要因から、将来の一定期間において、複数の室内ユニット(20a、20b)のうちのいずれかがサーモオフ運転するか否かを推論する第1の推論装置(32)を備える。

Description

空気調和装置、および空気調和装置の学習装置
 本開示は、空気調和装置、および空気調和装置の学習装置に関する。
 複数の室内ユニットを備え、各室内ユニットがサーモオフ運転することができる空気調和装置が知られている。
 たとえば、特許文献1に記載の空気調和装置は、室内熱交換器及び室内膨張弁を個別に有する複数の室内ユニットと、室外膨張弁を有する室外ユニットとが液冷媒連絡管及びガス冷媒連絡管により接続された冷媒回路を有する。各室内ユニットは、個別にサーモオフ運転を実行する。
特開2020-169809号公報
 特許文献1に記載の空気調和装置においては、室内ユニットごとに、サーモオフ運転するか否かが判定される。各室内ユニットは、自律的にサーモオフ運転するため、ある室内ユニットがサーモオフ運転した場合、室外機は圧縮機の高圧および低圧を運転範囲内に保つため、その室内ユニット分の冷媒の循環量を低下させる必要がある。その結果、空気調和装置全体として見た時に、冷媒の循環量が急激に低下するので、吹出空気の温度が乱れてしまう。
 それゆえに、本開示の目的は、複数のサーモオフ運転が可能な室内ユニットを備え、吹出空気の温度を安定させることができる空気調和装置、および空気調和装置の学習装置を提供することである。
 本開示は、室内機と室外機とを備えた空気調和装置である。室外機は、圧縮機と、室外熱交換気とを含む。室内機は、複数の室内ユニットと、ファンとを含む。各室内ユニットは、制御器と、室内熱交換器と、電子膨張弁と、吸込空気温度を検出する吸込サーミスタと、吹出空気温度を検出する吹出サーミスタとを含み、吹出サーミスタの検出温度が基準値に達すると、サーモオフ運転する。空気調和装置は、過去の一定期間における、設定温度、複数の吸込サーミスタの検出温度、および複数の吹出サーミスタの検出温度を含む要因から、将来の一定期間において、複数の室内ユニットのうちのいずれかがサーモオフ運転するか否かを推論する第1の推論装置をさらに備える。
 本開示は、室内機と室外機とを備えた空気調和装置の学習装置である。室外機は、圧縮機と、室外熱交換気とを含む。室内機は、複数の室内ユニットと、ファンとを含む。各室内ユニットは、制御器と、室内熱交換器と、電子膨張弁と、吸込空気温度を検出する吸込サーミスタと、吹出空気温度を検出する吹出サーミスタとを含み、吹出サーミスタの検出温度が基準値に達すると、サーモオフ運転する。空気調和装置の学習装置は、第1の期間における、設定温度、複数の吸込サーミスタの検出温度、および複数の吹出サーミスタの検出温度を含む要因データと、第1の期間より後の第2の期間において、複数の室内ユニットのうちのいずれかがサーモオフ運転するか否かの予測データとを含む第1の学習データを取得する第1のデータ取得部と、第1の学習データを用いて、過去の一定期間における、設定温度、複数の吸込サーミスタの検出温度、および複数の吹出サーミスタの検出温度を含む要因から、将来の一定期間において、複数の室内ユニットのうちのいずれかがサーモオフ運転するか否かの予測を出力するための第1の学習済みモデルを生成する第1のモデル生成部とを備える。
 本開示によれば、複数のサーモオフ運転が可能な室内ユニットを備えた空気調和装置において、吹出空気の温度を安定させることができる。
実施の形態の空気調和装置の構成を表わす図である。 空気調和装置の冷房運転時におけるサーモオフ運転の例を表わす図である。 空気調和装置の暖房運転時におけるサーモオフ運転の例を表わす図である。 学習装置11の構成を表わす図である。 実施の形態1の第1の学習済みモデルを説明するための図である。 実施の形態1の第2の学習済みモデルを説明するための図である。 空気調和装置の冷房運転時における第1の学習データの取得例を説明するための図である。 空気調和装置の暖房運転時における第1の学習データの取得例を説明するための図である。 ニューラルネットワークの構成を表わす図である。 第1の学習装置12による第1の学習手順を表わすフローチャートである。 第2の学習装置13による第2の学習手順を表わすフローチャートである。 推論装置31の構成を表わす図である。 第1の推論装置32による第1の推論手順を表わすフローチャートである。 第2の推論装置33による第2の推論手順を表わすフローチャートである。 空気調和装置の冷房運転時における第1の推論、第2の推論、および空調制御の例を表わす図である。 空気調和装置の暖房運転時における第1の推論、第2の推論、および空調制御の例を表わす図である。 実施の形態2の第1の学習済みモデルを説明するための図である。 実施の形態2の第2の学習済みモデルを説明するための図である。 実施の形態3の第1の学習済みモデルを説明するための図である。 実施の形態3の第2の学習済みモデルを説明するための図である。 学習装置11、推論装置31、またはメインコントローラ51のハードウェア構成を表わす図である。
 実施の形態1.
 図1は、実施の形態の空気調和装置の構成を表わす図である。
 空気調和装置は、室外機2と、室内機1と、学習装置11と、学習済みモデル記憶装置21と、推論装置31と、データ記憶装置71と、メインコントローラ51とを備える。
 室外機2は、圧縮機10と、室外熱交換器9とを備える。
 室内機1は、第1の室内ユニット20aと、第2の室内ユニット20bと、ファン5とを備える。
 第1の室内ユニット20aは、第1の制御器6aと、第1の室内熱交換器3aと、第1の電子膨張弁4aと、第1の室内ユニット20aへの吸込空気温度を検出する第1の吸込サーミスタ7aと、第1の室内ユニット20aからの吹出空気温度を検出する第1の吹出サーミスタ8aとを備える。第1の制御器6aは、第1の室内熱交換器3a、第1の電子膨張弁4a、第1の吸込サーミスタ7a、第1の吹出サーミスタ8a、およびファン5と接続される。
 第2の室内ユニット20bは、第2の制御器6bと、第2の室内熱交換器3bと、第2の電子膨張弁4bと、第2の室内ユニット20bへの吸込空気温度を検出する第2の吸込サーミスタ7bと、第2の室内ユニット20bからの吹出空気温度を検出する第2の吹出サーミスタ8bとを備える。第2の制御器6bは、第2の室内熱交換器3b、第2の電子膨張弁4b、第2の吸込サーミスタ7b、第2の吹出サーミスタ8b、およびファン5と接続される。
 図1には、空気調和装置の冷房運転時の、冷媒の流れが示されている。
 第1の室内ユニット20aは、第1の吹出サーミスタ8aの検出温度が基準値に達すると、サーモオフ運転する。サーモオフ運転では、たとえば、第1の制御器6aは、第1の電子膨張弁4aを全閉に設定するとともに、室外機2にサーモオフ運転に切替えたことを通知する。室外機2は、圧縮機10の周波数の上限を下げるとともに、圧縮機10の実運転周波数を下げる。
 第2の室内ユニット20bは、第2の吹出サーミスタ8bの検出温度が基準値に達すると、サーモオフ運転する。サーモオフ運転では、たとえば、第2の制御器6bは、第2の電子膨張弁4bを全閉に設定するとともに、ファン5を停止させ、室外機2にサーモオフ運転に切替えたことを通知する。室外機2は、圧縮機10の周波数の上限を下げるとともに、圧縮機10の実運転周波数を下げる。
 図2は、空気調和装置の冷房運転時におけるサーモオフ運転の例を表わす図である。
 負荷に対して能力が過剰な状態であり、吹出温度が低下する。吹出温度が下限基準値TLに達すると、第1の室内ユニット20aまたは第2の室内ユニット20bがサーモオフ運転する。その結果、低圧の著しい低下を防ぐため、圧縮機10の周波数も下げられる。その後、吹出温度は急激に上昇し、ハンチングした後に、リモコンによって設定された設定温度に収束する。
 図3は、空気調和装置の暖房運転時におけるサーモオフ運転の例を表わす図である。
 負荷に対して能力が過剰な状態であり、吹出温度が上昇する。吹出温度が上限基準値THに達すると、第1の室内ユニット20aまたは第2の室内ユニット20bがサーモオフ運転する。その後、吹出温度は急激に上昇し、ハンチングした後に、リモコンによって設定された設定温度に収束する。
 データ記憶装置71は、時刻tごとの、設定温度、複数の吸込サーミスタ7a、7bの検出温度、複数の吹出サーミスタ8a、8bの検出温度、および複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転したか否かを表わすデータを記憶する。
 図4は、学習装置11の構成を表わす図である。
 学習装置11は、第1の学習装置12と、第2の学習装置13とを備える。学習済みモデル記憶装置21は、第1の学習済みモデル記憶装置22と、第2の学習済みモデル記憶装置23とを備える。
 第1の学習済みモデル記憶装置22は、第1の学習済みモデルを記憶する。
 図5は、実施の形態1の第1の学習済みモデルを説明するための図である。
 実施の形態1の第1の学習済みモデルは、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む要因から、将来の一定期間において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力するためのモデルである。
 第2の学習済みモデル記憶装置23は、第2の学習済みモデルを記憶する。
 図6は、実施の形態1の第2の学習済みモデルを説明するための図である。
 実施の形態1の第2の学習済みモデルは、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態から、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を出力するためのモデルである。
 第1の学習装置12は、第1のデータ取得部14と、第1のモデル生成部15とを備える。
 図7は、空気調和装置の冷房運転時における第1の学習データの取得例を説明するための図である。図8は、空気調和装置の暖房運転時における第1の学習データの取得例を説明するための図である。
 第1のデータ取得部14は、データ記憶装置71から、第1の期間(t1~t1+ΔTx)における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む要因データと、第1の期間より後の第2の期間(t1+ΔTx~t1+ΔTy)において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測データとを含む第1の学習データを取得する。第1のデータ取得部14は、t1を変化させることによって、複数の第1の学習データを取得する。
 第1のモデル生成部15は、第1のデータ取得部14が取得した第1の学習データを用いて、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む要因から、将来の一定期間内において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力する第1の学習済みモデルを生成する。第1のモデル生成部15は、生成した第1の学習済みモデルを第1の学習済みモデル記憶装置22に記憶する。
 第1のモデル生成部15が用いる学習アルゴリズムは教師あり学習、教師なし学習、または強化学習等の公知のアルゴリズムを用いることができる。一例として、ニューラルネットワークを適用した場合について説明する。
 図9は、ニューラルネットワークの構成を表わす図である。
 第1のモデル生成部15は、例えば、ニューラルネットワークモデルに従って、いわゆる教師あり学習により、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む要因から、将来の一定期間内において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を学習する。ここで、教師あり学習とは、入力と結果(ラベル)のデータの組(第1の学習データ)を第1の学習装置12に与えることによって、第1の学習データにある特徴を学習し、入力から結果を推論する手法をいう。
 ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層(隠れ層)、及び複数のニューロンからなる出力層によって構成される。中間層は、1層、又は2層以上でもよい。
 例えば、3層のニューラルネットワークであれば、複数の入力が入力層(X1~X3)に入力されると、その値に重みW1(w11~w16)を掛けて中間層(Y1~Y2)に入力され、その結果にさらに重みW2(w21~w26)を掛けて出力層(Z1~Z3)から出力される。この出力結果は、重みW1とW2の値によって変わる。
 ニューラルネットワークは、第1のデータ取得部14によって取得される第1の学習データに従って、いわゆる教師あり学習により、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度から、将来の一定期間内において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力する第1の学習済みモデルを生成する。
 すなわち、ニューラルネットワークは、入力層に、過去の一定期間における設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を入力して、出力層から出力された結果が、将来の一定期間内において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測(正解)に近づくように重みW1とW2を調整することで学習する。
 第1のモデル生成部15は、以上のような学習を実行することで学習済みモデルを生成し、第1の学習済みモデル記憶装置22に出力する。
 図10は、第1の学習装置12による第1の学習手順を表わすフローチャートである。
 ステップb1において、第1のデータ取得部14は、データ記憶装置71から、第1の期間(t1~t1+ΔTx)における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む要因データと、第1の期間より後の第2の期間(t1+ΔTx~t1+ΔTy)において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測データとを含む第1の学習データを取得する。第1のデータ取得部14は、t1を変化させることによって、複数の第1の学習データを取得する。
 ステップb2において、第1のモデル生成部15は、第1のデータ取得部14が取得した第1の学習データを用いて、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む要因から、将来の一定期間内において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力する第1の学習済みモデルを生成する。
 ステップb3において、第1のモデル生成部15は、生成した第1の学習済みモデルを第1の学習済みモデル記憶装置22に記憶する。
 第2の学習装置13は、第2のデータ取得部16と、第2のモデル生成部17とを備える。
 第2のデータ取得部16は、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態と、この状態における、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動とを含む第2の学習データを取得する。
 第2のモデル生成部17は、第2のデータ取得部16によって取得された第2の学習データを用いて、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態から、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を出力するための第2の学習済みモデルを生成する。第2のモデル生成部17は、生成した第2の学習済みモデルを第2の学習済みモデル記憶装置23に記憶する。
 第2のモデル生成部17が用いる学習アルゴリズムとして、強化学習等の公知のアルゴリズムを用いることができる。一例として、強化学習を適用した場合について説明する。強化学習では、ある環境内におけるエージェント(行動主体)が、現在の状態(環境のパラメータ)を観測し、取るべき行動を決定する。エージェントの行動により環境が動的に変化し、エージェントには環境の変化に応じて報酬が与えられる。エージェントはこれを繰り返し、一連の行動を通じて報酬が最も多く得られる行動方針を学習する。強化学習の代表的な手法であるQ学習、またはTD学習(Temporal Difference Learning)を用いることができる。例えば、Q学習(Q-learning)の場合、行動価値関数Q(s,a)の一般的な更新式は、式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、stは時刻tにおける環境の状態を表し、atは時刻tにおける行動を表す。行動atにより、状態はst+1に変わる。rt+1はその状態の変化によってもらえる報酬を表し、γは割引率を表し、αは学習係数を表す。なお、γは0<γ≦1、αは0<α≦1の範囲とする。設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、20bの検出温度が状態stとなる。目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度が行動atとなる。Q学習では、時刻tの状態stにおける最良の行動atを学習する。
 式(1)で表される更新式は、時刻t+1における最もQ値の高い行動aの行動価値関数Qの値が、時刻tにおいて実行された行動aの行動価値関数Qの値よりも大きければ、行動価値関数Qの値を大きくし、逆の場合は、行動価値関数Qの値を小さくする。換言すれば、時刻tにおける行動aの行動価値関数Qの値を、時刻t+1における最良の行動価値に近づけるように、行動価値関数Q(s,a)を更新する。それにより、或る環境における最良の行動価値が、それ以前の環境における行動価値に順次伝播していくようになる。
 上記のように、強化学習によって第2の学習済みモデルを生成する場合、第2のモデル生成部17は、報酬計算部18と、関数更新部19とを備える。
 報酬計算部18は、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動と、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態とに基づいて、報酬を計算する。報酬計算部18は、設定温度と吹出空気温度との差に基づいて、報酬rを計算する。吹出空気温度は、複数の吹出サーミスタ8a、8bの検出温度のいずれか、あるいは平均とすることができる。例えば、報酬計算部18は、設定温度と吹出空気温度との差が減少したときに、報酬rを増大させ(例えば「1」の報酬を与える。)、他方、設定温度と吹出空気温度との差が増加した場合には報酬rを低減する(例えば「-1」の報酬を与える。)。
 関数更新部19は、報酬計算部18によって計算される報酬に従って、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を決定するための関数を更新し、第2の学習済みモデル記憶装置23に出力する。例えばQ学習の場合、関数更新部19は、式(1)で表される行動価値関数Q(st,at)を、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を算出するための関数として用いる。
 以上のような学習を繰り返し実行する。第2の学習済みモデル記憶装置23は、関数更新部19によって更新された行動価値関数Q(st,at)、すなわち、第2の学習済みモデルを記憶する。
 図11は、第2の学習装置13による第2の学習手順を表わすフローチャートである。
 ステップd1において、第2のデータ取得部16は、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態と、この状態における、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動とを含む第2の学習データを取得する。
 ステップd2において、第2のモデル生成部17は、第2の学習データに基づいて、報酬を計算する。具体的には、報酬計算部18は、設定温度と吹出空気温度との差に基づいて、報酬を増大させるか、あるいは減少させるかを決定する。
 報酬計算部18が報酬を増大させると判断した場合に、処理がステップS103に進む。報酬計算部18が報酬を減少させると判断した場合に、処理がステップS104に進む。
 ステップd3において、報酬計算部18が、報酬を増大させる。
 ステップd4において、報酬計算部18は、報酬を減少させる。
 ステップd5において、関数更新部19は、報酬計算部18によって計算された報酬に基づいて、第2の学習済みモデル記憶装置23が記憶する式(1)で表される行動価値関数Q(st,at)を更新する。
 第2の学習装置13は、以上のステップd1からd5までのステップを繰り返し実行し、生成された行動価値関数Q(st,at)を第2の学習済みモデルとして記憶する。
 図12は、推論装置31の構成を表わす図である。
 推論装置31は、第1の推論装置32と、第2の推論装置33とを備える。
 第1の推論装置32は、第1のデータ取得部34と、第1の推論部35とを備える。
 第1のデータ取得部34は、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む要因データを取得する。過去の一定期間は、現在の時刻をt0としたときに、(t0-ΔTx~t0)の期間とすることができる。
 第1の推論部35は、第1の学習済みモデル記憶装置22に記憶されている第1の学習済みモデルに、第1のデータ取得部34が取得した要因データを入力して、将来の一定期間において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力する。
 図13は、第1の推論装置32による第1の推論手順を表わすフローチャートである。
 ステップc1において、第1のデータ取得部34は、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む要因データを取得する。
 ステップc2、c3において、第1の推論部35は、第1の学習済みモデル記憶装置22に記憶されている第1の学習済みモデルに、第1のデータ取得部34が取得した要因データを入力して、将来の一定期間において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力する。
 ステップc4において、将来の一定期間において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転すると予測された場合に、処理がステップc5に進み、将来の一定期間において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転することがないと予測された場合に、処理が終了する。
 ステップc5において、第2の推論装置33が、次に説明する推論処理を実行する。
 第2の推論装置33は、第2のデータ取得部36と、第2の推論部37とを備える。
 第2のデータ取得部36は、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態を取得する。
 第2の推論部37は、第2の学習済みモデル記憶装置23に記憶されている第2の学習済みモデルを利用して、第2のデータ取得部36で取得した状態から、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を推論する。
 たとえば、第2の推論部37は、第2の学習済みモデル記憶装置23から第2の学習済みモデルとして、行動価値関数Q(st,at)を読み出す。第2の推論部37は、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態stに対して、行動価値関数Q(s,a)に基づいて、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動atを得る。
 メインコントローラ51は、第2の推論部37から出力される目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動atに基づいて、空気調和装置を制御する。
 たとえば、メインコントローラ51は、空気調和装置の冷房運転時において、室内熱交換器3a、3bの直後の液冷媒の過熱度が目標過熱度となるように電子膨張弁4a、4bを制御する。たとえば、メインコントローラ51は、空気調和装置の暖房運転時において、室内熱交換器3a、3bの直後の液冷媒の過冷却度が目標過冷却度となるように電子膨張弁4a、4bを制御する。
 図14は、第2の推論装置33による第2の推論手順を表わすフローチャートである。
 ステップe1において、第2のデータ取得部36は、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態を取得する。
 ステップe2において、第2の推論部37は、第2の学習済みモデル記憶装置23に記憶されている第2の学習済みモデルを利用して、第2のデータ取得部36で取得した状態から、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を推論する。
 ステップe3において、第2の推論部37は、得られた目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度をメインコントローラ51に出力する。
 ステップe4において、メインコントローラ51は、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度に基づいて、空気調和装置を制御する。
 図15は、空気調和装置の冷房運転時における第1の推論、第2の推論、および空調制御の例を表わす図である。図16は、空気調和装置の暖房運転時における第1の推論、第2の推論、および空調制御の例を表わす図である。
 第1の推論装置32が、時刻taにおいて、過去の一定期間(ta-ΔTx~ta)における要因データを第1の学習済みモデルに入力することによって、将来の一定期間(ta~ta+ΔTx)において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転すると予測する。
 第2の推論装置が、時刻ta以降において、第2の学習済みモデル記憶装置23に記憶されている第2の学習済みモデルを利用して、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態から、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を推論する。
 メインコントローラ51は、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度に基づいて、空気調和装置を制御する。これによって、空気調和装置の冷房運転時には、吹出温度が下限基準値TLに達しないため、第1の室内ユニット20aまたは第2の室内ユニット20bがサーモオフ運転せずに、吹出温度が設定温度に達する。空気調和装置の暖房運転時には、吹出温度が上限基準値THに達しないため、第1の室内ユニット20aまたは第2の室内ユニット20bがサーモオフ運転せずに、吹出温度が設定温度に達する。
 以上のように、本実施の形態の空気調和装置は、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む要因から、将来の一定期間において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力する。これによって、複数のサーモオフ運転が可能な室内ユニットを備えた空気調和装置において、各室内ユニットがサーモオフ運転するのを予測することができる。
 本実施の形態の空気調和装置は、さらに、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態から、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を出力する。これによって、空気調和装置は、各室内ユニットがサーモオフ運転せずに、吹出空気温度が設定温度に安定するように制御することができる。
 実施の形態2.
 図17は、実施の形態2の第1の学習済みモデルを説明するための図である。
 実施の形態2の第1の学習済みモデルは、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度と、将来の一定期間における、外気温度の予報、および天候の予報とを含む要因から、将来の一定期間において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力するためのモデルである。将来の一定期間における、外気温度の予報、および天候の予報は、たとえば、現在から10分以内、または1時間以内などの一定期間の予報をインターネットなどを通じて取得するものとすることができる。
 図18は、実施の形態2の第2の学習済みモデルを説明するための図である。
 実施の形態2の第2の学習済みモデルは、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態から、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を出力するためのモデルである。
 第1の学習装置12について説明する。
 第1のデータ取得部14は、第1の期間(t1~t1+ΔTx)における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度と、第1の期間より後の第2の期間(t1+ΔTx~t1+ΔTy)における外気温度の予報、および天候の予報とを含む要因データと、第2の期間(t1+ΔTx~t1+ΔTy)において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測データとを含む第1の学習データを取得する。第1のデータ取得部14は、t1を変化させることによって、複数の第1の学習データを取得する。
 第1のモデル生成部15は、第1のデータ取得部14が取得した第1の学習データを用いて、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度と、将来の一定期間における、外気温度の予報、および天候の予報とを含む要因から、将来の一定期間内において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力する第1の学習済みモデルを生成する。第1のモデル生成部15は、生成した第1の学習済みモデルを第1の学習済みモデル記憶装置22に記憶する。
 第2の学習装置13について説明する。
 第2のデータ取得部16は、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態と、この状態における、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動とを含む第2の学習データを取得する。
 第2のモデル生成部17は、第2のデータ取得部16によって取得された第2の学習データを用いて、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態から、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を出力するための第2の学習済みモデルを生成する。
 報酬計算部18は、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動と、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態とに基づいて、報酬を計算する。報酬計算部18は、設定温度と吹出空気温度との差に基づいて、報酬rを計算する。
 関数更新部19は、報酬計算部18によって計算される報酬に従って、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を決定するための関数を更新し、第2の学習済みモデル記憶装置23に出力する。
 第1の推論装置32について説明する。
 第1のデータ取得部34は、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度と、将来の一定期間における、外気温度の予報、および天候の予報とを含む要因データを取得する。
 第1の推論部35は、第1の学習済みモデル記憶装置22に記憶されている第1の学習済みモデルに、第1のデータ取得部34が取得した要因データを入力して、将来の一定期間において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力する。
 第2の推論装置33について説明する。
 第2のデータ取得部36は、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態を取得する。
 第2の推論部37は、第2の学習済みモデル記憶装置23に記憶されている第2の学習済みモデルを利用して、第2のデータ取得部36で取得した状態から、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を推論する。
 たとえば、第2の推論部37は、第2の学習済みモデル記憶装置23から第2の学習済みモデルとして、行動価値関数Q(st,at)を読み出す。第2の推論部37は、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態stに対して、行動価値関数Q(s,a)に基づいて、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動atを得る。
 メインコントローラ51は、実施の形態1と同様にして、得られた目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度に基づいて、空気調和装置を制御する。
 本実施の形態によれば、天候に左右されずに、吹出空気温度を安定化させることができる。
 実施の形態3.
 図19は、実施の形態3の第1の学習済みモデルを説明するための図である。
 実施の形態3の第1の学習済みモデルは、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度と、将来の一定期間における、外気温度の予報、外気湿度の予報、および天候の予報を含む要因から、将来の一定期間において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力するためのモデルである。将来の一定期間における、外気温度の予報、外気湿度の予報、および天候の予報は、たとえば、現在から10分以内、または1時間以内などの一定期間の予報をインターネットなどを通じて取得するものとすることができる。
 図20は、実施の形態3の第2の学習済みモデルを説明するための図である。
 実施の形態3の第2の学習済みモデルは、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態から、目標過熱度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標湿度を含む行動を出力するためのモデルである。
 第1の学習装置12について説明する。
 第1のデータ取得部14は、第1の期間(t1~t1+ΔTx)における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度と、第1の期間より後の第2の期間(t1+ΔTx~t1+ΔTy)における、外気温度の予報、外気湿度の予報および天候の予報とを含む要因データと、第2の期間(t1+ΔTx~t1+ΔTy)において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測データとを含む第1の学習データを取得する。第1のデータ取得部14は、t1を変化させることによって、複数の第1の学習データを取得する。
 第1のモデル生成部15は、第1のデータ取得部14が取得した第1の学習データを用いて、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度と、将来の一定期間における、外気温度の予報、外気湿度の予報、および天候の予報とを含む要因から、将来の一定期間内において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力する第1の学習済みモデルを生成する。第1のモデル生成部15は、生成した第1の学習済みモデルを第1の学習済みモデル記憶装置22に記憶する。
 第2の学習装置13について説明する。
 第2のデータ取得部16は、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態と、この状態における、目標過熱度、室外機2の圧縮機10の設定周波数、目標冷媒蒸発温度、および目標湿度を含む行動とを含む第2の学習データを取得する。
 第2のモデル生成部17は、第2のデータ取得部16によって取得された第2の学習データを用いて、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態から、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標湿度を含む行動を出力するための第2の学習済みモデルを生成する。
 報酬計算部18は、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動と、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態とに基づいて、報酬を計算する。報酬計算部18は、設定温度と吹出空気温度との差に基づいて、報酬rを計算する。
 関数更新部19は、報酬計算部18によって計算される報酬に従って、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を決定するための関数を更新し、第2の学習済みモデル記憶装置23に出力する。
 第1の推論装置32について説明する。
 第1のデータ取得部34は、過去の一定期間における、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度と、将来の一定期間における、外気温度の予報、および天候の予報とを含む要因データを取得する。
 第1の推論部35は、第1の学習済みモデル記憶装置22に記憶されている第1の学習済みモデルに、第1のデータ取得部34が取得した要因データを入力して、将来の一定期間において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力する。
 第2の推論装置33について説明する。
 第2のデータ取得部36は、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態を取得する。
 第2の推論部37は、第2の学習済みモデル記憶装置23に記憶されている第2の学習済みモデルを利用して、第2のデータ取得部36で取得した状態から、目標過熱度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標湿度を含む行動を推論する。
 たとえば、第2の推論部37は、第2の学習済みモデル記憶装置23から第2の学習済みモデルとして、行動価値関数Q(st,at)を読み出す。第2の推論部37は、設定温度、複数の吸込サーミスタ7a、7bの検出温度、および複数の吹出サーミスタ8a、8bの検出温度を含む状態stに対して、行動価値関数Q(s,a)に基づいて、目標過熱度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標湿度を含む行動atを得る。
 メインコントローラ51は、実施の形態1と同様にして、得られた目標過熱度、圧縮機10の設定周波数、および目標冷媒蒸発温度に基づいて、空気調和装置を制御する。また、メインコントローラ51は、室内湿度が目標湿度に達するように冷房運転または除湿運転を制御する。
 本実施の形態によれば、天気予報が雨天など湿度が高いような場合には、自動的に除湿運転に切り替えることができる。
 変形例.
 (1)学習装置11および推論装置31は、空気調和装置の内部に設けられるが、ネットワークを通じて、空気調和装置と接続され、空気調和装置とは別個の装置であってもよい。さらに、学習装置11および推論装置31は、クラウドサーバ上に存在していてもよい。
 (2)図21は、学習装置11、推論装置31、またはメインコントローラ51のハードウェア構成を表わす図である。
 学習装置11、推論装置31、およびメインコントローラ51は、相当する動作をデジタル回路のハードウェアまたはソフトウェアで構成することができる。学習装置11、推論装置31、およびメインコントローラ51の機能をソフトウェアを用いて実現する場合には、学習装置11、推論装置31、およびメインコントローラ51は、例えば、図21に示すように、バス5003によって接続されたプロセッサ5002とメモリ5001とを備え、メモリ5001に記憶されたプログラムをプロセッサ5002が実行するようにすることができる。
 (3)実施の形態では、第1のモデル生成部15が用いる学習アルゴリズムに教師あり学習を適用した場合について説明したが、これに限られるものではない。学習アルゴリズムについては、教師あり学習以外にも、強化学習、教師なし学習、又は半教師あり学習等を適用することも可能である。実施の形態は、第2のモデル生成部17が用いる学習アルゴリズムに強化学習を適用した場合について説明したが、これに限られるものではない。学習アルゴリズムについては、強化学習以外にも、教師あり学習、教師なし学習、又は半教師あり学習等を適用することも可能である。
 (4)第1のモデル生成部15、および第2のモデル生成部17は、それぞれ、複数の空気調和装置において作成される第1の学習データ、第2の学習データに従って、第1の学習済みモデル、第2の学習済みモデルを生成してもよい。第1のモデル生成部15、および第2のモデル生成部17は、それぞれ、同一のエリアで使用される複数の空気調和装置から第1の学習データ、第2のが学習データを取得してもよいし、異なるエリアで独立して動作する複数の空気調和装置から第1の学習データ、第2の学習データを取得してもよい。第1の学習データ、および第2の学習データを収集する空気調和装置を途中で対象に追加したり、対象から除去することも可能である。さらに、ある空気調和装置の第1の学習データ、および第2の学習データを用いて、第1の学習済みモデル、および第2の学習済みモデルを生成し、これとは別の空気調和装置の第1の学習データ、および第2の学習済みモデルを用いて、第1の学習済みモデル、および第2の学習済みモデルを更新する(再学習する)ようにしてもよい。
 (5)第1のモデル生成部15および第2のモデル生成部17が用いられる学習アルゴリズムとしては、特徴量そのものの抽出を学習する、深層学習を用いることもでき、他の公知の方法、例えば遺伝的プログラミング、機能論理プログラミング、またはサポートベクターマシンなどに従って機械学習を実行してもよい。
 (6)実施の形態では、第1の推論部35は、第1の学習済みモデルを用いて、第1のデータ取得部34が取得した要因データから、将来の一定期間において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力するものとしたが、これに限定するものではない。たとえば、第1の推論部35は、ルールベース推論、または事例ベース推論に基づいて、第1のデータ取得部34が取得した要因データから、将来の一定期間において、複数の室内ユニット20a、20bのうちのいずれかがサーモオフ運転するか否かの予測を出力するものとしてもよい。
 実施の形態1では、第2の推論部37は、第2の学習済みモデルを用いて、第2のデータ取得部36が取得した状態から、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を推論したが、これに限定するものではない。たとえば、第2の推論部37は、ルールベース推論、または事例ベース推論に基づいて、第2のデータ取得部36が取得した状態から、目標過熱度、目標過冷却度、圧縮機10の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を推移論するものとしてもよい。実施の形態2および3においても、同様である。
 (7)上記の実施形態では、第1の学習済みモデルの要因は、過去の一定期間における設定温度を含むものとしたが、これに限定されるものではない。第1の学習済みモデルの要因は、過去の一定期間における複数の吹出サーミスタの検出温度の各々と、過去の一定期間における設定温度との差としてもよい。上記の実施形態では、第2の学習済みモデルの状態は、設定温度を含むものとしたが、これに限定されるものではない。第2の学習済みモデルの要因は、複数の吹出サーミスタの検出温度の各々と、設定温度との差としてもよい。
 (8)上記の実施形態では、室内ユニットは、2個としたが、これに限定されるものでではない。室内ユニットの数は、3個以上であってもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 室内機、2 室外機、3a 第1の室内熱交換器、3b 第2の室内熱交換器、4a 第1の電子膨張弁、4b 第2の電子膨張弁、5 ファン、6a 第1の制御器、6b 第2の制御器、7a 第1の吸込サーミスタ、7b 第2の吸込サーミスタ、8a 第1の吹出サーミスタ、8b 第2の吹出サーミスタ、9 室外熱交換器、10 圧縮機、11 学習装置、12 第1の学習装置、13 第2の学習装置、14,34 第1のデータ取得部、15 第1のモデル生成部、16,36 第2のデータ取得部、17 第2のモデル生成部、18 報酬計算部、19 関数更新部、20a 第1の室内ユニット、20b 第2の室内ユニット、21 学習済みモデル記憶装置、22 第1の学習済みモデル記憶装置、23 第2の学習済みモデル記憶装置、31 推論装置、32 第1の推論装置、33 第2の推論装置、35 第1の推論部、37 第2の推論部、51 メインコントローラ、71 データ記憶装置、5001 メモリ、5002 プロセッサ、5003 バス。

Claims (15)

  1.  室内機と室外機とを備えた空気調和装置であって、
     前記室外機は、圧縮機と、室外熱交換気とを含み、
     前記室内機は、複数の室内ユニットと、ファンとを含み、
     各室内ユニットは、制御器と、室内熱交換器と、電子膨張弁と、吸込空気温度を検出する吸込サーミスタと、吹出空気温度を検出する吹出サーミスタとを含み、前記吹出サーミスタの検出温度が基準値に達すると、サーモオフ運転し、
     過去の一定期間における、設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む要因から、将来の一定期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するか否かを推論する第1の推論装置をさらに備えた、空気調和装置。
  2.  前記第1の推論装置は、
     過去の一定期間における、設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む要因データを取得する第1のデータ取得部と、
     過去の一定期間における、設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む要因から、将来の一定期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するか否かの予測を出力するための第1の学習済みモデルに前記第1のデータ取得部が取得した前記要因データを入力して、将来の一定期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するか否かの予測を出力する第1の推論部と、
     を含む、請求項1記載の空気調和装置。
  3.  前記第1のデータ取得部は、将来の一定期間における、外気温度の予報、および天候の予報をさらに含む要因データを取得し、
     前記第1の推論部は、過去の一定期間における、設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度と、将来の一定期間における、外気温度の予報、および天候の予報とを含む要因から、将来の一定期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するか否かの予測を出力するための第1の学習済みモデルに前記第1のデータ取得部が取得した要因データを入力して、将来の一定期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するか否かの予測を出力する、請求項2記載の空気調和装置。
  4.  前記第1のデータ取得部は、将来の一定期間における、外気温度の予報、外気湿度の予報、および天候の予報をさらに含む要因データを取得し、
     前記第1の推論部は、過去の一定期間における、設定温度、複数の前記吸込サーミスタの検出温度、複数の前記吹出サーミスタの検出温度と、将来の一定期間における、外気温度の予報、外気湿度の予報、および天候の予報とを含む要因から、将来の一定期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するか否かを推論するための第1の学習済みモデルに前記第1のデータ取得部が取得した要因データを入力して、将来の一定期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するか否かの予測を出力する、請求項2記載の空気調和装置。
  5.  将来の一定期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するとの予測が出力されたときに、設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む状態から、目標過熱度、目標過冷却度、前記圧縮機の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を推論する第2の推論装置と、
     前記第2の推論装置の推論結果に基づいて、前記空気調和装置を制御するメインコントローラと、
     を備えた、請求項1記載の空気調和装置。
  6.  前記第2の推論装置は、
     設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む状態を取得する第2のデータ取得部と、
     設定温度、複数の前記吸込サーミスタの検出温度、複数の前記吹出サーミスタの検出温度を含む状態から、目標過熱度、目標過冷却度、前記圧縮機の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を推論するための第2の学習済みモデルを用いて、前記第2のデータ取得部が取得した前記状態から、目標過熱度、目標過冷却度、前記圧縮機の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を推論する第2の推論部と、
     を含む、請求項5記載の空気調和装置。
  7.  将来の一定期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するとの予測が出力されたときに、設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む状態から、目標過熱度、前記圧縮機の設定周波数、目標冷媒蒸発温度、および目標湿度を推論する第2の推論装置と、
     前記第2の推論装置の推論結果に基づいて、前記空気調和装置を制御するメインコントローラと、
     を備えた、請求項1記載の空気調和装置。
  8.  前記第2の推論装置は、
     設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む状態を取得する第2のデータ取得部と、
     設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む状態から、目標過熱度、前記圧縮機の設定周波数、目標冷媒蒸発温度、および目標湿度を含む行動を推論するための第2の学習済みモデルを用いて、前記第2のデータ取得部が取得した前記状態から、目標過熱度、前記圧縮機の設定周波数、目標冷媒蒸発温度、および目標湿度を含む行動を推論する第2の推論部と、
     を含む、請求項7記載の空気調和装置。
  9.  室内機と室外機とを備えた空気調和装置の学習装置であって、
     前記室外機は、圧縮機と、室外熱交換気とを含み、
     前記室内機は、複数の室内ユニットと、ファンとを含み、
     各室内ユニットは、制御器と、室内熱交換器と、電子膨張弁と、吸込空気温度を検出する吸込サーミスタと、吹出空気温度を検出する吹出サーミスタとを含み、前記吹出サーミスタの検出温度が基準値に達すると、サーモオフ運転し、
     第1の期間における、設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む要因データと、前記第1の期間より後の第2の期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するか否かの予測データとを含む第1の学習データを取得する第1のデータ取得部と、
     前記第1の学習データを用いて、過去の一定期間における、設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む要因から、将来の一定期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するか否かの予測を出力するための第1の学習済みモデルを生成する第1のモデル生成部と、
     を備える空気調和装置の学習装置。
  10.  前記第1のデータ取得部は、将来の一定期間における、外気温度の予報、および天候の予報をさらに含む要因データと、前記予測データとを含む第1の学習データを取得し、
     前記第1のモデル生成部は、前記第1の学習データを用いて、過去の一定期間における、設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度と、将来の一定期間における、外気温度の予報、および天候の予報を含む要因から、将来の一定期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するか否かの予測を出力するための第1の学習済みモデルを生成する、請求項9記載の空気調和装置の学習装置。
  11.  前記第1のデータ取得部は、将来の一定期間における、外気温度の予報、外気湿度の予報、および天候の予報をさらに含む要因データと、前記予測データとを含む第1の学習データを取得し、
     前記第1のモデル生成部は、前記第1の学習データを用いて、過去の一定期間における、設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度と、将来の一定期間における、外気温度の予報、外気湿度の予報、および天候の予報とを含む要因から、将来の一定期間において、複数の前記室内ユニットのうちのいずれかがサーモオフ運転するか否かの予測を出力するための第1の学習済みモデルを生成する、請求項9記載の空気調和装置の学習装置。
  12.  設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む状態と、前記状態における、目標過熱度、目標過冷却度、前記圧縮機の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動とを含む第2の学習データを取得する第2のデータ取得部と、
     前記第2の学習データを用いて、設定温度、複数の前記吸込サーミスタの検出温度、複数の前記吹出サーミスタの検出温度を含む状態から、目標過熱度、目標過冷却度、前記圧縮機の設定周波数、目標冷媒蒸発温度、および目標冷媒凝縮温度を含む行動を出力するための第2の学習済みモデルを生成する第2のモデル生成部と、
     を備える、請求項9記載の空気調和装置の学習装置。
  13.  設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む状態と、前記状態における、目標過熱度、前記圧縮機の設定周波数、目標冷媒蒸発温度、および目標湿度を含む行動とを含む第2の学習データを取得する第2のデータ取得部と、
     前記第2の学習データを用いて、設定温度、複数の前記吸込サーミスタの検出温度、および複数の前記吹出サーミスタの検出温度を含む状態から、目標過熱度、前記圧縮機の設定周波数、目標冷媒蒸発温度、および目標湿度を含む行動を出力するための第2の学習済みモデルを生成する第2のモデル生成部と、
     を備える、請求項9記載の空気調和装置の学習装置。
  14.  前記第2のモデル生成部は、Q学習によって前記第2の学習済みモデルを生成する、請求項9~13のいずれか1項に記載の空気調和装置の学習装置。
  15.  前記第2のモデル生成部は、前記設定温度と吹出空気温度との差が減少したときに、報酬を増大させ、前記設定温度と前記吹出空気温度との差が増加したときに、報酬を減少させる、請求項14記載の空気調和装置の学習装置。
PCT/JP2020/041935 2020-11-10 2020-11-10 空気調和装置、および空気調和装置の学習装置 WO2022101989A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/041935 WO2022101989A1 (ja) 2020-11-10 2020-11-10 空気調和装置、および空気調和装置の学習装置
EP20961517.8A EP4246050A4 (en) 2020-11-10 2020-11-10 AIR CONDITIONING DEVICE AND AIR CONDITIONING DEVICE LEARNING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041935 WO2022101989A1 (ja) 2020-11-10 2020-11-10 空気調和装置、および空気調和装置の学習装置

Publications (1)

Publication Number Publication Date
WO2022101989A1 true WO2022101989A1 (ja) 2022-05-19

Family

ID=81600887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041935 WO2022101989A1 (ja) 2020-11-10 2020-11-10 空気調和装置、および空気調和装置の学習装置

Country Status (2)

Country Link
EP (1) EP4246050A4 (ja)
WO (1) WO2022101989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034110A1 (ja) * 2022-08-12 2024-02-15 三菱電機株式会社 制御装置、チラーシステム、シミュレーション部、実機部、及び制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304664A (ja) * 2000-04-20 2001-10-31 Sanyo Electric Co Ltd 空気調和装置
JP2011226767A (ja) * 2010-03-31 2011-11-10 Daikin Industries Ltd 空調コントローラ
WO2016016913A1 (ja) * 2014-07-30 2016-02-04 三菱電機株式会社 空気調和装置
WO2018199167A1 (ja) * 2017-04-27 2018-11-01 三菱電機株式会社 空調装置、制御装置、空調方法及びプログラム
JP2020056566A (ja) * 2018-09-27 2020-04-09 ダイキン工業株式会社 空気調和装置、管理装置、及び冷媒連絡管

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8996141B1 (en) * 2010-08-26 2015-03-31 Dunan Microstaq, Inc. Adaptive predictive functional controller
JP6072424B2 (ja) * 2012-04-13 2017-02-01 三菱電機株式会社 空気調和装置
CN105473354A (zh) * 2013-08-18 2016-04-06 森思博有限公司 Hvac系统的功耗评价
KR102170522B1 (ko) * 2018-10-18 2020-10-27 부산대학교 산학협력단 관람객 수와 환경 변화를 고려한 전시홀 에너지 관리 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304664A (ja) * 2000-04-20 2001-10-31 Sanyo Electric Co Ltd 空気調和装置
JP2011226767A (ja) * 2010-03-31 2011-11-10 Daikin Industries Ltd 空調コントローラ
WO2016016913A1 (ja) * 2014-07-30 2016-02-04 三菱電機株式会社 空気調和装置
WO2018199167A1 (ja) * 2017-04-27 2018-11-01 三菱電機株式会社 空調装置、制御装置、空調方法及びプログラム
JP2020056566A (ja) * 2018-09-27 2020-04-09 ダイキン工業株式会社 空気調和装置、管理装置、及び冷媒連絡管
JP2020169809A (ja) 2018-09-27 2020-10-15 ダイキン工業株式会社 空気調和装置、管理装置、及び冷媒連絡管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4246050A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034110A1 (ja) * 2022-08-12 2024-02-15 三菱電機株式会社 制御装置、チラーシステム、シミュレーション部、実機部、及び制御方法

Also Published As

Publication number Publication date
EP4246050A1 (en) 2023-09-20
EP4246050A4 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
US10108154B2 (en) Influence learning for managing physical conditions of an environmentally controlled space by utilizing a calibration override which constrains an actuator to a trajectory
Li et al. A novel neural network aided fuzzy logic controller for a variable speed (VS) direct expansion (DX) air conditioning (A/C) system
US11898783B2 (en) Performance degradation diagnosis system for refrigeration cycle apparatus
CN113272537B (zh) 用于车辆马达的热控制
WO2022101989A1 (ja) 空気調和装置、および空気調和装置の学習装置
CN114279042A (zh) 一种基于多智能体深度强化学习的中央空调控制方法
JP7006859B2 (ja) 空調制御装置、空調システム、空調制御方法、空調制御プログラム
CN115280075A (zh) 空调控制的学习装置以及推理装置
Homod et al. Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent
JP7378497B2 (ja) モデル共有システム、モデル管理装置、および空気調和装置の制御装置
Muñoz et al. Real-time neural inverse optimal control for indoor air temperature and humidity in a direct expansion (DX) air conditioning (A/C) system
JP7305041B2 (ja) 情報処理装置および空調システム
WO2022054278A1 (ja) 推論装置および学習装置
JP7026844B2 (ja) 情報処理装置、空気調和装置および空気調和システム
JP7309060B2 (ja) 空調機器のメンテナンスの学習装置および推論装置
WO2021250770A1 (ja) 空気調和装置の制御のための学習装置および推論装置
JP7345687B2 (ja) 空気調和システム
JP7466710B2 (ja) 空気調和機および空調システム
WO2022130633A1 (ja) 空気調和システムおよび空気調和システムの学習装置
WO2022123787A1 (ja) 空調システムの状態の学習装置および推論装置
JP7278496B1 (ja) 冷凍サイクル状態予測装置、冷凍サイクル制御装置、及び冷凍サイクル装置
US20240167716A1 (en) Information processing device and air conditioning system
JP7499880B2 (ja) 空調システムの状態の学習装置および推論装置
WO2023149259A1 (ja) 制御装置、空気調和システム、空気調和装置の制御方法、プログラム、学習済モデル及び学習済モデルの生成方法
WO2023223557A1 (ja) 空調システムの異常を検知するシステムおよび方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020961517

Country of ref document: EP

Effective date: 20230612

NENP Non-entry into the national phase

Ref country code: JP