JP2024030559A - 画像形成装置及び画像処理装置 - Google Patents

画像形成装置及び画像処理装置 Download PDF

Info

Publication number
JP2024030559A
JP2024030559A JP2022133520A JP2022133520A JP2024030559A JP 2024030559 A JP2024030559 A JP 2024030559A JP 2022133520 A JP2022133520 A JP 2022133520A JP 2022133520 A JP2022133520 A JP 2022133520A JP 2024030559 A JP2024030559 A JP 2024030559A
Authority
JP
Japan
Prior art keywords
image
correction
value
amount
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022133520A
Other languages
English (en)
Inventor
友暉 堀内
剛 荒木
剛 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2022133520A priority Critical patent/JP2024030559A/ja
Priority to US18/237,178 priority patent/US20240070420A1/en
Publication of JP2024030559A publication Critical patent/JP2024030559A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/18Conditioning data for presenting it to the physical printing elements
    • G06K15/1801Input data handling means
    • G06K15/1822Analysing the received data before processing
    • G06K15/1823Analysing the received data before processing for evaluating the resources needed, e.g. rasterizing time, ink, paper stock
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/18Conditioning data for presenting it to the physical printing elements
    • G06K15/1867Post-processing of the composed and rasterized print image
    • G06K15/1869Depleting the print image

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

【課題】画像に付着する現像剤量を目標値に近づける技術を提供する。【解決手段】画像形成装置は、感光体に形成された静電潜像に現像剤を付着させることにより感光体に画像を形成する現像手段と、画像データに基づき、第1画像の第1エッジからの距離が第1の値から第1の値より大きい第2の値の範囲内であり、かつ、第1画像に含まれる領域である第1補正領域と、第1エッジからの距離が第2の値から第2の値より大きい第3の値の範囲内であり、かつ、第1画像に含まれる領域である第2補正領域と、を判定する判定手段と、第1補正領域に含まれる複数の第1補正対象画素及び第2補正領域に含まれる複数の第2補正対象画素それぞれについて、画像データが示す画素値に対応する露光量からの削減量を決定する決定手段と、を備え、決定手段は、複数の第1補正対象画素それぞれの削減量を、複数の第2補正対象画素それぞれの削減量より大きくする。【選択図】図14

Description

本発明は、画像に付着する現像剤量を目標値に近づける画像形成装置及び画像処理装置に関する。
画像形成装置においては、感光体に形成される静電潜像のエッジ領域に付着する現像剤(以下、トナーと表記する)の量が画素値に応じた目標値より増加する"掃き寄せ"や"エッジ効果"と呼ばれる現象が生じ得る。特許文献1は、掃き寄せや、エッジ効果の影響を抑える構成を開示している。特許文献1によると、エッジからの距離を示す情報に基づき補正領域を判定し、補正領域内の各画素の露光量を調整することで、掃き寄せや、エッジ効果の影響を抑えている。掃き寄せやエッジ効果の影響を抑えることにより、トナーの消費量が増加することを抑えることができる。
特開2016-91009号公報
しかしながら、掃き寄せやエッジ効果により付着するトナーの量が目標値より増加する領域(以下、増加領域と表記する)は、画像形成装置の個体間のばらつきによって変動する。引用文献1の構成は、画像形成装置の個体間のばらつきによる増加領域のサイズ変動を考慮することなく、増加領域が一定であるものとし、当該一定の増加領域を補正領域としている。したがって、補正領域と増加領域が異なると、補正の必要の無い画素の露光量が調整されたり、補正の必要がある画素の露光量が調整されなかったりして画質が低下する。また、補正領域が増加領域より小さい場合には、付着するトナーの量が画素値に応じた目標値より増加してトナーの消費量が増加する。
本発明は、画像に付着する現像剤量を目標値に近づける技術を提供するものである。
本発明の一態様によると、画像形成装置は、感光体と、前記感光体を露光して前記感光体に静電潜像を形成する露光手段と、前記静電潜像に現像剤を付着させることにより前記感光体に前記現像剤の画像を形成する現像手段と、画像データに基づき、前記画像データにより形成される前記現像剤の第1画像の第1エッジからの距離が第1の値から前記第1の値より大きい第2の値の範囲内であり、かつ、前記第1画像に含まれる領域である第1補正領域と、前記第1エッジからの距離が前記第2の値から前記第2の値より大きい第3の値の範囲内であり、かつ、前記第1画像に含まれる領域である第2補正領域と、を判定する判定手段と、前記第1補正領域に含まれる複数の第1補正対象画素及び前記第2補正領域に含まれる複数の第2補正対象画素それぞれについて、前記画像データが示す画素値に対応する露光量からの削減量を決定する決定手段と、を備え、前記決定手段は、前記複数の第1補正対象画素それぞれの前記削減量を、前記複数の第2補正対象画素それぞれの前記削減量より大きくする。
本発明によると、画像に付着する現像剤量を目標値に近づけることができる。
一実施形態による画像形成装置の構成図。 一実施形態による現像方式の説明図。 掃き寄せの発生原理の説明図。 掃き寄せ及びエッジ効果が生じた画像を示す図。 エッジ効果の発生原理の説明図。 一実施形態による露光量の制御構成を示す図。 一実施形態による露光量の制御方法の説明図。 一実施形態による感光体上の位置と露光量との関係と、感光体上の位置と付着するトナーの高さとの関係と、を示す図。 一実施形態による補正幅パラメータ及び露光量調整パラメータを示す図。 増加領域と補正領域のサイズが異なる場合の影響の説明図。 一実施形態によるエッジからの距離と露光量の削減量との関係を示す図。 一実施形態による露光量の削減の有無によるトナーの高さの違いの説明図。 一実施形態による露光量を制御するためのCPUの機能ブロック図。 一実施形態による露光量の調整処理のフローチャート。 一実施形態による画像の各画素の露光量の削減量を示す図。 一実施形態によるエッジからの距離と露光量の削減量との関係を示す図。 一実施形態によるエッジからの距離と露光量の削減量との関係を示す図。 一実施形態によるエッジからの距離と露光量の削減量との関係を示す図。
以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
<第一実施形態>
図1は、本実施形態による画像形成装置101の構成図である。像担持体である感光体1は、画像形成時、図中の矢印の方向に回転駆動される。帯電部2は、感光体1の表面を一様な電位に帯電させる。露光部7は、帯電した感光体1の表面を、画像データに基づく光で露光して感光体1に静電潜像を形成する。なお、露光部7は、画像演算部9が出力する駆動信号71により駆動される。画像演算部9の露光制御部19は、電圧Vaによって露光部7による露光強度が目標値となるように調整する。
現像部3は、現像剤であるトナーを貯蔵する容器13と、現像ローラ14とを備えている。トナーは、非磁性一成分トナーであっても、二成分トナーであっても、磁性トナーであっても良い。規制ブレード15は、現像ローラ14に供給されるトナーの層厚を所定値に規制するために設けられる。規制ブレード15は、トナーに電荷を付与するように構成され得る。現像ローラ14により、トナーは現像領域16へと搬送される。なお、現像領域16とは、現像ローラ14と感光体1とが近接または接触する領域であり、かつ、静電潜像へのトナーの付着が実行される領域である。現像部3により、感光体1に形成された静電潜像にトナーが付着され、トナー像として可視化される。転写部4は、感光体1に形成されたトナー像を記録材Pに転写する。定着部6は、記録材Pに熱及び圧力を加え、記録材Pに転写されたトナー像を記録材Pに定着させる。なお、感光体1と、帯電部2と、現像部3は、画像形成装置101に対して着脱可能なプロセスカートリッジに収容され得る。
画像演算部9のCPU10は、画像形成装置101の全体を統括的に制御する制御部である。なお、以下で説明する制御の総てをCPU10で実行する構成のみならず、その一部をASIC18が実行する構成とすることができる。また、以下で説明する制御の総てをASIC18が実行する構成であっても良い。メモリ11は、画像データを記憶すると共にLUT112を保持する保持部である。LUT112は、ルックアップテーブルであり、後述する1つ以上の補正幅パラメータと、1つ以上の露光量調整パラメータと、を示す補正情報を有する。画像演算部9は、ホストコンピュータ8から送信される画像データを受信し、LUT112が保持する補正情報に基づきエッジ効果や掃き寄せの影響を抑え、画質を維持すると共に、トナー消費量が不必要に増加しない様に画像データの補正を行う。
続いて、現像部3での現像方式について図2を用いて説明する。図2(A)は、ジャンピング現像方式での構成を示している。ジャンピング現像方式においては、現像ローラ14と感光体1を接触させず、所定距離のギャップ17を設ける。そして、現像ローラ14が出力する現像バイアスとして、直流バイアスを重畳した交流バイアスを使用する。図2(B)は、接触現像方式での構成を示している。接触方式においては、現像ローラ14と感光体1を接触させる。そして、現像ローラ14が出力する現像バイアスとして、直流バイアスを使用する。
続いて、静電潜像に付着するトナーの量が、エッジ部分において目標値より増加するエッジ効果及び掃き寄せの発生原理についてそれぞれ説明する。掃き寄せとは、トナー像の感光体1の回転方向の後端の領域にトナーが集中する現象である。なお、以下の説明において"トナー像"、"現像剤像"及び"画像"とは、トナーが纏まって付着する領域を意味するものとする。つまり、1つの記録材Pに、トナーが纏まって付着する領域が複数ある場合、トナーが纏まって付着する個々の領域が"画像"であるものとする。この場合、記録材Pに形成されるのは複数の画像であり、1つの画像ではない。
図2(B)に示す接触現像方式では、感光体1のトナーの厚さを所定値とするため、現像ローラ14の周速を感光体1の周速よりも速くしている。図3(A)~図3(C)に示す様に、現像領域16では、現像ローラ14によって搬送されてきたトナーにより静電潜像が現像される。なお、図3においては、トナーを円により示している。現像ローラ14は、感光体1より速い速度で回転しているため、両者の表面上の位置関係は常にずれ続けている。図3(A)に示す様に、静電潜像600の後端が現像領域16に侵入した時点では、現像ローラ14上のトナーは、回転方向において、現像領域16の開始位置よりも後側に位置する。しかし、現像ローラ14の回転速度は感光体1の回転速度より速いため、図3(B)に示す様に、静電潜像600の後端が現像領域16を抜けるまでに、現像ローラ14のトナーは静電潜像600の後端を追い越す。そして、図3(C)に示す様に、現像ローラ14のこのトナーが静電潜像600の後端に供給されるため、静電潜像の後端に付着するトナーの量が多くなる。これが、掃き寄せの発生メカニズムである。
図4(A)は、掃き寄せが生じたトナー像400を示している。図4(A)の矢印Aは、トナー像の搬送方向、つまり、感光体1の回転方向である。感光体1の回転方向は、副走査方向とも呼ばれる。なお、トナー像400の元となった画像データは、総ての画素値が同じ、つまり、トナー像400は一様な濃度の画像としている。掃き寄せが生じた場合、トナー像400の後端領域402aにトナーが集中して付着する。その結果、黒色で示す後端領域402aの濃度は、それ以外の領域401aの濃度より高くなる。したがって、後端領域402aは、トナーの付着量が画素値に応じた目標値より増加する増加領域であり、以下の説明においては、増加領域402aとも表記する。また、以下の説明においては、トナーの付着量が増加しない領域401aを非増加領域401aとも表記する。
増加領域402aの濃度は、画像形成装置101の動作環境や、プロセスカートリッジを使用して画像を形成した記録材Pの累積枚数等によって変動する。また、増加領域402aの副走査方向の長さ403a(以下、増加領域長403aとしても参照する。)は、動作環境や累積枚数に加えて、感光体1と現像ローラ14との周速の比率と、現像領域16の副走査方向の長さ等により変動する。なお、現像領域16の副走査方向の長さは、プロセスカートリッジや画像形成装置101の個体毎に異なり得る。したがって、増加領域長403aも、画像形成装置101の個体毎に異なり得る。
一方、エッジ効果とは、感光体1に形成された静電潜像、つまり、露光領域と、それ以外の非露光領域との境界に電界が集中することで、静電潜像の各エッジにトナーが過剰に付着する現象である。例えば、形成する画像が一様な濃度であるものとする。図5に示す様に、露光領域600の周囲にある非露光領域601からの電気力線が露光領域600のエッジに回り込み、エッジにおける電界強度が、露光領域600のその他の領域よりも強くなる。したがって、露光領域600のエッジには、その他の領域より多くのトナーが付着してしまう。
図4(B)は、エッジ効果が生じたトナー像410を示している。図4(B)の矢印Aは副走査方向である。なお、トナー像410の元となった画像データは、総ての画素値が同じ、つまり、トナー像410は一様な濃度の画像としている。エッジ効果が生じた場合、トナー像410の総てのエッジ領域402bにトナーが集中して付着する。その結果、エッジ領域402bの濃度は、非エッジ領域401bの濃度より高くなる。なお、エッジ効果は、感光体1と現像ローラ14との間にギャップがあるジャンピング現像方式で主に発生する。掃き寄せの場合と同様に、以下では、エッジ領域402bを増加領域402bとも表記し、非エッジ領域401bを非増加領域401bとも表記する。
トナー像410を取り囲む増加領域402bの幅は、エッジにおける電界強度が強くなる程、大きくなる。エッジにおける電界強度は、感光体1と現像ローラ14との間のギャップ17の大きさによって変わる。ここで、ギャップ17の大きさは、プロセスカートリッジや画像形成装置101の個体毎に異なる。よって、掃き寄せの場合と同様に、増加領域401bの幅も画像形成装置101の個体毎に異なり得る。
図6は、露光部7の制御構成である。露光制御部19は、8ビットのDAコンバータ(DAC)2021と、レギュレータ(REG)2022と、を含むIC2003を備えている。IC2003は、CPU10により設定された強度調整信号73を基にレギュレータ2022が出力する電圧VrefHを調整する。電圧VrefHはDAコンバータ2021の基準電圧となる。IC2003がDAコンバータ2021の入力データ2020を設定することで、DAコンバータ2021は電圧Vaを露光部7に出力する。露光部7のVI変換回路2306は電圧Vaを電流値Idに変換してドライバIC2009に出力する。ドライバIC2009は、電流値Idにより露光部7のレーザダイオード(LD)に流れる電流ILの大きさを制御することでLDの発光強度、つまり、露光部7の露光強度を制御する。この様に、露光制御部19は電圧Vaにより、露光部7の露光強度を制御することができる。また、ドライバIC2009は、画像演算部9が出力する駆動信号71に応じて、ドライバIC2009のスイッチ(SW)を切り替える。SWは、電流ILを、露光部7のLDに流すか、ダミー抵抗R1に流すかを切換えることで、LDの発光のON/OFF制御を行う。
続いて、画素の露光量の制御方法について説明する。図7(A)は、1画素の総ての領域を所定の目標強度に対して100%の強度で露光した状態を示している。また、図7(B)及び図7(C)は、図7(A)の画素の略半分の濃度の画素を示している。図7(B)の画素は、1画素の総ての領域を目標強度に対して50%の強度で露光して形成したものである。なお、露光強度は、図6を用いて説明した様に、露光制御部19が露光部7に出力する電圧Vaで制御される。図7(C)は、1画素をN個(Nは2以上の自然数)の副画素に分割し、目標強度に対して100%の強度で、副画素を1つおきに露光して形成したものである。これは、図6の制御構成において、露光強度が目標強度となる様に電圧Vaを設定し、駆動信号71によりSWをON/OFFすることで実現される。この場合、駆動信号71は、PWM(パルス幅変調)信号となる。図7(B)及び図7(C)の画素の露光量は、図7(A)の画素の露光量の1/2である。この様に、画素の露光量は、画素の露光強度、画素の露光量、或いは、その組み合わせで制御することができる。
図8(A)は、感光体1にトナー像400を形成するために、トナー像400(図4(A))の各画素を画素値に応じた露光量で露光した状態を示している。なお、トナー像400の各画素の画素値は同じである。図8の各図において、横軸は副走査方向の位置を示し、位置800は、静電潜像(又はトナー像)の後端側のエッジに対応する。図8(A)の縦軸の"露光量割合"は、説明のための相対的な値であり、図8(A)での露光量を値"1"としている。図8(B)は、図8(A)の様に露光した場合に形成されるトナー像400の、副走査方向の位置とトナーの高さとの関係を示している。なお、図8(B)の"高さ割合"は、トナーの高さが目標値である場合を値"1"としている。付着するトナーの高さが大きい程、濃度が濃くなるため、図8(B)の縦軸は、濃度と読み替えることもできる。図8(B)に示す様に、掃き寄せによりトナー高さが1より大きくなる増加領域402aが発生する。
図8(C)は、増加領域402aにおける露光量割合を、図8(B)より小さくした場合を示している。図8(D)は、図8(C)の様に露光した場合に形成されるトナー像400の、副走査方向の位置とトナーの高さとの関係を示している。図8(D)に示す様に、増加領域402aの露光量を減少させることで、掃き寄せにより増加領域402aに付着するトナーの増加分と相殺させ、トナーの高さを略一定にすることができる。
増加領域長403aと、露光量の調整量(削減量)を決定するため、本実施形態では、メモリ11に補正幅パラメータと、露光量調整パラメータと、を含む補正情報を格納しておく。図9(A)は、補正幅パラメータの例を示し、図9(B)は、露光量調整パラメータの例を示している。上述した様に、増加領域長403aや、その濃度変動(トナーの高さの変動)は、動作環境や、画像を形成した記録材Pの累積枚数により異なる。したがって、図9(A)及び図9(B)に示す様に、動作環境及び累積枚数の組み合わせ(以下、動作環境及び累積枚数の組み合わせを、画像形成装置の"状態"と表記する。)それぞれに関連付けられた補正幅パラメータ及び露光量調整パラメータを設けている。なお、図9(A)及び図9(B)では、動作環境を温度及び湿度の組み合わせで定義している。また、低温、常温、高温それぞれの温度範囲は予め定義される。同様に、低湿、常湿、高湿それぞれの湿度範囲は予め定義される。
図9(A)において、補正幅パラメータは、基準とする増加領域長403aを画素数で示している。また、図9(B)において、露光量調整パラメータは、露光量を低減させる割合をパーセンテージで示している。なお、以下では、補正幅パラメータが示す基準とする増加領域長403aを"基準長"と表記する。また、以下では、露光量調整パラメータが示す露光量の低減割合を"基準削減量"と表記する。各状態で使用する補正幅パラメータ及び露光量調整パラメータは、実験やシミュレーションにより求められる。
図10(A)の網掛け領域は、補正幅パラメータが値"L1"を示している場合の補正領域1001を示している。なお、図10(A)~図10(E)の矢印Aは副走査方向を示している。上述した様に、増加領域長403aは、画像形成装置101の個体毎に異なり得る。図10(B)及び図10(D)の黒色領域は、実際の増加領域402aを示している。図10(B)は、増加領域長403aが、L1より短いL2である場合を示している。この場合、補正領域1001は、増加領域402a以外の領域を含むことになる。よって、図10(C)の白色で示す、補正領域1001内の増加領域402a以外の領域の画素に対する露光量が不必要に減少されて濃度が薄くなる。なお、図10(C)の白色の領域の副走査方向の長さはL1-L2である。
図10(D)は、増加領域長403aが補正領域1001の副走査方向の長さL1より長いL3である場合を示している。この場合、増加領域402a内の一部の領域は、補正領域1001に含まれない。よって、図10(E)の黒色で示す増加領域1004内の補正領域1001に含まれない領域の画素に対する露光量は調整されず、当該領域の濃度は目標値より高くなる。なお、図10(E)の黒色の領域の副走査方向の長さはL3-L1である。
画像形成装置101の個体による増加領域長403aの変動に対応するため、本実施形態では、補正幅パラメータに対する増加領域長403aの"変動最大値"も補正情報としてLUT12の形式で予めメモリ11に格納しておく。なお、変動最大値は、補正幅パラメータ等と同様に画像形成装置の"状態"毎に異なる値であっても、総ての"状態"において共通の値であっても良い。変動最大値も実験やシミュレーションにより求められる。
以下では、補正幅パラメータ、露光量調整パラメータ及び変動最大値を含む補正情報に基づき補正領域の副走査方向の長さと、補正領域内の各補正対象画素の露光量の調整量を決定する方法について説明する。なお、以下では、補正幅パラメータが示す基準長がRLであり、露光量調整パラメータが示す基準削減量がREであり、変動最大値がαであるものとする。
CPU10は、補正領域1001の副走査方向の長さ(画素数)AL(図10(A)のL1に対応)を以下の式(1)で求める。
AL=RL+α (1)
本実施形態において、CPU10は、トナー像の後端エッジからAL番目の画素までの領域を補正領域とする。さらに、本実施形態において、CPU10は、補正領域を第1補正領域と第2補正領域に分割する。本実施形態において、第1補正領域は、トナー像の後端エッジから1番目の画素(つまり、後端エッジの画素)から(RL-α)番目までの範囲内で、かつ、当該トナー像内の領域である。また、第2補正領域は、トナー像の後端エッジから(RL-α+1)番目から(RL+α)番目までの範囲内で、かつ、当該トナー像内の領域である。
CPU10は、第1補正領域内の第1補正対象画素の露光量の調整量(削減量)AEを以下の式(2)で求める。
AE=RE (2)
一方、CPU10は、第2補正領域内の第2補正対象画素の露光量の調整量(削減量)AEを以下の式(3)で求める。
AE=RE×[1-(x-(RL-α))/(2α+1)] (3)
図11は、基準長RL=7、基準削減量RE=20、変動最大値α=2の場合のxと調整量AEとの関係を示している。RL+α=9であるため、x=10以上の画素は、補正領域外の画素であり、露光量の調整は行われない。図11に示す様に、xが1~RL-α=5までの第1補正対象画素の露光量の調整量AEは、式(2)より、基準削減量RE=20のままである。一方、xがRL-α=5を超える第2補正対象画素については、式(3)に示す様に、xがRL+α+1=10において調整量AEが0となる様に、xの増加に応じて調整量AEを線形的に減少させる。
図12(A)は、図8(B)と同様に、トナー像の副走査方向の位置とトナーの高さとの関係を示している。なお、図12(A)は、図10(B)に示す様に、増加領域402aの副走査方向の長さL2が、補正領域1001の副走査方向の長さL1より変動最大値αだけ短い場合を示している。例えば、L1=RL=7とし、α=2とすると、L2=5である。なお、図12(A)の参照符号1102の位置xは5であり、参照符号1102の位置xは8である。図8(B)及び図8(C)で説明した様に、補正領域1001の総ての画素の露光量をRE=20だけ削減すると、x=6及び7において不必要に露光量が削減され、よって、トナーの高さも低くなる。
一方、本実施形態では、図11に示す様に、x=5までは図12(A)と同様に画素の露光量をRE=20だけ削減するが、x=6から9の範囲において露光量の調整量REを徐々に減少させる。つまり、調整後の露光量は、図12(A)の場合と比較して高くなる。したがって、図12(B)に示す様に、トナーの高さの急激な変動を回避し、濃度の急峻な変化を抑えると共に目標濃度との濃度差を小さくすることができる。また、濃度の急峻な変化が抑えられることで、濃度差を視覚し難い状態にすることができる。また、増加領域長403aが変動最大値αだけ変動しても、増加領域402aの全画素の露光量が調整されるため、目標濃度との差を小さくすると共に消費するトナー量の増加を抑えることができる。
図13は、掃き寄せを抑制するためのCPU10での処理を説明するための機能ブロックを示している。なお、本実施形態では、CPU10が掃き寄せの抑制処理を行うものとするが、既に説明した様に、ASIC18と共に行う構成でも、ASIC18のみで行う構成であっても良い。パラメータ生成部1504は、画像を形成した記録材Pの累積枚数を管理している。また、パラメータ生成部1504は、不図示のセンサにより画像形成装置101の動作環境情報を取得する。パラメータ生成部1504は、累積枚数及び動作環境情報、つまり、画像形成装置の"状態"に対応する補正幅パラメータ及び露光量調整パラメータを、LUT112が示す補正情報から選択する。なお、補正情報は、変動最大値αも示し、パラメータ生成部1504は、補正情報から変動最大値αも取得する。なお、前述した通り、変動最大値αは、補正幅パラメータ及び露光量調整パラメータと同様に画像形成装置の状態に応じた値であっても、状態に拘わらず一定の値であっても良い。パラメータ生成部1504は、補正幅パラメータ及び露光量調整パラメータと、変動最大値αとに基づき、補正領域1001の副走査方向の長さ(画素数)ALと、調整量AEと、を判定する。パラメータ設定部1502は、長さALを画像解析部1501に通知・設定する。また、パラメータ設定部1502は、調整量AEを露光量調整部1503に通知・設定する。
ホストコンピュータ8から送信された画像データ111は、図1に示すメモリ11に格納される。画像解析部1501は、画像データ111により形成される画像の画素の内の副走査方向の後端エッジから長さAL内の画素を特定し、特定した画素を露光量調整部1503に通知する。露光量調整部1503は、画像解析部1501が特定した画素の画素値を、調整量AEに基づき補正して駆動信号71を生成する。露光部7は、この駆動信号71により駆動される。
図14は、CPU10が画像を形成する際に実行する露光量調整処理のフローチャートである。なお、図14では、変動最大値αも補正幅パラメータ及び露光量調整パラメータと同様に画像形成装置の状態に応じた値としている。したがって、メモリ11には、画像形成装置の各状態に関連付けられた補正幅パラメータ、露光量調整パラメータ及び変動最大値αを示す補正情報が格納されている。CPU10は、S10において、画像形成時の状態を判定し、判定した状態に対応する補正情報をメモリ11から読み出す。CPU10は、S11おいて、補正情報に基づき第1補正領域及び第2補正領域を判定する。そして、CPU10は、第1補正領域に含まれる複数の第1補正対象画素及び第2補正領域に含まれる複数の第2補正対象画素それぞれの露光量の調整量AEを求める。CPU10は、S12において、第1補正領域及び第2補正領域内の各補正対象画素の露光量の調整量AEに基づき、各画素の画素値を補正する。
図15(A)は、画像データ111に基づきトナーが付着される17×17画素(計289画素)の画像を示している。なお、図15(A)に示す289画素の画素値は0以外の値、例えば、最大濃度を示す255である。画像データ111のその他の画素の値は、例えば、0である。また、図15(A)の下から上に向かう方向が副走査方向であるものとする。したがって、図15(A)の一番下の行の画素が後端側エッジの画素である。図15(A)の画素の内の数字が記載された画素は補正領域1001内の画素であり、"-"が記載された画素は非補正領域内の画素である。なお、図15(A)においては、基準長RL=6、基準削減量RE=20、変動最大値α=2としている。したがって、後端側から副走査方向に沿って4つの画素の調整量AEは20であり、その後、調整量AEは4ずつ減少していく。
エッジ効果による影響を抑える処理についても掃き寄せと基本的には同様である。但し、エッジ効果は、後端側エッジのみならず、総てのエッジからの距離がRL+α以内である画素を含む範囲が補正領域となる。ここで、エッジ効果の場合、調整量AEを算出するために使用する値"x"は、エッジまでの最短距離を使用する。したがって、エッジ効果に対する補正領域1001と、補正領域1001内の各画素の調整量AEは図15(B)の様になる。
以上、補正幅パラメータが示す基準長RLと、変動最大値αとに基づき補正領域と、当該補正領域を分割した第1補正領域及び第2補正領域と、を判定する。具体的には、後端エッジからの距離が画素数で(RL-α)までの範囲が第1補正領域であり、(RL-α+1)から(RL+α)までの範囲が第2補正領域である。そして、第1補正領域内の第1補正対象画素の露光量の調整量AEを、露光量調整パラメータが示す基準削減量REとする。一方、第2補正領域内の第2補正対象画素については、調整量AEを距離の増加に応じて線形的に減少させる。一例として、式(3)では、エッジから(RL+α+1)番目の画素の調整量AEが0となる様に、調整量AEを線形的に減少させている。この構成により、掃き寄せ又はエッジ効果により、常に、トナーが過剰に付着すると推定される第1補正領域内の画素の露光量を調整し、画質の低下を抑えると共に、消費トナー量の増加を抑えることができる。また、画像形成装置101の個体毎にトナーの付着量が変動し得る第2補正領域内の画素については、露光量の調整量AEを第1補正領域内の画素の調整量AEより減少させる。これにより、第2補正領域における露光量の急峻な変化を抑えて、画質の低下を抑えることができる。これにより、画質低下を抑制しつつ、トナー消費量の増加を抑えることができる。
<第二実施形態>
続いて、第二実施形態について第一実施形態との相違点を中心に説明する。第一実施形態においては、式(3)に示す様に、第2補正領域においては調整量AEをxの増加と共に線形的に減少させていた。本実施形態では、露光量の過剰な補正による画質低下をより防ぐために、調整量AEを第一実施形態より小さくする。
なお、第一実施形態との相違点は、第一実施形態の式(3)を、以下の式(4)に変更することである。式(3)では、第2補正領域において、調整量AEを1次関数、つまり、線形的に減少させていた。本実施形態では、式(4)に示す様に、第2補正領域において、調整量AEを2次関数に従い減少させる。なお、第1補正領域については第一実施形態と同様である。
AE=(RE+F)/(2α+1)×{x-(RL+α+1)} (4)
ここで、Fは、調整量の変化度合いを調整するための係数である。なお、係数Fは負の値であり、絶対値が大きい程、調整量の変化度合いが大きくなる。
図16は、基準長RL=7、基準削減量RE=20、変動最大値α=2、係数F=-0.5の場合のxと調整量AEとの関係を示している。図16に示す様に、xが1~RL-α=5までの第1補正領域の露光量の調整量AEは、第一実施形態と同様に基準削減量RE=20のままである。一方、xがRL-α=5より大きい第2補正領域においては、xがRL+α+1=10において調整量AEが0となる様に、調整量AEを2次関数的に減少させる。
第一実施形態では、第2補正領域においてxが1増加すると、調整量AEを4だけ減少させていた。一方、本実施形態では、xの増加に応じた調整量AEの変化量をxの増加と共に減少させる。具体的には、図16において、x=5からx=6への調整量AEの変化量は8であり、x=6からx=7への調整量AEの変化量は5である。さらに、x=7からx=8への調整量AEの変化量は4であり、x=8からx=9への調整量AEの変化量は2であり、x=9からx=10への調整量AEの変化量は1である。この様に調整量を変化させることで、x=6から9における調整量AEを、図11に示す第一実施形態より小さくする。したがって、増加領域長403aが補正領域1101の副走査方向の長さより小さい場合に、非増加領域の露光量が過剰に補正されて濃度が薄くなることを抑えることができる。これにより、画質低下を抑えることができる。
<第三実施形態>
続いて、第三実施形態について第一実施形態及び第二実施形態との相違点を中心に説明する。本実施形態では、第2補正領域において、第一実施形態の式(3)や、第二実施形態の式(4)に代えて、以下の式(5)を使用する点で相違する。なお、第1補正領域については第一実施形態及び第二実施形態と同様である。
AE=RE×[1-1/(1+e-q)]
q=(G+4/α)×(x-RL-0.5) (5)
ここで、Gは、調整量の変化度合いを調整するための係数である。なお、係数Gは-2より大きいである。なお、Gが0より大きい場合、Gの値が大きくなる程、x=(RL-α)及び(RL+α)近傍での調整量AEの変化量が大きくなり、xが(RL-α)と(RL+α)との中央付近の値での調整量AEの変化量が小さくなる。一方、Gが0より小さい場合、Gの値が小さくなるにつれ、xが(RL-α)と(RL+α)との中央付近での調整量AEの変化量が大きくなる。
図17は、基準長RL=7、基準削減量RE=20、変動最大値α=2、係数G=-0.25の場合のxと調整量AEとの関係を示している。図17に示す様に、第1補正領域の調整量AEは、露光量調整パラメータが示す基準削減量RE=20のままである。一方、xがRL-α=5より大きい第2補正領域では調整量AEをシグモイド関数に従い減少させる。
上記各実施形態及び本実施形態において、第1補正領域の調整量AEは、基準削減量RE=20で一定である。また、x=RL+α+1以上の非補正領域において、調整量AEは0で一定である。本実施形態では、第2補正領域において、調整量AEの変化量は、xの増加と共にまず増加し、その後、減少する。より詳しくは、本実施形態では、x=5からx=6への調整量AEの変化量は1であり、x=6からx=7への調整量AEの変化量は5である。さらに、x=7からx=8への調整量AEの変化量は8であり、x=8からx=9への調整量AEの変化量は5であり、x=9からx=10への調整量AEの変化量は1である。この様に、調整量AEが一定である第1補正領域や非補正領域と接する第2補正領域の端部における調整量AEの変化量を小さくする。調整量AEが変化しない第1補正領域及び非補正領域と接する第2補正領域内の領域における調整量AEの変化量を小さくすることで、変化点におけるトナーの高さの急峻な変動を抑えることができ、よって、濃度差を視覚し難い状態にすることができる。また、本実施形態では、調整量AEの合計値が第一実施形態と同等になっている。調整量AEの合計値は、補正によって削減される露光量、すなわち、トナー消費の削減量に対応する。したがって、本実施形態では、第一実施形態と同等のトナー削減効果を得られる。
<第四実施形態>
続いて、第四実施形態について第一実施形態から第三実施形態との相違点を中心に説明する。第一実施形態から第三実施形態においては、第1補正領域をエッジの画素を含むものとしていた。本実施形態では、第1補正領域の範囲を、エッジからy番目(y<RL-α)の画素から(RL-α)番目までの画素とする。図18は、第一実施形態の式(3)を使用する場合において、y=2としたときのxと調整量AEとの関係を示している。
例えば、露光量の調整を図7(C)に示すPWMで行った場合、露光のオンオフにより、後端エッジにおいて、トナーの高さの微細な差が生じることがある。補正の強度次第では、この微細なトナー高さの差によって、まっすぐな横のラインに対して微細な凹凸が生じる可能性がある。本実施形態では、エッジから(y-1)画素を第1補正領域に含めず補正しないことにより、微細な凹凸の発生を防ぐことができる。
なお、上記各実施形態について、画像形成装置101を用いて説明した。しかしながら、本発明は、画像形成装置に対して補正後の画像データを供給する画像処理装置としても実現できる。画像処理装置は、図1に示す画像演算部9を有し、上述した様に露光量を調整して補正後の画像データを生成する。そして、画像処理装置の画像演算部9は、生成した画像データを露光部7ではなく、画像形成装置に対して出力する出力部として機能する。そして、画像形成装置の露光部7は、補正後の画像データに基づき、補正された露光量で感光体1の露光を行う。
[その他の実施形態]
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
本実施形態の開示は、以下の構成を含む。
(構成1)
感光体と、
前記感光体を露光して前記感光体に静電潜像を形成する露光手段と、
前記静電潜像に現像剤を付着させることにより前記感光体に前記現像剤の画像を形成する現像手段と、
画像データに基づき、前記画像データにより形成される前記現像剤の第1画像の第1エッジからの距離が第1の値から前記第1の値より大きい第2の値の範囲内であり、かつ、前記第1画像に含まれる領域である第1補正領域と、前記第1エッジからの距離が前記第2の値から前記第2の値より大きい第3の値の範囲内であり、かつ、前記第1画像に含まれる領域である第2補正領域と、を判定する判定手段と、
前記第1補正領域に含まれる複数の第1補正対象画素及び前記第2補正領域に含まれる複数の第2補正対象画素それぞれについて、前記画像データが示す画素値に応じた露光量からの削減量を決定する決定手段と、
を備え、
前記決定手段は、前記複数の第1補正対象画素それぞれの前記削減量を、前記複数の第2補正対象画素それぞれの前記削減量より大きくする、画像形成装置。
(構成2)
基準削減量を示す第1補正情報を格納する第1格納手段をさらに備え、
前記決定手段は、前記基準削減量を前記複数の第1補正対象画素それぞれの前記削減量に決定する、構成1に記載の画像形成装置。
(構成3)
前記決定手段は、前記複数の第2補正対象画素それぞれの前記第1エッジからの距離に応じて前記基準削減量を調整することで、前記複数の第2補正対象画素それぞれの前記削減量を決定する、構成2に記載の画像形成装置。
(構成4)
前記複数の第2補正対象画素それぞれの前記削減量は、前記第1エッジからの距離が大きくなる程、小さくなる、構成3に記載の画像形成装置。
(構成5)
前記複数の第2補正対象画素それぞれの前記削減量は、前記第1エッジからの距離の増加と共に線形的に小さくなる、構成4に記載の画像形成装置。
(構成6)
前記複数の第2補正対象画素それぞれの前記削減量の前記第1エッジからの距離の増加による変化量は、前記距離が大きくなる程、小さくなる、構成4に記載の画像形成装置。
(構成7)
前記複数の第2補正対象画素それぞれの前記削減量の前記第1エッジからの距離の増加による変化量は、前記距離が大きくなる程、大きくなり、その後、小さくなる、構成4に記載の画像形成装置。
(構成8)
補正幅及び変動最大値を示す第2補正情報を格納する第2格納手段をさらに備え、
前記判定手段は、前記補正幅と、前記変動最大値と、に基づき、前記第2の値と前記第3の値と、を判定する、構成1から8のいずれか1つに記載の画像形成装置。
(構成9)
前記判定手段は、前記補正幅から前記変動最大値を減じた値に基づき前記第2の値を決定し、前記補正幅に前記変動最大値を加えた値に基づき前記第3の値を決定する、構成8に記載の画像形成装置。
(構成10)
前記第1格納手段は、前記画像形成装置の状態に関連付けられた複数の基準削減量を示し、
前記決定手段は、前記画像データに基づき前記画像を形成する際の前記画像形成装置の状態に基づき前記複数の基準削減量の内の1つを選択し、選択した前記基準削減量を前記複数の第1補正対象画素それぞれの前記削減量に決定する、構成2から7のいずれか1つに記載の画像形成装置。
(構成11)
前記判定手段は、前記画像データに基づき前記画像を形成する際の前記画像形成装置の前記状態に基づき、前記第2の値と前記第3の値とを判定する、構成10に記載の画像形成装置。
(構成12)
前記画像形成装置の前記状態は、前記画像データに基づき前記画像を形成する際の温度、湿度及びそれまでに画像形成を行った記録材の数と、の内の少なくとも1つにより判定される、構成10又は11に記載の画像形成装置。
(構成13)
前記削減量は、前記画像データが示す前記画素値に応じた露光量に対する割合で示される、構成1から12のいずれか1つに記載の画像形成装置。
(構成14)
前記複数の第1補正対象画素は、前記第1エッジの画素を含む、構成1から13のいずれか1つに記載の画像形成装置。
(構成15)
前記複数の第1補正対象画素は、前記第1エッジの画素を含まない、構成1から13のいずれか1つに記載の画像形成装置。
(構成16)
前記第1エッジは、前記感光体の回転方向において前記第1画像の後端のエッジである、構成1から15のいずれか1つに記載の画像形成装置。
(構成17)
前記第1エッジは、前記第1画像の総てのエッジである、構成1から15のいずれか1つに記載の画像形成装置。
(構成18)
前記複数の第1補正対象画素及び前記複数の第2補正対象画素それぞれの前記削減量に基づき前記画像データを補正する補正手段をさらに備えている、構成1から17のいずれか1つに記載の画像形成装置。
(構成19)
感光体と、前記感光体を露光して前記感光体に静電潜像を形成する露光手段と、前記静電潜像に現像剤を付着させることにより前記感光体に前記現像剤の画像を形成する現像手段と、を有する画像形成装置に、第1画像データを出力する画像処理装置であって、
第2画像データに基づき、前記第2画像データにより形成される前記現像剤の第1画像の第1エッジからの距離が第1の値から前記第1の値より大きい第2の値の範囲内であり、かつ、前記第1画像に含まれる領域である第1補正領域と、前記第1エッジからの距離が前記第2の値から前記第2の値より大きい第3の値の範囲内であり、かつ、前記第1画像に含まれる領域である第2補正領域と、を判定する判定手段と、
前記第1補正領域に含まれる複数の第1補正対象画素及び前記第2補正領域に含まれる複数の第2補正対象画素それぞれについて、前記第2画像データが示す画素値に対応する露光量からの削減量を決定する決定手段と、
前記複数の第1補正対象画素及び前記複数の第2補正対象画素それぞれの前記削減量に基づき前記第2画像データを補正して前記第1画像データを生成する補正手段と、
を備え、
前記決定手段は、前記複数の第1補正対象画素それぞれの前記削減量を、前記複数の第2補正対象画素それぞれの前記削減量より大きくする、画像処理装置。
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
1:感光体、7:露光部、3:現像部、10:画像演算部

Claims (19)

  1. 感光体と、
    前記感光体を露光して前記感光体に静電潜像を形成する露光手段と、
    前記静電潜像に現像剤を付着させることにより前記感光体に前記現像剤の画像を形成する現像手段と、
    画像データに基づき、前記画像データにより形成される前記現像剤の第1画像の第1エッジからの距離が第1の値から前記第1の値より大きい第2の値の範囲内であり、かつ、前記第1画像に含まれる領域である第1補正領域と、前記第1エッジからの距離が前記第2の値から前記第2の値より大きい第3の値の範囲内であり、かつ、前記第1画像に含まれる領域である第2補正領域と、を判定する判定手段と、
    前記第1補正領域に含まれる複数の第1補正対象画素及び前記第2補正領域に含まれる複数の第2補正対象画素それぞれについて、前記画像データが示す画素値に応じた露光量からの削減量を決定する決定手段と、
    を備え、
    前記決定手段は、前記複数の第1補正対象画素それぞれの前記削減量を、前記複数の第2補正対象画素それぞれの前記削減量より大きくする、画像形成装置。
  2. 基準削減量を示す第1補正情報を格納する第1格納手段をさらに備え、
    前記決定手段は、前記基準削減量を前記複数の第1補正対象画素それぞれの前記削減量に決定する、請求項1に記載の画像形成装置。
  3. 前記決定手段は、前記複数の第2補正対象画素それぞれの前記第1エッジからの距離に応じて前記基準削減量を調整することで、前記複数の第2補正対象画素それぞれの前記削減量を決定する、請求項2に記載の画像形成装置。
  4. 前記複数の第2補正対象画素それぞれの前記削減量は、前記第1エッジからの距離が大きくなる程、小さくなる、請求項3に記載の画像形成装置。
  5. 前記複数の第2補正対象画素それぞれの前記削減量は、前記第1エッジからの距離の増加と共に線形的に小さくなる、請求項4に記載の画像形成装置。
  6. 前記複数の第2補正対象画素それぞれの前記削減量の前記第1エッジからの距離の増加による変化量は、前記距離が大きくなる程、小さくなる、請求項4に記載の画像形成装置。
  7. 前記複数の第2補正対象画素それぞれの前記削減量の前記第1エッジからの距離の増加による変化量は、前記距離が大きくなる程、大きくなり、その後、小さくなる、請求項4に記載の画像形成装置。
  8. 補正幅及び変動最大値を示す第2補正情報を格納する第2格納手段をさらに備え、
    前記判定手段は、前記補正幅と、前記変動最大値と、に基づき、前記第2の値と前記第3の値と、を判定する、請求項1から7のいずれか1項に記載の画像形成装置。
  9. 前記判定手段は、前記補正幅から前記変動最大値を減じた値に基づき前記第2の値を決定し、前記補正幅に前記変動最大値を加えた値に基づき前記第3の値を決定する、請求項8に記載の画像形成装置。
  10. 前記第1格納手段は、前記画像形成装置の状態に関連付けられた複数の基準削減量を示し、
    前記決定手段は、前記画像データに基づき前記画像を形成する際の前記画像形成装置の状態に基づき前記複数の基準削減量の内の1つを選択し、選択した前記基準削減量を前記複数の第1補正対象画素それぞれの前記削減量に決定する、請求項2から7のいずれか1項に記載の画像形成装置。
  11. 前記判定手段は、前記画像データに基づき前記画像を形成する際の前記画像形成装置の前記状態に基づき、前記第2の値と前記第3の値とを判定する、請求項10に記載の画像形成装置。
  12. 前記画像形成装置の前記状態は、前記画像データに基づき前記画像を形成する際の温度、湿度及びそれまでに画像形成を行った記録材の数と、の内の少なくとも1つにより判定される、請求項10に記載の画像形成装置。
  13. 前記削減量は、前記画像データが示す前記画素値に応じた露光量に対する割合で示される、請求項1から7のいずれか1項に記載の画像形成装置。
  14. 前記複数の第1補正対象画素は、前記第1エッジの画素を含む、請求項1から7のいずれか1項に記載の画像形成装置。
  15. 前記複数の第1補正対象画素は、前記第1エッジの画素を含まない、請求項1から7のいずれか1項に記載の画像形成装置。
  16. 前記第1エッジは、前記感光体の回転方向において前記第1画像の後端のエッジである、請求項1から7のいずれか1項に記載の画像形成装置。
  17. 前記第1エッジは、前記第1画像の総てのエッジである、請求項1から7のいずれか1項に記載の画像形成装置。
  18. 前記複数の第1補正対象画素及び前記複数の第2補正対象画素それぞれの前記削減量に基づき前記画像データを補正する補正手段をさらに備えている、請求項1から7のいずれか1項に記載の画像形成装置。
  19. 感光体と、前記感光体を露光して前記感光体に静電潜像を形成する露光手段と、前記静電潜像に現像剤を付着させることにより前記感光体に前記現像剤の画像を形成する現像手段と、を有する画像形成装置に、第1画像データを出力する画像処理装置であって、
    第2画像データに基づき、前記第2画像データにより形成される前記現像剤の第1画像の第1エッジからの距離が第1の値から前記第1の値より大きい第2の値の範囲内であり、かつ、前記第1画像に含まれる領域である第1補正領域と、前記第1エッジからの距離が前記第2の値から前記第2の値より大きい第3の値の範囲内であり、かつ、前記第1画像に含まれる領域である第2補正領域と、を判定する判定手段と、
    前記第1補正領域に含まれる複数の第1補正対象画素及び前記第2補正領域に含まれる複数の第2補正対象画素それぞれについて、前記第2画像データが示す画素値に対応する露光量からの削減量を決定する決定手段と、
    前記複数の第1補正対象画素及び前記複数の第2補正対象画素それぞれの前記削減量に基づき前記第2画像データを補正して前記第1画像データを生成する補正手段と、
    を備え、
    前記決定手段は、前記複数の第1補正対象画素それぞれの前記削減量を、前記複数の第2補正対象画素それぞれの前記削減量より大きくする、画像処理装置。
JP2022133520A 2022-08-24 2022-08-24 画像形成装置及び画像処理装置 Pending JP2024030559A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022133520A JP2024030559A (ja) 2022-08-24 2022-08-24 画像形成装置及び画像処理装置
US18/237,178 US20240070420A1 (en) 2022-08-24 2023-08-23 Image forming apparatus and image processing apparatus for deciding amount of reduction of exposure amount indicated by image data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022133520A JP2024030559A (ja) 2022-08-24 2022-08-24 画像形成装置及び画像処理装置

Publications (1)

Publication Number Publication Date
JP2024030559A true JP2024030559A (ja) 2024-03-07

Family

ID=90001370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022133520A Pending JP2024030559A (ja) 2022-08-24 2022-08-24 画像形成装置及び画像処理装置

Country Status (2)

Country Link
US (1) US20240070420A1 (ja)
JP (1) JP2024030559A (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697167B1 (en) * 1997-08-29 2004-02-24 Canon Kabushiki Kaisha Image processing apparatus and method
US6961462B2 (en) * 2001-01-22 2005-11-01 Matsushita Electric Industrial Co., Ltd. Image processing method and image processor
WO2004080058A1 (ja) * 2003-03-04 2004-09-16 Kabushiki Kaisha Toshiba 画像形成装置
US8630561B2 (en) * 2010-05-07 2014-01-14 Kabushiki Kaisha Toshiba Image forming apparatus, charging apparatus and cleaning method of charging apparatus
US8626015B2 (en) * 2010-10-26 2014-01-07 Eastman Kodak Company Large particle toner printer
US8509630B2 (en) * 2011-03-31 2013-08-13 Eastman Kodak Company Determining the cause of printer image artifacts
JP6168084B2 (ja) * 2015-03-16 2017-07-26 コニカミノルタ株式会社 画像読取装置及びプログラム
JP6887771B2 (ja) * 2016-09-06 2021-06-16 キヤノン株式会社 画像形成装置
JP2020008763A (ja) * 2018-07-10 2020-01-16 東芝テック株式会社 画像形成装置

Also Published As

Publication number Publication date
US20240070420A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
JP6418742B2 (ja) 画像形成装置
JP4898259B2 (ja) 画像形成装置
US9874830B2 (en) Image forming apparatus with a control that compensates for changing humidity
JP2012003246A (ja) トナー濃度の変動に応じて迅速に画像濃度を補正可能な画像形成装置及びその制御方法
JP6630122B2 (ja) 画像形成装置、画像処理装置及びプログラム
JP4839996B2 (ja) 画像形成装置
JP6706054B2 (ja) 画像形成装置、画像処理装置及びプログラム
JP4950601B2 (ja) トナー補給制御装置および画像形成装置
JP2024030559A (ja) 画像形成装置及び画像処理装置
US9964908B2 (en) Image forming apparatus, image forming method, and storage medium to correct an edge effect and sweeping effect
JP4639100B2 (ja) 画像形成装置
JP2017053985A (ja) 画像形成装置、画像形成装置の制御方法、及びプログラム
JP6641132B2 (ja) 画像形成装置及び画像処理装置
JP5517712B2 (ja) 画像形成装置及びその制御方法
JP2007114596A (ja) 画像形成装置および画像形成方法
JP6433241B2 (ja) 画像形成装置および画像形成方法
JP7361578B2 (ja) 画像形成装置及び画像処理装置
JP2017090857A (ja) 画像形成装置、画像処理装置及びプログラム
US9507289B2 (en) Image forming apparatus and image processing apparatus that specify pixels to be subjected to correction, and correct exposure amount
JP7329968B2 (ja) 画像形成装置、カートリッジ及び画像形成システム
JP2001255711A (ja) 画像形成装置
JP2002055496A (ja) 画像形成装置
JPH1138703A (ja) 電子写真装置のトナー濃度制御方法
JP4734358B2 (ja) 現像装置および画像形成装置
JP2007114593A (ja) 画像形成装置および画像形成方法