JP2024019306A - ヒト機能性角膜内皮細胞およびその応用 - Google Patents
ヒト機能性角膜内皮細胞およびその応用 Download PDFInfo
- Publication number
- JP2024019306A JP2024019306A JP2023205812A JP2023205812A JP2024019306A JP 2024019306 A JP2024019306 A JP 2024019306A JP 2023205812 A JP2023205812 A JP 2023205812A JP 2023205812 A JP2023205812 A JP 2023205812A JP 2024019306 A JP2024019306 A JP 2024019306A
- Authority
- JP
- Japan
- Prior art keywords
- cells
- cell
- corneal endothelial
- expression
- functional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/30—Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/0008—Introducing ophthalmic products into the ocular cavity or retaining products therein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0621—Eye cells, e.g. cornea, iris pigmented cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/3808—Endothelial cells
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Ophthalmology & Optometry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Genetics & Genomics (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Developmental Biology & Embryology (AREA)
- Wood Science & Technology (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Virology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Materials For Medical Uses (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
以上と報告されている。角膜移植術では、病的な1眼を治療するために1眼のドナー角膜が必要であり、継続的なドナー不足を解決する手段とはならない。潜在患者が多数存在することに鑑み、角膜移植技術に比較し、広汎な医療機関で適用できる汎用性を持つ革新的医療の提供が、喫緊の課題として全世界で強く望まれている。加えて、細胞注入療法は、歪みのない角膜の正常な形状をもたらし、その結果、良好な視覚機能の回復をもたらす。
(細胞発明)
別の実施形態において、本発明はまた以下を提供する。
(項目1)ヒト眼前房内への注入時にヒト角膜内皮機能特性を惹起し得るヒト機能性角膜内皮細胞。
(項目2)CD166陽性およびCD133陰性表現型を含む細胞表面抗原を発現する、項目1に記載の細胞。
(項目3)前記細胞表面抗原は、CD166陽性、CD133陰性、およびCD44陰性~中陽性表現型を含む、項目2に記載の細胞。
(項目4)前記細胞表面抗原は、CD166陽性、CD133陰性、およびCD44陰性~CD44弱陽性表現型を含む、項目2に記載の細胞。
(項目5)前記細胞表面抗原は、CD166陽性、CD133陰性、およびCD200陰性表現型を含む、項目2に記載の細胞。
(項目6)CD90陰性~弱陽性、CD105陰性~弱陽性、CD24陰性、CD26陰性、LGR5陰性、SSEA3陰性、MHC1弱陽性、MHC2陰性、PDL1陽性、ZO1陽性、Na+/K+ATPase陽性および以下の表
(項目7)前記細胞は、PDGF-BB高産生、IL-8低産生、MCP-1低産生、TNF-α高産生、IFNγ高産生、およびIL-1Rアンタゴニスト高産生からなる群より選択される少なくとも一つの特性を有する、項目1~6のいずれか1項に記載の細胞。(項目8)前記細胞は、成熟分化角膜内皮機能性細胞a5の細胞特性を有する少なくとも1つのmiRNAを有し、ここで、該a5の細胞表面抗原の特性は、CD44陰性~弱陽性およびCD24陰性CD26陰性である、項目1~7のいずれか1項に記載の細胞。
(項目9)前記miRNAの特性は、以下:
(A)機能性成熟分化角膜内皮細胞(a5):中程度分化角膜内皮細胞(a1):角膜内皮非機能性細胞(a2)=高発現:高発現:低発現を示すもの:
(細胞内)miR23a-3p、miR23b-3p、miR23c、miR27a-3p、miR27b-3p、miR181a-5p、miR181b-5p、miR181c-5p、miR181d-5p
(細胞分泌型)miR24-3p、miR1273e;
(B)a5:a1:a2=高発現:中発現:低発現を示すもの:
(細胞内)miR30a-3p、miR30a-5p、miR30b-5p、miR30c-5p、miR30e-3p、miR30e-5p、miR130a-3p、miR130b-3p、miR378a-3p、miR378c、miR378d、miR378e、miR378f、miR378h、miR378i、miR184、miR148a-3p
(細胞分泌型)miR184;
(C)a5:a1:a2=高発現:低発現:低発現を示すもの:
(細胞内)miR34a-5p、miR34b-5p
(細胞分泌型)miR4419b、miR371b-5p、miR135a-3p、miR3131、miR296-3p、miR920、miR6501-3p;
(D)a5:a1:a2=低発現:低発現:中高発現を示すもの:
(細胞内)miR29a-3p、miR29b-3p、miR199a-3p、miR199a-5p、miR199b-5p、miR143-3p
(細胞分泌型)miR1915-3p、miR3130-3p、miR92a-2-5p、miR1260a;
(E)a5:a1:a2=低発現:中発現:高発現を示すもの:
(細胞内)miR31-3p、miR31-5p、miR193a-3p、miR193b-3p、miR138-5p
(F)a5:a1:a2=高発現:低発現:高発現を示すもの:
(細胞分泌型)miR92b-5p
(G)a5:a1:a2=低発現:高発現:低発現を示すもの:
(細胞分泌型)miR1246、miR4732-5p、miR23b-3p、miR23a-3p、miR1285-3p、miR5096
からなる群より選択される少なくとも一つのmiRNAを含む、項目8に記載の細胞。
(項目10)前記miRNAマーカーは、(B)または(C)から選択される少なくとも一つを含む、項目9に記載の細胞。
(項目11)前記細胞の平均細胞面積は、250μm2以下である、項目1~10のいずれか1項に記載の細胞。
(項目12)細胞表面マーカー;タンパク質性産物または該産物の関連生体物質;SASP関連タンパク質;miRNA;エキソゾーム;アミノ酸を含む細胞代謝産物および該産物の関連生体物質;細胞の大きさ;細胞の密度および自己抗体反応性細胞の存在からなる群からなる群より選択される少なくとも一つの細胞指標において、a5に相同する細胞機能特性を有する、項目1~11のいずれか1項に記載の細胞。
(項目13)前記細胞は核型以上を有しない、項目1~12のいずれか1項に記載の細胞。
(項目14)項目1~13のいずれか1項に記載の細胞を含む細胞集団。
(項目15)前記細胞集団の飽和細胞培養(培養コンフルエント)時平均細胞密度が、少なくとも1500個/mm2以上である、項目14に記載の細胞集団。
(項目16)前記細胞集団の飽和細胞培養(培養コンフルエント)時平均細胞密度が、少なくとも2000個/mm2以上である、項目14または15に記載の細胞集団。
(項目17)前記細胞集団を注入した後にヒトの角膜内皮面に生着した細胞の平均細胞密度が、少なくとも1000個/mm2以上となる、項目14~16のいずれか1項に記載の細胞集団。
(項目18)前記細胞集団を注入した後にヒトの角膜内皮面に生着した細胞の平均細胞密度が、少なくとも2000個/mm2以上となる、項目14~17のいずれか1項に記載の細胞集団。
(項目19)前記細胞集団における少なくとも70%の細胞が、項目A2またはA3に記載の特徴を有する、項目A14~A18のいずれか1項に記載の細胞集団。
(項目20)前記細胞集団における少なくとも90%の細胞が、項目A2またはA3に記
載の特徴を有する、項目A14~A19のいずれか1項に記載の細胞集団。
(項目21)前記細胞集団における少なくとも40%の細胞が、項目4に記載の特徴を有する、項目14~20のいずれか1項に記載の細胞集団。
(項目22)前記細胞集団における少なくとも70%の細胞が、項目4に記載の特徴を有する、項目14~21のいずれか1項に記載の細胞集団。
(項目23)前記細胞集団における少なくとも80%の細胞が、項目4に記載の特徴を有する、項目14~22のいずれか1項に記載の細胞集団。
(項目24)前房内への注入時にアロ(同種異系)拒絶反応を生じさせない、項目1~13のいずれか1項に記載の細胞または項目14~23のいずれか1項に記載の細胞集団。(項目25)前記細胞または細胞集団は、血清のサイトカインプロファイルにおいて、生体への投与後に血清炎症性サイトカインの増量などのヒト角膜内皮組織再建に関連しない目的外生体応答を実質的に惹起しない、項目1~13のいずれか1項に記載の細胞または項目14~24のいずれか1項に記載の細胞集団。
(項目26)項目1~13のいずれか1項に記載の細胞または項目14~25のいずれか1項に記載の細胞集団を含む製品。
(項目27)項目1~13のいずれか1項に記載の細胞または項目14~25のいずれか1項に記載の細胞集団を維持保存するための、細胞または細胞集団の保存方法。
(項目28)前記細胞または細胞集団の保存方法を実施する工程を含む、項目1~13のいずれか1項に記載の細胞または項目14~25のいずれか1項に記載の細胞集団の送達方法。
(医薬)
(項目A1)ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞を含む医薬。
(項目A2)前記医薬は角膜内皮機能障害または疾患の処置のためのものである、項目A1に記載の医薬。
(項目A3)前記角膜内皮機能障害または疾患は、角膜内皮障害Grade 3と角膜内皮障害Grade4 (水疱性角膜症)(例えば、フックス角膜内皮ジストロフィ、PEX-BK(pseudoexfoliation bullous keratopathy;偽落屑症候群に伴う水疱性角膜症)、レーザー虹彩切開術後水疱性角膜症、白内障手術術後水疱性角膜症(偽水晶体眼または無水晶体水疱性角膜症)、緑内障術後水疱性角膜症、外傷後の水疱性角膜症、原因不明の多重手術後の水疱性角膜症、角膜移植後の移植片不全、先天遺伝性角膜内皮ジストロフィ、先天性前房隅角形成不全症候群)とからなる群より選択される少なくとも1つを含む、項目A2に記載の医薬。本明細書において使用されるグレードシステムは、Japanese Journal of Ophthalmology 118: 81-83, 2014に基づいた角膜内皮疾患の重症度分類に基づく。
(項目A4)前記細胞を前房内投与することを特徴とする、項目A1~A3のいずれか1項に記載の医薬。
(項目A5)前記細胞はさらなる薬剤とともに投与される、項目A1~A4のいずれか1項に記載の医薬。
(項目A6)前記さらなる薬剤は、ステロイド剤、抗菌剤およびNSAIDからなる群より選択される少なくとも1つの薬剤を含む、項目A5に記載の医薬。
(項目A7)前記さらなる薬剤は、ROCK阻害剤を含む、項目A5またはA6に記載の医薬。
(項目A8)前記さらなる薬剤は前記医薬に含有される、項目A5~A7のいずれか1項に記載の医薬。
(項目A9)前記医薬は、5×104細胞/300μL~2×106細胞/300μLの密度で前記細胞を含む項目A1~A8のいずれか1項に記載の医薬。
(項目A10)前記医薬は細胞注入ビヒクルをさらに含む、項目A1~A9のいずれか1項に記載の医薬。
(項目A11)前記細胞注入ビヒクルはさらに、ROCK阻害剤、アルブミン、アスコルビン酸および乳酸の少なくとも1つを含む、項目A10に記載の医薬。
(項目A12)前記細胞注入ビヒクルはさらに、アルブミン、アスコルビン酸および乳酸を含む、項目A10またはA11に記載の医薬。
(項目A13)前記細胞注入ビヒクルはさらに、ROCK阻害剤、アルブミン、アスコルビン酸および乳酸のすべてを含む、項目A10~A12のいずれか1項に記載の医薬。
(項目A14)前記細胞注入ビヒクルは、OPEGUARD-MA(登録商標)を含む、上記項目A10~A13のいずれか1項に記載の医薬。
(項目A15)前記ヒトの眼前房内への注入時にヒト角膜内皮機能特性を惹起し得るヒト機能性角膜内皮細胞は、以下(A15-2)~(A15-13):
(A15-2)CD166陽性およびCD133陰性表現型を含む細胞表面抗原を発現すること;
(A15-3)前記細胞表面抗原がCD166陽性、CD133陰性およびCD44陰性~中陽性表現型を含むこと;
(A15-4)前記細胞表面抗原がCD166陽性、CD133陰性およびCD44陰性~CD44弱陽性表現型を含むこと;
(A15-5)前記細胞表面抗原がCD166陽性、CD133陰性およびCD200陰性表現型を含むこと;
(A15-6)前記細胞表面抗原は、以下:
CD90陰性~弱陽性、CD105陰性~弱陽性、CD24陰性、CD26陰性、LGR5陰性、SSEA3陰性、MHC1弱陽性、MHC2陰性、PDL1陽性、ZO1陽性、Na+/K+ATPase陽性および以下の表
に記載の細胞表面抗原からなる群より選択される少なくとも一つの発現特性をさらに含む;
(A15-7)前記細胞は、PDGF-BB高産生、IL-8低産生、MCP-1低産生、TNF-α高産生、IFNγ高産生、およびIL-1Rアンタゴニスト高産生からなる群より選択される少なくとも一つの特性を有する;
(A15-8)前記細胞は、少なくとも一つのmiRNAが成熟分化機能性角膜内皮細胞a5の細胞特性を有し、ここで、該a5の細胞表面抗原の特性は、CD44陰性~弱陽性、CD24陰性CD26陰性である;
(A15-9)前記miRNAの特性は以下:
(A)機能性成熟分化角膜内皮細胞(a5):中程度分化角膜内皮細胞(a1):角膜内皮非機能性細胞(a2)=高発現:高発現:低発現を示すもの:
(細胞内)miR23a-3p、miR23b-3p、miR23c、miR27a-3p、miR27b-3p、miR181a-5p、miR181b-5p、miR181c-5p、miR181d-5p
(細胞分泌型)miR24-3p、miR1273e;
(B)a5:a1:a2=高発現:中発現:低発現を示すもの:
(細胞内)miR30a-3p、miR30a-5p、miR30b-5p、miR30c-5p、miR30e-3p、miR30e-5p、miR130a-3p、miR130b-3p、miR378a-3p、miR378c、miR378d、miR378e、miR378f、miR378h、miR378i、miR184、miR148a-3p
(細胞分泌型)miR184;
(C)a5:a1:a2=高発現:低発現:低発現を示すもの:
(細胞内)miR34a-5p、miR34b-5p
(細胞分泌型)miR4419b、miR371b-5p、miR135a-3p、miR3131、miR296-3p、miR920、miR6501-3p;
(D)a5:a1:a2=低発現:低発現:中高発現を示すもの:
(細胞内)miR29a-3p、miR29b-3p、miR199a-3p、miR199a-5p、miR199b-5p、miR143-3p
(細胞分泌型)miR1915-3p、miR3130-3p、miR92a-2-5p、miR1260a;
(E)a5:a1:a2=低発現:中発現:高発現を示すもの:
(細胞内)miR31-3p、miR31-5p、miR193a-3p、miR193b-3p、miR138-5p
(F)a5:a1:a2=高発現:低発現:高発現を示すもの:
(細胞分泌型)miR92b-5p
(G)a5:a1:a2=低発現:高発現:低発現を示すもの:
(細胞分泌型)miR1246、miR4732-5p、miR23b-3p、miR23a-3p、miR1285-3p、miR5096
からなる群より選択される少なくとも一つのmiRNAを含む項目8に記載の細胞であって、発現水準は3種の細胞間での相対的強度であり、該a1の細胞表面抗原の発現は、C
D44中陽性CD24陰性CD26陰性であり
該a2の細胞表面抗原の発現は、CD44強陽性CD24陰性CD26陽性である;
(A15-10)前記miRNAマーカーは、(B)または(C)から選択される少なくとも一つを含む;
(A15-11)前記細胞の平均細胞面積は、250μm2以下である;
(A15-12)細胞表面マーカー;タンパク質性産物および該産物の関連生体物質;SASP関連タンパク質;miRNA;エキソゾーム;アミノ酸を含む細胞代謝産物および該産物の関連生体物質;細胞の大きさ;細胞の密度および自己抗体反応性細胞の存在から
なる群からなる群より選択される少なくとも一つの細胞指標において、a5に相同する細胞機能特性を有する;
(A15-13)前記細胞は核型異常を有しない;
の1つまたは複数の特徴を有するか、または、細胞集団であり、該細胞集団は、(A15-14)(A15-2)~(A15-13)のいずれか1項に記載の細胞を含む、細胞集団である;
(A15-15)前記細胞集団の飽和細胞培養(培養コンフルエント)時平均細胞密度が、少なくとも1500個/mm2以上である、(A15-14)に記載の細胞集団;
(A15-16)前記細胞集団の飽和細胞培養(培養コンフルエント)時平均細胞密度が、少なくとも2000個/mm2以上である、(A15-14)~(A15-15)に記載の細胞集団;
(A15-17)前記細胞集団を移植した後にヒトの角膜内皮面に生着した細胞の平均細胞密度が、少なくとも1000個/mm2以上となる、(A15-14)~(A15-16)に記載の細胞集団;
(A15-18)前記細胞集団を移植した後にヒトの角膜内皮面に生着した細胞の平均細胞密度が、少なくとも2000個/mm2以上となる、(A15-14)~(A15-17)に記載の細胞集団;
(A15-19)前記細胞集団における少なくとも70%の細胞が(A15-2)または(A15-3)に記載の特徴を有する、(A15-14)~(A15-18)に記載の細胞集団;
(A15-20)前記細胞集団における少なくとも90%の細胞が(A15-2)または(A15-3)に記載の特徴を有する、(A15-14)~(A15-19)に記載の細胞集団;
(A15-21)前記細胞集団における少なくとも40%の細胞が(A15-4)に記載の特徴を有する、(A15-14)~(A15-20)に記載の細胞集団;
(A15-22)前記細胞集団における少なくとも70%の細胞が(A15-4)に記載の特徴を有する、(A15-14)~(A15-21)に記載の細胞集団;
(A15-23)前記細胞集団における少なくとも80%の細胞が(A15-4)に記載の特徴を有する、(A15-14)~(A15-22)のいずれか1項に記載の細胞集団。
(A15-24)前房内注入時にアロ(同種異系)拒絶反応を生じることの無い、(A15-2)~(A15-13)のいずれかに記載の細胞または(A15-14)~(A15-22)のいずれか1項に記載の細胞集団;
(A15-25)前記細胞または細胞集団は、血清のサイトカインプロファイルにおいて、生体への投与後に血清炎症性サイトカインの増量などのヒト角膜内皮組織再建に関連しない目的外生体応答を実質的に惹起しない、(A15-2)~(A15-13)のいずれか1項に記載の細胞または(A15-14)~(A15-24)のいずれか1項に記載の細胞集団
であることを特徴とする、医薬。
(製造方法)
本発明はまた、以下をも提供する。
(項目B1)角膜内皮組織由来細胞または角膜内皮前駆細胞を直接、もしくは脱分化工程を介し間接的に、成熟分化させる工程を含むヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の製造方法。
(項目B2)角膜内皮組織由来細胞または角膜内皮前駆細胞を、アクチン脱重合を包含する工程により培養し、成熟分化させる工程を包含する、ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の製造方法。
(項目B3)前記アクチン脱重合は、ROCK阻害剤、HDAC阻害剤、アクチン脱重合阻害剤、PPARγ阻害剤、MMP2阻害剤、p53活性化剤およびmiRNAからなる群より選択される1つもしくは複数の薬剤により達成される、項目B1またはB2に記載
の製造方法。
(項目B4)前記ROCK阻害剤は、Y-27632である、項目B3に記載の製造方法。
(項目B5)前記アクチン脱重合阻害剤は、ラトランクリンAおよびスウィンホライドAからなる群より選択される、項目B3に記載の製造方法。
(項目B6)前記角膜内皮組織由来細胞または角膜内皮前駆細胞を、上皮間葉系移行様の形質転換、増殖、成熟および分化に移行する条件で培養する工程をさらに包含する、項目B1~B5のいずれか1項に記載の方法。
(項目B7)前記増殖、成熟および分化する条件は、トランスフォーミング増殖因子β(TGF-β)シグナル伝達阻害剤の非存在下での培養を含む、項目B6に記載の製造方法。
(項目B8)前記角膜内皮組織由来細胞または角膜内皮前駆細胞を、細胞老化が抑制される条件で培養する工程をさらに包含する、項目B1~B7のいずれか1項に記載の方法。(項目B9)前記細胞老化が抑制される条件は、p38MAPキナーゼ阻害剤の存在下での培養を含む、項目B8に記載の製造方法。
(項目B10)前記p38MAPキナーゼ阻害剤はSB203580を含む、項目B9に記載の製造方法。
(項目B11)前記角膜内皮組織由来細胞または角膜内皮前駆細胞は、生体から採取したものであるか、または幹細胞もしくは前駆細胞から分化させたものである、項目B1~B10のいずれか1項に記載の製造方法。
(項目B12)前記培養は、100~1000細胞/mm2の播種密度でなされる、項目B1~B11のいずれか1項に記載の製造方法。
(項目B13)培養細胞の細胞密度が飽和密度に達した後に細胞機能成熟のためにさらに培養する工程を包含する、項目B1~B12のいずれか1項に記載の製造方法。
(項目B14)前記培養細胞が飽和細胞密度に達し、かつ、その後、前記培養細胞の分化および成熟が、タイトジャンクションの十分な形成により完了した後、前記培養細胞の保存のために培地交換のみで培養がさらに1週間以上なされる、項目B13に記載の製造方法。
(項目B15)前記ヒト機能性角膜内皮細胞を識別する細胞指標を少なくとも1つ用いて前記培養後の細胞機能を検定する工程をさらに包含する、項目B1~B14のいずれか1
項に記載の製造方法。
(項目B16)前記検定後、前記角膜内皮機能性エフェクター細胞と判断された画分を培養物中で選択的に増殖する工程をさらに包含する、項目B15に記載の製造方法。
(項目B17)前記培養中に、細胞亜集団組成をモニターする工程をさらに包含する、項目B1~B16のいずれか1項に記載の製造方法。
(項目B18)前記モニターは、ミトコンドリア機能、酸素消費および培養液のpH、アミノ酸組成、タンパク性産物、可溶性miRNA、非侵襲的工学的手法による細胞密度、細胞
の大きさ、および細胞均一性からなる群より選択される少なくとも1つの項目を追跡することを包含する、項目B17に記載の製造方法。
(項目B19)前記培養工程は、継代培養する工程を包含する、項目B1~B18のいずれか1項に記載の製造方法。
(項目B20)前記培養工程は、継代培養時に、ROCK阻害剤、HDAC阻害剤、アクチン脱重合阻害剤、PPARγ阻害剤およびMMP2阻害剤、p53活性化剤、およびmiRNAからなる群より選択される1つもしくは複数の薬剤を加える工程を包含する、項目B1~B19のいずれか1項に記載の製造方法。
(項目B21)無血清培地存在下で培養する工程を包含する、項目B1~B20のいずれか1項に記載の方法。
(項目B22)前記角膜内皮組織由来細胞または角膜内皮前駆細胞は、多能性幹細胞、間葉系幹細胞、角膜内皮から採取した角膜内皮前駆細胞、角膜内皮から採取した細胞、ならびにダイレクトプログラミング法で作成される角膜内皮前駆細胞および角膜内皮様細胞か
らなる群より選択される、項目B1~B21のいずれか1項に記載の製造方法。
(項目B23)項目B1~B22のいずれか1項に記載の成熟分化機能性角膜内皮細胞を、製造後に培養を継続する工程を包含する成熟分化機能性角膜内皮細胞の保存方法。
(品質管理)
(項目C1)細胞表面マーカー;タンパク質性産物および該産物の関連生体物質;SASP関連タンパク質;miRNA;エキソゾーム;アミノ酸を含む細胞代謝産物および該代謝産物の関連生体物質;細胞の大きさ;細胞の密度および自己抗体反応性細胞の存在からなる群より選択される少なくとも1つの細胞指標を測定する工程を包含する、ヒトの眼前房内への注入時にヒト角膜内皮機能特性を惹起し得る培養ヒト機能性角膜内皮細胞の品質管理または工程管理の方法。
(項目C2)前記細胞指標は少なくとも3つ使用される、項目C1に記載の方法。
(項目C3)前記細胞指標は、細胞の大きさ、細胞の密度またはそれらの組合せを含む、項目C1またはC2に記載の方法。
(項目C4)前記細胞指標は、細胞表面マーカー、タンパク質性産物および該産物の関連生体物質の少なくとも1つ、miRNAの少なくとも1つ、ならびに細胞代謝産物および該代謝産物の関連生体物質の少なくとも1つの組合せを含む、項目C1~C3のいずれか1項に記載の方法。
(項目C5)さらに、角膜機能特性により前記培養機能性角膜内皮細胞の亜集団を識別することを含む、項目C1~C4のいずれか1項に記載の方法。
(項目C6)前記角膜機能特性は、細胞表面にCD166陽性およびCD133陰性を含む細胞表面抗原を発現することである、項目C5に記載の方法。
(項目C7)前記細胞表面抗原がCD166陽性、CD133陰性およびCD44陰性~中陽性を含むことを特徴とする、項目C5またはC6に記載の方法。
(項目C8)前記細胞表面抗原がCD166陽性、CD133陰性およびCD44陰性~CD44弱陽性を含むことを特徴とする、項目C5~C7のいずれか1項に記載の方法。(項目C9)前記細胞表面抗原がCD166陽性、CD133陰性、CD44陰性~CD44弱陽性およびCD90陰性~弱陽性を含むことを特徴とする、項目C5~C8のいずれか1項に記載の方法。
(項目C10)前記細胞表面抗原がCD166陽性、CD133陰性およびCD200陰性を含むことを特徴とする、項目C5~C9のいずれか1項に記載の方法。
(項目C11)タンパク質性産物および該産物の関連生体物質;分泌型miRNA;アミノ酸を含む細胞代謝産物および該代謝産物の関連生体物質;の各々から複数の指標を選択して各指標のプロファイルの変動を確認し、CD166陽性、CD133陰性、CD44陰性~CD44弱陽性及びCD90陰性~弱陽性を含む細胞指標を有する細胞の同質性を判定することを特徴とする、項目C5~C10のいずれか1項に記載の方法。
(項目C12)前記タンパク質性産物および該産物の関連生体物質は、以下:
(A)ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞において、発現が上昇する:
COL4A1、COL4A2、COL8A1、COL8A2、CDH2、およびTGF-β2;ならびに
(B)ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞において発現が下がる
MMP1、MMP2、TIMP1、BMP2、IL13RA2、TGF-β1、CD44、COL3A1、IL6、IL8、HGF、THBS2、およびIGFBP3からなる群より選択される、項目C1~C11のいずれか1項に記載の方法。
(項目C13)前記miRNAの特性は以下:
(A)成熟分化機能性角膜内皮細胞(a5):成熟分化角膜内皮前駆細胞(a1):角膜内皮非機能性細胞(a2)=高発現:高発現:低発現を示すもの:
(細胞内)miR23a-3p、miR23b-3p、miR23c、miR27a-3p、miR27b-3p、miR181a-5p、miR181b-5p、miR181
c-5p、miR181d-5p
(細胞分泌型)miR24-3p、miR1273e;
(B)a5:a1:a2=高発現:中発現:低発現を示すもの:
(細胞内)miR30a-3p、miR30a-5p、miR30b-5p、miR30c-5p、miR30e-3p、miR30e-5p、miR130a-3p、miR130b-3p、miR378a-3p、miR378c、miR378d、miR378e、miR378f、miR378h、miR378i、miR184、miR148a-3p
(細胞分泌型)miR184;
(C)a5:a1:a2=高発現:低発現:低発現を示すもの:
(細胞内)miR34a-5p、miR34b-5p
(細胞分泌型)miR4419b、miR371b-5p、miR135a-3p、miR3131、miR296-3p、miR920、miR6501-3p;
(D)a5:a1:a2=低発現:低発現:中高発現を示すもの:
(細胞内)miR29a-3p、miR29b-3p、miR199a-3p、miR199a-5p、miR199b-5p、miR143-3p
(細胞分泌型)miR1915-3p、miR3130-3p、miR92a-2-5p、miR1260a;
(E)a5:a1:a2=低発現:中発現:高発現を示すもの:
(細胞内)miR31-3p、miR31-5p、miR193a-3p、miR193b-3p、miR138-5p
(F)a5:a1:a2=高発現:低発現:高発現を示すもの:
(細胞分泌型)miR92b-5p
(G)a5:a1:a2=低発現:高発現:低発現を示すもの:
(細胞分泌型)miR1246、miR4732-5p、miR23b-3p、miR23a-3p、miR1285-3p、miR5096
のパターンからなる群より選択される少なくとも一つのmiRNAを含み、発現水準は3
種の細胞間での相対的強度であり、高発現>中発現>低発現の順に発現強度が弱くなると定義され、
該a5の細胞表面抗原の特性は、CD44陰性~弱陽性、CD24陰性CD26陰性であり、
該a1の細胞表面抗原の発現は、CD44中陽性CD24陰性CD26陰性であり
該a2の細胞表面抗原の発現は、CD44強陽性CD24陰性CD26陽性である、
項目C1~C12のいずれか1項に記載の方法。
(項目C14)前記エキソゾームは以下の細胞指標:
(A)ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞において発現が低下するもの:
CD63、CD9、CD81およびHSP70からなる群より選択される少なくとも1つの指標を含む、項目C1~C13のいずれか1項に記載の方法。
(項目C15)前記細胞代謝産物および該代謝産物の関連生体物質は以下:
コハク酸、Pro、Gly、グリセロール3-ホスフェート、Glu、乳酸、アルギノコハク酸、キサンチン、N-カルバモイルアスパラギン酸、イソクエン酸、cis―アコニット酸、クエン酸、Ala、3-ホスホグリセリン酸、ヒドロキシプロリン、リンゴ酸、尿酸、ベタイン、葉酸、Gln、2-オキソイソ吉草酸、ピルビン酸、Ser、ヒポキサンチン、Asn、Trp、Lys、コリン、Tyr、尿素、Phe、Met、カルノシン、Asp、オルニチン、Arg、クレアチン、2-ヒドロキシグルタミン酸、β-Ala、シトルリン、Thr、Ile、Leu、Val、クレアチニン、His、N,N-ジメチルグリシンまたはその組み合わせもしくは相対比率からなる群より選択される少なくとも1つを含む、
項目C1~C14のいずれか1項に記載の方法。
(項目C16)前記細胞代謝産物および該代謝産物の関連生体物質は培養上清中のセリン、アラニン、プロリン、グルタミンまたはクエン酸/乳酸比率における上昇を含む、項目C15に記載の方法。
(項目C17)前記細胞の大きさは平均細胞面積が250μm2以下である項目C1~C16のいずれか1項に記載の方法。
(項目C18)前記細胞の飽和細胞培養時の平均細胞密度は少なくとも2000個/mm2以上である、項目C1~C17のいずれか1項に記載の方法。
(項目C19)細胞の大きさ;細胞の密度および自己抗体反応性細胞の存在からなる群より選択される少なくとも1つの細胞指標を測定する工程を包含する培養ヒト角膜内皮細胞に混在する角膜内皮非機能性細胞の検出方法。
(項目C20)項目C1~C19のいずれか1項に記載の細胞指標を測定する試薬または手段を含む、機能性成熟分化角膜内皮細胞の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤。
(項目C21)前記測定する手段は標識されたものである、項目C20に記載の品質評価剤、工程管理剤または検出剤。
(項目C22)A)ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞を含む可能性のある試料を提供する工程;
B)項目C20またはC21に記載の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤を用いて該試料が、該ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞を含むかどうかを決定する工程であって、該品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤による評価結果が、該細胞がヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞であることを示す場合に、該試料がヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得る該ヒト機能性角膜内皮細胞を含むと決定する工程;
C)ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞であると決定された細胞を培養物中で選択的に増殖する工程
を包含する、ヒト機能性角膜内皮細胞の選択的増殖方法。
(項目C23)A)ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞であるとして提供された細胞について、項目C20またはC21のいずれかに記載の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤を用いて該細胞の該機能性角膜内皮細胞の細胞指標に関する情報を得る工程;および
B)該情報に基づき、該提供された細胞がヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞であると決定する工程、
を包含する、ヒト機能性角膜内皮細胞の品質検定方法。
(項目C24)ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の調製において、該調製の品質を管理するための方法であって、
A)項目C20またはC21に記載の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤を用いて該調製において得られる細胞の成熟分化機能性角膜内皮細胞の細胞指標に関する情報を得る工程、および
B)該情報に基づき、該調製がヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の調製に適していると判定する工程を包含する、方法。
(項目C25)ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の純度を検定する方法であって、
A)該ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞を含む可能性のある試料を提供する工程、
B)項目C20またはC21に記載の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤を用いて該細胞の機能性角膜内皮細胞の細胞指標に関する情報を得る工程、ならびに
C)該情報に基づいて、該試料中の該ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の純度を算出する工程
を包含する、方法。
(項目C26)A)ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得る機能性成熟分化角膜内皮細胞であるとして提供された細胞を培地中で培養して、項目C20またはC21のいずれかに記載の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤を用いて該細胞の該機能性角膜内皮細胞の細胞指標に関する情報を得る工程;および
B)該情報に基づき、該培地が該ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の製造に適切であると決定する工程、
を包含する、ヒト機能性角膜内皮細胞用の培地の品質検定方法。
(項目C27)A)ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞であるとして提供された細胞を細胞注入ビヒクル中で培養して、項目C20またはC21のいずれかに記載の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤を用いて該細胞の該機能性角膜内皮細胞の細胞指標に関する情報を得る工程;および
B)該情報に基づき、該細胞注入ビヒクルが細胞注入療法に適切であると決定する工程、を包含する、ヒト機能性角膜内皮細胞用の細胞注入ビヒクルの品質検定方法。
(項目C28)以下:
(1)培養上清ELISAによる純度試験
TIMP-1:500ng/mL以下
IL-8:500pg/mL以下
PDGF-BB:30pg/mL以上
MCP-1:3000pg/mL以下
(2)細胞FACSによる純度試験
CD166=95%以上
CD133=5%以下
CD105低陽性=95%以上
CD44 低陽性=70%以上
CD44高陽性=15%以下
CD24=10%以下
CD26陽性=5%以下
CD200=5%以下
(3)バリア機能(ZO-1)陽性
(4)ポンプ機能(Na+/K+ATPase)陽性
(5)細胞生存率
トリパンブルー染色で70%以上
(6)細胞形態
外観試験で形質転換細胞を認めない
(7)Claudin10 陽性
(8)エフェクター細胞(E-ratio)>50%
(9)非目的細胞
非目的細胞A(CD44強陽性細胞)<15%、非目的細胞B(CD26陽性細胞)<5%、非目的細胞C(CD24陽性細胞)<10%
(10)核型異常陰性
の1または複数を確認する工程を包含する、ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得る培養ヒト機能性角膜内皮細胞の品質管理もしくは工程管理の方法、または培養ヒト角膜内皮細胞に混在する角膜内皮非機能性細胞の検出方法。
(項目C29)前記確認は、細胞注入治療の3週間~直前または培地交換のみの保存的培養時に実施することを包含する、項目C28に記載の方法。
(項目C30)前記確認は、細胞注入治療の約7日前~直前に実施することを包含する、
項目C28またはC29に記載の方法。
(項目C31)項目C28~C30に記載の特徴のうち1または複数を特徴とする、項目
C22~C27のいずれか1項に記載の方法。
(項目C32)対象細胞について、(1)内皮ポンプ・バリア機能の保持、(2)特定のラミニンに対する接着・結合性、(3)分泌するサイトカインプロファイル、(4)産生する代謝産物プロファイル(5)インビトロ培養時の飽和細胞密度、(6)培養時に得られる細胞の空間的大きさやその分布および(8)マウス角膜に対する液体窒素凍結損傷後に細胞注入した場合の細胞維持の1または複数の特徴を判定する工程を包含する、ヒトの眼前房内への注入時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の品質管理もしくは工程管理の方法。
(項目C33)前記内皮ポンプ・バリア機能の保持の判定は、角膜内皮に通常使用されるポンプ機能測定法またはバリア機能測定法を用いて判定される、項目C32に記載の方法。
(項目C34)前記特定のラミニンに対する接着・結合性に関する判定は、ラミニン511(α5鎖、β1鎖、γ鎖1の複合体)、ラミニン521(α5鎖、β2鎖、γ鎖1の複合体)またはその機能性フラグメントに対する接着性および/またはこれに対するインテ
グリンの発現の上昇を指標に判定される、項目C32またはC33に記載の方法。
(項目C35)前記分泌するサイトカインプロファイルの判定は、血清または前房水のサイトカインプロファイルの産生レベルを測定することを包含する、項目C32~C34のいずれか1項に記載の方法。
(項目C36)前記産生する代謝産物プロファイルの判定は、前記細胞の代謝産物の産生レベルを測定することを包含する、項目C32~C35のいずれか1項に記載の方法。
(項目C37)前記産生するマイクロRNA(miRNA)プロファイルの判定は、全RNAを取得しそのマイクロRNA発現プロファイルを取得することを包含する、項目C32~C36のいずれか1項に記載の方法。
(項目C38)前記インビトロ培養時の飽和細胞密度の判定は、画像取得システムを用いて得られた前記細胞の画像において細胞を計数することを包含する、項目C32~C37のいずれか1項に記載の方法。
(項目C39)前記培養時に得られる細胞の空間的大きさおよびその分布の判定は、画像取得システムを用いて得られた前記細胞の画像において細胞を計数することを包含する、項目C32~C38のいずれか1項に記載の方法。
(項目C40)前記マウス角膜に対する液体窒素凍結損傷後に細胞注入した場合の細胞維持の判定は、マウスの角膜の中央領域を低温損傷により前処理し内皮細胞を取り除いて作製したモデルの眼前房に、判定すべき細胞を注入し、前記角膜の特徴を臨床的に観察し、前記角膜の厚さをパキメータにより評価し、HCECの接着をヒト核染色により病理組織学的に検査し、その細胞が機能を有するかどうかを確認することを包含する、項目C32~C39のいずれか1項に記載の方法。
(代替実施形態)
したがって、本願発明は、以下を提供する。
(細胞)
(項目X1)ヒトの眼前房内への移植時にヒト角膜内皮機能特性を惹起し得るヒト機能性角膜内皮細胞。
(項目X2)CD166陽性およびCD133陰性を含む細胞表面抗原を発現することを特徴とする項目X1に記載の細胞。
(項目X3)前記細胞表面抗原がCD166陽性、CD133陰性およびCD44陰性~中陽性表現型を含むことを特徴とする項目X2に記載の細胞。
(項目X4)前記細胞表面抗原がCD166陽性、CD133陰性およびCD44陰性~CD44弱陽性を含むことを特徴とする項目X2またはX3に記載の細胞。
(項目X4A)CD44陰性~CD44弱陽性表現型を含む細胞表面抗原を発現する、項目X1に記載の細胞。
(項目X4B)CD44陰性表現型を含む細胞表面抗原を発現する、X1に記載の細胞。(項目X5)前記細胞表面抗原がCD166陽性、CD133陰性およびCD200陰性
表現型を含むことを特徴とする項目X2~X4、X4AおよびX4Bのいずれか1項に記載の細胞。
(項目X6)前記細胞表面抗原が、CD166陽性、CD133陰性、CD44陰性~中陽性およびCD90陰性表現型を含む、項目X2~X4、X4A、X4BおよびX5のいずれか1項に記載の細胞。
(項目X7)前記細胞表面抗原は、以下:
CD90陰性~弱陽性、CD105陰性~弱陽性、CD24陰性、CD26陰性、LGR5陰性、SSEA3陰性、MHC1弱陽性、MHC2陰性、PDL1陽性、ZO-1陽性、およびNa+/K+ATPase陽性からなる群より選択される少なくとも一つの表面抗原発現特性をさらに含む、項目X2~X4、X4A、X4BおよびX5~X6のいずれか1項に記載の細胞。
(項目X8)前記細胞は、PDGF-BB高産生、IL-8低産生、MCP-1低産生、TNF-α高産生、IFNγ高産生、およびIL-1Rアンタゴニスト高産生からなる群より選択される少なくとも一つの特性を有する、項目X1~X4、X4A、X4BおよびX5~X7のいずれか1項に記載の細胞。
(項目X9)前記細胞は、少なくとも一つのmiRNAが成熟分化角膜内皮機能性細胞a5の細胞特性を有し、ここで、該a5の細胞表面抗原の特性は、CD44陰性~弱陽性およびCD24陰性CD26陰性である、項目X1~X4、X4A、X4BおよびX5~X8のいずれか1項に記載の細胞。
(項目X10)前記miRNAの特性は以下:
(A)miR23a-3p、miR23b-3p、miR23c、miR27a-3p、miR27b-3p、miR181a-5p、miR181b-5p、miR181c-5p、miR181d-5p、miR24-3p、miR1273e;
(B)miR30a-3p、miR30a-5p、miR30b-5p、miR30c-5p、miR30e-3p、miR30e-5p、miR130a-3p、miR130b-3p、miR378a-3p、miR378c、miR378d、miR378e、miR378f、miR378h、miR378i、miR184、miR148a-3p、miR184;
(C)miR34a-5p、miR34b-5p、miR4419b、miR371b-5p、miR135a-3p、miR3131、miR296-3p、miR920、miR6501-3p;
(D)miR29a-3p、miR29b-3p、miR199a-3p、miR199a-5p、miR199b-5p、miR143-3p、miR1915-3p、miR3130-3p、miR92a-2-5p、miR1260a;
(E)miR31-3p、miR31-5p、miR193a-3p、miR193b-3p、miR138-5p;
(F)miR92b-5p;ならびに
(G)miR1246、miR4732-5p、miR23b-3p、miR23a-3p、miR1285-3p、miR5096
からなる群より選択される少なくとも一つのmiRNAを含む項目X9。
(項目X11)前記miRNAマーカーは、(B)または(C)から選択される少なくとも一つを含む、項目X10に記載の細胞。
(項目X12)前記細胞の平均細胞面積は、250μm2以下である、項目X1~X4、X4A、X4BおよびX5~X11のいずれか1項に記載の細胞。
(項目X13)細胞表面マーカー;タンパク質性産物および該産物の関連生体物質;SASP関連タンパク質;細胞内および分泌型miRNA;エキソゾーム;アミノ酸を含む細胞代謝産物および該代謝産物の関連生体物質;細胞の大きさ;細胞の密度および自己抗体反応性細胞の存在からなる群からなる群より選択される少なくとも一つの細胞指標において、a5に相同する細胞機能特性を有する、項目X1~X4、X4A、X4BおよびX5~X12のいずれか1項に記載の細胞。
(項目X14)前記細胞は核型異常を有しない、項目X1~X4、X4A、X4BおよびX5~X13のいずれか1項に記載の細胞。
(項目X15)項目X1~X4、X4A、X4BおよびX5~X14のいずれか1項に記載の細胞を含む、細胞集団。
(項目X16)前記細胞集団の飽和細胞培養(培養コンフルエント)時平均細胞密度が、少なくとも1500個/mm2以上である、項目X15に記載の細胞集団。
(項目X17)前記細胞集団の飽和細胞培養(培養コンフルエント)時平均細胞密度が、少なくとも2000個/mm2以上である、項目X15またはX16に記載の細胞集団。(項目X18)前記細胞集団を移植した後にヒトの角膜内皮面に生着した細胞の平均細胞密度が、少なくとも1000個/mm2以上となる、項目X15~X17のいずれか1項に記載の細胞集団。
(項目X19)前記細胞集団を移植した後にヒトの角膜内皮面に生着した細胞の平均細胞密度が、少なくとも2000個/mm2以上となる、項目X15~X18のいずれか1項に記載の細胞集団。
(項目X20)前記細胞集団における少なくとも70%の細胞が項目X2~X4、X4A、X4BおよびX5~X6のいずれか1項に記載の特徴を有する、項目X15~X19のいずれか1項に記載の細胞集団。
(項目X21)前記細胞集団における少なくとも90%の細胞が項目X2~X4、X4A、X4BおよびX5~X6のいずれか1項に記載の特徴を有する、項目X15~X20のいずれか1項に記載の細胞集団。
(項目X22)前記細胞集団における少なくとも40%の細胞が項目X4に記載の特徴を有する、項目X15~X21のいずれか1項に記載の細胞集団。
(項目X23)前記細胞集団における少なくとも70%の細胞が項目X4に記載の特徴を有する、項目X15~X22のいずれか1項に記載の細胞集団。
(項目X24)前記細胞集団における少なくとも80%の細胞が項目X4に記載の特徴を有する、項目X15~X23のいずれか1項に記載の細胞集団。
(項目X25)前房内移植時にアロ(同種異系)拒絶反応を生じることの無い、項目X1~X4、X4A、X4BおよびX5~X14のいずれかに記載の細胞または項目X15~X24のいずれかに記載の細胞集団。
(項目X26)前記細胞または細胞集団は、血清のサイトカインプロファイルにおいて、生体への投与後に血清炎症性サイトカインの増量などのヒト角膜内皮組織再建に関連しない目的外生体応答を実質的に惹起しない、項目X1~X4、X4A、X4BおよびX5~X14のいずれか1項に記載の細胞または項目X15~X25のいずれか1項に記載の細胞集団。
(項目X27)項目X1~X4、X4A、X4BおよびX5~X14のいずれか1項に記載の細胞または項目X15~X26のいずれか1項に記載の細胞集団を含む製品。
(項目X28)項目X1~X4、X4A、X4BおよびX5~X14のいずれか1項に記載の細胞または項目X15~X26のいずれか1項に記載の細胞集団を培地交換により細胞機能特性を維持および保存するための、該細胞または細胞集団の保存方法。
(項目X29)前記細胞または細胞集団の保存方法を実施する工程を含む、項目X1~X4、X4A、X4BおよびX5~X14のいずれか1項に記載の細胞または項目X15~X26のいずれか1項に記載の細胞集団の送達方法。
(医薬)
(項目XA1)ヒトの眼前房内への移植時にヒト角膜機能特性を惹起し得る機能性角膜内皮細胞を含む医薬。
(項目XA2)前記医薬は角膜内皮機能障害または疾患の処置のためのものである、項目XA1に記載の医薬。
(項目XA3)前記角膜内皮機能障害または疾患は角膜内皮障害Grade 3と角膜内皮障害Grade4 (水疱性角膜症)(例えば、フックス角膜内皮ジストロフィ、PEX-BK(pseudoexfoliation bullous keratopathy;偽落屑症候群に伴う水疱性角膜症)、レーザー虹彩切
開術後水疱性角膜症、白内障手術術後水疱性角膜症(偽水晶体眼または無水晶体水疱性角膜症)、緑内障術後水疱性角膜症、外傷後の水疱性角膜症、原因不明の多重手術後の水疱性角膜症、角膜移植後の移植片不全、先天遺伝性角膜内皮ジストロフィ、先天性前房隅角形成不全症候群)とからなる群より選択される少なくとも1つを含む、項目XA2に記載の医薬。本明細書において使用されるグレードシステムは、Japanese Journal of Ophthalmology 118: 81-83, 2014に基づいた角膜内皮疾患の重症度分類に基づく。
(項目XA4)前記細胞を前房内投与することを特徴とする、項目XA1~XA3のいずれか1項に記載の医薬。
(項目XA5)前記細胞はさらなる薬剤とともに投与される、項目XA1~XA4のいずれか1項に記載の医薬。
(項目XA6)前記さらなる薬剤は、ステロイド剤、抗菌剤およびNSAIDからなる群より選択される少なくとも1つの薬剤を含む、項目XA5に記載の医薬。
(項目XA7)前記さらなる薬剤は、ROCK阻害剤を含む、項目XA5またはXA6に記載の医薬。
(項目XA8)前記さらなる薬剤は前記医薬に含有される、項目XA5~XA7のいずれか1項に記載の医薬。
(項目XA9)前記医薬は、5×104細胞/300μL~2×106細胞/300μLの密度で前記細胞を含む項目XA1~XA8のいずれか1項に記載の医薬。
(項目XA10)前記医薬は細胞移入液をさらに含む、項目XA1~XA9のいずれか1項に記載の医薬。
(項目XA11)前記細胞注入ビヒクルはさらに、ROCK阻害剤、アルブミン、アスコルビン酸および乳酸の少なくとも1つを含む、項目XA10に記載の医薬。
(項目XA12)前記細胞注入ビヒクルはさらに、アルブミン、アスコルビン酸および乳酸を含む、項目XA10またはXA11に記載の医薬。
(項目XA13)前記細胞注入ビヒクルはさらに、ROCK阻害剤、アルブミン、アスコルビン酸および乳酸のすべてを含む、項目XA10~XA12のいずれか1項に記載の医薬。
(項目XA14)前記細胞注入ビヒクルは、OPEGUARD-MA(登録商標)を含む、上記項目XA10~XA13のいずれか1項に記載の医薬。
(項目XA15)前記ヒト機能性角膜内皮細胞は、項目X1~X4、X4A、X4BおよびX5~X14のいずれか1項に記載の細胞であるか、または項目X15~X26のいずれか1項に記載の細胞集団である、項目XA1~XA14のいずれか1項に記載の医薬。
(製造方法)
(項目XB1)ヒト角膜内皮組織由来細胞または角膜内皮前駆細胞を直接、もしくは脱分化工程を介し間接的に、増殖、成熟および分化させる工程を含むヒトの眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の製造方法。
(項目XB2)角膜内皮組織由来細胞または角膜内皮前駆細胞を、アクチン脱重合を包含する工程により培養し、成熟分化させる工程を包含する、ヒトの眼前房内への移植時にヒト角膜内皮機能特性を惹起し得るヒト機能性角膜内皮細胞の製造方法。
(項目XB3)前記アクチン脱重合は、ROCK阻害剤、HDAC阻害剤、アクチン脱重合阻害剤、PPARγ阻害剤、MMP2阻害剤、p53活性化剤およびmiRNAからなる群より選択される1つもしくは複数の薬剤により達成される、項目XB1またはXB2に記載の製造方法。
(項目XB4)前記ROCK阻害剤は、Y-27632である、項目XB3に記載の製造方法。
(項目XB5)前記アクチン脱重合阻害剤は、ラトランクリンAおよびスウィンホライドAからなる群より選択される、項目XB3またはXB4に記載の製造方法。
(項目XB6)前記角膜内皮組織由来細胞または角膜内皮前駆細胞を、上皮間葉系移行様の形質転換、増殖、成熟および分化に移行する条件で培養する工程をさらに包含する、項目XB1~XB5のいずれか1項に記載の方法。
(項目XB7)前記増殖、成熟および分化する条件は、トランスフォーミング増殖因子β(TGF-β)シグナル伝達阻害剤の非存在下での培養を含む、項目XB6に記載の製造方法。
(項目XB8)前記角膜内皮組織由来細胞または角膜内皮前駆細胞を、細胞老化が抑制される条件で培養する工程をさらに包含する、項目XB1~XB7のいずれか1項に記載の方法。
(項目XB9)前記細胞老化が抑制される条件は、p38MAPキナーゼ阻害剤の存在下での培養を含む、項目XB8に記載の製造方法。
(項目XB10)前記p38MAPキナーゼ阻害剤はSB203580を含む、項目XB9に記載の製造方法。
(項目XB11)前記角膜内皮組織由来細胞または角膜内皮前駆細胞は、生体から採取したものであるか、または幹細胞もしくは前駆細胞から分化させたものである、項目XB1~XB10のいずれか1項に記載の製造方法。
(項目XB12)前記培養は、100~1000細胞/mm2の播種密度でなされる、項目XB1~XB11のいずれか1項に記載の製造方法。
(項目XB13)培養細胞の細胞密度が飽和密度に達した後に細胞機能成熟のためにさらに培養する工程を包含する、項目XB1~XB12のいずれか1項に記載の製造方法。
(項目XB14)前記培養細胞が飽和細胞密度に達し、かつ、その後、前記培養細胞の分化および成熟が、タイトジャンクションの十分な形成により完了した後、前記培養細胞の保存のために培地交換のみで培養がさらに1週間以上なされる、項目XB13に記載の製造方法。
(項目XB15)前記ヒト機能性角膜内皮細胞を識別する細胞指標を少なくとも1つ用いて前記培養後の細胞機能を検定する工程をさらに包含する、項目XB1~XB14のいずれか1項に記載の製造方法。
(項目XB16)前記検定後、前記ヒト機能性角膜内皮細胞と判断された画分を選別する工程をさらに包含する、項目XB15に記載の製造方法。
(項目XB17)前記培養中に、細胞亜集団組成をモニターする工程をさらに包含する、項目XB1~XB16のいずれか1項に記載の製造方法。
(項目XB18)前記モニターは、ミトコンドリア機能、酸素消費および培養液のpH、アミノ酸組成、タンパク性産物、可溶性miRNA,非侵襲的工学的手法による細胞密度、細胞の大きさ、および細胞均一性からなる群より選択される少なくとも1つの項目を追跡することを包含する、項目XB17に記載の製造方法。
(項目XB19)前記培養工程は、継代培養する工程を包含する、項目XB1~XB18のいずれか1項に記載の製造方法。
(項目XB20)前記培養工程は、継代培養時に、ROCK阻害剤、HDAC阻害剤、アクチン脱重合阻害剤、PPARγ阻害剤およびMMP2阻害剤、p53 活性化剤、およびmiRNAからなる群より選択される1つもしくは複数の薬剤を加える工程を包含する、項目XB1~XB19のいずれか1項に記載の製造方法。
(項目XB21)無血清培地存在下で培養する工程を包含する、項目XB1~XB20のいずれか1項に記載の方法。
(項目XB22)前記角膜内皮組織由来細胞または角膜内皮前駆細胞は、多能性幹細胞、間葉系幹細胞、角膜内皮から採取した角膜内皮前駆細胞、角膜内皮から採取した細胞、ならびにダイレクトプログラミング法で作成される角膜内皮前駆細胞および角膜内皮様細胞からなる群より選択される、項目XB1~XB21のいずれか1項に記載の製造方法。
(項目XB23)項目XB1~XB22のいずれか1項に記載の成熟分化ヒト機能性角膜内皮細胞を、製造後に培養を継続する工程を包含する成熟分化ヒト機能性角膜内皮細胞の保存方法。
(項目XB24)前記ヒト機能性角膜内皮細胞が、項目X1~X4、X4A、X4B、X5~X14およびX25~X26のいずれか1項に記載の細胞、またはX15~X26のいずれか1項に記載の細胞集団である、項目XB1~XB23のいずれか1項に記載の方
法。
(品質管理)
(項目XC1)細胞表面マーカー;タンパク質性産物および該産物の関連生体物質;SASP関連タンパク質;細胞内および分泌型miRNA;エキソゾーム;アミノ酸を含む細胞代謝産物および該代謝産物の関連生体物質;細胞の大きさ;細胞の密度および自己抗体反応性細胞の存在からなる群より選択される少なくとも1つの細胞機能指標を測定する工程を包含する、ヒトの眼前房内への移植時にヒト角膜内皮機能特性を惹起し得る培養ヒト機能性角膜内皮細胞の品質管理または工程管理の方法。
(項目XC2)前記細胞指標は少なくとも3つ使用される、項目XC1に記載の方法。
(項目XC3)前記細胞指標は、細胞の大きさ、細胞の密度またはそれらの組合せを含む、項目XC1またはXC2に記載の方法。
(項目XC4)前記細胞指標は、細胞表面マーカー、タンパク質性産物および該産物の関連生体物質の少なくとも1つ、miRNAの少なくとも1つ、ならびに細胞代謝産物および該代謝産物の関連生体物質の少なくとも1つの組合せを含む、項目XC1~XC3のいずれか1項に記載の方法。
(項目XC5)さらに、角膜機能特性により前記ヒト機能性培養角膜内皮細胞の亜集団を識別することを含む、項目XC1~XC4のいずれか1項に記載の方法。
(項目XC6)項目X1~X4、X4A、X4B、X5~X14およびX25~X26ならびに/または項目X15~X26のいずれか1項に記載の角膜機能特性によって、前記培養機能性角膜内皮細胞の亜集団を識別する工程をさらに包含する、項目XC1~XC4のいずれか1項に記載の方法。
(項目XC7)タンパク質性産物および該産物の関連生体物質;分泌型miRNA;アミノ酸を含む細胞代謝産物および該代謝産物の関連生体物質;の各々から複数の指標を選択して各指標のプロファイルの変動を確認し、CD166陽性、CD133陰性、CD44陰性~CD44弱陽性及びCD90陰性~弱陽性を含む細胞指標を有する細胞の同質性を判定することを特徴とする、項目XC5~XC6のいずれか1項に記載の方法。
(項目XC8)前記タンパク質性産物および該産物の関連生体物質は、以下:
(A)ヒトの眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞において、発現が上昇する:
COL4A1、COL4A2、COL8A1、COL8A2、CDH2、およびTGF-β2;ならびに
(B)ヒトの眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞において発現が下がる
MMP1、MMP2、TIMP1、BMP2、IL13RA2、TGF-β1、CD44、COL3A1、IL6、IL8、HGF、THBS2、およびIGFBP3からなる群より選択される、項目XC1~XC7のいずれか1項に記載の方法。
(項目XC9)前記エキソゾームは以下の細胞指標:
(A)ヒトの眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞において発現が低下するもの:
CD63、CD9、CD81およびHSP70からなる群より選択される少なくとも1つの指標を含む、項目XC1~XC8のいずれか1項に記載の方法。
(項目XC10)前記細胞代謝産物および該代謝産物の関連生体物質は以下:
コハク酸、Pro、Gly、グリセロール3-ホスフェート、Glu、乳酸、アルギノコハク酸、キサンチン、N-カルバモイルアスパラギン酸、イソクエン酸、cis―アコニット酸、クエン酸、Ala、3-ホスホグリセリン酸、ヒドロキシプロリン、リンゴ酸、尿酸、ベタイン、葉酸、Gln、2-オキソイソ吉草酸、ピルビン酸、Ser、ヒポキサンチン、Asn、Trp、Lys、コリン、Tyr、尿素、Phe、Met、カルノシン、Asp、オルニチン、Arg、クレアチン、2-ヒドロキシグルタミン酸、β-Ala、シトルリン、Thr、Ile、Leu、Val、クレアチニン、His、N,N-ジメチルグリシンまたはその組み合わせもしくは相対比率からなる群より選択される少なくと
も1つを含む、
項目XC1~XC9のいずれか1項に記載の方法。
(項目XC11)前記細胞代謝産物および該代謝産物の関連生体物質は培養上清中のセリン、アラニン、プロリン、グルタミンまたはクエン酸/乳酸比率における上昇を含む、項目XC10に記載の方法。
(項目XC12)細胞表面マーカー;タンパク質性産物および該産物の関連生体物質;SASP関連タンパク質;細胞内および分泌型miRNA;エキソゾーム;アミノ酸を含む細胞代謝産物および該代謝産物の関連生体物質;細胞の大きさ;細胞の密度および自己抗体反応性細胞の存在からなる群より選択される少なくとも1つの細胞機能指標を測定する工程を包含する培養ヒト角膜内皮細胞に混在する角膜内皮非機能性細胞の検出方法。
(項目XC13)項目XC1~XC12のいずれか1項に記載の細胞指標を測定する試薬または手段を含む、成熟分化角膜内皮機能性細胞の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤。
(項目XC14)前記測定する手段は標識されたものである、項目XC13に記載の品質評価剤、工程管理剤または検出剤。
(項目XC15)A)ヒトの眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞を含む可能性のある試料を提供する工程;
B)項目XC13またはXC14に記載の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤を用いて該試料が、該眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞を含むかどうかを決定する工程であって、該品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤による評価結果が、該細胞が眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞であることを示す場合に、該試料が眼前房内への移植時にヒト角膜機能特性を惹起し得る該ヒト機能性角膜内皮細胞を含むと決定する工程;
C)眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞であると決定された細胞を選別する工程
を包含する、ヒト機能性角膜内皮細胞の選別方法。
(項目XC16)A)眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞であるとして提供された細胞について、項目XC13またはXC14のいずれかに記載の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤を用いて該細胞の該ヒト機能性角膜内皮細胞の細胞指標に関する情報を得る工程;および
B)該情報に基づき、該提供された細胞が眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞であると決定する工程、
を包含する、ヒト機能性角膜内皮細胞の品質検定方法。
(項目XC17)眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の調製において、該調製の品質を管理するための方法であって、
A)項目XC13またはXC14に記載の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤を用いて該調製において得られる細胞の成熟分化機能性角膜内皮細胞の細胞指標に関する情報を得る工程、および
B)該情報に基づき、該調製が眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の調製に適していると判定する工程を包含する、方法。
(項目XC18)眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の純度を検定する方法であって、
A)該眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞を含む可能性のある試料を提供する工程、
B)項目XC13またはXC14に記載の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤を用いて該細胞のヒト機能性角膜内皮細胞の細胞指標に関する情報を得る工程、ならびに
C)該情報に基づいて、該試料中の該眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の純度を算出する工程
を包含する、方法。
(項目XC19)A)眼前房内への移植時にヒト角膜機能特性を惹起し得る成熟分化ヒト機能性角膜内皮細胞であるとして提供された細胞を培地中で培養して、項目XC13またはXC14のいずれかに記載の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤を用いて該細胞の該ヒト機能性角膜内皮細胞の細胞指標に関する情報を得る工程;および
B)該情報に基づき、該培地が該眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞の製造に適切であると決定する工程、
を包含する、ヒト機能性角膜内皮細胞用の培地の品質検定方法。
(項目XC20)A)眼前房内への移植時にヒト角膜機能特性を惹起し得るヒト機能性角膜内皮細胞であるとして提供された細胞を細胞注入ビヒクル中で培養して、項目XC13またはXC14のいずれかに記載の品質評価剤、工程管理剤または角膜内皮非機能性細胞検出剤を用いて該細胞の該ヒト機能性角膜内皮細胞の細胞指標に関する情報を得る工程;および
B)該情報に基づき、該細胞注入ビヒクルが細胞移入療法に適切であると決定する工程、を包含する、ヒト機能性角膜内皮細胞用の細胞注入ビヒクルの品質検定方法。
(項目XC21)以下:
(1)培養上清ELISAによる純度試験
TIMP-1:500ng/mL以下
IL-8:500pg/mL以下
PDGF-BB:30pg/mL以上
MCP-1:3000pg/mL以下
(2)細胞FACSによる純度試験
CD166=95%以上
CD133=5%以下
CD105陰性~低陽性=95%以上
CD44陰性~低陽性=70%以上
CD44中程度~高陽性=15%以下
CD24=5%以下
CD26陽性=5%以下
CD200=5%以下
(3)バリア機能(ZO-1)陽性
(4)ポンプ機能(Na+/K+ATPase)陽性
(5)細胞生存率
トリパンブルー染色で70%以上
(6)細胞形態
外観試験で形質転換細胞を認めない
(7)Claudin10 陽性
(8)エフェクター細胞(E-ratio)>50%
(9)非目的細胞
非目的細胞A(CD44強陽性細胞)<15%、非目的細胞B(CD26陽性細胞)<5%、非目的細胞C(CD24陽性細胞)<5%
(10)核型異常陰性
の1または複数を確認する工程を包含する、ヒトの眼前房内への移植時にヒト角膜機能特性を惹起し得る培養ヒト機能性角膜内皮細胞の品質管理もしくは工程管理の方法、または培養ヒト角膜内皮細胞に混在する角膜内皮非機能性細胞の検出方法。
(項目XC22)前記確認は、細胞注入治療の3週間~直前または培地交換のみの保存的培養時に実施することを包含する、項目XC21に記載の方法。
(項目XC23)前記確認は、細胞注入治療の約7日前~直前に実施することを包含する
、項目XC21またはXC22に記載の方法。
(項目XC24)項目XC19~XC21に記載の特徴のうち1または複数を特徴とする、項目XC15~XC22のいずれか1項に記載の方法。
(項目XC25)対象細胞について、(1)内皮ポンプ・バリア機能の保持、(2)特定のラミニンに対する接着・結合性、(3)産生するサイトカインプロファイル、(4)産生する代謝産物プロファイル(5)インビトロ培養時の飽和細胞密度、(6)培養時に得られる細胞の空間的大きさやその分布および(8)マウス角膜に対する液体窒素凍結損傷後に細胞移入した場合の細胞維持の1または複数の特徴を判定する工程を包含する、ヒトの眼前房内への移植時にヒト角膜機能特性を惹起し得る培養ヒト機能性角膜内皮細胞の品質管理もしくは工程管理の方法。
(項目XC26)前記内皮ポンプ・バリア機能の保持の判定は、角膜内皮に通常使用されるポンプ機能測定法またはバリア機能測定法を用いて判定される、項目XC25に記載の方法。
(項目XC27)前記特定のラミニンに対する接着・結合性に関する判定は、ラミニン511(α5鎖、β1鎖、γ鎖1の複合体)、ラミニン521(α5鎖、β2鎖、γ鎖1の複合体)またはその機能性フラグメントに対する接着性および/またはこれに対するイン
テグリンの発現の上昇を指標に判定される、項目XC25またはXC26に記載の方法。(項目XC28)前記産生するサイトカインプロファイルの判定は、血清または前房水のサイトカインプロファイルの産生レベルを測定することを包含する、項目XC23に記載の方法。
(項目XC29)前記産生する代謝産物プロファイルの判定は、前記細胞の代謝産物の産生レベルを測定することを包含する、項目XC25~XC28のいずれか1項に記載の方法。
(項目XC30)前記産生するマイクロRNA(miRNA)プロファイルの判定は、全RNAを取得しそのマイクロRNA発現プロファイルを取得することを包含する、項目XC25~XC28のいずれか1項に記載の方法。
(項目XC31)前記インビトロ培養時の飽和細胞密度の判定は、画像取得システムを用いて得られた前記細胞の画像において細胞を計数することを包含する、項目XC25~XC30のいずれか1項に記載の方法。
(項目XC32)前記培養時に得られる細胞の空間的大きさおよびその分布の判定は、画像取得システムを用いて得られた前記細胞の画像において細胞を計数することを包含する、項目XC25~XC31のいずれか1項に記載の方法。
(項目XC33)前記マウス角膜に対する液体窒素凍結損傷後に細胞移入した場合の細胞維持の判定は、マウスの角膜の中央領域を低温損傷により前処理し内皮細胞を取り除いて作製したモデルの眼前房に、判定すべき細胞を注入し、前記角膜の特徴を臨床的に観察し、前記角膜の厚さをパキメータにより評価し、HCECの接着をヒト核染色により病理組織学的に検査し、その細胞が機能を有するかどうかを確認することを包含する、項目XC25~XC32のいずれか1項に記載の方法。
る。
以下の図面の簡単な説明について、細胞表面マーカーの発現強度に関して、-、+、++、+++はそれぞれ陰性、弱陽性、中陽性、強陽性を示す。±は本明細書では-(陰性)に含まれる。neg、low、med、highはそれぞれ陰性、弱陽性、中陽性、強
陽性を示す。なお、弱陽性(本明細書では低も指す)、中陽性(本明細書では中程度も指す)、強陽性(本明細書では高も指す)は、以下のように決定した:PE-Cy7標識抗ヒトCD44抗体(BD Biosciences)を使用して、FACS Canto
IIのBlue laserのArea Scaling Factorを0.75、PE-Cy7のvoltageを495に設定した場合、弱の蛍光強度範囲はおよそ3800未満、中の蛍光強度範囲はおよそ3800以上~27500未満、強の蛍光強度範囲はおよそ27500以上である。陰性対照(アイソタイプコントロール)について同じ染色強度パターンであれば陰性であり、少しでもシフトすれば陽性と判断する。なお、上記設定での陰性対照(アイソタイプコントロール)の平均蛍光強度はおよそ50であった(55±25の範囲)。他の蛍光色素については、以下のように設定した:Area Scaling FactorについてはFSC=0.5、Blue laser=0.75、Red laser=0.8;voltageについてはFSC=270、SSC=400、FITC=290、PE=290、PerCP-Cy 5.5=410、PE-Cy 7=495、APC=430。各蛍光の他蛍光への漏れこみは、BD comp Beads(BD Biosciences)およびFACS DiVa softで補正した。このときの、陰性対照(アイソタイプコントロール)の平均蛍光強度は以下の通りであった:FITCについては約130、PEについては約120、PerCP-Cy5.5については約120、PE-Cy7については約50、APCについては約110。Lyoplate実験を用いる場合(実施例、表2)、検出にはAlexa Fluor 647標識2次抗体
(キット付属)を使って測定する。その場合、各マーカーの蛍光強度中央値/陰性対照の蛍光強度中央値(アイソタイプコントロール抗体による染色)の値が、5未満、5以上10未満、10以上30未満、30以上の場合を、それぞれ-、+、++、+++と定義する。
結合性、(3)分泌サイトカインプロファイル、(4)産生するマイクロRNA(miRNA)プロファイル、(5)産生する代謝産物プロファイル、(6)インビトロ培養時の飽和細胞密度、(7)培養時に得られる細胞の空間的大きさやその分布、(8)マウス角膜に対する液体窒素低温凍結損傷後に細胞注入した場合の細胞維持の8種類のいずれかもしくはその組み合わせで判定することもできる。
Current Eye Research, 1, 37-41,1981、Hodson S, Wigham C. : J Physiol., 342:409-419,1983、Hatou S., Yamada M., Akune Y., Mochizuki H., Shiraishi A., Joko T., Nishida T., Tsubota K. :Investigative Ophthlmology
& Visual Science, 51, 3935-3942, 2010に記載の方法を応用した技術が挙げられ
る。Claudin発現は、当該分野で公知の手法、例えば、免疫学的手法を用いて確認するこ
とができるClaudin発現は当該分野で公知の任意の免疫学的手法を用いて確認することが
できる。ただし、本発明の細胞は、懸濁液中で注入されることが想定されることから、その場合、好ましくは、Claudin発現または(2)~(8)のいずれかまたはその組み合わ
せを応用して角膜内皮機能を評価することができる。
の上昇を指標に判定することができる。そのような手法は実施例6に例示される細胞接着アッセイによって実施することができる。
びNP_002283に登録されている。OMIMは150325とのアクセッション番号で同定される
。ラミニンγ鎖について、「γ1鎖」(LAMC1)とは、細胞外マトリックスにある細胞接着分子のタンパク質(ラミニン)のサブユニットの1つであり、LAMC1;LAMB2などと称する。ヒトLAMC1は、それぞれ遺伝子およびタンパク質の配列がNCBI登録番号のNM_002293およびNP_002284に登録されている。OMIMは150290とのアクセッション番号で同定される。
を、別々にマイクロRNAチップの表面にハイブリダイズさせ、適切な条件(例えば、16時間32°Cで)インキュベートする。このマイクロRNAチップを、オゾンを含まない環境において洗浄および乾燥した後、3D-Gene scanner 3000 (Toray Industries Inc., Tokyo, JAPAN)のようなスキャナを使用してスキャンを行い、3D-Gene Extraction software (Toray)を使用して解析することができる。
(5)産生する代謝産物プロファイルは、例えば、実施例4に記載される方法によって、実施することができる。細胞内代謝物の代謝抽出物を、Internal Standard Solution (Human Metabolome Technologies; HMT, Inc., Tsuruoka, Japan)などの内部標準
試薬を含有するメタノールを有するcHCEC培養容器から調製する。培地を置換し、細胞抽出物を処理し(処理条件は実施例4に例示される)、CE-MS分析を行い代謝物を解析する
。メタボローム解析は、Soga, et al. (Soga, D. et al., T. Soga, et al.,
Anal.Chem. 2002; 74: 2233-2239 Anal.Chem. 2000; 72: 1236-1241; T. Soga, et al., J. Proteome Res. 2003; 2: 488-494)によって開発された方法に従
って、測定することができ、適宜自動統合ソフトウェア (それぞれMasterHands, Keio
University, Tsuruoka, Japan (M. Sugimoto, et al., Metabolomics, 2009;
6: 78-95) および MassHunter Quantitative Analysis B.04.00, Agilent Technologies, Santa Clara, CA, USA)を用いて解析する。CEにおけるMTおよびTOFMSに
よって測定されたm/z 値に基いて、HMT代謝物データベースから、仮定的な代謝物によってピークをアノテーションし、標準化して計算する。階層クラスター分析(HCA)および主成分分析(PCA)を行い、メタボローム測定を行うことができる。
(6)インビトロ培養時の飽和細胞密度は、本明細書に記載される適宜の培養条件を用いて、細胞密度を測定することで判定することができ、細胞の大きさと並行して測定されることもあり、倒立顕微鏡システム(例えば、CKX41, Olympus,Tokyo, Japan)によって、BZ X-700顕微鏡システム(Keyence, Osaka, Japan)等の画像取得システムを含む機器を
用いて撮影位相差顕微鏡画像を取得し、細胞計数ソフトウェア(例えば、BZ-H3C Hybrid細胞計数ソフトウェア(Keyence))等を用いて定量することができる。本発明において好
ましい飽和細胞密度は本明細書の他の箇所に記載されている。
(7)培養時に得られる細胞の空間的大きさやその分布は、本明細書に記載される適宜の培養条件を用いて、細胞の写真を撮影し任意のソフトウェア等で測定したりして、細胞の空間的大きさやその分布を測定することで判定することができ、BZ-H3C Hybrid細胞計数ソフトウェア(Keyence)等の祖画像処理ソフトウェアによって実現することができる。本
発明において好ましい飽和細胞密度は本明細書の他の箇所に記載されている。
(8)マウス角膜に対する液体窒素低温凍結損傷後に細胞注入した場合の細胞維持の判定は、実施例7で例示されるマウスモデルを作製することにより実施することができる。具体的には、適切なマウス(例えば、BALB/c)の角膜の中央領域(例えば、2mm)を低温損傷により前処理し内皮細胞を取り除いてモデルを作製する。そしてそのモデルの眼前房に、判定すべき細胞を注入し、角膜透明性の特徴を臨床的に観察し、角膜の厚さをパキメータにより評価し、HCECの接着をヒト核染色により病理組織学的に検査してその細胞が機能を有するかどうかを確認する。これらの手法は実施例8に例示されている。
内皮細胞」は、その機能性が高められた細胞については「高品質」機能性成熟分化角膜内皮細胞ということがある。このような高品質のものは、CD44陰性のものを選択的に増殖させることで提供し得、理論に拘束されることを望まないが、陰性のもののみに収れんしたほうがより高品質であり、成熟分化した生体組織にある細胞との同一性が高いと考えられる。
しばしば上皮間葉相転移のような形質転換を起こし、機能性成熟分化角膜内皮細胞でなくなることが多い。本発明の製造方法には、このような上皮間葉系移行の生じた細胞でも、脱分化後、成熟分化させることで、機能性成熟分化角膜内皮細胞に変換させることができる製造法を含む。
遺伝子発現を可能にするものを含むと考えられる試料であればよく、例えば、角膜内皮から直接単離した細胞(角膜内皮組織由来細胞ともいう)あるいは分化することで角膜内皮様の機能を有するようになった細胞を用いることができる。角膜内皮組織由来細胞は公知の方法により取得することができる(Koizumi N, Okumura N, Kinoshita S., Experimental Eye Research. 2012;95:60-7.)。好ましくは、角膜内皮のドナーから得ら
れた細胞等を細胞試料として用いることができる。また、インビトロで分化誘導された、本発明の角膜内皮特性具備機能性細胞または機能性成熟分化角膜内皮細胞を含む培養細胞を試料として用いることができる。インビトロにおける本発明の角膜内皮特性具備機能性細胞または機能性成熟分化角膜内皮細胞への分化誘導は、公知のES細胞、iPS細胞、骨髄間質細胞等の細胞を出発材料として、公知の方法、例えば、AMED法等による分化させる<Ueno M, Matsumura M, Watanabe K, Nakamura T, Osakada F, Takahashi
M, Kawasaki H, Kinoshita S, Sasai Y:, Proc Natl Acad Sci USA. 103(25): 9554-9559, 2006.>処理を行うことにより実施することができる。
表示し、成熟型の場合は「miR」と表示することが通常である。また、miR(mir)の後に登録番号を付するが、類似する場合は、小文字のアルファベットを付することとされている。また、生成過程の由来を付することを定義する場合は、5’末端側の鎖を5pと付し、3’型末端側の鎖を3pと付する。生物種を区別する場合は、ヒトの場合hsaを付ける。これらはハイフンで結び、例えば、「hsa-miR-15a-5p」などと表示することとされている。なお、本明細書はヒトを主に対象とするものであるから、格別hsaを付けない場合でもヒトを意図することが理解される。本発明において特に区別して用いる場合は、「細胞内」miRNAおよび「分泌型」miRNAに区別し得る。本発明では、miRNAを用いて細胞の亜集団を識別することができることを世界で初めて見出したことも特徴の一つであるが、その中でも、細胞上清に分泌される「分泌型」miRNAで細胞型または亜集団を識別することができ、細胞注入治療において品質管理に用いられることができることを見出したことが特徴の一つである。
度が認められる場合に中発現を含めて評価してもよい。また、「高発現」と「中発現」、「低発現」と「中発現」ともまた、統計学的有意差があってもよい。
平均値は「平均細胞面積」という。通常は算術平均が用いられる。
画像取得システムを含む機器を用いて撮影位相差顕微鏡画像を取得し、細胞計数ソフトウェア(例えば、BZ-H3C Hybrid細胞計数ソフトウェア(Keyence))等を用いて定量するこ
とができる。細胞密度は、飽和細胞培養((培養)コンフルエントともいい、本明細書では飽和細胞培養と(培養)コンフルエントとは同じ意味で使用される。)時におけるものを指標とすることのほか、播種する際の密度も本発明の製造方法において目安として使用される。また、細胞密度は、注入後の治療成績の指標としても使用され得る。
Thr、Ile、Leu、Val、クレアチニン、His、N,N-ジメチルグリシンを挙げることができる。
され得る。ヌクレオチドも同様に、一般に認知された1文字コードにより言及され得る。本明細書では、アミノ酸配列および塩基配列の類似性、同一性および相同性の比較は、配列分析用ツールであるBLASTを用いてデフォルトパラメータを用いて算出される。同一性の検索は例えば、NCBIのBLAST 2.2.28(2013.4.2発行)を用いて行うことが
できる。本明細書における同一性の値は通常は上記BLASTを用い、デフォルトの条件でア
ラインした際の値をいう。ただし、パラメータの変更により、より高い値が出る場合は、最も高い値を同一性の値とする。複数の領域で同一性が評価される場合はそのうちの最も高い値を同一性の値とする。類似性は、同一性に加え、類似のアミノ酸についても計算に入れた数値である。
。免疫学的測定方法としては、例えば、方法としては、マイクロタイタープレートを用いるELISA法、RIA法、蛍光抗体法、発光イムノアッセイ(LIA)、免疫沈降法(IP)、免疫
拡散法(SRID)、免疫比濁法(TIA)、ウェスタンブロット法、免疫組織染色法などが例
示される。また、定量方法としては、ELISA法またはRIA法などが例示される。アレイ(例えば、DNAアレイ、プロテインアレイ)を用いた遺伝子解析方法によっても行われ得る。DNAアレイについては、(秀潤社編、細胞工学別冊「DNAマイクロアレイと最新PCR法」)に広く概説されている。プロテインアレイについては、NatGenet.2002 Dec;32 Suppl:526-532に詳述されている。遺伝子発現の分析法としては、上述に加えて、RT-PCR、RACE
法、SSCP法、免疫沈降法、two-hybridシステム、in vitro翻訳、FACS(蛍光活性化細胞ソーティング)などが挙げられるがそれらに限定されない。そのようなさらなる分析方法は、例えば、ゲノム解析実験法・中村祐輔ラボ・マニュアル、編集・中村祐輔、羊土社(
2002)などに記載されており、本明細書においてそれらの記載はすべて参考として援用される。FACSで使用されるフローサイトメトリー (flow cytometry) とは微細な粒
子を流体中に分散させ、その流体を細く流して、個々の粒子を光学的に分析する手法であり、これを応用した手法がFACS(蛍光活性化細胞ソーティング)である。FACSは蛍光抗体で染色した細胞を液流に乗せて流し、レーザー光の焦点を通過させ、個々の細胞が発する蛍光を測定することによって細胞表面に発現される抗原量を定量的に測定することのできる技術である。
的測定方法を含む任意の適切な方法により評価される本発明において使用されるポリペプチドのmRNAレベルでの発現強度が挙げられる。「発現強度の変化」とは、上記免疫学的測定方法または分子生物学的測定方法を含む任意の適切な方法により評価される本発明において使用されるポリペプチドのタンパク質レベルまたはmRNAレベルでの発現強度が増加あるいは減少することを意味する。あるマーカーの発現強度を測定することによって、マーカーに基づく種々の検出または診断を行うことができる。
減少」または「抑制」あるいはその類義語は、特定の活性、転写物またはタンパク質の量、質または効果における減少、または減少させる活性をいう。減少のうち活性、発現産物等が検出限界未満になる場合、特に区別して「消失」ということがある。本明細書では、「消失」は「減少」または「抑制」に包含される。
増加」または「活性化」あるいはその類義語は、特定の活性、転写物またはタンパク質の量、質または効果における増加または増加させる活性をいう。
ファターゼ、西洋ワサビペルオキシダーゼ、αガラクトシダーゼなど、に共有結合させまたは組換えにより融合させてよい。本発明で用いられるCD44等に対する抗体は、それぞれ、CD44等のタンパク質に結合すればよく、その由来、種類、形状などは問われない。具体的には、非ヒト動物の抗体(例えば、マウス抗体、ラット抗体、ラクダ抗体)、ヒト抗体、キメラ抗体、ヒト化抗体などの公知の抗体が使用できる。本発明においては、モノクローナル、あるいはポリクローナルを抗体として利用することができるが好ましくはモノクローナル抗体である。抗体のCD44等のそれぞれのタンパク質への結合は特異的な結合であることが好ましい。
幅法は周知であり、核酸増幅法におけるプライマーペアの選択は当業者に自明である。例えば、PCR法においては、二つのプライマー(プライマー対)の一方がCD44等の分子目的のタンパク質の二本鎖DNAのプラス鎖に対合し、他方のプライマーが二本鎖DNAのマイナス鎖に対合し、かつ一方のプライマーにより伸長された伸長鎖にもう一方のプライマーが対合するようにプライマーを選択できる。また、LAMP法(WO00/28082号公報)においては、標的遺伝子に対して3’末端側からF3c、F2c、F1cという3つの領域を、5’末端側からB1、B2、B3という3つの領域を、それぞれ規定し、この6つの領域を用いて4種類のプライマーを設計することができる。本発明のプライマーは、本明細書に開示したヌクレオチド配列に基づき、化学合成できる。プライマーの調製は周知であり、例えば、『Molecular Cloning, A Laboratory Manual 2nd
ed.』(Cold Spring Harbor Press(1989))、『Current Protocols in Molecular Biology』(John Wiley & Sons(1987-1997))に従って実施することができる。
シリーズであり、他の該当波長の蛍光色素に比べ、非常に安定で、明るく、またpH感受性が低い。蛍光極大波長が10nm以上ある蛍光色素の組み合わせとしては、AlexaTM555とAlexaTM633の組み合わせ、AlexaTM488とAlexaTM555との組み合わせ等を挙げることができる。核酸を標識する場合は、その塩基部分と結合できるものであれば何れも用いることができるが、シアニン色素(例えば、CyDyeTMシリーズのCy3、Cy5等)、ローダミン6G試薬、N-アセトキシ-N2-
アセチルアミノフルオレン(AAF)、AAIF(AAFのヨウ素誘導体)等を使用することができる。実際に使用している標識例としては、DAPI またはHoechst 33342が挙げられる。蛍光発光極大波長の差が10nm以上である蛍光物質としては、例えば、Cy5とローダミン6G試薬との組み合わせ、Cy3とフルオレセインとの組み合わせ、ローダミン6G試薬とフルオレセインとの組み合わせ等を挙げることができる。本発明では、このような標識を利用して、使用される検出手段に検出され得るように目的とする対象を改変することができる。そのような改変は、当該分野において公知であり、当業者は標識におよび目的とする対象に応じて適宜そのような方法を実施することができる。
Protocols in Molecular Biology”(John Wiley & Sons(1987-1997)、特にSection 6.3-6.4)、”DNA Cloning 1:Core Techniques, A Practical Approach 2nd ed.”(Oxford University(1995)、条件については特にSection 2.10)を参照しうる。
幅産物を検出する工程により実施することができる。
al., J.Biol.Chem., 270, 29051-29054, 1995)、p160ROCK(ROKβ、
ROCK-I:Ishizaki, T. et al., The EMBO J., 15(8), 1885-1893, 1996
)およびその他のセリン/スレオニンキナーゼ活性を有するタンパク質が挙げられる。
」は、現状を診断することをいうが、広義には「早期診断」、「予測診断」、「事前診断」等を含む。本発明の診断方法は、原則として、身体から出たものを利用することができ、医師などの医療従事者の手を離れて実施することができることから、産業上有用である。本明細書において、医師などの医療従事者の手を離れて実施することができることを明確にするために、特に「予測診断、事前診断もしくは診断」を「支援」すると称することがある。
あるいは予防効果を発揮しうることを含む。事前に診断を行って適切な治療を行うことは「コンパニオン治療」といい、そのための診断薬を「コンパニオン診断薬」ということがある。
成物であってもよい。医薬組成物は、例えば有効成分と上記担体とを混合し、製剤学の技術分野において知られる任意の方法により製造できる。また治療薬は、治療のために用いられる物であれば使用形態は限定されず、有効成分単独であってもよいし、有効成分と任意の成分との混合物であってもよい。また上記担体の形状は特に限定されず、例えば、固体または液体(例えば、緩衝液)であってもよい。なお医薬は、予防のために用いられる薬物(予防薬)、または角膜内皮疾患の状態を改善する医薬(治療薬)を含む。
Sciences(Mark Publishing Company, Easton, U.S.A)に記載される。このような
組成物は、患者に適切に投与する形を提供するように、適切な量のキャリアと一緒に、治療有効量の療法剤、好ましくは精製型のものを含有する。配合物は、投与様式に適していなければならない。これらのほか、例えば、界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等を含んでいてもよい。
および腸粘膜など)を通じた吸収によって、医薬を投与することも可能であるし、必要に応じてエアロゾル化剤を用いて吸入器または噴霧器を使用しうるし、そして細胞と一緒に投与することも可能である。投与は全身性または局所であることも可能である。
の遊離型のアミン基とともに形成されるもの、並びにナトリウム、カリウム、アンモニウム、カルシウム、および水酸化第二鉄などに由来するものが含まれる。
最適投薬量範囲を同定するのを補助することも可能である。配合物に使用しようとする正確な用量はまた、投与経路、および疾患または障害の重大性によっても変動しうるため、担当医の判断および各患者の状況に従って、決定すべきである。しかし、投与量は特に限定されないが、本明細書において記載した任意の細胞密度および量を採用することができ、それらいずれか2つの値の範囲内であってもよく、例えば、1.5×106個が例示される。
投与間隔は特に限定されないが、例えば、単回投与でもよく、1、7、14、21、または28日あたりに1または2回投与してもよく、それらいずれか2つの値の範囲あたりに1または2回
投与してもよい。投与量、投与間隔、投与方法は、患者の年齢や体重、症状、対象疾患等により、適宜選択してもよい。また治療薬は、治療有効量、または所望の作用を発揮する有効量の有効成分を含むことが好ましい。病態を示すマーカーが、投与後に有意に減少した場合に、治療効果があったと判断してもよい。有効用量は、in vitroまたは動物モデ
ル試験系から得られる用量-反応曲線から推定可能である。
以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。また、本発明の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
一つの局面において、本発明は、ヒトの眼前房内への注入時にヒト角膜内皮機能特性を惹起し得るヒト機能性角膜内皮細胞(本発明の角膜内皮特性具備機能性細胞ともいう。)を提供する。本発明の角膜内皮特性具備機能性細胞は、成熟分化角膜内皮の角膜内皮機能特性を有するものであり、細胞注入治療(例えば、ヒトの眼前房内への注入時に角膜内皮
機能特性を惹起し得る)においても効果を奏するものであることから、代表的には、ヒトの眼前房内への注入時に角膜内皮機能特性を惹起し得るヒト機能性角膜内皮細胞ということができる。本発明の角膜内皮特性具備機能性細胞は機能性成熟分化角膜内皮細胞のほか、中程度分化角膜内皮細胞を含みうる。本発明の機能性成熟分化角膜内皮細胞は、角膜内皮機能を発揮する成熟分化した細胞であり、注入に最適な亜集団であるエフェクター細胞が小型で六角形の敷石様形状を形成しミトコンドリア機能によるエネルギー代謝系を利用する。
胞では細胞老化に係るサイトカイン(SASP関連タンパク質)産生が高いことも判明した。
ヒト角膜内皮細胞をインビトロで増殖しようとする試みは、その細胞特性に関する知見ならびに細胞集団が複数の亜集団から構成されるのか、培養条件により産生される細胞集団が安定的公正を示すかなどに関する知見・報告が全くなく、そうした視点での解析すら行われていなかったため、著しく困難であった。
細胞(MSC)、がん幹細胞(CSC)またはCST中の形質変化になんらかの関連がある(Davies S,
Beckenkamp A, Buffon A. Biomed Pharmacother. 2015; 71:135-8; Roberta
Pang, et al., Stem Cell, 6, 2010, 603-615; Krawczyk N, et al., Biomed Res Int. 2014; 2014:415721. Epub 2014 May 8; Irollo E, Pirozzi G. Am J Transl Res. 2013 Sep 25; 5:563-81; Williams K, et al., Exp Biol Med (Maywood). 2013; 38:324-38; Zhe Shi, et al., Mol Cell Biochem (2015) 401:155-164)。この選択はもっともらしかったが、これは正常な幹細胞は組
織中で最も長く生存する細胞であり、時間経過により変異を蓄積している可能性が高く、CSCsはmay arise from transit-amplifying cellから発生するという理由からであった(B.J. Huntly Cancer Cell, 6 (2004), 587-596; C.H. Jamieson et al., N. Engl. J. Med., 351 (2004), pp. 657-667)。
質線維芽細胞から区別するためのHCECマーカーとして提唱された(Cheong YK et al., Invest Ophthalmol Vis Sci. 2013; 54: 4538-4547)。しかし、HCEC培養の実際的な問題は、脆弱な形質転換した培養ヒト角膜内皮細胞が混在することであることが見いだされた。この点は、本発明で提供される製造方法で解消することができた。
-1陽性、Na+K+/ATPase陽性、Claudin10陽性および以下の表1A
30以上:強陽性
10以上30未満:中陽性
5以上10未満:弱陽性
(なお、弱陽性、中陽性、強陽性を合わせて「陽性」という)
5未満:陰性
に記載の発現特性のうち、一つまたはそれより多くの発現特性を含みうるが、これらに限定されない。あるいは、群は、CD105陰性~弱陽性、CD24陰性、CD26陰性、LGR5陰性、SSEA3陰性、MHC1弱陽性、MHC2陰性、ZO-1陽性、Na+/K+ATPase陽性からなる群であってもよい。
光強度範囲はおよそ27500以上である。尚、本明細書の実施例において、この設定での陰
性対照(アイソタイプコントロール)の平均蛍光強度はおよそ50であった。(55±25の範囲、細胞ロットにより同じ設定でも多少ずれることがあるが、当業者はこれらのずれを理解して実施することができる。)。したがって、「弱の蛍光強度範囲はおよそ3800未満、中の蛍光強度範囲はおよそ3800以上~27500未満、強の蛍光強度範囲はおよそ27500以上である。」からすると、陰性対照(アイソタイプコントロール)の平均蛍光強度PE-Cy 7:
約50 [33~80程度]であるため、弱:<76倍、中:76~550倍、強>550倍となる。陰性
対照(アイソタイプコントロール)について同じ染色強度パターンであれば陰性であり、少しでもシフトすれば陽性と判断する。
・陰性対照(アイソタイプコントロール)の平均蛍光強度としては、以下を挙げることができる。
FITC: 約130 [65~225程度]
PE: 約120 [73~204程度)]
PerCP-Cy5.5: 約120 [74~191程度]
PE-Cy 7: 約50 [33~80程度]
APC: 約110 [67~196程度]。
Fluor 647標識2次抗体(キット付属)を使って測定する。その場合、弱陽性、中陽性、強陽性は、以下のように定義され得る。すなわち、各マーカーの蛍光強度中央値÷陰性対照(アイソタイプコントロール抗体による染色)の値が左の場合右の分類となる。
30以上:強陽性
10以上30未満:中陽性
5以上10未満:弱陽性
(なお、弱陽性、中陽性、強陽性を合わせて「陽性」という
5未満:陰性
なお、このような細胞のマーカーの強度は、蛍光活性化細胞分類及び免疫組織化学など(これらに限定されるものではない)の技術によって容易に評価できる。上記のマーカー及びそれらの発現レベルに関して、「陰性」はマーカーの発現が欠如している又はそのレベルが著しく低いことを意味し、「陽性」は発現が顕著であることを意味する。細胞マーカーの「陰性」から「陽性」への移行は、欠如している発現又は低レベルの発現から高レベル又は著しいレベルの発現への変化を示す。「弱陽性」という用語は弱い発現すなわち低レベルの発現を意味し「低発現」と表示されることもあり、「中陽性」とは容易に検出できる中レベルの発現を意味するため「中発現」と表現されることもあり、「強陽性」は発現が顕著でありきわめて容易に検出できる強い発現すなわち高レベルの発現を意味し、「高発現」と表示されることもある。この場合、「弱陽性」から「中陽性」)、「中陽性」から「強陽性」又は「強陽性」から「中陽性」、「中陽性」から「弱陽性」への発現の移行は、容易に確認できる。例えば、非目的細胞はCD44強陽性を示し、前駆細胞はCD44中陽性を示し、本発明の機能性成熟分化角膜内皮細胞はCD44陰性またはCD44弱陽性を示す。例えば実施例で示されているように、2つ以上の細胞表面マーカー等を用いて細胞を亜集団等に分類することができる。
)本発明の角膜内皮特性具備機能性細胞(機能性成熟分化角膜内皮細胞を含む)において発現が下がるものCD44を挙げることができる。本発明のタンパク質性産物または該産物の関連生体物質は、これらの細胞指標の1つまたは複数の組合せによって、対象細胞が本発明の角膜内皮特性具備機能性細胞(機能性成熟分化角膜内皮細胞や中程度分化角膜内皮細胞)かどうかを判定することができ、ある実施形態では、(A)から複数選択して組み合わせてもよく、(B)から複数選択して組み合わせてもよく、あるいは(A)のものと(B)のものを組み合わせて利用することができる。理論に束縛されることを望まないが、これらの遺伝子は、発現量が比較的多く、治療に適した細胞と適していない細胞とを明確に分類することができるものであるからである。(A)については、中程度分化角膜内皮細胞もまた、機能性成熟分化角膜内皮細胞と同様の傾向を示すものと理解される。
コルを使用した場合でさえ培養間で大きく異なる。角膜内皮細胞を細胞注入療法に適用する際の最も大きな障害の1つは、角膜内皮細胞が、本発明の角膜内皮特性具備機能性細胞または機能性成熟分化角膜内皮細胞として細胞品質を満たしているかをどのように検証するかにあるが、本発明では、遺伝子多様性をも利用することによってこのことを解決することができる。
コンドロイチン硫酸および50 μg/mLのゲンタマイシンを用いた基礎培地、適宜の馴化培地(Nakahara, M. et al. PLOS One (2013) 8, e69009参照)を用いる)での培
養を行った場合、代表的に、PDGF-BBは約30pg/ml以上であることが好ましく、IL-8は約500pg/mlであることが好ましい。また、MCP-1は約3000pg/ml以下であることが好ましい。TNF-αは約10pg/ml以上であることが好ましく、IFNγは約30pg/ml以上であることが好ましく、IL-1Rアンタゴニストは、約40pg/ml以上であることが好ましく、VEGFは約200~500pg/ml以下であることが好ましい。
Scaling Factorを0.75、PE-Cy7のvoltageを495に設定した場合の測定において、ゲートを以下のように設定する。まず、X軸がCD24、Y軸がCD166のドットプロット(図68、左上段)において、画分A、B、C、Dを設定する。このとき、画分AはCD24陰性かつCD166陽性、画分BはCD24陽性かつCD166陽性、画分CはCD24陰性かつCD166陰性、画分DはCD24陽性かつCD166陰性である。解析対照細胞を100%としたときの画分Bの割合を非目的細胞C [CD24陽性細胞]の含有率とする。画分BについてさらにX軸がCD44、Y軸がCD105のドットプロットにおいて、図68左下段のように画分1、2、3を設定する。このときの画分1の割合をE-ratio、画分1の割合と画分2の割合の合計値を「機能性成熟分化角膜内皮細胞+中程度分化角膜内皮細胞」含有率、画分3の割合を非目的細胞A [CD44強陽性細胞]の含有率とする。また、これらとは別にX軸がCD44、Y軸がCD26のドットプロットを作成し、図68右上段図のように画分a’、b’、c’、d’を設定する。解析対照細胞を100%としたときの画分Bの割合を非目的細胞B[CD26陽性細胞]の含有率とする(図68参照)。
では、miRNAの種類の相違を、それが発現する細胞の機能性を同定することに使用することができることを初めて提供するものである。microRNA(miRNAもしくはmiR)は、遺伝子発現の内因性レギュレーターとして機能するノンコーディング小分子RNAである。それらのディスレギュレーションは、様々な疾患の病因に関係している。miRNAが、細胞増殖、発達、および分化を含む様々な生物学的プロセスにおいて重要な役割を果たしていることを示唆する証拠は強化されている(Bartel DP. Cell. 2004; 116:281-297;Croce CM, Cell. 2005; 122:6-7)。miRNAの発現は、細胞
外マトリックス(ECM)の形成、維持、再構築を含む多くの細胞プロセスの調節において必須であり(Rutnam ZJ, Wight TN, Yang BB. Matrix Biol. 2013; 32:74-85)、それはcHCECにおけるCSTと密接なつながりを有する。角膜内皮に関係するmiRNA発現について、機能性成熟分化角膜内皮細胞を識別することができる情報は現在存在していない。本発明は、そのような中、機能性成熟分化角膜内皮細胞の識別に使用することができるmiRNAを見出した。このようなmiRNAは、3D-Gene miRNAマイクロアレイプラットフォーム(例えば、日本、鎌倉、Torayから市販される)
および階層クラスタリングによって、表現型の異なる機能性成熟分化角膜内皮細胞の比較研究を行うことにより、多種類のmiRNAの発現パターンが明らかになった。アップおよびダウンレギュレートされたmiRNAクラスターを含む独特なmiRNA発現パターンが、培養細胞および対応する培養上清において明らかにされた。培養上清におけるmiRNA、すなわち分泌型miRNAは、前房への注入による細胞治療に適合した機能性成熟分化角膜内皮細胞を非侵襲的に識別するためのツールとして働き得る。
(A)機能性成熟分化角膜内皮細胞(a5):中程度分化角膜内皮細胞(a1):角膜内皮非機能性細胞(a2)=高発現:高発現:低発現を示すもの:
(細胞内)miR23a-3p、miR23b-3p、miR23c、miR27a-3p、miR27b-3p、miR181a-5p、miR181b-5p、miR181c-5p、miR181d-5p
(細胞分泌型)miR24-3p、miR1273e;
(B)a5:a1:a2=高発現:中発現:低発現を示すもの:
(細胞内)miR30a-3p、miR30a-5p、miR30b-5p、miR30c-5p、miR30e-3p、miR30e-5p、miR130a-3p、miR130b-3p、miR378a-3p、miR378c、miR378d、miR378e、miR378f、miR378h、miR378i、miR184、miR148a-3p
(細胞分泌型)miR184;
(C)a5:a1:a2=高発現:低発現:低発現を示すもの:
(細胞内)miR34a-5p、miR34b-5p
(細胞分泌型)miR4419b、miR371b-5p、miR135a-3p、miR3131、miR296-3p、miR920、miR6501-3p;
(D)a5:a1:a2=低発現:低発現:中高発現を示すもの:
(細胞内)miR29a-3p、miR29b-3p、miR199a-3p、miR199a-5p、miR199b-5p、miR143-3p
(細胞分泌型)miR1915-3p、miR3130-3p、miR92a-2-5p、miR1260a;
(E)a5:a1:a2=低発現:中発現:高発現を示すもの:
(細胞内)miR31-3p、miR31-5p、miR193a-3p、miR193b-3p、miR138-5p
(F)a5:a1:a2=高発現:低発現:高発現を示すもの:
(細胞分泌型)miR92b-5p
(G)a5:a1:a2=低発現:高発現:低発現を示すもの:
(細胞分泌型)miR1246、miR4732-5p、miR23b-3p、miR23a-3p、miR1285-3p、miR5096
からなる群より選択される少なくとも一つのmiRNAを含み、発現水準は3種の細胞間
での相対的強度であり、該a5の細胞表面抗原の特性は、CD44-~弱陽性、CD24陰性CD26陰性であり、該a1の細胞表面抗原の発現は、CD44中陽性CD24陰性-CD26陰性であり、該a2の細胞表面抗原の発現は、CD44強陽性CD24陰性CD26陽性である。
上の細胞において最強のものと最弱のものとは異なる第三の発現強度が認められる場合に中発現を含めて評価する。
)、(D)または(E)のパターンを用いると一つで識別できる。もちろん、3種類を識別したい場合は、(B)や(E)の物を使用するか、あるいは、(A)と(C)との組み合わせ等複数のmiRNAマーカーを使用することができる。miRNAは、例えば、公知の手法でRNAを抽出し、実施例に記載されるような手法でマイクロアレイ分析を用いて同定しレベルを決定することができる。例えば、Torayの3D-GeneTM ヒトマイクロRNA
チップなどの市販の分析用チップを用いることができる。得られたデータは、スキャナー(例えば、3D-Gene スキャナー3000 (Toray Industries Inc., Tokyo, JAPAN))で画像処理し、処理ソフトウェア(例えば、3D-Gene Extractionソフトウェア(Toray))で処理することができる。得られたデジタル化蛍光シグナルは、生データとみなしてさらに標準化することができる。例えば、蛍光強度の中央値を25に補正することができる。あるいは、標準化レベルは、高ランクから100番目の値が一致するように補正することができる。
膜小胞であり、リボヌクレアーゼ活性を持つタンパク質を多く含むこのような異常値については、関連するマーカーを用いて調べることができる。そのようなマーカーとしては、CD63,CD9、CD81、HSP70などを挙げることができる。本発明の角膜内皮特性具備機能性細胞は、これらのエキソゾームに関するマーカーの発現が低いことが好ましい。具体的なレベルについては以下のような実験で例示することができる。すなわち、代表的には、Exoscreen法を用い培養上清中エクソソームタンパク質にマーカーが存在す
るのか否かを測定することができ、Exoscreen法に代わるエクソソームタンパク質の検出
をウェスタンブロット法にて実施することができる。また、ウェスタン検出バンドの大きさを視覚的に判断することができる。
μm2以上、約170μm2以上、約175μm2以上、約180μm2以上等を挙げることができるがこれらに限定されない。細胞面積は当該分野で公知の任意の手法で測定することができるが、代表的な例として、位相差顕微鏡画像を用いた測定法があり、ここでは、倒立顕微鏡システム(CKX41, Olympus,Tokyo, Japan)等の市販のシステムを用いて
撮影することができる。また、面積分布測定のためには、例えば、対象となる細胞をPBS
(-)で3回洗浄する等して測定しやすい前処理を行った後、位相差顕微鏡画像を例えば
、BZ X-700顕微鏡システム(Keyence, Osaka, Japan)等の市販のシステムを用いて取得することができる。また、面積分布はBZ-H3C Hybrid細胞計数ソフトウェア(Keyence)等
の市販のソフトウェアを用いて定量することができる。
害は、Miyaiらによって示されたように、cHCECは、多くの場合、数代の継代で培養中に異
数性を示すことである(Miyai T, et al., Mol Vis. 2008; 14:942-50)。cHCECに
おいて観察される異数性は、細胞分裂に起因して培養中に誘導される。ここで、本発明者らは、cHCECにおける異数性の有無が、cHCEC中で優勢な特定の細胞亜集団に密接に関連するという新たな知見を提供する。本発明者らは、核型異常のない特定の細胞亜集団は、角膜組織中に存在する機能性成熟分化角膜内皮細胞と表面発現型の特定のパターンに並行して現れることを見出した。核型異常のない機能性成熟分化角膜内皮細胞からほとんどなる細胞亜集団を選択的に増殖させる洗練した培養条件の確立に成功し、これによって水疱性角膜症等の角膜内皮障害の処置のために機能性成熟分化角膜内皮細胞を細胞懸濁液の形態で前房に注入することによる安全で安定した再生医薬を提供することができるようになった。このように、本発明では、これまで明らかではなかった、核型異常は亜集団選択的に生じることを見出した。そして、本発明の技術を用いることによって、核型異常を実質的に起こさない亜集団を選択することができるようになった。
Tx-100で透過処理(室温、15分間)し、1% BSA/PBSでブロッキング(室温>1時間)する。
その後、1%BSA/PBSで5倍または25倍に希釈した正常人血清250μLをウェルに添加し、4℃、O/N 静置する。その後、PBS-0.2%Tx-100で洗浄×4を行い、Alexa Fluor 488標識Anti-human IgG(5μg/mL)およびAlexa Fluor 647標識Anti-human IgM(5μg/mL)を含む1%
BSA/PBSを添加(250μL/ウェル)する。その後、室温、1時間静置し、PBS-0.2% Tx-100で洗浄×2を行い、PBSで洗浄×1を行う。DAPI(5μg/mL)で核を染色(室温、15分間)し、PBSで洗浄した後、倒立蛍光顕微鏡(BZ-9000)で検鏡する(図10C参照)。
定のためには、例えば、対象となる細胞をPBS(-)で3回洗浄する等して測定しやすい前処理を行った後、位相差顕微鏡画像を例えば、BZ X-700顕微鏡システム(Keyence, Osaka,
Japan)等の市販のシステムを用いて取得することができる。また、面積分布はBZ-H3C Hybrid細胞計数ソフトウェア(Keyence)等の市販のソフトウェアを用いて定量することが
できる。
るがこれらに限定されない。上限としては、任意の実現可能な数値を挙げることできるが、例えば、約3000個/mm2以上、約3100個/mm2、約3200個/mm2、約3300個/mm2、約3400個/mm2、約3500個/mm2、約3600個/mm2、約3700個/mm2、約3800個/mm2、約3900個/mm2、約4000個/mm2等でも上限として実現可能である。これらの上限下限の任意の組合せが、本発明の細胞集団の好ましい細胞密度範囲として使用されることが理解される。
おける細胞密度が最も高くなることが判明している。本発明の製造法で作製した培養ヒト角膜内皮細胞でも実施例において例示されるように細胞面積は216μm2、細胞密度は2582個/mm2と正常角膜内皮組織の内皮細胞と同じ水準の細胞面積、細胞密度を示している。
くは少なくとも約1700個/mm2以上、好ましくは少なくとも約1800個/mm2以上、好ましくは少なくとも約1900個/mm2以上、好ましくは少なくとも約2000個/mm2以上、好ましくは少なくとも約2200個/mm2以上、好ましくは少なくとも約2300個/mm2以上、好ましくは少なくとも約2400個/mm2以上、好ましくは少なくとも約2500個/mm2以上、好ましくは少なくとも約2600個/mm2以上、好ましくは少なくとも約2700個/mm2以上、好ましくは少なくとも約2800個/mm2以上、好ましくは少なくとも約2900個/mm2以上、好ましくは少なくとも約3000個/mm2以上でありうる。
証されており、従来にない迅速かつ高品質な治療技術が提供されているといえる。
コハク酸、キサンチン、N-カルバモイルアスパラギン酸、イソクエン酸、cis―アコニッ
ト酸、クエン酸Ala、3-ホスホグリセリン酸、ヒドロキシプロリン、リンゴ酸、尿酸、ベ
タイン、葉酸、Gln、2-オキソイソ吉草酸、ピルビン酸、Ser、ヒポキサンチン、Asn、Trp、Lys、コリン、Tyr、尿素、Phe、Met、カルノシン、Asp、オルニチン、Arg、クレアチン、2-ヒドロキシグルタミン酸、β-Ala、シトルリン、Thr、Ile、Leu、Val、クレアチニン、His、N,N-ジメチルグリシンまたはその組み合わせ若しくは相対比率を挙げることがで
きるがこれらに限定されない。あるいは、本発明の細胞代謝産物は以下を含む。培養により低下した物質群(細胞に取り込まれた物質群):Arg、クレアチン、総アミノ酸、Ty
r、カルノシン、Asp、総必須アミノ酸、総ケト原性アミノ酸、Trp、Val、総オキサロ酢
酸関連アミノ酸、総グルタミン酸関連アミノ酸、総アセチルCoA関連アミノ酸、総スクシニルCoA関連アミノ酸、シトルリン、総BCAA,Fischer比、ヒポキサンチン、Leu、Asn、Ile、2-ヒドロキシグルタル酸、ピルビン酸、Ser、シトルリン/オルニチン比、尿酸、β-アラニン 培養により増加した物質群(細胞から排出された物質群)
:サルコシン、セドヘプツロース7-ホスフェート、スペルミジン、スペルミン、総アデニル酸、総グルタチオン、総グアニル酸、UDP-グルコース、XMP、キシルロース5
-ホスフェート、cis-アコニット酸、クエン酸、ベタイン、グルコース6-リン酸、乳酸/ピルビン酸、グリセロール3-リン酸、Ala、乳酸、2-オキソイソ吉草酸、アルギ
ノコハク酸、Glu、ヒドロキシプロリン、キサンチン、オルニチン、総ピルビン酸関連ア
ミノ酸、Pro、Gly、N,N-ジメチルグリシン、コリン、尿素、葉酸、His、クレアチニ
ン、Met、Lys、Thr、コハク酸、γ-アミノ酪酸、Phe、総非必須アミノ酸、総フマル酸関連アミノ酸、総芳香族アミノ酸、総糖原性アミノ酸
特に、本発明では、培養上清中のセリン、アラニン、プロリン、グルタミンまたはクエン酸/乳酸比率、特にクエン酸/乳酸比率における上昇を用いることで本発明の本発明の角膜内皮特性具備機能性細胞または機能性成熟分化角膜内皮細胞の品質管理を行うことができる。
T)、および形質転換線維芽細胞様細胞形態への細胞相転移(CST)への傾向を有する。本発明者らは、培養上清を用いて、それらの分泌代謝物の点からcHCECの中の亜集団を区別する方法を見出した。CST亜集団は、ミトコンドリア依存性OXPHOSの代わりに、嫌気的解
糖への傾向を示す。細胞懸濁液の形で、代謝的に規定された機能性成熟分化角膜内皮細胞を用いた安全で安定な再生医療のための製品を提供することができる。
し、製品の生産時の工程管理法を提供することができる。本発明の機能性成熟分化角膜内皮細胞においてミトコンドリア系でのエネルギー代謝系が最も亢進することを示す。本発明では、培養液中の乳酸、ピルビン酸、乳酸/ピルビン酸、クエン酸/乳酸、Ser、Pro/Ser、Leu、Ile(分岐鎖アミノ酸)およびGlnの活用とともに、治験および製造に適用すべ
き評価法としての有用性を実践検証することができる。
性物質による影響もないかまたは少ないこと、正常な細胞又は組織への影響もないかまたは少ないこと、異所性組織を形成する可能性がないかまたは少ないこと、望ましくない免疫反応が生じる可能性がないかまたは少ないこと、腫瘍形成及びがん化の可能性がないかまたは少ないこと、遺伝子導入が行われている場合には、遺伝子治療用製品指針に定める安全性評価がなされていること、および一般毒性試験等をクリアしていることが望ましい。
。しかしながら、本発明では、通常、本発明の製法により本発明の角膜内皮特性具備機能性細胞または機能性成熟分化角膜内皮細胞の純度を高めることがなされる。
一つの局面において、角膜内皮組織由来細胞または角膜内皮前駆細胞を成熟分化させる工程を含む、ヒトの眼前房内への注入時にヒト角膜内皮機能特性を惹起し得るヒト機能性角膜内皮細胞(本発明の角膜内皮特性具備機能性細胞)または機能性成熟分化角膜内皮細胞の製造方法を提供する。この方法は、成熟分化工程のほかに、脱分化工程を介した後におこなってもよい。本発明の角膜内皮特性具備機能性細胞は、本明細書の他の箇所にも記載されているように、そのままの状態で角膜内皮機能特性を有する「機能性成熟分化角膜内皮細胞」のほか、機能を一部欠くものの同様に使用されまたは細胞注入後に機能性成熟分化角膜内皮細胞と同等の機能を発揮する「機能性成熟分化角膜内皮細胞」とを包含する。
約100~2000nM例えば500nMであるがこれらに限定されず、当業者は、得られる細胞の
細胞機能を測定し(例えば、サロゲートマーカーを用いる)、あるいは細胞指標を確認することによって、適宜濃度を変更することができる。
の非存在下での培養)は含んでいても含んでいなくてもよいと理解される。
義塾)等を挙げることができるがそれらに限定されない。
、200細胞/mm2の細胞播種密度で細胞数の非常に急速な増加(つまり、増殖速度が大きい)
を示していることから、200細胞/mm2以上の細胞播種密度が有利であることが理解される
。好ましい実施形態では、本発明の製造方法における培養は、約200~約1000細胞/mm2の
培養密度でなされることが有利である。さらに好ましくは、約400~約800細胞/mm2等で行うことがさらに有利である。培養密度は、例えば、下限として、約100細胞/mm2、約150細胞/mm2、約200細胞/mm2、約250細胞/mm2、約300細胞/mm2、約350細胞/mm2、約400細胞/mm2等を挙げることができるがこれらに限定されない。その上限としては、約800細胞/mm2、約850細胞/mm2、約900細胞/mm2、約950細胞/mm2、約1000細胞/mm2、約1100細胞/mm2、約1200細胞/mm2、約1300細胞/mm2、約1400細胞/mm2、約1500細胞/mm2、約1600細胞/mm2、約1700細胞/mm2、約1800細胞/mm2、約1900細胞/mm2、約2000細胞/mm2等を挙げることができ
るがこれらに限定されない。これらの任意の上限下限の組合せが用いられることが理解される。
コース飢餓など)等の手法を用いることができる。
ように有利な細胞播種密度で継代培養することが好ましい。また、継代の際に本発明の角膜内皮特性具備機能性細胞または機能性成熟分化角膜内皮細胞の比率をできるだけ高く、例えば、90%以上にしておくことが好ましい。
いることも多用されていたが、本発明の条件で機能性細胞を製造する場合、細胞馴化液は存在しても存在させなくてもよいことが判明した。したがって、本発明は、本発明の角膜内皮特性具備機能性細胞または機能性成熟分化角膜内皮細胞の製造方法において、培養が細胞馴化液非存在下で行われる態様を含む。
換を実施することで達成され、例えば、2~4週間程度培養を継続することで達成され得る。上限には特に限定はないが、本発明者らは、少なくとも6カ月以上、例えば、200日程度を超え、1年程度は培養を継続しても機能性成熟分化角膜内皮細胞の状態を継続して保存が可能であることを見出している。
, PLoS ONE 2012 e28310 [Table 1];US6541256))で培養を行う。初代培養(P0培養)には同一ドナーの左右2眼分の内皮細胞を適宜のスケール(例えば、2well/6wellプレート)のコラーゲンIプレートに播種して培養を開始する。培養には成熟分化細胞への分化を誘導するために適切な成熟分化のための成分(例えば、10μM Y-27632(ROCK阻害剤))を添加する。また、培養期間中に細胞の老化防止または相転移抑制を目的に適切な成分(例えば、10μMのSB203580)を添加する。適切な期間の培養(例えば、約4~8週間後)細胞がコンフルエントになった後に継代を行う。コンフルエントになった後は、培地交換のみで数週間にわたり同品質が保持される。継代は細胞を適宜の剥離用の試薬(例えば、TrypLE)でプレートから剥離して培地で洗浄後、細胞密度を適切なレベル(例えば、400細胞/mm2以上)でT25コラーゲンIフラスコに播種する。P2(継代2回、以下同様)或いはP3までの培養の細胞を用いることで良好な成績を得られており、さらに、P5~P6までの培養細胞を用いても十分に治療効果のある細胞が得られると考えられる。
の品質について事前に周到なロット検定をすることが好ましい。
別の局面において、本発明は、ヒトの眼前房内への注入時にヒト角膜内皮機能特性を惹起し得る機能性角膜内皮細胞(本発明の角膜内皮特性具備機能性細胞)または機能性成熟分化角膜内皮細胞を含む医薬を提供する。本発明の角膜内皮特性具備機能性細胞は、本明細書の他の箇所にも記載されているように、そのままの状態で角膜内皮機能特性を有する機能性成熟分化角膜内皮細胞のほか、機能を一部欠くものと同様に使用されまたは細胞注入後に機能性成熟分化角膜内皮細胞と同等の機能を発揮する中程度分化角膜内皮細胞とを包含する。
能性成熟分化角膜内皮細胞が、天然に存在する比率よりも高められた比率で存在する細胞集団を含む。このような細胞集団としては、(ヒトの眼前房内への注入時にヒト角膜内皮機能特性を惹起し得るヒト機能性角膜内皮細胞)の節に記載される任意の実施形態を利用することができる。
について、少なくとも約1000細胞/mm2を超える密度を達成し、平均でも約200
0細胞/mm2を超える密度を達成し、そのうち半数近くの症例では約2300細胞/mm
2を超える密度を達成し、従来達成し得た水準を超える治療効果があることが判明した。加えて、E-ratioをさらに高め90%以上とした場合は、1か月後の成績ですでに平均で3000細胞/mm2を超える成績を達成し、正常被験者に匹敵する成績を達成し
ており、その成績が顕著に改善している。
用いる治療方法では、例えば米国アイバンク等の提供機関より提供を受けた角膜より角膜内皮細胞を採取して培養したものを、前房と呼ばれる角膜の後ろ側にRhoキナーゼ阻害剤とともに注射する態様が例示される。例えば、注射後は代表的には3時間以上のうつむき姿勢により注入細胞の内皮面への接着を図る実施形態が例示される。
、水疱性角膜症)(例えば、フックス角膜内皮ジストロフィ、PEX-BK(pseudoexfoliation bullous keratopathy;偽落屑症候群に伴う水疱性角膜症)、レーザー虹彩切開術後
水疱性角膜症、白内障手術術後水疱性角膜症(偽水晶体眼または無水晶体水疱性角膜症)、緑内障術後水疱性角膜症、外傷後の水疱性角膜症、原因不明の多重手術後の水疱性角膜症、角膜移植後の移植片不全、先天遺伝性角膜内皮ジストロフィ、先天性前房隅角形成不全症候群等)とからなる群より選択される少なくとも一つを含むがこれらに限定されない。本明細書において使用されるグレードシステムは、Japanese Journal of Ophthalmo
logy 118: 81-83, 2014に基づいた角膜内皮疾患の重症度分類に基づく。例えば、水疱性角膜症の一例としてレーザー虹彩切開術後水疱性角膜症があるが、緑内障治療薬のみでは眼圧コントロールが難しい患者の虹彩にレーザーで穴を開け、房水の流れを良くする手術であるが、その流水が角膜内皮に当たって、内皮が損傷すると考えられており、本発明の医薬は著効を示すと考えられる。フックス角膜ジストロフィについては、先天性の遺伝子疾患で、欧米では40~50歳以上の4~5%が罹患していると言われており、角膜中央の内皮が脱落して混濁を呈し、欧米での角膜移植の原因のトップを占めている。本発明の医薬はフックス角膜ジストロフィにも著効を示すと考えられる。また、Multiple OP-BKと呼ばれる原因不明の多重手術後の水疱性角膜症にも有効である。このような多重手術としては、代表的に網膜硝子体手術と白内障+眼内レンズ挿入を同時に行う手術で、通常「トリプル手術」と言われている術後などを挙げることができる。
確立していることが本発明の過程において明らかになっているからである。
せることを主として目的として、ROCK阻害剤の他、本発明の特定の角膜内皮細胞を成熟分化させる条件において使用される薬剤もまた医薬として使用され得るものについては含めることができる。
101、国際公開2005/039564、国際公開2005/034866、国際公開2005/037197、国際公開2005/037198、国際公開2005/035501、国際公開2005/035503、国際公開2005/035506、国際公開2005/080394、国際公開2005/103050、国際公開2006/057270、国際公開2007/026664などに開示された化合物があげられる。かかる化合物は、それぞれ開示された文献に記載の方法により製造することができ、例えば、1-(5-イソキノリンスルホニル)ホモピペラジンまたはその塩(たとえば、ファスジル、ファスジル塩酸塩)、(+)-トランス-4-(1-アミノエチル)-1-(4-ピリジルカルバモイル)シクロヘキサンカルボキサミドまたはその塩(たとえば、Y-27632((R)-(+)-トランス-(4-ピリジル)-4-(1-アミノエチル)-シクロヘキサンカルボキサミド2塩酸塩1水和物)など)などを挙げることができ、好ましくはY-27632を含む。
成分が充填された、1以上の容器を含む、薬剤パックまたはキットを提供する。場合によ
って、このような容器に付随して、医薬または生物学的製品の製造、使用または販売を規制する政府機関によって規定された形で、政府機関による、ヒト投与のための製造、使用または販売の認可を示す情報を示すことも可能である。
(例えば、検査薬、診断薬、治療薬、抗体、標識、説明書など)が提供されるユニットをいう。安定性等のため、混合されて提供されるべきでなく、使用直前に混合して使用することが好ましいような組成物の提供を目的とするときに、このキットの形態は好ましい。そのようなキットは、好ましくは、提供される部分(例えば、検査薬、診断薬、治療薬をどのように使用するか、あるいは、試薬をどのように処理すべきかを記載する指示書または説明書を備えていることが有利である。本明細書においてキットが試薬キットとして使
用される場合、キットには、通常、検査薬、診断薬、治療薬、抗体等の使い方などを記載した指示書などが含まれる。
成され、その監督官庁により承認を受けた旨が明記される。指示書は、いわゆる添付文書(package insert)であり、通常は紙媒体で提供されるが、それに限定されず、例えば
、電子媒体(例えば、インターネットで提供されるホームページ、電子メール)のような形態でも提供され得る。
別の局面において、本発明は、生産した本発明の角膜内皮特性具備機能性細胞または機能性成熟分化角膜内皮細胞、これらの細胞のための細胞培地(培養液)、細胞注入ビヒクル(混濁液)等の品質評価または工程管理に関する技術を提供する。一つの局面では、本発明は、細胞表面マーカー;タンパク質性産物および該産物の関連生体物質;SASP関連タンパク質;miRNA(例えば、分泌型(可溶性)miRNA、細胞内miRNA);エキソゾーム;アミノ酸を含む細胞代謝産物および該産物の関連生体物質;細胞の大きさ;細胞の密度および自己抗体反応性細胞の存在からなる群より選択される少なくとも一つの細胞指標を測定する工程を包含する、ヒト角膜内皮機能特性を惹起し得る培養ヒト機能性角膜内皮細胞、本発明の角膜内皮特性具備機能性細胞または機能性成熟分化角膜内皮細胞の品質評価または工程管理の方法を提供する。細胞表面マーカー;細胞タンパク質性産物および該産物の関連生体物質;SASP関連タンパク質;miRNA(例えば、分泌型miRNA、細胞内miRNA);エキソゾーム;細胞代謝産物および該産物の関連生体物質;細胞の大きさ;細胞の密度および自己抗体反応性細胞の存在の各々の細胞指標については、本明細書において他の箇所にて詳細に説明される。このような細胞指標を用いた品質評価または工程管理技術は、従来提供されていないものであり、本発明において、このような細胞指標を用いた特性を詳細に明らかにする技術が提供されたことにより、注入治療に用いる細胞は不均質細胞亜集団の混合物であり、目的細胞はその一部に限定され
ることが判明した。培養ヒト角膜内皮細胞は機能性成熟分化角膜内皮細胞、中程度分化角膜内皮細胞、目的外細胞の亜集団などで構成されていることも判明した。核型異常は亜集団選択的に生じることも判明しており、亜集団選択的に反応する自己抗体が存在することも判明した。本発明の角膜内皮特性具備機能性細胞または機能性成熟分化角膜内皮細胞にはかかる異常はなく、他の亜集団に比較し、免疫拒絶反応に係るHLAクラスI抗原や細胞変性関連抗原の発現が低いことも判明した。非目的細胞では細胞老化に係るサイトカイン(SASP)産生が高く、細胞が注入される前房環境のSASP量は患者によって大きく異なることも判明していることから、これらの細胞指標を用いて本発明の機能性成熟分化角膜内皮細胞の品質評価または工程管理を行うことができるようになった。このような品質評価または工程管理は、本発明の技術があって初めてなし得たことであり、従来の知見では全く想像もできなかったことであるといえる。
宿主因子を評価することで、品質評価または工程管理を行うことができることを見出した。
よって、機能性であること、しかも品質との相関があることが判明した。したがって、本発明が規定するサイズであるかどうかを判断することによって、本発明の機能性成熟分化角膜内皮細胞の品質を管理することができる。
細胞密度的に培養細胞が細胞飽和(コンフルエント)状態になった後に数週間にわたる培地交換での培養を継続することなどを含む方法を行う。この際に、細胞表面形質を複数種類(例えば、9種類)用いて本発明の角膜内皮特性具備機能性細胞または機能性成熟分化
角膜内皮細胞の細胞純度を客観的に再現性良く規定する方法が、本発明によって提供される。工程管理法としては、培養途上の培養器の幾つかの抜出により、その培養液交換時の培養液を用いてタンパク生産物について工程管理・規格項目を設定するとともに基準値を定めることによって、達成することができる。また、各継代時の培養細胞密度、細胞の大きさ、大きさの分布についても規格値を規定することで、品質評価または工程管理を行うことができる。本発明により、非侵襲的な工程管理・規格試験法として非目的細胞の混入を推定できるmiRNA, 細胞代謝産物についても基準が提供されるため、これらの種々の基準値を用いて各場面において、品質評価または工程管理を達成することができる。
広義には、交換可能に使用され、意図する目的を達成することができる限りどのような物質または他の要素(例えば、光、放射能、熱、電気などのエネルギー)でもあってもよい。そのような物質としては、例えば、タンパク質、ポリペプチド、オリゴペプチド、ペプチド、ポリヌクレオチド、オリゴヌクレオチド、ヌクレオチド、核酸(例えば、cDNA、ゲノムDNAのようなDNA、mRNAのようなRNAを含む)、ポリサッカリド、オリゴサッカリド、
脂質、有機低分子(例えば、ホルモン、リガンド、情報伝達物質、有機低分子、コンビナトリアルケミストリで合成された分子、医薬品として利用され得る低分子(例えば、低分子リガンドなど)など)、これらの複合分子が挙げられるがそれらに限定されない。ポリヌクレオチドに対して特異的な因子としては、代表的には、そのポリヌクレオチドの配列に対して一定の配列相同性を(例えば、70%以上の配列同一性)もって相補性を有するポリヌクレオチド、プロモーター領域に結合する転写因子のようなポリペプチドなどが挙げられるがそれらに限定されない。ポリペプチドに対して特異的な因子としては、代表的には、そのポリペプチドに対して特異的に指向された抗体またはその誘導体あるいはその類似物(例えば、単鎖抗体)、そのポリペプチドがレセプターまたはリガンドである場合の特異的なリガンドまたはレセプター、そのポリペプチドが酵素である場合、その基質などが挙げられるがそれらに限定されない。
(1)培養上清ELISAによる純度試験、TIMP-1:500ng/mL以下、IL-8:500pg/mL以下、PDGF-BB:30pg/mL以上、MCP-1:3000pg/mL以下、(2)細胞FACSによる純度試験、CD166=95%以上、CD133=5%以下、CD105陰性~低陽性=95%以上、CD44陰性~低陽性=70%以上、CD44高陽性=15%以下、CD24=10%以下、CD26陽性=5%以下、CD200=5%以下、(3)バリア機能(ZO-1)陽性、(4)ポンプ機能(Na+/K+ATPase)陽性、(5)細胞生存率、トリパンブルー染色で70%以上、(6)細胞形態、外観試験で形質転換細胞を認めない、(7)Claudin10 陽性、(8)エフェクター細胞(E-ratio)>50%、(9)非目的細胞、非目的細胞A(CD44強陽性細胞)<15%、非目的細胞B(CD26陽性細胞)<5%、非目的細胞C(CD24陽性細胞)<10%(10)核型異常陰性
の1または複数を確認する工程を包含する。
~7日以内の期間であってもよい。
するインテグリンの発現の上昇を指標に判定することを包含する。
培養角膜内皮細胞は以下の品質評価または工程管理(Quality Control: QC)試験を
実施し、品質が確保され出荷規格を満たした製品を本発明の角膜内皮特性具備機能性細胞または機能性成熟分化角膜内皮細胞として使用する。
1) 工程管理試験
・ 外観試験(各フラスコ)
培地中の TIMP-1、IL-8、PDGF-ββ、MCP-1(各フラスコ)
・ 生細胞数/生存率
2) 最終製品の出荷規格および試験方法例
本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、Sambrook J. et al.(1989). Molecular Cloning: A Laboratory Manual,Cold Spring Harborおよびその3rd
Ed.(2001); Ausubel, F.M.(1987).Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Ausubel,F.M.(1989). Short Protocols inMolecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology,Greene Pub. Associates and Wiley-Interscience;Innis,M.A.(1990).PCR Protocols: A Guide to Methods and Applications, Ac
ademic Press; Ausubel,F.M.(1992).Short Protocols in Molecular Biology: A
Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates;Ausubel,F.M. (1995).Short Protocols in MolecularBiology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates;Innis,M.A. et al.(1995).PCR Strategies, Academic Press; Ausubel,F.M.(1999).Short Protocols in Molecular Biology: A Compendium of Methods fromCurrent Protocols in Molecular Biology,Wiley, and
annual updates; Sninsky, J.J.et al.(1999). PCR Applications: Protocols
for Functional Genomics, Academic Press、別冊実験医学「遺伝子導入&発現解
析実験法」羊土社、1997、エクソソーム解析マスターレッスン(実験医学 別冊 羊土社)、リアルタイムPCR完全実験ガイド(実験医学 別冊 羊土社)、遺伝子導入プロトコ
ール(実験医学 別冊 羊土社)、RNAi実験なるほどQ&A(羊土社)などに記載されてお
り、これらは本明細書において関連する部分(全部であり得る)が参考として援用される。
Synthesis: A Practical Approach, IRL Press; Eckstein,F.(1991). Oligonucleotides and Analogues:APractical Approach, IRL Press;Adams, R.L. et al.(1992). The Biochemistry of the Nucleic Acids, Chapman&Hall; Shabarova,Z. et al.(1994). Advanced Organic Chemistry of Nucleic Acids, Weinheim;Blackburn, G.M.et al.(1996). Nucleic Acids in Chemistry and Biology, Oxford University Press; Hermanson,G.T.(I996).Bioconjugate Techniques, Academic Pressなどに記載されており、これらは本明細書において関連する部分が参考として援用される。
」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つ
の値の範囲内」と明記した場合、その範囲には2つの値自体も含む。
Ophthalmic and Vision Research)に従って動物の飼育および取り扱いを行った。
試薬類は具体的には実施例中に記載した製品を使用したが、他メーカー(Sigma、和光純薬、ナカライ、abcam、Santa Cruz Biotechnology、R & D Systems、Abnova、AssayPro、Origene、Biobyt、Biorad、Cell Signaling Technology、GE Healthcare、IBL等)の同等品でも代用可能である。
以下の略号を適宜用いる。
SP:亜集団
cHCEC:培養ヒト角膜内皮細胞
CST:細胞状態相転移
EMT:上皮間葉系相転移
E比(E-ratio):機能性成熟分化角膜内皮細胞と機能性成熟分化角膜内皮前駆細胞の合計を全細胞で除した数(目的細胞の比率)
ECM:細胞外マトリックスCSC:がん幹細胞
ECD:角膜内皮細胞密度
ugおよびuLはそれぞれμgおよびμLを示す。
(実施例1:細胞注入療法に必須の培養ヒト角膜内皮細胞についての細胞均一性)
本実施例では、不均一な培養ヒト角膜内皮細胞(cHCEC)の中の細胞状態相転移(CST
)を起こしていない細胞注入療法に適切な亜集団(SP)の識別を実証することを目的とした。なぜなら、角膜内皮機能不全の治療のためにドナー角膜の代替となることが期待されるcHCECは、細胞状態相転移(CST)を起こして老化表現型に向かう傾向があり、このために臨床的使用への適用が困難であるからである。
基づいて確認した。異なる亜集団を区別するために有効なCDマーカーは、平均細胞面積が小さく培養物中の細胞密度の高い確立したcHCECに基づいて解析することによって選択
した。3種類の典型的なcHCECの亜集団を差別化する特徴を、細胞外マトリックス(ECM)についてのPCRアレイによってもまた確認した。CDマーカーを組み合わせた解析によって
、様々な亜集団から細胞注入治療に適した亜集団(エフェクター細胞)を明らかに識別することができた。ZO1およびNa+/K+ATPase、CD200およびHLAの発現を異なる亜集団間で比較
した。本実験の概要は以下のとおりである。
ヒト角膜内皮細胞ドナー
使用したヒト組織は、ヘルシンキ宣言の倫理的原則に則って取り扱った。20名のヒトの遺体角膜から取得したHCECは核型分析を行う前に培養した。ヒトドナー角膜はSightLife
Inc.(Seattle, WA, USA)から入手した。全ての死亡したドナーの近親者から、研究のために眼を提供することについて書面によるインフォームドコンセントを得た。全ての組織は統一死体提供法(UAGA)の原則に則って回収し、このUAGAはドナーの同意書を得て、組織を回収した州のものであった。
1名であった。全てのドナーの角膜をOptisol-GS(Chiron Vision, Irvine, CA, USA)中に保存し、研究の目的で航空輸入した。ドナーの情報によると、全てのドナーの角膜は角膜疾患のない健康なものであると考えられ、染色体異常の既往歴のあるドナーは一人もいなかった。
別途具体的に記載しない限り、HCECは、公開されているプロトコルにいくつかの変更を加えたものに従って培養した。簡潔に記載すると、デスメ膜を角膜内皮細胞とともにドナーの角膜から剥がし、37℃において1mg/mLのコラゲナーゼA(Roche Applied Science, Penzberg, Germany)で2時間処理して消化した。単一のドナー角膜から取得したHCECを
、I型コラーゲンコーティング6ウェル細胞培養プレート(Corning Inc., Corning, NY,
USA)のウェルの一つに播種した。培養培地は公開されているプロトコルにしたがって調製した。簡潔に記載すると、基礎培地は、Opti-MEM-I(Life Technologies Corp., Car
lsbad, CA, USA)、8%のウシ胎児血清(FBS)、5ng/mLの上皮成長因子(EGF; Life Technologies)、20μg/mLのアスコルビン酸(Sigma-Aldrich Corp., St. Louis, MO, USA)、200mg/Lの塩化カルシウム(Sigma-Aldrich Corp., St. Louis, MO, USA)、0.08%のコンドロイチン硫酸(Wako Pure Chemical Industries, Ltd., Osaka, Japan)およ
び50μg/mLのゲンタマイシンを用いて調製した。馴化液は以前に記載されたとおりに調製した(Nakahara, M. et al. PLOS One (2013) 8(7), e69009)。この馴化液を用いて5%のCO2を含む加湿大気下において37℃でHCECを培養した。培養培地は週に2回交換し
た。コンフルエントに達したら、37℃で12分間10xTrypLE Select(Life Technologies)
を使用してHCECを1:3の比率で継代培養した。第2~第5継代のHCECを全ての実験に使用
した。
位相差顕微鏡画像は、倒立顕微鏡システム(CKX41, Olympus,Tokyo, Japan)によって
撮影した。細胞面積分布解析のために、cHCECをPBS(-)で3回洗浄し、位相差顕微鏡画像
をBZ X-700顕微鏡システム(Keyence, Osaka, Japan)によって取得した。細胞面積分布はBZ-H3C Hybrid細胞計数ソフトウェア(Keyence)によって定量した。
HCECは、FNC Coating Mixでコーティングされた24ウェル細胞培養プレート中で1×105細胞/ウェルの密度で培養し、免疫蛍光分析のために3~4週間維持した。この細胞を、5%の酢酸を加えた95%エタノール中において室温で10分間固定し、1%のBSAとともに30分間インキュベートした。サンプルを、CD73(1:300; BD Pharmingen染色バッファー)、CD166(1:300; BD Pharmingen染色バッファー)、ZO1(1:300; Zymed Laboratories, South San Francisco, CA, USA)およびNa+/K+ATPase(1:300; Upstate Biotec, Lake
Placid, NY, USA)に対する抗体とともに4℃で一晩インキュベートした。PBSで洗浄した後、Alexa Fluor 488結合ヤギ抗マウスIgG(Life Technologies)か、またはAlexa Fluor 594結合ヤギ抗ウサギIgG(Life Technologies)かのいずれかを1:1000の希釈率で2次抗体として使用した。核をDAPI(Vector Laboratories, Burlingame, CA, USA)で染色した。48ウェル細胞培養プレート中で培養した細胞を、蛍光顕微鏡(BZ-9000; Keyence, Osaka, Japan)によって直接調べた。
まず、HCECをメタノールで固定し、PBSで洗浄を2回し、室温で15分間PBS-0.2% Tx-100 で透過処理し、室温で1時間以上1% BSAのPBSでブロッキングした。その後、1% BSA
のPBSで5倍または25倍に希釈した正常人血清250uLをウェルに添加し、4℃で一晩静置した。その後、0.2% Tx-100のPBSで洗浄を4回行い、Alexa Fluor 488標識抗ヒトIgG(5ug/mL)およびAlexa Fluor 647標識抗ヒトIgM(5ug/mL)を含む1% BSAのPBSを添加(250uL/ウ
ェル)した。その後、室温で1時間静置し、0.2% Tx-100のPBSで洗浄を2回行い、PBSで1
回洗浄した。室温において15分間DAPI(5ug/mL)で核を染色し、PBSで洗浄した後、倒立蛍
光顕微鏡(BZ-9000)で検鏡した。
表面マーカーのスクリーニングは、製造元のプロトコルにしたがってヒト細胞表面マーカースクリーニングパネル(BD Biosciences, San Jose, CA, USA)によってマーカーの発現を評価することによって実施した。簡潔に記載すると、培養HCECを、製造元のプロトコルに示された希釈率における242種類の1次抗体およびアイソタイプIgG(BD Biosciences)とともに4℃で30分間インキュベートした。この細胞を、1%のBSAおよび5mMのEDTAを含むPBSで洗浄し、次に、AlexaFluor 647結合2次抗体(1:200の希釈率、BD Biosciences)とともに4℃で30分間インキュベートした。この細胞を、1%のBSAおよび5mMのEDTA
を含むPBSで再び洗浄し、BD FACSCant II(BD Biosciences)およびCellQuest Proソフ
トウェア(BD Biosciences)を使用してフローサイトメトリーによって分析した。
培養HCECのフローサイトメトリー解析
HCECを、上記の通りTrypLE Select処理によって培養ディッシュから回収し、FACSバッファー(1%のBSAおよび0.05%のNaN3を含むPBS)中に4×106細胞/mLの濃度で懸濁させた。同体積の抗体溶液を添加し、4℃で2時間インキュベートした。この抗体溶液は以下を含む
ものであった。FITC結合抗ヒトCD26 mAb、PE結合抗ヒトCD166 mAb、PerCP-Cy 5.5結合抗ヒトCD24 mAb、PE-Cy 7結合抗ヒトCD44(これらは全てBD Biosciencesから入手)、APC結合抗ヒトCD105(eBioscience、San Diego、CA、USA)。FACSバッファーで洗浄した後、HCECをFACS Canto II(BD Biosciences)で解析した。
細胞ソーティング実験のために、HCECを回収し、FITC結合抗ヒトCD24 mAbおよび上記
の通りのPE-Cy 7結合抗ヒトCD44 mAb(BD Biosciences)で染色した。FACSバッファーで洗浄した後、細胞をFACSバッファーに再懸濁させた。CD24陰性/CD44陽性細胞およびCD24
陰性/CD44陽性細胞をBD FACSJazzセルソーター(BD Biosciences)を使用してソーティングし、後の解析のために24ウェル細胞培養プレート上に4.2×104細胞の密度で播種した。なお使用した各配列はこれらの製品に付随の配列を使用した。
HLA-I、HLA-IIおよびPDL1の蛍光標識には、Alexa647標識結合抗HLAI抗体(Santa Cruz [#SC-32235 AF647])、FITC結合汎抗HLAII抗体(BD Biosciences [#550853])およびPE-Cy7結合抗PDL1抗体(BD Biosciences [#558017])を使用した。
全RNAを、miRNeasy Miniキット(QIAGEN strasse1 40724 Hilden Germany)を使用
して培養HCECから抽出した。cDNA合成は、RT2 First Strandキット(Qiagen)を使用して96ウェルプレートのフォーマットに対して100ngの全RNAを用いて実施した。内皮のmRNAの発現は、製造元の推奨プロトコルに従ってRT2 Profiler PCR-Array Human Extracellular Matrix and Adhesion Molecules(Qiagen)を使用して調べ、RT2 Profiler PCR
Array Data Analysis Tool version 3.5を使用して解析した。
自己抗体の測定は以下のプロトコルに従って行った。
↓PBSで2回洗浄
↓PBS-0.2% Tx-100で透過処理(室温、15分間)
・1% BSA/PBSでブロッキング(室温で1時間以上)
・1% BSA/PBSで5倍または25倍に希釈した正常人血清250μLをウェルに添加
↓4℃、一晩静置
↓PBS-0.2% Tx-100で4回洗浄
・Alexa Fluor 488標識Anti-human IgG(5μg/mL)およびAlexa Fluor 647標識Anti-human IgM(5μg/mL)を含む1% BSA/PBSを添加(250μL/ウェル)
↓室温、1時間静置
↓PBS-0.2% Tx-100で2回洗浄
↓PBSで1回洗浄
・DAPI(5μg/mL)で核を染色(室温、15分間)。
↓PBSで1回洗浄
・倒立蛍光顕微鏡(BZ-9000)で検鏡
2つのサンプル比較についての平均値の統計的有意性(P値)は、Student's t-検定によ
って決定した。複数のサンプルセットの比較についての統計的有意性は、Dunnett's多重
比較検定で決定した。グラフ中の値は平均±標準誤差を表す。
培養間での表現型のばらつき
5歳のドナー、1名の若年のドナーおよび2名の新生児ドナーに由来するcHCECを培養した。培養は、Okumuraらの方法(Okumura N, et al., Invest Ophthal Vis Sci. 2014; 55:7610-8.)に従って実施し、CD44、CD166、CD24およびCD105の表面発現を特徴付
けた(表1Ga)。別のドナー由来のcHCECをCD44、CD166、CD105およびCD24に代えてLGR5について解析した別のセットを表1Gbにまとめる。
団が最も高い割合であることを示す。初代培養cHCECでさえ、同じ培養条件下での培養の
間に様々な表現型を示した。従来法で培養した任意の角膜内皮組織由来は、培養により多様な細胞が生じ、大きさ、形態、細胞密度、均質性の異なる培養物となる。このような不均一性は、以下の本実施例での亜集団分別により解消し得る。
Aに対応し、図2-Bは図1-Cに対応する)。まとめると、継代数の違いおよびドナーの
違いの両方が亜集団の割合に大きなばらつきをもたらした。これにより、いわゆる「培養角膜内皮細胞」にはヘテロな亜集団が存在し、そのうちの特定の亜集団が機能性成熟分化角膜内皮エフェクター細胞であるものと判断し以下解析を進めた。
HCECのマーカーとして周知であるZO1およびNa+/K+ATPaseの両方は、CD44-の亜集団に
ついて染色されただけではなく、層状かつ線維芽細胞様の形態を有するCD44++CD24-の亜
集団およびCD44++CD24+の亜集団についても染色された(図3)。典型的な層状かつ線維芽細胞様の形態を有するCD44+++CD24+の亜集団はこれらを発現していなかった(図3)。
驚くべきことに、HCECのマーカーであると以前主張されたCD200の発現は、脆弱なCSTを起こしたcHCEC中の1種類のCD44++の亜集団に限られていた(図4c)。重要なことに、CD44-細胞はCD200発現を全く示さず(図4a)、より興味深いことに、高度にCD44陽性であるいく
つかの亜集団は、CD200を発現していなかった。同種の宿主に注入され得るcHCECの免疫原性に関して、本発明者らは、亜集団は表面HLAクラスI抗原の発現において異なり、これはCD44およびCD26の発現の減少に伴って減少することを見出した(図5)。
ころ、図10-Bおよび図5に示されるように、本発明の機能性成熟分化角膜内皮細胞は、HLA-IおよびPDL1はいずれの培養ヒト角膜内皮細胞についても陽性であるが、HLAIIはほぼ陰性であった。
れらのマーカーの発現も確認し、CD133、CD105、CD90、CD44、CD26、CD24、HLA-DR/DP/DQは発現されていないことを確認した(図6-B)。免疫組織学的試験に基づいて、CD133、CD105、CD90、CD44、CD26、CD24およびHLA-DR/DP/DQが陰性、かつCD166およびHLA-ABCが陽性である亜集団をエフェクター細胞(本発明の成熟分化角膜内皮機能性細胞に該当する)として定義して、細胞注入療法への適用を確実にした。代表的な免疫細胞学的染色を図6
-Bに示した。本発明者らによる予備的ではあるがさらなる実験において、新鮮なヒト角
膜内皮は、CD24、CD26、CD44、CD90およびCD133のいずれの存在も示さなかったが、明ら
かにCD166を強く発現していた。このことから、ここで示したcHCECの異数性を全く示さない亜集団の表現型は新鮮な角膜内皮組織中のHCECの亜集団と符合することが示される。
CD44は幹細胞の特徴の維持に貢献し、CD44の機能的貢献は、付近にある分子、隣接細胞および周辺のマトリックスと情報をやり取りする能力によるものである。これをうけて、CD44陰性(図7のゲートB)の亜集団および陽性(ゲートA)の亜集団をBD FACSJazzセルソーターによってソーティングし、精製した亜集団を24ウェルプレート中で培養し、その後、17日間さらに培養した。CD44+の亜集団として取得した亜集団は急速に増殖し、紡錘体様
の形態を有し、Na+/K+ATPaseの不規則な弱い染色を示したのに対して、CD44-の亜集団と
して取得した亜集団は比較的緩徐な増殖を示し、Na+/K+ATPaseの明らかな発現を示した(
図7)。この結果は、亜集団の中には細胞注入療法に適したエフェクター細胞が存在するという新しく導入した考えをさらに支持する。
エフェクター細胞およびCSTを起こした別の2種類の亜集団に由来する内皮細胞mRNAの発現を、RT2 Profiler PCR-Array Human Extracellular Matrix and Adhesion
Molecules(Qiagen)を使用して調べた。3種類の典型的なcHCECの亜集団間で対照的な特徴を確認した。クラスター(ヒートマップ)解析によって、これら3種類の亜集団間の明確な差異が図8の通り示され、再度、EMA遺伝子特徴の異なるエフェクター亜集団の存在が
示された。
CD44-cHCECおよびCD44+cHCECについての細胞表面マーカーを、フローサイトメトリーによって242種類の細胞表面抗原の発現についてスクリーニングすることによって評価した(Lyoplate, BD Biosciences)。CDマーカーの発現プロファイルを図9および表2に示す
。
30以上:+++
10以上30未満:++
5以上10未満:+
5未満:-
両方の群で低い発現レベルを示したマーカーは示していない。CD73、CD26、CD105のタ
ンパク質発現はCD44+の亜集団においてのみ見られ、CD44-の亜集団においては全く見られなかった。これに対して、HCEC由来細胞の代表的マーカーとして用いられるCD166は
、CD44の発現強度に関わらずほとんど全ての亜集団において観察された。この観察結果は、CD166は正常細胞および線維芽細胞様細胞の両方において発現されることを記載したOkumuraらの結果と符合する。異なる亜集団を区別するのに有効なCDマーカーを、平均細胞面積が小さく、細胞密度の高い確立したcHCECと比べて解析することによって選択した。CD
マーカーの組み合わせ解析によって、治療に適した亜集団(エフェクター細胞)が明確に識別される。
齢、ドナーの内皮細胞密度および死と保存時の間の期間(D-P)と、cHCECにおけるエ
フェクター細胞の割合(E比)との関係が明らかになった(図10-A)。ドナーの年齢のみがE比と統計的に有意に相関することが判明した。
上記の通り、CD44は、CST、幹細胞特性の維持およびがん幹細胞(CSC)の誘導にお
いて様々な重要な役割を果たし、cHCEC上でのCD44の発現を決定付ける因子を調べる
ことが重要である。初代培養を延長して行うと、CD44の発現は徐々に減少するが(図
11-A)、この減少は成熟分化型への進行と連関することを示す。第6継代においてさ
え、35日間にわたる培養の間にY-27632を添加することで、E比は1.2%から52.3
%へと大きく増加したが、形態変化は認められなかった。47日間にわたる培養の間にY-27632を添加することでもまた、E比が増加した。このことはまた、細胞面積の分布
の明らかな縮小、258から216μm2への平均細胞面積の減少および2229から2582細胞/mm2への培養細胞密度の増加から裏付けられた(図12(A-B))。
フローサイトメトリー分析によって、CD166+CD105-CD44-CD24-CD26-発現であるがCD200-発現ではないエフェクター細胞を同定した。CD166+CD105-CD44+++(CD24およびCD26の一
方が+で他方が-)である他の亜集団もまた存在することを確認した。PCRアレイによって、3種類の完全に異なる発現プロファイルのECMを明らかにした。これらの亜集団のうちい
くらかは、ZO1およびNa+/K+ATPaseをエフェクター細胞に匹敵するレベルで発現していた
が、これらの亜集団のうち1種類のみがCD200を発現しており、これはエフェクター細胞
上にはなかった。HLAの発現は、エフェクター亜集団において減少していた。エフェクタ
ー細胞の割合(E比)はドナーの年齢に反比例し、培養の継代を延長すると減少した。ROCK
阻害剤の存在はcHCECのE比を増加させた。エフェクター細胞の平均細胞面積は、約200~220μm2であり、培養細胞密度は2500細胞/mm2を超えていた。
角膜組織中の成熟HCECと表面発現型を共有する特定の培養エフェクター細胞は、角膜内皮機能不全の治療のためにドナー角膜の代替となり得る。
のばらつきによって説明され(Senoo, T., Joyce, N.C., 2000. Invest. Ophthalmol. Vis. Sci. 41, 660e667;Zhu, C., Joyce, N.C., 2004. Invest. Ophthalmol. Vis. Sci. 45, 1743e1751)、培養の継代数の差異によっても説明されるが、これは幹細胞マーカーであるCD29、CD49e、CD73、CD90、CD105およびCD166に関して間葉系幹
細胞(MSC)培養物の場合にも同様であった。角膜ドナーの年齢はエフェクター細胞の頻度
と有意な負の相関を示したが(図10-A)、核型異数性とは正の相関を示した(Miyai T, et al. Mol Vis. 2008; 14:942-50)。
培養物中においてEMTが高頻度に生じるためである。
FEBS J. 2011; 278:1429-43; Williams K et al., Exp Biol Med (Maywood).
2013; 38:324-38)。エフェクター細胞は、CD44-CD166+CD133-CD105-CD24-CD26-発現によって識別できるが、CD200の発現からは識別できないことが判明した。CD44+~+++CD166+CD133-CD105-(CD24およびCD26の一方が+で他方が-)であるその他の亜集団もまた存在す
ることが確認された。また、Y-27632の存在および培養期間の延長などの培養条件の違いによって、CD44の発現が減少し、E比が上昇する可能性があった。さらなる研究によって、成熟HCECへの分化経路におけるCD44の果たす役割の解明が待たれる。CD44の下流のシグナル因子にはRhoAおよびMMP2があり、これらはチューブリンおよびアクチン細胞骨格の組織化および細胞の仮足形成に必要である(Lin L, et al., Oncol Rep. 2015; 34:663-72)。
傾向がある。EMTの過程において細胞間接着は減少する。EMTを起こした細胞は、しばしば、幹細胞様の特性を獲得し、これはTGF-βによって誘導されたものを含む。EMTが、表現
型変化の間にがん幹細胞またはそのニッチが生成されることと密接に関係することは周知である(Krawczyk N, et al.. Biomed Res Int. 2014; 2014:415721. Epub 2014 May 8)。これを受けて、本発明者らはCD44に関して異なる亜集団の存在を試験し区別することができることを見出した。
て培養することは行っていない(McGowan, S.L., et al., Mol. Vis. 13, 1984e, 2000)。
よって媒介される間葉系表現型の誘導において重要な働きをする。CD44を欠失させるとこれらの変化は起こらなくなる(Nagano O, et al., Cancer Sci. 2004; 95:930-935)。CD44を欠失させると、ミトコンドリア呼吸への流入が増加し、解糖系への流入は阻害
される。CD44の欠失によって誘導されるこのような代謝の変化によって、還元型グルタチオンの顕著な減少が引き起こされる(Tamada M et al., Cancer Res. 2012; 72:1438-48)。HDAC1はmiRNA-34a/CD44軸ならびにRhoAおよびMMP2を含むCD44の下流の因子の活
性化を制御している(Lin L, et al., Oncol Rep. 2015; 34:663-7245)。
こさずに再現性良く培養できることを示した。上述のCDマーカーの組み合わせによって、ミトコンドリア依存的OXHOSへの傾倒を示すが、嫌気的解糖への傾倒は示さない亜集団
を品質評価できる。このように識別した亜集団は核型異常を示さず、これにより安全かつ安定して治療のためにこの培養細胞を提供できるようになり、すなわち、水疱性角膜症の処置のための細胞懸濁液の形態でcHCECを前房中に移植することができるようになる。
本実施例の目的は、不均一なcHCEC中の特定の亜集団(SP)が異数性を示し、その他のも
のは異数性を示さないのかを明らかにすることである。
原発現レベルに基づいて解析した。分析したCD抗原は、CD166、CD105、CD44、CD26およびCD24であった。細胞遺伝学的試験を、いくつかの細胞亜集団からなる全細胞プレパラート(バルク)として、あるいは異なる表面CDマーカーを用いた磁気ビーズ細胞ソーティング(MACS)による半精製亜集団として23ロットのcHCECについて実施した。HCECのドナーは9~69歳であり、培養の継代は初代培養から第5継代であった。以下により詳細なプロトコルを記載する。
ヒト角膜内皮細胞ドナー
使用したヒト組織は、ヘルシンキ宣言の倫理的原則に則って取り扱った。23名のヒトの遺体角膜から取得したHCECは核型分析を行う前に培養した。ヒトドナー角膜はSightLife
Inc.(Seattle, WA, USA)から入手した。全ての死亡したドナーの近親者から、研究のために眼を提供することについて書面によるインフォームドコンセントを得た。全ての組織は統一死体提供法(UAGA)の原則に則って回収し、このUAGAはドナーの同意書を得て、組織を回収した州のものであった。
全てのドナーの角膜をOptisol-GS(Chiron Vision, Irvine, CA, USA)中に保存し、研究の目的で航空輸入した。ドナーの情報によると、全てのドナーの角膜は角膜疾患のない健康なものであると考えられ、染色体異常の既往歴のあるドナーは一人もいなかった。
公開されているプロトコルにいくつかの変更を加えたものに従ってHCECを培養した(Nayak SK, Binder PS. Invest Ophthalmol Vis Sci. 1984; 25:1213-6)。合計30名の異なる年齢のヒトドナーの角膜を実験に使用した。簡潔に記載すると、デスメ膜を角膜内皮細胞とともにドナーの角膜から剥がし、37℃において1mg/mLのコラゲナーゼA(Roche Applied Science, Penzberg, Germany)で2時間処理して消化した。単一のドナー
角膜から取得したHCECを、I型コラーゲンコーティング6ウェル細胞培養プレート(Corning
Inc., Corning, NY, USA)のウェルの一つに播種した。培養培地は公開されているプロトコルにしたがって調製した。簡潔に記載すると、基礎培地は、Opti-MEM-I(Life Technologies Corp., Carlsbad, CA, USA)、8%のウシ胎児血清(FBS)、5ng/mLの上皮成長因子(EGF; Life technologies)、20μg/mLの アスコルビン酸(Sigma-Aldrich Corp.)、200mg/Lの塩化カルシウム(Sigma-Aldrich Corp., St. Louis, MO, USA)、0.08%のコンドロイチン硫酸(Wako Pure Chemical Industries, Ltd., Osaka, Japan)およ
び50μg/mLのゲンタマイシンを用いて調製した。馴化液は以前に記載されたとおりに調製した(Nakahara, M. et al. PLOS One (2013) 8, e69009)。この馴化液を用いて5%のCO2を含む加湿大気下において37℃でHCECを培養した。培養培地は週に2回交換した。コンフルエントに達した場合、37℃で12分間10xTrypLE Select(Life technologies)を
使用してHCECを1:3の比率で継代培養した。第2~第5継代のHCECを全ての実験に使用し
た。
細胞表面マーカーのスクリーニングは、製造元のプロトコルに従ってヒト細胞表面マーカースクリーニングパネル(BD Biosciences, San Jose, CA, USA)を使用してマーカーの発現を評価することによって実施した。簡潔に記載すると、培養HCECを、製造元のプロトコル通りに希釈した242種類の1次抗体およびアイソタイプIgG(BD Biosciences)と
ともに4℃で30分間インキュベートした。この細胞を、1%のBSAおよび5mMのEDTAを含むPBSで洗浄し、次に、Alexa Fluor 647結合2次抗体(1:200の希釈率、BD Biosciences)
とともに4℃で30分間インキュベートした。この細胞を、1%のBSAおよび5mMのEDTAを含
むPBSで再度洗浄し、BD FACSCant II(BD Biosciences)およびCell Quest Proソフトウェア(BD Biosciences)を使用してフローサイトメトリーによって解析した。
cHCECを、上記の通りTrypLE Select処理によって培養ディッシュから回収し、FACSバ
ッファー(1%のBSAおよび0.05%のNaN3を含むPBS)中に4×106細胞/mLの濃度で懸濁させた。同体積の抗体溶液を添加し、4℃で2時間インキュベートした。この抗体溶液は以下を含
むものであった。FITC結合抗ヒトCD26 mAb、PE結合抗ヒトCD166 mAb、PerCP-Cy 5.5結合抗ヒトCD24 mAb、PE-Cy 7結合抗ヒトCD44(これらは全てBD Biosciencesから入手)、APC結合抗ヒトCD105(eBioscience、San Diego、CA、USA)。FACSバッファーで洗浄した後、HCECをFACS Canto II(BD Biosciences)で解析した。
HCECを、上記の通りTrypLE Selectで遊離させ、CD44-HCEC亜集団(エフェクター亜集
団)を抗ヒトCD44マイクロビーズ(Miltenyi Biotec, Bergisch Gladbach, Germany)およびautoMACS Pro separator(Miltenyi Biotec)のプログラムdepl05を用いて単離した。フローサイトメトリーにより確かめたところ、単離したエフェクター亜集団の純度は、全ての場合において95%より高かった。
細胞遺伝学的試験を、表3に示す通り21名のドナーに由来する継代細胞のいくつかに対して実施した。本研究の早期段階において、細胞遺伝学的試験は、細胞のソーティングを行っていない培養細胞全体についてのみ実施した。標準的な細胞遺伝学上の回収法、固定化法ならびにリプシンおよびギムザ後Gバンド法(GTGバンド法)をHCECに対して使用した。細胞分裂を停止させるために0.06μg/mlのコルセミドとともに16時間インキュベートした後、HCECを0.05%のトリプシン/EDTAを用いて遊離させた。HCECを0.075MのKClで処理し
、次に、カルノア固定液(メタノールと氷酢酸との3:1混合液)で固定した。HCEC懸濁液を
スライドガラスの上に滴下し、風乾させた。次に、HCECを0.005%のトリプシンで7分間処理して、6%のギムザ染色液で3.5分間染色した。それぞれのHCECプレパラートについて、50個の細胞の染色体の数を調べた。それぞれのHCECプレパラートについて、20個の細胞について詳細な核型を調べた。標準的な人類染色体国際命名規約(ISCN)(1995年)およびその定義に従った。個々の染色体について欠失または獲得の頻度を調べた。試料毎に異数性の頻度(異常細胞の個数を調べた分裂中期の全細胞の個数で除した)を調べた。全ての分析は、Nippon Gene Research Laboratories(NGRL Sendai, Japan)で実施した。
cHCECの核型の一般的特徴
9~69歳の間のドナーに由来する21種類の培養HCECの核型を分析した。同一の培養プロトコル下であったにもかかわらず、培養細胞の形態的ばらつきだけでなく、cHCECの組
成も培養間で大きさおよび形態において大きく異なった。このばらつきが生じた原因の一つとしては、ドナーの年齢が考えられ、別の原因としては継代数の違いが考えられる。角膜ドナーの年齢とエフェクター細胞の頻度との間には有意な負の相関が見られることも見出されており、これとは反対に、角膜ドナーの年齢と核型異数性の間には正の相関が見られた(Miyai T, et al., Mol Vis. 2008; 14:942-50)。
およびドナーのばらつきに関して分析した。ドナーの情報を核型分析の結果とともにまとめる(表3)。記載がない箇所は、細胞遺伝学的試験の前に中期cHCECの十分に増殖が得ら
れなかったことを意味する。上記の通り、cHCECは、Miyaiらの報告と同様に高頻度の核型異常、例えば、性染色体脱落およびトリソミーを示した。しかし、上記21種類の中で一つのケース(ドナー#13)においてのみ、転座が見られ、これは先行研究では観察されなか
った。本研究において、培養したHCEC全体は大部分のケースで異数性を示し、これは初代培養から第5継代までの継代数にかかわらず生じた。本研究において細胞の培養継代数は多くてもせいぜい5回かまたはそれ未満に限られたので、この結果から先行研究の結論が否定されることはない。統計解析は行わなかったが、ドナーの角膜内皮細胞密度(ECD)は
、異数性の頻度に直接的な影響を及ぼさなかった。ドナーのECDとは反対に、分析時にお
いて低い細胞密度のcHCECは、異数性の頻度といくらか相関し得る。細胞密度が1000細胞/mm2未満であった8種類のcHCECの中で、7種類が明確な異数性(ほぼ90%に達した)を示した
。逆に、細胞密度が1000細胞/mm2より高かった4種類のcHCECはいずれも異常を示さなか
った。このことから、cHCECの培養の品質または効率あるいはCSTの存在は観察された異数性と相関を有し得ることが間接的に示唆される。
先行研究(Mimura T et al.,. Invest Ophthalmol Vis Sci. 2004; 45: 2992-299710)と同様に、異数性の頻度はHCECドナーの年齢と明らかな負の相関を示した。若年のドナー(29歳未満のドナーと付随的に定義する)に由来する14種類のHCECのうち10種類が、正常な核型を示し(71%)、残りの4種類は性染色体脱落かまたはトリソミーのいずれかを示した。30~69歳のドナー由来の場合、8種類のうち6種類が異数性(75%)を示し、正
常な核型を示したのは25%のみであった。加齢によって遺伝子の不安定性が増しDNA修復遺伝子の発現が減少するという一般的に受け入れられている考えを考慮すると、異数性の増加は妥当であると考えられる。
存在しない。29歳未満の若年のドナーに由来するcHCECの29%において核型異常が存在することから、ドナーの年齢と無関係にか、またはドナーの年齢に加えて、HCECの培養における何らかの未解明の潜在的な内因的要因が核型異数性を促進し得ることが示唆された。そこで、本発明者らはcHCECの組成を詳細に調べた。
cHCECは大きさおよび形態において均一ではなく、培養条件によって異なる亜集団から
構成される(実施例1)。HCEC培養における未解明の潜在的な内因的要因を明らかにするために、CD表面抗原マーカーについてcHCECをフローサイトメトリーによって分析した。CD44-の亜集団を多く含有するcHCECは6角形の形態を示し、CSTの兆候を示さなかった。一
方、CD44+++、CD24+またはCD26+いずれかの発現を示す亜集団を含有する培養物は異常なCST様の形態を示した(図15および図16)。この分析から、cHCECの表現型特性は培養物
間で大きく異なり、cHCEC中の亜集団の構成にばらつきがあることが明らかとなった。こ
のばらつきは、cHCECにおける異数性の頻度に関して、ドナーの年齢、ドナーのECDの継代数などの上記の因子の影響を超え得る。
cHCEC中のCD44-、CD166+、CD105-、CD24-、CD26-である亜集団を、磁気ビーズ細胞ソーティング(MACS)によって精製した。図16に示される通り亜集団間のCD44発現は不均一なので、亜集団を分離するためにCD44磁気ビーズを主に使用した。CD44磁気ビーズによる分離によってCD44-、CD166+、CD105-、CD24-、CD26-である亜集団は90%より高純度で半精製された。(CD44+++、CD166+、CD24-、CD26+)または(CD44+++、CD166+、CD24+、CD26-)のいずれかの発現を示す亜集団もまた70%より高純度で半精製された。
、150個の細胞において全く異数性を示さなかった。これに対して、CD44+++、CD166+、CD24-、CD26+の亜集団は100%の細胞(60個の細胞中)において性染色体の脱落を起こした。一方、CD44+++、CD166+、CD24+、CD26-の亜集団は6番、7番、12番および20番染色体上に高
頻度のトリソミーを示した。
は有意な負の相関が見られ、これに対して、核型異数性との間には正の相関が見られた。
フローサイトメトリー分析によって、少なくとも3種類のcHCECの亜集団が存在するこ
とを示した。MACSによって精製した、CD166+、CD105-、CD44-、CD24-、CD26-という表面
発現を示すcHCECの特定の亜集団は、150個の細胞においていずれの異数性も示さなかった。対して、CD166+、CD44+++、CD24-、CD26+であるcHCECの亜集団は、100%の細胞(60個の
細胞)で性染色体の脱落を示し、CD166+、CD44+++、CD24+、CD26-である亜集団は部分的ではあるものの、6番、7番、12番および20番染色体においてトリソミーを示した。
の亜集団に密接に関連しており、角膜組織中に存在する成熟したHCECと表面表現型を共有する特定の亜集団だけは核型異常を示さないという新たな知見が示された。
近年、様々な疾患について組織の加工に基づく新たな治療法が可能となってきている(Okano H Nakamura M Yoshida K. Circ Res. 2013; 112: 523-533.、 Tabar V
Studer L. Nat Rev Genet. 2014; 15: 82-92.)。インビトロでの培養によって
増殖させたcHCECには、異なるCSTを起こした様々な亜集団が存在し得る。このことは
、cHCECの特徴を明確に規定する上で障害となった。HCECは培養によって増殖可能である
ので、角膜内皮機能不全を処置するためのcHCECの注入療法が模索されてきた。概して、
培養細胞は核型変化を起こすという潜在的なリスクを伴う。そのため、処置の安全性および安定性が厳密に管理されなければならない臨床的使用を見据えると、cHCECの品質は慎
重にモニタリングしなければならない。
し、HCEC培養の実際的な問題は、cHCEC中には明確に異なる脆弱なCSTを起こす亜集団が存在することである。Cheongらの報告したCD200では、分化したHCECを区別することはでき
ず、これはむしろ何らかのCSTを経たcHCECの亜集団において発現されていた。従来のCDマーカーは、正常な機能を有する非線維芽細胞様細胞と線維芽細胞変化を経た細胞とを区別し得るが、本発明の機能性成熟分化角膜内皮細胞を識別することは困難であることが判明した。本実施例において、核型異常を有する非線維芽細胞様細胞の中に亜集団が存在することが明確に示された。臨床的使用に適う品質のcHCECを識別するには、より詳細な解
析により、cHCECの中の線維芽細胞変化以外のCSTを経た亜集団を見分ける必要がある。本研究の目的は、cHCECの中の異数性を示す亜集団または異数性を示さない亜集団において
発現される細胞表面CD抗原を特定して、cHCECにおいて現在観察される異数性が、異なる
分化表現型を有する亜集団の存在に依存するのかどうかを明確にすることである。
裂によって引き起こされたと考えられる。Miyaiらの観察結果(Miyai T, et al., Mol
Vis. 2008; 14:942-50)とも一致するが、初代培養の細胞にさえ異常が存在したこと
から、cHCECにおいて観察される大部分の異常核型は、培養の非常に早期の段階で発生す
ると考えられる(表3の#4、#5、#6)。統計解析は行っていないが、ドナーの年齢と異数性の頻度との間にはMiyaiらが指摘したように顕著な正の相関関係があるようだ。
番染色体のトリソミーをモザイク状に示す傾向があった。以前の研究では、性染色体が、抹消リンパ球、骨髄細胞、角膜実質細胞[Stone JF, et al., Mutat Res. 1995; 3
38:107-13;Pettenati MJ, et al., Hum Genet. 1997; 101:26-9]および角膜内皮
において年齢に依存して脱落することが報告された。したがって、性染色体の脱落は年齢依存的な現象であり、細胞の種類によらない。本実施例における結果は、少なくとも性染色体の脱落に関してはMiyaiらの研究結果(上記)とよく符合する。しかし、この先行研究
は8番染色体のトリソミーについてのみ記載しているので、6番、7番、12番および20番染色体におけるトリソミーの存在については符合しない。8番染色体モザイクトリソミー症候群は角膜の不透明化を伴う[Miyata K,et al., Cornea. 2001; 20:59-63]。このトリソミーの位置の違いを究明するにはさらなる詳細な研究が必要である。本実施例における結果から、臨床治療のためのcHCECは、若年のドナーから取得すべきであることもまた
示される。さらに、臨床適用の前にcHCECの核型を慎重に調べることが非常に重要である
ことも示された。
すcHCECの特定の亜集団では150個の細胞を調べてもいずれの異数性も観察されなかったことがフローサイトメトリー分析から示された。本発明者らのさらなる解析によってこの亜集団の中にも、CD90+およびCD90-両方の亜集団が存在することが示されているが、核型分類の結果には影響を与えないようだ。本実施例によって、cHCECに異数性の核型を示さな
い亜集団が存在することが初めて直接的に示された。これにより、この亜集団を臨床適用することが可能となる。対して、CD166+、CD44+++、CD24-、CD26+という表面発現型を示
すcHCECの亜集団では、100%の細胞において性染色体の脱落が観察され、一方、CD166+、CD44+++、CD24+、CD26-という表面発現型である亜集団は、部分的にではあるが、6番、7番、12番および20番染色体のトリソミーを示した。本発明者らによる予備的ではあるがさらなる実験において、新鮮なヒト角膜内皮は、CD24、CD26、CD44およびCD90のいずれの存在も示さなかったが、CD166を均一に発現していた。このことから、ここで示したcHCECの異数性を示さない亜集団の表現型は新鮮な角膜内皮組織中のHCECの亜集団と符合すると思われる。
本実施例は、細胞療法のためにCSTを起こさず成熟HCECの細胞機能特性を有するほぼ均一な亜集団(SP)を再現性よく作製する培養プロトコルを確立することを目的とする。
ーカーの発現から確認した。様々な亜集団の中から細胞療法に最も適した目的の亜集団(
エフェクター細胞)を、明確に特定できるCDマーカーについて分析した。培養プロセス
をエフェクター細胞亜集団の割合(E比)について評価した。
(試薬および抗体)
HCECは、上述のTrypLE Select処理により培養ディッシュから回収し、FACSバッファー(1%BSAおよび0.05%NaN3を含むPBS)中に4×106細胞/mLの濃度で懸濁した
。等容量の抗体溶液を加え、4℃で2時間インキュベートした。抗体溶液を以下の抗体を混合することにより調製した:FITCまたはPE結合抗ヒトCD26 mAb、PE結合抗ヒトCD166 mAb、PerCP-Cy 5.結合抗ヒトCD24 mAb、PE-Cy 7またはPerCP-Cy 5.5結合抗ヒトCD44(以上すべてBD Biosciencesから入手)、APC結合抗ヒトCD105(eBioscience, San Diego,
CA, USA)。FACSバッファーで洗浄した後、HCECをFACS Canto II(BD Biosciences)
で分析した。
使用したヒト組織は、ヘルシンキ宣言の倫理的原則に則って取り扱った。20名のヒトの遺体角膜から取得したHCECは核型分析を行う前に培養した。ヒトドナー角膜はSightLife
Inc.(Seattle, WA, USA)から入手した。全ての死亡したドナーの近親者から、研究のために眼を提供することについて書面によるインフォームドコンセントを得た。全ての組織は統一死体提供法(UAGA)の原則に則って回収し、このUAGAはドナーの同意書を得て、組織を回収した州のものであった。ドナーの年齢は2~75歳の範囲(43.7±26.4歳)であった
。男性は9名であり、女性が11名であった。全てのドナーの角膜をOptisol-GS(Chiron
Vision, Irvine, CA, USA)中に保存し、研究の目的で航空輸入した。ドナーの情報
によると、全てのドナーの角膜は角膜疾患のない健康なものであると考えられ、染色体異常の既往歴のあるドナーは一人もいなかった。
別途記載しない限り、HCECは、公開されているプロトコルにいくつかの変更を加えたものに従って培養した。合計30名の異なる年齢のヒトドナーの角膜を実験に使用した。簡潔に記載すると、デスメ膜を角膜内皮細胞とともにドナーの角膜から剥がし、37℃において1mg/mLのコラゲナーゼA(Roche Applied Science, Penzberg, Germany)で2時間処理
して消化した。単一のドナー角膜から取得したHCECを、I型コラーゲンコーティング6ウェル細胞培養プレート(Corning Inc., Corning, NY, USA)のウェルの一つに播種した。培養培地は公開されているプロトコルにしたがって調製した。簡潔に記載すると、基礎培地は、Opti-MEM-I(Life Technologies Corp., Carlsbad, CA, USA)、8%のウシ胎児
血清(FBS)、5ng/mLの上皮成長因子(EGF; Life technologies)、20μg/mLのアスコルビ
ン酸(Sigma-Aldrich Corp.)、200mg/Lの塩化カルシウム(Sigma-Aldrich Corp., St. Louis, MO, USA)、0.08%のコンドロイチン硫酸(Wako Pure Chemical Industries, Ltd., Osaka, Japan)および50μg/mLのゲンタマイシンを用いて調製した。馴化液は以
前に記載されたとおりに調製した(Nakahara, M. et al. PLOS One(2013) 8, e69009)。この馴化液を用いて5%のCO2を含む加湿大気下において37℃でHCECを培養した。培養培地は週に2回交換した。コンフルエントに達した場合、37℃で12分間10xTrypLE Select(Life technologies)を使用してHCECを1:3の比率で継代培養した。第2~第5継代のHCECを全ての実験に使用した。
HCECのトリコスタチンA(TSA)処理
HCECのトリコスタチンA処理は、以下のように実施した。デスメ膜を角膜内皮細胞とともにドナーの角膜から剥がし、37℃において1mg/mLのコラゲナーゼA(Roche Applied Science, Penzberg, Germany)で2時間処理して消化した。単一のドナー角膜から取得したHCECを、I型コラーゲンコーティング6ウェル細胞培養プレート(Corning Inc., Corning,
NY, USA)のウェルの一つに播種した。トリコスタチンA含有培地は、Opti-MEM-I(Life Technologies Corp., Carlsbad, CA, USA)、8%のウシ胎児血清(FBS)、5ng/mLの上皮成長因子(EGF; Life technologies)、20μg/mLのアスコルビン酸(Sigma-Aldrich Corp. , St. Louis, MO, USA)、200mg/Lの塩化カルシウム(Sigma-Aldrich Corp., St. Louis, MO, USA)、0.08%のコンドロイチン硫酸(Wako Pure Chemical Industries, Ltd., Osaka, Japan)、50μg/mLのゲンタマイシンおよび0.5μMのトリコスタチンAを用いて調製した。トリコスタチンA含有培地を用いて5%のCO2を含む加湿大気下において37℃でHCECを培養した。培養培地は週に2回交換した。コンフルエントに達した場合、37℃で12分間10xTrypLE Select(Life technolog
ies)を使用してHCECを1:3の比率で継代培養した。培養を30日間行い、第2継代のHCECを蛍光顕微鏡観察に使用した。
位相差顕微鏡画像は、倒立顕微鏡システム(CKX41, Olympus,Tokyo, Japan)によって
撮影した。細胞面積分布解析のために、cHCECをPBS(-)で3回洗浄し、位相差顕微鏡画像
をBZ X-700顕微鏡システム(Keyence, Osaka, Japan)によって取得した。細胞面積分布はBZ-H3C Hybrid細胞計数ソフトウェア(Keyence)によって定量した。
HCECは、FNC Coating Mixでコーティングされた24ウェル細胞培養プレート中で1×105細胞/ウェルの密度で培養し、免疫蛍光分析のために3~4週間維持した。この細胞を、5%の酢酸を加えた95%エタノールまたは4%パラホルムアルデヒド中において室温で10分間
固定し、1%のBSAとともに30分間インキュベートした。サンプルを、CD73(1:300; BD Pharmingen染色バッファー)、CD166(1:300; BD Pharmingen染色バッファー)、ZO1(1:300; Zymed Laboratories, South San Francisco, CA, USA)およびNa+/K+ATPase(1:300; Upstate Biotec, Lake Placid, NY, USA)に対する抗体とともに4℃で一晩イ
ンキュベートした。PBSで洗浄した後、Alexa Fluor 488結合ヤギ抗マウスIgG(Life Technologies)か、またはAlexa Fluor 594結合ヤギ抗ウサギIgG(Life Technologies)か
のいずれかを1:1000の希釈率で2次抗体として使用した。核をDAPI(Vector Laboratories, Burlingame, CA, USA)で染色した。48ウェル細胞培養プレート中で培養した細胞を、蛍光顕微鏡(BZ-9000; Keyence, Osaka, Japan)によって直接調べた。
HCECを、上記の通りTrypLE Select処理によって培養ディッシュから回収し、FACSバッファー(1%のBSAおよび0.05%のNaN3を含むPBS)中に4×106細胞/mLの濃度で懸濁した。同体積の抗体溶液を添加し、4℃で2時間インキュベートした。この抗体溶液は以下を含むも
のであった。FITC結合抗ヒトCD26 mAb、PE結合抗ヒトCD166 mAb、PerCP-Cy 5.5結合抗ヒトCD24 mAb、PE-Cy 7結合抗ヒトCD44(これらは全てBD Biosciencesから入手)、APC
結合抗ヒトCD105(eBioscience、San Diego、CA、USA)。FACSバッファーで洗浄した後、HCECをFACS Canto II(BD Biosciences)で解析した。
cHCEC中の亜集団組成のばらつきによって培養品質が確認できない 異なる年齢のドナーに由来するHCECを、Okumuraらの方法(Okumura N, et al., Invest Ophthalmol Vis Sci. 2014; 55:7610-8.)に従って培養し、CD44、CD166、CD24、CD26およびCD105の表面発現を特徴付けた(図19)。代表的なものを、位相差顕微鏡写真とともに図18
~20にまとめる。一見して、cHCECが様々な亜集団を含むことがかなり明確である。CD44-CD166+CD24-CD26-CD105-である亜集団の割合によって規定されるE比は様々であった(図19)。他の箇所に記載したとおり、CD44の発現はcHCECが成熟cHCECへと分化するにした
がって減少した。ある培養物中にCD24かまたはCD26かのいずれかを発現する亜集団存在すると、顕著な核型異常、例えば、性染色体脱落、トリソミーまたは転座を有する何らかの亜集団が存在するおそれがある。そのため、これらの細胞の大部分は臨床的使用における注入に適さない。CD24+細胞の割合は最大で54.3%~96.8%に達し、CD26+細胞の割合は44.2%に達した。また、CD44+++の発現細胞が80%を超える最も高い割合で存在することが観察
され、これは、外観上の表現型は非線維芽細胞様であり、位相差顕微鏡によって観察すると、特徴的な接触阻害による多角形状および単層性を有していた。驚くべきことに、HCECのマーカーとして周知のZO1およびNa+/K+ATPaseの両方が、CD24+、CD26+またはCD44+++の亜集団について染色された。このことから、形態的判断だけではcHCEC中に存在する不均
一な亜集団を十分に区別できないおそれがある。この結果をうけて、エフェクター細胞亜
集団の割合(E比)の観点から培養プロセスを詳細に評価するために培養プロトコルを再評
価した。
培養したHCECは、老化表現型、EMTおよび線維芽細胞形態へと向かう細胞状態相転移(CST)を起こす傾向を有する。TGF-βの多能性機能および体液中における存在から、TGF-βは細胞外マトリックス(ECM)内に浸潤する表現型の獲得を阻害するように働き得ると仮説を
立てた。これに対して、TGF-βは、様々な生物学的システムおよび病理学的システムにおいてEMTを促進し、維持し得る。しかし、EMTに重要なシグナル分子であるこの増殖因子TGF-βの、EMTの発達および進行に重要な分子としての役割は十分に研究されている(Wendt
MK, et al., Future Oncol 5: 1145-1168)。そこで、TGF-βシグナルを維持することで、成熟分化角膜内皮細胞の機能性を維持または向上させることができると考えた。そのため、TGF-βシグナル伝達阻害剤を含まない条件下での培養結果を確認したところ
、ヒト角膜内細胞の機能性が維持されていることが確認できた(図22-A)。また、ヒストン脱アセチル化酵素(HDAC)阻害剤であるトリコスタチンAを添加した培地中でHCECを培養することによって成熟cHCECへの分化を促進することができた(図22-D)
。
細胞播種密度はcHCECにおけるE比に影響を与える
本実施例で示されるように、cHCECの品質は、E比およびCD44+++細胞の割合により大部
分がモニター可能である。臨床的使用のための均一性までHCECを培養するプロトコルを完成させる前に、細胞播種密度がE比およびCD44+++細胞の割合に及ぼす影響について調べた。正確な結論を得るために、E比がそれぞれ54.0%(培養継代2)、77.3%(継代1)および93.4%(継代2)と異なる3つのロットのcHCECについて調べた。全ての群において、細胞播種密度が高くなるほど、次の継代におけるE比の減少は少なくなった。また、培養前に高いE比を有する群は、E比の減少が最も低かった。E比が90%より高い群は、200細胞/mm2の細胞播種密度で細胞数の非常に急速な増加(つまり、増殖速度が大きい)を示し、750および1000細
胞/mm2の細胞播種密度から出発した群に匹敵する細胞密度に達した。驚くべきことに、750細胞/mm2の播種密度の群ではCD44+++細胞の割合は1.2%までであったのに対して、この群のCD44+++細胞の割合は0.7から24%までであった。しかし、CD44-からCD44++へと移行する割合の増加は、細胞播種密度のより低い群において優勢であった。
上記の観察結果を全てまとめて、臨床的使用のために最大限に均一にするためのHCECの培養プロトコルを暫定的に以下のように定めた。ドナーの年齢は7~29歳の間で、1回の
継代の後の細胞播種密度は400細胞/mm2より高くし、TGF-βシグナル伝達を阻害しない条
件(典型的には阻害剤を使用しない)を用いる。ROCK阻害剤Y-27632の添加を、CD44-の亜集団へと効率的に分化させるために培養の全期間を通して3日に1回へと変更し
た。この培養条件下では、Y-27632は、CD44の発現を低下させながらcHCECの成熟
状態への分化を劇的に誘導した。CD44の下流の因子には、Y-27632の標的であるRhoAがある。Y-27632の連続添加は、図21、図22Bおよび図22Cに示すようにE比を劇的に増加させ、CD24+またはCD26+の亜集団の割合を減少させた。E比は、約90%ま
たはそれより高く、cHCECにおいて目的外の亜集団は殆ど見られなかった。この条件下で
は、第5継代や57~71歳の高齢のドナーからでさえ高品質なcHCECが高頻度に観察された
。
CD44-CD166+CD133-CD105-CD24-CD26-エフェクター細胞を検出するフローサイトメトリ
ー分析は、培養手順を標準化するのに簡便で信頼性の高い方法であった。90%を超えるE比を有するcHCECが核型異常なく再現性良く作製できていることを確実にするためには、ド
ナーの年齢は29歳未満であることが好ましかった。E比は培養間で大きく異なり、ROCK
阻害剤のような添加剤の存否などの培養条件に依存した。また、TGF-βのシグナル伝達
を利用することで、より高品質な成熟分化角膜内皮の機能性を維持または向上することができることが見出された。継代培養時の細胞播種密度もまた、さらなる継代のために高いE比を維持するのに重要であった。ROCK阻害剤Y-27632が培養期間を通して連続的
に存在することによってE比が改善された。また、HDAC阻害剤トリコスタチンAが存
在したことによってもE比が改善された。
ることを確かめた。
本発明者らは、一つの例として、CD133、CD105、CD90、CD44、CD26、CD24、HLA-DR、DQについて陰性であり、CD166、HLA-ABCおよびPDL1について陽性であるcHCECの亜集団を再
生医療への安全かつ安定な適用が保障されるエフェクター細胞と定義した。90%を超えるE比を有し、核型異常を示さないcHCECを再現性良く生産するために、Rock阻害剤Y-27
632が培養期間を通して連続的に存在することと、HDAC阻害剤トリコスタチンAが存在することと、TGF-βシグナル伝達を阻害しない条件であることとが推奨された。
ルを制御する因子を調べることと、90%を超えるE比を有する最終生成細胞を得るための培養プロトコルを決定することとは関連が深い。多機能であるCD44は、多くの細胞において、幹細胞の挙動、例えば、自己再生および分化を含め様々な機能を制御し、細胞間相互作用および細胞-ECM間相互作用、細胞内輸送、ホーミングおよびシグナル伝達イベントにおける変化に応答してECMにおける変化を検出し、これにより組織環境に対する柔軟な対応が可能となる(Williams K, et al.,. Exp Biol Med (Maywood).2013; 38:324-38)。CD44の下流のシグナル因子にはRhoAおよびMMP2があり、これらはチューブリンおよ
びアクチン細胞骨格の組織化および細胞の仮足形成に必要である(Lin L,et al., Oncol Rep. 2015; 34:663-72)。CD44の欠失によりこれらが変化する(Nagano O, et al., Cancer Sci. 2004; 95:930-935)。CD44を欠失させると、ミトコンドリア呼吸への
流入が増加し、解糖系への流入は阻害される。miRNA-34a/CD44経路の活性化はCD44の下流の因子、例えば、RhoAおよびMMP2(Lin L, et al., Oncol Rep. 2015; 34:663-72)を制御する。このシグナル経路は、部分的にではあるが、Y-27632によるcHCEC上
のCD44発現の減少に関わる。本発明者らは以前、様々な亜集団においてmiR29のアップレ
ギュレーションはCD44発現のアップレギュレーションを伴うことを確認した。すなわち、本明細書において他の箇所に記載されるように、このmiRはcHCECの亜集団の中でもCD44-
表現型であるエフェクター細胞において最もダウンレギュレートされていた。興味深いことに、このmiRは、EMT促進効果を有すると報告されている(Rostas JW 3rd, et al.,
Mol Cancer. 2014; 13:200)。
不安定な表現型を示し(図18~20)、MMP2レベルの上昇を示した。
近開発したE比という指標を使用することによって発展させ、それによってフックス角膜
内皮ジストロフィ、外傷または外科的介入に起因する角膜内皮細胞の組織損傷に対する細胞注入療法のための細胞調製物として役立つ成熟機能を有するcHCECの提供を可能とした
。
本実施例は、再生医薬に適合できるcHCECを正しくソートするための方法を探索することを狙いとして、分化状態において異種性であるcHCECのどれが異なるエネルギー代謝を示すのかを明らかにすることを目的とする。
ヒト角膜内皮細胞ドナー
本実施例で使用されるヒト組織は、ヘルシンキ宣言の倫理的原則に則って取り扱った。HCECを20のヒト死体角膜から得、核型分類分析を行う前に培養した。ヒトドナー角膜は、SightLife Inc.(Seattle,WA,USA)から得た。研究のための眼の提供に関する書面によるインフォームドコンセントが、すべての死亡したドナーの親族から得られた。すべての組織は、ドナーの同意を得て組織を回収した州の統一死体提供法(UAGA)の原則に則って回収した。
別途記載しない限り、HCECは、公開されているプロトコルにいくつかの変更を加えたものに従って培養した。異なる年齢のヒトドナー角膜を、実験に使用した。簡潔に記載すると、デスメ膜をCECとともにドナーの角膜から剥がし、37℃において1mg/mLのコラゲナーゼA(Roche Applied Science,Penzberg,Germany)で2時間処理して消化した。単一のドナー角膜から取得したHCECを、I型コラーゲンコーティング6ウェル細胞培養プレート(Corning Inc.,Corning,NY,USA)のウェルの一つに播種した。培養培地は公開されているプロトコルにしたがって調製した。簡潔に記載すると、基礎培地は、Opti-MEM-I(Life Technologies Corp.,Carlsbad,CA,USA)、8%のウシ胎児血清(FBS)、5ng/mLの上皮成長因子(EGF;Lif
e technologies)、20μg/mLのアスコルビン酸(Sigma-Aldrich Corp.)、200mg/Lの塩化カルシウム(Sigma-Aldrich Corp.,St. Louis,MO,USA)、0.08%のコンドロイチン硫酸(Wako Pure Chemical Industries,Ltd.,Osaka,Japan)および50μg/mLのゲンタマイシンを用いて調製した。馴化液は以前に記載されたとおりに調製した(Nakahara,M. et al. PLOS One(2013) 8,e69009)。この馴化液を用いて5%のCO2を含む加湿大気下において37℃でHCECを培養した。培養培地は週に2回交換した。コンフルエントに達した場合、37℃で12分間10x TrypLE Select (Life technologies)を使用してHCECを1:3の比率で継代培養した。第2~第5継代のHCECを全ての実験に使用した。
HCECを、上記の通りTrypLE Select処理によって培養ディッシュから回収し、FACSバッファー(1%のBSAおよび0.05%のNaN3を含むPBS)中に4×106細胞/mLの濃度で懸濁した。同じ体積の抗体溶液を添加し、4℃で2時間インキュベートした。FACSバッファーで洗浄した後、HCECをFACS Canto II(BD Biosciences)で解析した。
6ウェルプレートで培養したHCECをPBSで洗浄し、4%PFAで15分固定し、次いで、PBSで洗浄し、PBS中の0.1%TritonX100で5分室温で処理した。ブロッキングは、5分間PBS中1%BSAを用いて行い、ウサギ抗c-Myc抗体(Ab)(細胞シグナリング #5605)を用いて4℃で一晩染色した。PBSで3回洗浄した後、二次Abとして、Alexa488結合抗ウサギIgG(1:1000、Invitrogen A11034)で染色した。細胞核質は、DAPI(Vector
Laboratories, Inc., Burlingame, CA)で染色した。
バルク培養HCECによるグルコース取り込みは、フローサイトメトリー分析によって行った。簡潔に述べると、剥離したcHCECを、培養培地を新鮮なグルコース消去培地に15分交換した後、600μMの2NBGDとともに、5、10、30分間37℃でインキュベートした。次いで、細胞を2回低温FACSバッファー(1%BSA含有PBS)で洗浄し、氷冷FACSバッファーに再懸濁し、フローサイトメトリーに供した。サンプルは、BD FACS Canto II(BD Biosciences)を用いて、FITCレンジ(励起 490nm, 放射 525nm バンドパスフィルター)で分析した。異なるグループの平均蛍光強度を、BD FACS Divaソフトウェアで分析し、非標識細胞由来の自家蛍光について補正した。
HCECは上述の手順に従って培養した。単一ドナー角膜から得られたHCECを、タイプIコラーゲン被覆6-ウェルプレート(Corning Inc.,Corning,NY,USA)の一つのウェルに播種した。培地は、公開されているプロトコルに従って調製した。
バルク培養におけるcHCECの亜集団の部分的な消失を評価するために、Na+/K+-ATPaseの免疫組織化学染色を、グルコース飢餓の前後で行った。Na+/K+-ATPaseは、HCECの機能関連マーカーとして使用した。細胞を氷冷メタノールで10分間固定し、次いで、0.1%TritonX-100を含有するPBS(-)で10分間透過処理した。PBS(-)中1%BSAにより、室温で1時間非特異的反応性をブロッキングした後に、Na+/K+-ATPase染色を、2μg/mLのNa+/K+-ATPaseモノクローナル抗体(Millipore,Temecula,CA,USA)を用いて行い、次いで、Histofine MAX-PO(MULTI)(Nichirei Biosciences,Tokyo,Japan)を用いた。0.1%TritonX-100含有PBS(-)で洗浄した後、Histofine Simple Stain DAB Solution(Nichirei Biosciences)で発色させ、ヘマトキシリン(Merck, Darmstadt, Germany)で対比染色した。最後に、細胞をHistofine水性マウンティング培地(Nichirei Biosciences)にマウントし、明視野顕微鏡下で観察した。
トータルRNAを、miRNeasy Mini kit (QIAGEN strasse1 40724 Hilden Germany)を用いて培養HCECから抽出した。RNase Inhibitorを伴うHigh Capacity cDNA Reverse Transcriptionキット(Applied Biosystems,Foster City,CA,USA)を用いてcDNAを合成した。TaqMan Fast Advanced Master Mix(Applied Biosystems)およびTaqMan Gene Expression Assays,Inventoried(Applied Biosystems)を用いて、以下の条件でPCR反応を行った。なお使用した各配列はこれらの製品に付随の配列を使用した。以下に使用したプライマーIDを示す。
2サンプル比較の平均値の統計的有意性(P値)を、スチューデントt検定によって決定した。複数サンプルセットの比較の統計的有意性は、ダネット多重比較検定により決定した。グラフに示される値は、平均±SEを表す。
細胞内代謝物の代謝抽出物を、Internal Standard Solution(Human Metabolome Technologies;HMT,Inc.,Tsuruoka,Japan)を含有するメタノールを有するcHCEC培養6ウェルプレートまたは24ウェルプレートから調製した。培地をウェルから吸引し、細胞を、5%マンニトール溶液(6ウェルプレートではまず1.5mL、次いで0.5mL、あるいは24ウェルプレートではまず0.3mL、次いで0.1mL)で2回洗浄した。次いで、細胞を、600μL(6ウェルプレート)または200μL(24ウェルプレート)のメタノールで処理し、酵素を不活化させるために30秒静置した。次に、細胞抽出物を内部標準(H3304-1002,Human Metabolome Technologies,Inc.,Tsuruoka,Japan)を含有する10μL(6ウェルプレート)または140μL(24ウェルプレート)のMilli-Q水で処理し、また30秒静置した。抽出物を取得し、2,300×g、4℃で5分間遠心し、全ての上部の水層をMillipore5-kDaカットオフフィルターを通して4℃で120分間9,100×gで遠心的にフィルターし、タンパク質を除去した。ろ液は、遠心的に濃縮し、CE-MS分析のために50μLのMilli-Q水に再懸濁した。
20μLの培地と、内部標準(H3304-1002,Human Metabolome Technologies,Inc.,Tsuruoka,Japan)を含有する80μLのMilli-Q水とを十分に混合した。混合物をMillipore5-kDaカットオフフィルターを通して4℃で120分間9,100×gで遠心的にフィルターし、タンパク質および高分子を除去した。ろ液は、CE-MSのためにMilli-Q水によって5倍に希釈した。
Soga,et al.(Soga,D. et al.,T. Soga, et al.,Anal.Chem. 2002;74:2233-2239 Anal.Ch
em. 2000;72:1236-1241; T. Soga, et al.,J
. Proteome Res. 2003;2:488-494)によって開発された
方法にしたがって、カチオン性化合物を、CE-TOFMSのポジティブモードで測定し、アニオン性化合物を、CE-MS/MSのポジティブモードおよびネガティブモードで測定した。CE-TOFMSおよびCE-MS/MSによって検出されたピークを、m/z、移動時間(MT)、およびピーク面積を含めたピーク情報を得るために、自動統合ソフトウェア(それぞれMasterHands,Keio University,Tsuruoka,Japan (M. Sugimoto, et al., Metabolomics,2009;6:78-95)およびMassHunter Quant
itative Analysis B.04.00, Agilent Technologies, Santa Clara,CA,USA)を用いて抽出した。CEにおけるMTおよびTOFMSによって測定されたm/z値に基いて、HMT代謝物データベースから、仮定的な代謝物によってピークをアノテーションした。ピークアノテーションについての寛容範囲(tolerance range)は、MTについて±0.5分、m/zについて±10ppmと設定した。加えて、代謝物の濃度を、内部標準の面積および3点キャリブレーションによって得た標準曲線に対して各代謝物のピーク面積を標準化することによって計算した。
バルク培養細胞によるc-Myc発現およびグルコース取り込み
亜集団に分けていないバルク培養cHCECを、抗c-Myc抗体により免疫細胞化学染色した。位相差顕微鏡において形態的に形質転換細胞様の形状の位置でc-Myc発現が確認された(図23)。このことは、特定の培養条件で、cHCECにおいてc-Mycを発現するか、または発現しない少なくとも2つの亜集団が存在することを示していた。解糖におけるc-Mycの役割を考慮して、バルク培養cHCECにおけるグルコースの取り込みを、フローサイトメトリーによって調査し、cHCECにおける大きな取り込みを確認したが、グルコース取り込みの程度における差異はなかった(全てのインキュベーション時間で2-NBGD取り込みの単一ピーク)(図23)。2NBGDは、グルコーストランスポーターによって多くの細胞型に取り込まれることが示されている。このことから、グルコース飢餓は、バルク培養におけるcHCECの亜集団の部分的だが選択的な消失をもたらすのかどうかという問いが直ちに生じる。
バルク培養におけるcHCECの亜集団の選択的消失を評価するため、cHCECを、乳酸の存在下でFBSを含まないグルコース飢餓DMEMで培養した。FBSの不存在は、FBSからのグルコースのキャリーオーバーを防ぐことを狙いとしていた。通常の培養条件下でP3まで継代した後、培養細胞を、10mM以下の乳酸を含むか、または含まない、グルタミンを有するがグルコースを有しないDMEMで72時間インキュベートし、次いで、結果的なcHCECを、さらに通常の条件下で4週間、3つの異なる希釈継代(1:3、1:9、1:30)で培養した。位相差顕微鏡によって検出された形態的変化(図24-A)は、cHCECのいくつかの亜集団の消失を実証しており、均一なグルコース取り込み(図23)の下であっても、解糖的エネルギー代謝が存在することを示していた。バルク培養におけるcHCECの亜集団の部分的な消失を評価するため、グルコース飢餓の前後でNa+/K+-ATPaseの免疫組織化学染色を、グルコース飢餓の前後で行った。Na+/K+-ATPaseは、HCECの機能関連マーカーとして使用した。消失効果からの回復の効率は、明確に添加された乳酸の濃度に依存していた(図24-B)。グルコース飢餓によるcHCECの部分的消失は、HCECの別の培養ロットを用いても確認した。飢餓は継代P3で72時間行い、次いで、形態的に、1:3希釈で4週間回復した。
グルコース飢餓によるcHCEC亜集団の部分的、選択的消失は、培養毎の形態的多様性にかかわらず、再現的に確認でき、このことは解糖的エネルギー代謝において異なる亜集団の存在を示していた。消失効果の理解を深めるため、飢餓前のcHCECおよび72時間飢餓後のcHCECからRNAを抽出した。例えば、EMT、細胞老化および線維症などのCSTに関連する遺伝子の発現を、定量リアルタイムPCRによって分析した(図25(A-H))。グルコース飢餓の後の最も印象的なアップレギュレーションは、MMP1、MMP2、BMP2およびTGF-β1に係るものであり、一方で、TGF-β2は減少を示した(図25(A-H))。
異なるcHCEC間での細胞内代謝物のバリエーションを同定するため、CE-MSを行い、小分子代謝物のレベルをプロファイルした。3つのロットのcHCEC(C16P6、C21P3および164P1)を分析し、サブコンフルエント細胞密度(それぞれ7.22X105、9.85X105および3X105)で培地交換した2または3日後にタンパク質を抽出した。標準化細胞内代謝物シグナルポジショニングを、PCA1および2コンポーネントにおける典型的な代謝物と共に、PCA分析として図26-Aに相対的に示した。標準化代謝物強度の階層クラスタリング(HCA)は、3つのロットのcHCEC間の明確な分離を示した(図26-A)。これらのcHCECの形態的差異は、フローサイトメトリー分析と共に示した(図26-E~26-G)。表面的に類似した顕鏡的特徴にもかかわらず、特にC16、C164およびC21の間で、HCAは大きく異なっていた。フローサイトメトリー分析による区別は、この結果とよく一致していた。それでもなお、代謝物プロファイルは、C164とC16との間で異なっており、これは、C16におけるCD44+++細胞集団の存在によるものである可能性がある(図26-D)。このクラスタリング結果は、代謝リプログラミングが、分化/成熟プロセスの間およびEMTもしくは線維症といったCSTの獲得の間の両方で必要とされるという可能性と一致している。
本実施例では、表面CDマーカーを追う侵襲的な方法の代わりとなる、画期的な医薬としての再生治療のためのcHCECの質の適合性をモニターする実用的、非侵襲的で、感
度の良い方法を提供することを目的とする。培地中の分泌代謝物の包括的な調査は、表面CD44抗原の発現レベルにおいて異なるcHCEC亜集団を、正確に振り分けた。図27は、馴化液における代謝物変化を特性評価する。培地のメタボロミックプロファイルの階層クラスタリングは、CSTの存在と相関する代謝物のサブセットを同定した。クラスターは少なくとも4つの代謝物サブセットに分割された;全てのcHCEC(#66、#72、#55)で増加した代謝物、主に#72および#55で増加したが#66では増加しなかった代謝物、#66で最も大きく減少した代謝物、3つのグループにおおよそ存在する代謝物に分けられた(図27-A)。解糖系のいくつかの中間体は、#72および#55では#66より高く、上昇した速度の解糖の「ワールブルク効果」と一致していた。ワールブルク効果は、乳酸産生の上昇を含む。実際に、乳酸/ピルビン酸比は、#72および#55では#66より高かった(図27-B)。これらの3ロットは、顕鏡下の検査では良好な形態を示していたということは注目に値するものであり、培地の分泌代謝物の包括的調査の最大限の有用性を示すものである。
細胞注入治療のためのHCECの培養の間の細胞外代謝物のモニタリングの有用性を検証するため、GMP条件下で産生したHCECの、CD44+++細胞、CD24+細胞またはCD26+細胞を伴わない培地を分析した。CD44-~CD44+対CD44++亜集団に関して亜集団の組成の異なる4つのcHCRCを調査した。上述のクラスタリングと一致して、HCAは、上述のように4つの代謝物サブセットを同定した(図28-A~28-E)。4つのロットは同様の代謝プロファイリングを示したが、C23は、嫌気的解糖の代わりにミトコンドリア依存性OXHOSへの強い傾向を示し、これは、乳酸の産生が最も低いこと、乳酸/ピルビン酸比が最も低いこと、そしてクエン酸/イソクエン酸およびシス-アコニット酸といったTCA回路中間体の産生がもっとも高いことによっても検証されている。興味深いことに、Gln消費はC24で最も高く、C21では最も低く、このことはこれらの2つにおけるグルタミノリシスの差異の可能性を示唆している。アミノ酸代謝および酸化還元状態における区別には大きな差異はなかった。この結果は、これらの4つのロット間の分泌代謝物における定量的な差異を示唆していた。全体として、データは、分泌代謝物の分析からの結論を補強するものであった。TCA回路代謝物の変化は、細胞治療に適した良質なcHCECに伴う。最も理想的なcHCEC、C23における解糖系代謝物の減少およびミトコンドリア依存性OXHOSへの傾向を確認するため、本発明者らは、クエン酸/乳酸比によって培地における代謝物をモニターするシンプルな方法を提唱する。図28-Hは、CD44-~CD44+対CD44++の割合のみが異なるC21、C22、C23およびC24の間のクエン酸/乳酸比の差異を示すグラフ、ならびにCD44+++亜集団の含量において異なる#66、#55および#72の間のクエン酸/乳酸比の差異を示すグラフである。質は、cHCEC培養上清中の乳酸に対するクエン酸の比によってモニターし得る。
エネルギー代謝関連機能マーカーであるC-MycおよびCD44について詳細にするため、培養HCECを試験した。表現型スイッチングの根底にある分子メカニズムについての知見を得るため、亜集団において異種性であるcHCECの代謝要求性の傾向を調査した。cHCECは、エネルギー供給について異なる代謝要求性を有する亜集団から構成されていることが明らかになった。本発明者らは、亜集団を、その分泌代謝物の点から区別することに成功し、細胞状態相転移(CST)亜集団は、ミトコンドリア依存性酸化的リン酸化の代わりに、嫌気的解糖への傾向を示した。これは、初めてcHCECのエネルギー代謝における傾向を監視する方法を切り開くものであり、細胞懸濁物の形態である代謝的に規定されたcHCECを用いる安全で安定な再生医薬へとつながるものである。
本研究の結果は、異なるエネルギー代謝を有するcHCECにおける亜集団の存在を解き明かし、ミトコンドリア依存性酸化的リン酸化を起こしやすいようにさせ、六角形の敷石様形状(cobble-stone shape)の成熟cHCECを選択的に増殖させる効果的な培養条件の確立の可能性を提供する。
本実施例は、細胞治療に適合可能で、かつCSTのない培養細胞を評価および同定する非侵襲的な方法を発見することを目的とする。
おけるmiRNAプロファイルは、3D-gene(Toray)によって検出した。また、プロファイルを、グッタータを有するか、もしくは有しない別個の内皮細胞密度(ECD)を有する新鮮な角膜組織について解析した。3D-gene結果を評価するため、qPCRを行った。選択されたmiRNAでトランスフェクトしたcHCECからRNAを抽出し、そして標的遺伝子をPCRarray(Qiagen)によって推定した。
ヒト角膜内皮細胞ドナー
本実施例で使用されるヒト組織は、ヘルシンキ宣言の倫理的原則に則って取り扱った。HCECを20のヒト死体角膜から得、核型分類分析を行う前に培養した。ヒトドナー角膜は、SightLife Inc.(Seattle,WA,USA)から得た。研究のための眼の提供に関する書面によるインフォームドコンセントが、すべての死亡したドナーの親族から得られた。すべての組織は、ドナーの同意を得て組織を回収した州の統一死体提供法(UAGA)の原則に則って回収した。
別途記載しない限り、HCECは、公開されているプロトコルにいくつかの変更を加えたものに従って培養した。異なる年齢のヒトドナー角膜を、実験に使用した。簡潔に記載すると、デスメ膜をCECとともにドナーの角膜から剥がし、37℃において1mg/mLのコラゲナーゼA(Roche Applied Science,Penzberg,Germany)で2時間処理して消化した。単一のドナー角膜から取得したHCECを、I型コラーゲンコーティング6ウェル細胞培養プレート(Corning Inc.,Corning,NY,USA)のウェルの一つに播種した。培養培地は公開されているプロトコルにしたがって調製した。簡潔に記載すると、基礎培地は、Opti-MEM-I(Life Technologies Corp.,Carlsbad,CA,USA)、8%のウシ胎児血清(FBS)、5ng/mLの上皮成長因子(EGF;Life technologies)、20μg/mLのアスコルビン酸(Sigma-Aldrich Corp.)、200mg/Lの塩化カルシウム(Sigma-Aldrich Corp.,St. Louis,MO,USA)、0.08%のコンドロイチン硫酸(Wako Pure Chemical Industries,Ltd.,Osaka,Japan)および50μg/mLのゲンタマイシンを用いて調製した。馴化液は以前に記載されたとおりに調製した(Nakahara, M. et al. PLOS One (2013) 8,e69009)。この馴化液を用いて5%のCO2を含む加湿大気下において37℃でHCECを培養した。培養培地は週に2回交換した。コンフルエントに達した場合、37℃で12分間10×TrypLE Select(Life technologies)を使用してHCECを1:3の比率で継代培養した。第2~第5継代のHCECを全ての実験に使用した。
位相差画像を、倒立顕微鏡システム(CKX41,Olympus,Tokyo,Japan)によって撮影した。
HCECは、FNC Coating Mixでコーティングされた24ウェル細胞培養プレート中で1×105細胞/ウェルの密度で培養し、免疫蛍光分析のために3~4週間維持した。この細胞を、5%酢酸を添加した95%エタノール中において室温で10分間固定し、1%のBSAとともに1時間インキュベートした。サンプルを、CD73(1:300;BD Pharmingen Stain Buffer)、CD166(1:300;BD Pharmingen Stain Buffer)、ZO-1(Life technologies)およびNa+/K+-ATPase(Milford,MA,USA)に対する抗体とともに4℃で一晩インキュベートした。PBSで洗浄した後、Alexa Fluor 488結合ヤギ抗マウスIgG(Life Technologies)か、またはAlexa Fluor 594結合ヤギ抗ウサギIgG(Life Technologies)かのいずれかを1:1000の希釈率で2次抗体として使用した。核質はDAPI(Vector Laboratories, Burlingame, CA, USA)で染色した。48ウェル細胞培養プレート中で培養した細胞を、蛍光顕微鏡(BZ-9000;Keyence,Osaka,Japan)によって直接調べた。
HCECを、上記の通りTrypLE Select処理によって培養ディッシュから回収し、FACSバッファー(1%のBSAおよび0.05%のNaN3を含むPBS)中に4×106細胞/mLの濃度で懸濁した。同じ体積の抗体溶液を添加し、4℃で2時間インキュベートした。抗体溶液は以下のとおりであった:FITC結合抗ヒトCD26
mAb、PE結合抗ヒトCD166 mAb、PerCP-Cy5.5結合抗ヒトCD24 mAb、PE-Cy7結合抗ヒトCD44(全てBD Biosciences)、APC結合CD105(eBioscience,San Diego,CA,USA)。FACSバッファーで洗浄した後、HCECをFACS Canto II(BD Biosciences)で解析した。
マイクロRNA抽出:
角膜内皮組織および上皮組織を、ドナー角膜から剥がした後に取得し、QIAzol Lysis Reagent(QIAGEN strasse1 40724 Hilden Germany)中-80℃で、トータルRNA抽出まで保存した。miRNeasy Mini kit(QIAGEN)を用いてトータルRNAを抽出した。Bioanalyzer 2100(Agilent Technologies,Palo Alto,Calif.,USA)によって、精製したトータルRNAの質を分析した。
本発明者らは、Torayの3D-GeneTMヒトマイクロRNAチップ(miRBaseバージョン17-19)を、マイクロRNA発現プロファイリングに使用した。一つは、miRCURY LNATM microRNA Power Labeling
Kits(Exiqon,Vedbaek,Denmark)を用いて標識された細胞および組織サンプルの両方に由来する250ng~500ngのトータルRNAであり、もう一つは標識された400μLの上清由来のmiRNAの全てであった。標識されたマイクロRNAを、個別にマイクロRNAチップ表面にハイブリダイズさせ、16時間32
℃でインキュベートした。洗浄し乾燥させたオゾンフリー環境のマイクロRNAチップを、3D-Gene スキャナー3000(Toray Industries Inc.,Tokyo,JAPAN)を用いてスキャンし、3D-Gene Extractionソフトウェア(Toray)を用いて分析した。なお使用した各配列はこれらの製品に付随の配列を使用した。
該ソフトウェアによって提供されたデジタル化蛍光シグナルを、生データとみなした。全ての標準化データを、マイクロアレイ毎にグローバルに標準化し、蛍光強度の中央値を25に補正した。組織、cHCECおよび上清の棒グラフの場合、標準化レベルは、高ランクから100番目の値が一致するように補正した。
培養HCECから、miRNeasy Mini kit(QIAGEN strasse1 40724 Hilden Germany)を用いて、トータルRNAを抽出した。cDNA合成を、RT2 First Strand kit(Qiagen)を用いて、96ウェルプレートフォーマットのための100ngについて行った。内皮mRNAの発現を、RT2 Profiler PCR-Array(Human Extracellular Matrix and Adhesion Molecules、Human p53 Signaling Pathway、Human Fibrosis、Human Cellular senescence、およびHuman Epithelial to Mesenchymal Transition(EMT))(Qiagen)を用いて調査し、RT2 Profiler PCR Array Data Analysis Tool version3.5を用いて分析した。
2サンプル比較の平均値の統計的有意性(P値)を、スチューデントt検定によって決定した。複数サンプルセットの比較の統計的有意性は、ダネット多重比較検定により決定した。グラフに示される値は、平均±SEを表す。
HCEC培養物間で異なるmiR発現プロファイル
本実施例では、目立ったEMTをほとんど有しないcHCECの改善された培養物について扱った。しかしながら、異種性の亜集団の中からわずかなEMTの存在を区別するのは困難である。初めに、本発明者らは3D gene(Toray)を用いて検出したmiRのプロファイルを、CD44-亜集団(エフェクター細胞)と、亜集団の組成について不明であるいくつかの培養細胞(2911、3411および3511、すべて1継代)との間で比較した(図29-B)。エフェクター細胞と比較して、後者の亜集団においては、miR29c発現のわずかなアップレギュレーションおよびmiR378発現のダウンレギュレーションがあった。次いで、エフェクターCD44-亜集団を、CSTが明らかである培養細胞67(その亜集団の組成は図30-A~30-Cに示す)と比較した(図29-C)。比較によって、miR378ファミリーのダウンレギュレーションがまた明らかにされた。これは、目立ったEMTが無い場合であっても、cHCECにおいて少なくとも2つの異なるタイプのCSTが存在することを明確に示すものである。miR378の顕著な減少は、質の良くない形態的に区別できる培養物において確認され、miR378ファミリーの発現レベルは、培養物C66およびC11の間で同等であった。
CD44のようなCDマーカー発現レベルの異なる亜集団の組成へのmiRの発現プロファイルの依存性を明らかにすることを狙いとして、FACSにより定義されたcHCE
C亜集団(図30-A~30-C)から抽出したRNAを3D gene分析に供した。これらの3つのcHCEC、a5、a1およびa2は、それぞれ主にCD44-CD24-CD26-SP、CD44++CD24-CD26-亜集団およびCD44+++ CD24- CD26++亜集団で構成される亜集団を含有する。a5およびa1の間で、再びmiR378ファミリーの発現レベルは同等であったが、a2においては上昇したCD44発現とともに劇的な減少が確認された。図31-Aに、miR378a-3p、378a-5pおよび378f等のmiR378ファミリーの亜集団ごとの発現の差異を示した。miR378ファミリーに加えて、23、27、30、130および181ファミリーはCD44発現と負の相関を示し、その一方で29、31、193および199ファミリーは、正に相関した。状況を明確にするため、変化を5つのクラスに分けた。図31-Bにおいて、miR378ファミリーの発現のCD44の発現と逆行する減少は、CD44の減少とともにゆるやかになるため、a5およびa1の間のCSTを区別できない(a5およびa2の間ではできる)。a5およびa1の間でのmiR34の発現レベルの変化は顕著であって、a1およびa2の間では区別できないとしても、a5とa1間のCSTを区別するには最も妥当である。
本実施例では、細胞治療に適合したcHCEC亜集団を非侵襲的に識別するための代替ツールとして働き得る培養上清中のmiRを見出すことを目的とする。上記と同一の3つのcHCEC(すなわち、a5、a1およびa2)を用いて、対応する培養上清からRNAを抽出し、3Dgene分析に供した。多数のmiRを選択し、変化のパターンを6つに分類した。その中で、特徴的な傾向を有するパターンを、図33(A-B)に示した。cHCECからの結果と異なり、細胞におけるmiR378ファミリーと同様にCD44の発現と逆行する様式でmiR184がゆるやかに減少していた。miR24-3p/1273eは、細胞におけるmiR23、27および181ファミリーと同様に、a2におけるその減少によって、a2からa5およびa1を区別することができた。また、miR24-3p/1273eと対照的に、a2における増加によって、a2からa5およびa1を区別することができる4つのmiRが存在した。
EMT、細胞老化、および線維症のようなin vitroCSTの間の共通性を考慮して、本発明者らは次に新鮮な角膜内皮組織におけるmiRプロファイルを比較した。通常のECDレベルを有する組織と、ECD378の組織の間のmiR発現プロファイルのスキャッタープロットは、角膜上皮組織より角膜内皮組織においてmiR378ファミリーのアップレギュレーションを実証していた(データ示さず)が、進行したグッタータを伴う低ECD組織では劇的に減少していることが示された。反対に、miR378ファミリーよりはるかに高い発現レベルのmiR146b-5pは減少しなかった。miR378ファミリーのアップレギュレーションは、角膜内皮および上皮組織の間で同等であった。該ファミリーは、培養の間も顕著にアップレギュレートされ、CD44陰性エフェクター細胞亜集団で最も高い発現が観察されたことは注目すべきである(図34(A-G))。
いくつかのmiRを、上記発見のさらなる検証に供した。Q-RT-PCRもまた、miR 378ファミリー(a-3p、eおよびf)の発現が、ECD795および1410を有する組織(このときはECD378を有する組織由来のRNAは利用できなかった)において均一に抑制されていたことを実証した。その一方で、それらの細胞では、mi
R200c、205および124-5pはアップレギュレートされていた。
最後に、本発明者らは、miR378a-3pまたは5f模倣物の、これらの2つの発現が検出されていなかったCD44+++ cHCEC亜集団への予備トランスフェクションを行った。細胞は、図35-Cに示されるように、ECMおよび接着分子クラスの遺伝子シグネチャーを顕在化させた。細胞は、コラーゲン、ITGおよびMMPファミリーならびにCD44の多数の遺伝子シグネチャーのアップレギュレーションを示した。図35-Cに、senescence、EMT、fibrosis、p53およびEMAのPCRアレイによってアッセイした、2つのmiR模倣物のトランスフェクション後の遺伝子シグネチャーのヒートマップを示した。CCNF、TWIS1およびGADD45といった遺伝子のいくつかは、senescenceアレイ中でアップレギュレートされていた。p53PCRアレイにおいて多数の遺伝子が異なるシグネチャーを形質導入の後に示し、同様にEMTアレイにおいてTCF4、TCF3、TGF-β2、TGF-β3およびSOX10iのmiR378f模倣体によるダウンレギュレーションが示された。miR378ファミリーに加えてのmiR146のトランスフェクションは、FECDを含むBKの病因への補完的な知見を加え得る。
形態的に異なる様々なcHCECの間のmiRNA発現プロファイルは、それらの間の明確な差異性を明らかにした。CD44++~CD44+++表現型を有する亜集団からCD44-亜集団を区別できるmiRとして、miR34aが同定された。378ファミリーのmiRのダウンレギュレーションは、cHCECの表面CD44のアップレギュレーションと平行していた。興味深いことに、角膜内皮でアップレギュレートされた378ファミリーのmiRは、進行したグッタータを有するより低いECDの組織においては劇的に減少していた。このことは、フックス角膜内皮ジストロフィ(FECD)の病因に対して新たな知見を示すものである。
成熟HCECとCD44-表面表現型をシェアしている特定された培養亜集団は、miR378の最も高い発現を示すことが示された。反対に、アップレギュレートされたCD44+++を有する亜集団は、miR378の減少を示した。したがって、培養細胞または上清におけるmiRNAは、培養cHCECを識別するための代替ツールとして働き得る。
いる(He L, et al., Nat Rev Cancer. 2007;7:819-22)。このことは、CD44-エフェクター亜集団のみが核型異常の不存在を示したという上記実施例2の結果とも一致する。
al., Proc Natl Acad Sci USA. 2012;109:15330-15335)。このことは、直ちに、好気的、酸化的代謝から解糖的代謝へのシ
フトはcHCECのいくつかのCSTの特性的特徴であることを示す(実施例4参照)。ピルビン酸は、酸化的リン酸化(OXPHOS)を通してTCA回路によって処理される。クエン酸/乳酸比は、CD44-エフェクター細胞を、CD44+++からだけでなく、わずかなCSTを有するCD44++亜集団からも区別することができる(実施例4参照)。
上記と同様の実験を他のmiRNAについて行った結果、以下の結果がさらに判明した。
(C)a5:a1:a2=高発現:低発現:低発現を示すもの:
(細胞分泌型)miR4419b、miR371b-5p、miR135a-3p、mi
R3131、miR296-3p、miR920、miR6501-3p;
(F)a5:a1:a2=高発現:低発現:高発現を示すもの:
(細胞分泌型)miR92b-5p
(G)a5:a1:a2=低発現:高発現:低発現を示すもの:
(細胞分泌型)miR1246、miR4732-5p、miR23b-3p、miR23a-3p、miR1285-3p、miR5096
以上の結果は、図35-Dに示されており、細胞亜集団別に異なる分泌型miRの発現のパターンは6つに分類された。
公知の方法で調製したcHCEC培養物は、本実施例では明白なEMTをほとんど排除していたが、老化様の形態を維持していた。老化様cHCECによる干渉を除外するため、SB203580(p38 マイトジェン活性化タンパク質キナーゼ(p38 MAPK)阻害剤)を、老化様CSTを制御するため培養物全体に添加した。この培養プロトコルの下で、本発明者らは、培養物a5、a1およびa2を取得することに成功し、それらは、老化様の形態を一見有していなかった。しかしながら、興味深いことに、それらは表面におけるCD44、CD24およびCD26の発現の観点からは、異種性であった(図35-E)。これらのcHCECを用いて、対応する培養上清からRNAを抽出した。これらのcHCEC(すなわち、a5、a1およびa2)の間で異なる発現を示すmiR(23a-3p、184、1260a、3130-3p、23b-3p、135a-3p、1246、3131、24-3p、296-3p、1290、4419b、92a-2-5p、371b-5p、6501-3p、920のmiR)をボルケーノプロットを用いて同定した(図35-E)。
本実施例は、亜集団(SP)の接着特性を明らかにするために内皮表面に分布する主なデスメ膜の構成成分(すなわち、ラミニン-511、ラミニン-411、IV型コラーゲン、およびプロテオグリカン)への培養HCEC亜集団の結合能力を比較した。
ヒト角膜内皮細胞ドナー
本実施例で使用されるヒト組織は、ヘルシンキ宣言の倫理的原則に則って取り扱った。ヒトドナー角膜は、SightLife Inc.(Seattle, WA, USA)から得た。研究のために眼を
提供することについて書面によるインフォームドコンセントが、すべての死亡したドナーの親族から得られた。すべての組織は、ドナーの同意を得て、組織を回収した州の統一死体提供法(UAGA)の原則に則って回収し、すべてのドナーの角膜をOptisol-GS (Chiron Vision, Irvine, CA, USA)中に保存し、研究の目的で航空輸入した。ドナーの情報は、すべてのドナーの角膜は角膜疾患のない健常なものである判断されたことを示している。
別途記載しない限り、HCECは、公開されているプロトコルにいくつかの変更を加えたものに従って培養した。合計30名の異なる年齢のヒトドナーの角膜を実験に使用した。簡潔に記載すると、デスメ膜をCECとともにドナーの角膜から剥がし、37℃において1 mg/mL
のコラゲナーゼA(Roche Applied Science, Penzberg, Germany)で2時間処理して消
化した。単一のドナー角膜から取得したHCECを、I型コラーゲンコーティング6ウェル細胞培養プレート(Corning Inc., Corning, NY, USA)のウェルの一つに播種した。培養培地は公開されているプロトコルにしたがって調製した。簡潔に記載すると、基礎培地は、Opti-MEM-I(Life Technologies Corp., Carlsbad, CA, USA)、8%のウシ胎児血清(FBS)、5ng/mLの上皮成長因子(EGF; Life technologies)、20μg/mLのアスコルビン酸(Sigma-Aldrich Corp.)、200mg/Lの塩化カルシウム(Sigma-Aldrich Corp., St. Louis, MO, USA)、0.08%のコンドロイチン硫酸(Wako Pure Chemical Industries, Ltd., Osaka, Japan)および50μg/mLのゲンタマイシンを用いて調製した。馴化液は以前に記載
されたとおりに調製した(Nakahara, M. et al. PLOS One (2013) 8, e69009)。
この馴化液を用いて5%のCO2を含む加湿大気下において37℃でHCECを培養した。培養培地
は週に2回交換した。コンフルエントに達した場合、37℃で12分間10xTrypLE Select(Life technologies)を使用してHCECを1:3の比率で継代培養した。第2~第5継代のHCECを全ての実験に使用した。
ラミニン、I型コラーゲン、プロテオグリカンおよび糖タンパク質への細胞接着を、以前に記載された遠心細胞接着アッセイ(いくつかの変更を含む)により試験した(Friedlander et al., 1998. J. Cell Biol. 107: p2329)。ラミニン-521、ラミニン-511、ラミニン-411、およびラミニン-332は、Veritas(Tokyo,Japan)から購入し、パールカン、アグリン、ナイドジェン-1、TSP-1およびフィビュリン5は、R&D Systems(Minneapolis, MN)から購入した。IV型コラーゲンは、BD Biosciences(San Jose, CA, USA)か
ら購入した。
胞/mLの濃度で懸濁し、0.1mLの細胞懸濁物を各ウェルに添加して、10分間インキュベ
ートした。その後、プレートを200xgで2分間遠心した。明視野Zスタック画像を、2倍の対物倍率でBZ-9000顕微鏡(Keyence, Osaka, Japan)によりキャプチャーし、全焦点画像を、BZ-II Analyzerソフトウェアを使用して、これらのイメージから作製した。Friedlanderらのプロトコル(Friedlander et al., 1998. J. Cell Biol. 107: p2329)に従って、細胞を遠心して、非接着性基質のウェルの底にペレット状にした。基質の接着力が高いと、より多くの細胞がウェルの壁に沿って基質に結合する。基質への結合は、ウェルの底における測定可能な直径を有する円形の領域において検出される。強い接着性の
基質において、細胞は、ウェル上におおよそ均一に分布した(Grumet M, Flaccus A,
and Margolis RU. J. Cell Biol. 1993;120:815-824)。
HCECは、I型コラーゲンでコーティングされた24ウェル細胞培養プレート中で1×105細胞/ウェルの密度で培養し、免疫蛍光分析のために3~4週間維持した。この細胞を、氷冷
メタノール中において室温で10分間固定し、1%のBSAとともに1時間インキュベートし
た。サンプルを、ZO-1(Life technologies)およびNa+/K+-ATPase(Milford, MA, USA)
に対する抗体とともに4℃で一晩インキュベートした。PBS(-)で洗浄した後、Alexa Fluor 488結合ヤギ抗マウスIgG(Life Technologies)か、またはAlexa Fluor 594結合ヤギ抗ウサギIgG(Life Technologies)かのいずれかを1:1000の希釈率で2次抗体として使用
した。核をDAPI(Vector Laboratories, Burlingame, CA, USA)で染色した。48ウェル細胞培養プレート中で培養した細胞を、蛍光顕微鏡(BZ-9000; Keyence, Osaka, Japan)によって直接調べた。
HCECを、上記の通りTrypLE Select処理によって培養ディッシュから回収し、FACSバッファー(1%のBSAおよび0.05%のNaN3を含むPBS)中に4×106細胞/mLの濃度で懸濁した。同じ体積の抗体溶液を添加し、4℃で2時間インキュベートした。FACSバッファーで洗浄した
後、HCECをFACS Canto II(BD Biosciences)で解析した。
HCECを上記の通りTrypLE Selectで分離し、CD44-HCEC亜集団(エフェクター亜集団)を抗ヒトCD44μビーズおよびautoMACS Pro separator(Miltenyi Biotec, Bergisch Gladbach, Germany)のプログラムdepl05を使用して単離した。単離されたエフェク
ター亜集団の純度は、フローサイトメトリーにより示されるようにすべての場合で95%より高かった。
培養HCECは、ラミニン-411およびラミニン-332よりもラミニン-511により強く結合した。
細胞注入療法において、治療有効性のための重要なステップの一つは、デスメ膜へのHCECの接着である。デスメ膜は、主にIV型コラーゲン、ラミニン、フィブロネクチンおよびプロテオグリカン/糖タンパク質で構成されている[Fitch et al., 1990 and
Suda et al., 1981](表6)(Weller JM, Zenel M, Schlotzer-Schrehardt U,Bachmann OB, Tourtas T, Kruse FE. Invest Ophthalmol Vis Sci. 2014;55:3700-3708)。
分間遠心した。接着した細胞を、(材料および方法)に記載の通りBZ-9000顕微鏡システ
ム下で評価した。
およびラミニン-511への培養HCECの結合能力をさらに比較した。図38に示される通り、培養HCECは、濃度依存的態様でラミニン-521およびラミニン-511に結合したが、ラミニン511とラミニン521に対して結合に明確な差異がなかった。
次に、IV型コラーゲンへの培養HCECの結合を試験した。遠心接着アッセイをIV型コラーゲンでコーティングされたプレートで同様に行った。図39に示される通り、培養HCECは、濃度依存的態様でIV型コラーゲンに結合した。
本実施例において、デスメ膜に存在すると報告されているプロテオグリカン/糖タンパ
ク質(すなわちアグリン、Nidgen-1、フィビュリン5、TSP-1およびパールカン)への培養HCECの結合をさらに試験した。これらのプロテオグリカン/糖タンパク質のコーティ
ング濃度が図37と同じ5nMである場合、結合は観察されなかった(データは示さず)が、アグリン、TSP-1およびパールカンへの結合は、400nMほどのコーティング濃度
で観察された(図40)。これらの結果は、培養HCECが、これらの構成成分に結合するが、結合親和性がラミニンと比べてかなり低いことを示している。
したが、BSS Plusにおいては結合が観察されなかった(図41)。次に、本実施例において、房水構成成分(タンパク質、アスコルビン酸および乳酸)のOpeguard-MAへ
の追加により、ラミニン-511およびラミニン-411に対する培養HCECの結合親和性が増強するかどうかをさらに試験した。図42および43に示される通り、増強効果は観察されなかった。
培養の間に上皮間葉転換または線維化のような細胞の相転移(CST)に移行する傾向は
、HCEC由来の別個の表面CDマーカーを有する異なる亜集団(SP)をもたらす。これまで、本発明者らは、これらの亜集団を、細胞表面マーカーに関して明確に区別する方法を開発してきた。これらの亜集団の接着特性を明確にするために、本実施例において、遠心接着アッセイにより培養HCEC亜集団の結合能力を比較した。
発的に生じた亜集団を使用した(図46)。これは、細胞表面のCD44とCD44磁性ビーズとの直接的な相互作用による細胞接着能力への影響を避けるためである。
以前Okumuraらは、ラミニン-511とcHCECとの間の相互作用がインテグリンα3β1およびインテグリンα6β1により促進されることを報告した(Okumura et al. (2015) Invest Ophthalmol Vis Sci. 2015; 56:2933-2942.)。そこで、本実施例において
、これらの亜集団におけるインテグリンα3およびインテグリンα6の発現を試験した。予想外にも、EMT表現型を有する亜集団におけるこれらのインテグリンαサブユニットの発現は、成熟HCEC SPに匹敵するか、または成熟HCEC亜集団よりもわずかに高かった(図48)。興味深いことに、EMT表現型を有するSPにおけるインテグリンα2サブユニットの発現は、成熟HCEC亜集団よりも顕著に高かった(図48)。
(まとめ)
培養HCECは、濃度依存的態様でラミニン-511、ラミニン-411およびIV型コラーゲンに結合した。これらの細胞は、パールカン、アグリンおよびTSP-1に弱く結合した。本
発明者らは、培養HCECの接着に対する細胞懸濁注入ビヒクルの影響を比較した。HCECがOpti-MEMまたはOpeguard-MA中に懸濁された場合、これらの細胞はラミニンに結合
したが、BSS Plus中では結合が観察されなかった。次に、本発明者らは、HCEC亜集団の接着特性を比較した。完全に分化した成熟HCEC亜集団およびEMT表現型亜集団の両方が、ラミニンまたはコラーゲンでコーティングされたプレートに接着することが見出された。興味深いことに、ラミニンへの結合特性は、これらの亜集団の間で異なっていた。ラミニン-411でコーティングされたプレートに結合した細胞のレベルは、HCEC亜集団の間で同じであったが、完全に分化した成熟HCEC亜集団は、EMT表現型を有する亜集団よりもラミニン-511によりかなり強固に結合した。
れなかった。
現する。最近、Okumuraらが、ラミニン-511に結合するHCECがインテグリンα3β1お
よびインテグリンα6β1により媒介されることを報告した[Okumura et al.(2015) Inv
est Ophthalmol Vis Sci. 2015; 56:2933-2942.]。インテグリンα3β1およびインテグリンα6β1は、ラミニン-332またはラミニン-411よりもラミニン-511に対して高い親和性を有する[Barczyk et al. (2010) Cell Tissue Res. 2010;339:269-280]。本実施例において、ラミニン-511に対してより高い親和性を有するにもかかわらず、完全に分化した成熟HCEC亜集団におけるインテグリンα3およびインテグリンα6の発現は、EMT表現型を有する亜集団よりも低かった。他方で、インテグリンα2サブユニットの
発現は、EMT表現型を有する亜集団よりも完全に分化した成熟HCEC亜集団において高かった。さらに、インテグリンβ1の発現は、これらの2つの亜集団の間で顕著な違いはなかった(データは示さず:Lyoplate(BD Biosciences, San Jose, CA, USA)に
より評価)。インテグリンα2サブユニットの高い発現が、インテグリンに結合するコラ
ーゲンとして知られているα2β1複合体を生じさせ(Barczyk et al. (2010) Cell Tissue Res. 2010;339:269-280)、α3β1複合体およびα6β1複合体のより低い発現
をもたらしている可能性がある。これは、亜集団の間でインテグリンα2β1対インテグリンα3β1およびインテグリンα6β1の比における差異の存在を明らかに示しており、そ
の割合は培養HCECではっきりと観察された。
に匹敵した。Opti-MEMの組成は、提供元により開示されていないため、Opeguard-MA(臨
床的慣例で使用される眼内潅流溶液)が、細胞注入療法のための細胞懸濁注入ビヒクルにより好ましいと思われる。
本実施例では、マウスモデルの利用によるHCECのサロゲートエンドポイントを開発し、効率的な臨床試験を達成することを目的とする。
提唱するモデルの検討のために提供した。BALB/cの角膜の2mmの中央の領域を低温誘導凍結損傷に供して、内皮細胞を取り除き、その後、4x104個のHCECを眼の前房に注入した。角膜の特徴を臨床的に観察し、角膜の厚さをパキメータにより評価した。cHCEC懸濁液
について、Opti-MEM、Opeguard MA、およびヒトアルブミン、アスコルビン酸、乳酸を含むOpeguard MA(Opeguard-F)をこのモデルにおいて比較した。ROCK阻害剤(Y-27
632)の存在もまた、評価した。
ヒト角膜内皮細胞ドナー
本実施例で使用されるヒト組織は、ヘルシンキ宣言の倫理的原則に則って取り扱った。ヒトドナー角膜は、SightLife Inc.(Seattle, WA, USA)から得た。研究のために眼を
提供することについて書面によるインフォームドコンセントが、すべての死亡したドナーの親族から得られた。すべての組織は、ドナーの同意書を得て、組織を回収した州の統一死体提供法(UAGA)の原則に則って回収し、すべてのドナーの角膜をOptisol-GS(Chiron Vision, Irvine, CA, USA)中に保存し、研究の目的で航空輸入した。ドナーの情報によれば、すべてのドナーの角膜は角膜疾患のない健常なものであると判断される。
別途記載しない限り、HCECは、公開されているプロトコル(Nakahara M, Okumura N, Kay EP, et al. PLoS One 2013;8:e69009)にいくつかの変更を加えたものに従
って培養した。合計4名の異なる年齢のヒトドナーの角膜を実験に使用した。簡潔に記載すると、デスメ膜を角膜内皮細胞とともにドナーの角膜から剥がし、37℃において1mg/mLのコラゲナーゼA(Roche Applied Science, Penzberg, Germany)で2時間処理して消
化した。単一のドナー角膜から取得したHCECを、I型コラーゲンコーティング6ウェル細胞培養プレート(Corning Inc., Corning, NY, USA)のウェルの一つに播種した。培養培地は公開されているプロトコルにしたがって調製した。簡潔に記載すると、基礎培地は、Opti-MEM-I(Life Technologies Corp., Carlsbad, CA, USA)、8%のウシ胎児血清(FBS)、5ng/mLの上皮成長因子(EGF; Life technologies)、20μg/mLのアスコルビン酸(Sigma-Aldrich Corp.)、200mg/Lの塩化カルシウム(Sigma-Aldrich Corp., St. Louis, MO, USA)、0.08%のコンドロイチン硫酸(Wako Pure Chemical Industries, Ltd., Osaka, Japan)および50μg/mLのゲンタマイシンを用いて調製した。5%のCO2を含む加湿大気下において37℃でHCECを培養した。培養培地は週に2回交換した。コンフルエントに達した場合、37℃で12分間10xTrypLE Select(Life technologies)を使用してHCECを1:3の比率で継代培養した。第2継代のHCECをすべての実験に使用した。
HCECを上記のTrypLE処理により培養ディッシュから回収し、添加物を含むかまたは含まないOpti-MEMまたはOpeguard-MA(Senju Pharmaceutical, Osaka, Japan)中に6.7
×106細胞/mLの濃度で懸濁した。添加物は、Opti-MEMについては100μM Y-27632、Opeguard-MAについては0.024% ヒト血清アルブミン、1.06mM アスコルビン酸、4.5mM
乳酸、および100μM Y-27632を使用した。
HCECを上記のTrypLE Select処置により培養ディッシュから回収し、FACSバッファー(PBS含有1% BSAおよび0.05% NaN3)中に4×106細胞/mLの濃度で懸濁した。等量の抗体溶液を添加し、4℃で2時間インキュベートした。抗体溶液は以下の通りである。FITC結合抗ヒトCD26 mAb、PE結合抗ヒトCD166 mAb、PerCP-Cy 5.5結合抗ヒトCD24 mAb
、PE-Cy 7結合抗ヒトCD44 mAb(すべてBD Biosciences)、APC結合抗ヒトCD105 mAb(eBioscience, San Diego, CA, USA)。FACSバッファーで洗浄後、HCECをFACS Canto II(BD Biosciences)で解析した。
8~12週齢の雄性のBALB/c(H-2d)マウス(SLC, Osaka, Japan)を本実施例において
使用した。すべての動物を、「Association for Research in Vision and Ophthalmology」により公布されている「Statement for the Use of Animals in Ophthalmic and Vision Research」に従って処置した。すべての実験は、京都府立医科大学の動物実験委員会により承認された。いずれの外科的手順の前に、すべての動物を3mgのケタミンの腹腔内注射により完全に麻酔した。
内皮細胞を取り除くために凍結損傷を、各マウスの右眼に適用した(Han SB, et al., Mol Vis 2013;19:1222-1230; Koizumi N, et al., Invest Ophthalmol Vis
Sci 2007;48:4519-4526.)。簡潔に述べると、散瞳剤(Mydrin‐P, Santen, Japan)
の局所適用後、ステンレス鋼(直径2mm)でできたクライオプローブ(液体窒素により-196℃まで予冷)を角膜の中央に穏やかに配置することよって、経角膜凍結を開始した。水晶体および線維柱帯網を含む隣接する組織への損傷を避けるため圧力をかけなかった。プローブの先端ではなく側面を角膜上に配置し、接触面を最大にした。氷球が角膜上に形成されて角膜表面全体を覆うまで(10秒間に相当する)、クライオプローブを角膜表面上に維持した。内皮における欠損は、報告された氷球のサイズ(Khodadoust AA, G
Invest Ophthalmol 1976;15:96-101)と同じサイズであることが示された。凍結直後
にクライオプローブを角膜表面から離し、平衡塩類溶液で洗浄し、角膜を自然解凍した。この実験期間において局所的薬物適用を行わなかった。
た(Streilein JW. FASEB J 1987;1:199-208;Yamada J, et al., Invest Ophthalmol Vis Sci 1997;38:2833-2843)。この細胞数は、ヒトの場合の5x105個から計算された。内皮表面にHCECを沈殿させるために、1時間ごとに1mgの追加のケタミン注射をしながら、これらのマウスを3時間寝かせた。
臨床的評価のために、眼を細隙灯生体顕微鏡により試験し、手技的な問題がないことを確認した。角膜の厚さを、凍結損傷前、HCEC注入の24時間後および48時間後にパキメータ(SP-100, Tomey, Japan)により測定した。
分間インキュベートした。次いで、PBS(-)で2回洗浄後、室温で20分間PBS(-)中の1% BSAと共にインキュベートし、眼杯を、1:20希釈のAlexa Fluor 488結合マウス抗ヒト核抗体(Merck Millipore, Germany)で、室温で2時間染色した。2回洗浄後、これらの眼杯を4つの切込みにより水平にマウントし、DAPI(Vector Laboratories, Burlingame, CA, USA)で染色した。切片を蛍光顕微鏡(OLYMPUS, Tokyo, Japan)により評価した。
対応のあるStudentのt検定を使用して、角膜の厚さを比較した。P値<0.05を有意とみなした。
提唱するマウスモデルは、細胞性の異なる注入cHCECの効果を区別するのに有効である
ことが明らかになった。cHCEC注入48時間後を、注入したcHCECの影響をモニターするための時点として選択した。cHCEC注入は、角膜の厚さを有意に改善した(p<0.01)。
本発明者は協力者と共にcHCEC注入療法を開発した。これは、水疱性角膜症のための新
たな治療方法であり、cHCECを前房に直接注入する。この方法では、cHCECの組成の品質
が薬学的作用に重大な影響を及ぼすことが明らかになった。そのため、本研究に使用したcHCECの組成を評価した。
た:CD166+CD24-CD44-~+CD105-~+の亜集団(ゲート1=G1)、CD166+CD24-CD44++CD105+
の亜集団(G2)、CD166+CD24-CD44+++CD105+の亜集団(G3)、CD166+CD24+CD44+CD105+の亜集団(G4)、CD166+CD24+CD44++CD105+の亜集団(G5)。CD44++CD26+細胞も検出した(図49(
A-B))。本発明者らは、G1細胞がエフェクター細胞亜集団であると仮定したので(実施例1)、医薬としての作用に必須と考えられたため、高い割合でG1細胞を含む培養フ
ラスコを以下の実験で使用した(図49(A-B)の細胞を、図51~図53のそれぞれ
で試験した)。
Mol Vis 2013;19:1222-1230.)の報告した凍結損傷モデルを利用した。BALB/cマウスは同種移植(Sonoda Y, and Streilein JW. J Immunol 1993;150:1727-1734)およ
び異種移植(Tanaka K, et al., Transplantation 2000;69:610-616)の組み合わせの角膜移植試験で主に使用されるため、アルビノ種のBALB/cを選択した。これらのマウスの色素のない眼では、インビボでの観察を評価することが容易であり、組織学的試験が容易である。さらに、BALB/cマウスはC57BL/6マウスより角膜拒絶を起こしにくい(Yamada J,
and Streilein JW. Transpl Immunol 1998;6:161-168.)。C57BL/6マウスまたはC3Hマウスにおいて同様の試験を試みたときには、前房が浅い、眼の前房内に虹彩色素が浮
遊するなどのいくつかの技術的に困難な点が観察された(データ示さず)。
かしながら、急速なマウス角膜内皮の増殖は、損傷の72時間後で観察された(図50)。これらの観察から、損傷の48時間後の観察が、接着したHCEC細胞を比較するためのより好ましい評価時期であると考えられる。
8時間後で浮腫状かつ不透明であり、72時間後にはそれらの透明性は、HCECを注入していない対照眼でもほとんど回復した。典型的な異種拒絶反応は72時間観察されなかった。角膜の透明度(虹彩縁の可視性等により評価した)は、各角膜で様々であり、HCEC注入の効果を評価することができなかった。これらの眼の角膜の厚さを測定し、結果を図50(C)に示した。角膜の厚さは、24時間後で非常に高まり、徐々に回復した。前房内にHCECを注入することによって、角膜の厚さは迅速に回復し、特に2.0x104個
のHCECが注入された角膜は、48時間で有意な回復を示した(p<0.05)。
個の注入細胞数を選択した。次に、角膜の厚さおよびHCECの組織学的染色を以下の実験で比較した。
次に、このアッセイがサロゲートエンドポイントとして有用なのかどどうかを異なる細胞懸濁注入ビヒクルを用いて注入したcHCECの影響を比較することによって評価した(図51~図53)。
ることを模倣するために、Opeguard MAにヒトアルブミン、アスコルビン酸および乳酸を添加した(Opeguard F)。次に、同様の実験を、Opti-MEM(a)またはOpeguard F(b)を使用してcHCEC(図49の集団)を前房に注入することによって実施してOpeguard Fビヒクルのみ(c)の対照と比較した(それぞれ、n=3)。図51に示す通り、48時間での角膜の転帰は、それぞれ異なっていたが、すべての眼は、正常な前房を維持し、前房出血はなかった。2.0x104個のHCECを注入することによって、角膜の透明度は、虹彩縁の可視性の観察から、
より優れた回復を示すと考えられる。角膜の厚さは、HCECの注入により凍結損傷の48時間後に有意に回復した(図52)。特に、角膜の厚さの回復はOpeguardを使用する場合に再現性があった(図52)。霊長類の角膜内皮細胞と異なり、マウスの角膜内皮細胞はインビボで迅速に増殖する。そのため、注入したcHCECの接着性を増殖した移植先マウスの
角膜内皮細胞の接着性と区別するために、cHCECの接着性を、図53に示すように抗ヒト
核抗体の染色によって評価した(Kuzma-Kuzniarska M, et al. Differentiation 2012;83:128-137; Sanchez-Pernaute R, et al. Stem Cells 2005;23:914-922; Le
Belle JE, et al., J Neurosci Res 2004;76:174-183; Wurmser AE, et al., Nature 2004;430:350-356.)。ヒト核陽性の細胞はHCEC注入を行った2つの群の内
皮表面に存在したが、整列したHCEC核は、Opeguard F群において最も明確に見られた(図53)。Opeguard F、Opti-MEMおよびOpeguard MAの群の順番でより良好なHCECの接着が観察された。
HCEC注入の48時間後がすべての評価に適切な時期であった。HCEC注入は、角膜の厚さを有意に改善した(p<0.01)。
に優れたHCEC接着および角膜浮腫の抑制を示した。本実施例における結果はより安全なHCEC注入を裏付け得る。
レートを遠心分離することによってインビトロで評価することができる(実施例6等)。理論的には、BALB/cマウスは、異種移植のcHCECを超急性に拒絶するが、内皮移植モデル
におけるウサギ研究(Ishino Y, et al. Invest Ophthalmol Vis Sci 2004;45:800-806; Mimura T, et al. Invest Ophthalmol Vis Sci 2004;45:2992-2997)
およびラット研究(Mimura T, et al. Exp Eye Res 2004;79:231-237)においては
超急性拒絶は観察されなかった。実際に本実施例で使用したモデルにおいて、多くのヒト核陽性細胞が注入の72時間後に生存していた。しばしば磁場を使用することによって角膜内皮細胞を角膜表面に接着させることが試みられていたが、本実施例における結果は、HCECそれ自体が角膜の内表面に接着する能力を有し、移植時に使用する注入ビヒクルが、HCECの接着のために重要な因子であることを示す。細胞接着分子の発現の影響を試験することでより詳細な状態を理解することができる。
は、臨床上で良好な注入ビヒクルである。改変Opeguard MA、Opeguard Fのためにヒト
血清アルブミン、アスコルビン酸および乳酸を選択した。これら3つの試薬は、房水の成分であり、臨床等級の材料として市販されている。ここで、Opeguard MA改変Opeguard Fは、有意に良好なHCEC接着および角膜浮腫の抑制を示した。本実施例の結果から、ヒト
におけるより安全なcHCEC注入が達成され得ると理解される。
ントを評価するための新規なマウスモデルを確立した。このインビボのマウスモデルは、併用薬物の影響、cHCEC懸濁液注入ビヒクルまたは注入のための最適な細胞数などのcHCEC注入療法に関する系の評価のためにもまた価値が見いだされる。
本実施例では、臨床的使用に適用できるcHCECの機能を品質評価する方法の開発を行った。
ヒト角膜内皮細胞ドナー
使用したヒト組織は、ヘルシンキ宣言の倫理的原則に則って取り扱った。20名のヒトの遺体角膜から取得したHCECは核型分析を行う前に培養した。ヒトドナー角膜はSightLife Inc.(Seattle, WA, USA)から入手した。全ての死亡したドナーの近親者から、研究のために眼を提供することについて書面によるインフォームドコンセントを得た。全ての組織は統一死体提供法(UAGA)の原則に則って回収し、このUAGAはドナーの同意書を得て、組織を回収した州のものであった。全てのドナーの角膜をOptisol-GS (Chiron Vision, Irvine, CA, USA)中に保存し、研究の目的で航空輸入した。ドナーの情報によると、全てのドナーの角膜は角膜疾患のない健康なものであると考えられ、染色体異常の既往歴のあるドナーは一人もいなかった。
別途記載しない限り、HCECは、公開されているプロトコルにいくつかの変更を加えたものに従って培養した。簡潔に記載すると、デスメ膜を角膜内皮細胞とともにドナーの角膜から剥がし、37℃において1mg/mLのコラゲナーゼA(Roche Applied Science, Penzberg, Germany)で2時間処理して消化した。単一のドナー角膜から取得したHCECを、I型コラーゲンコーティング6ウェル細胞培養プレート(Corning Inc., Corning, NY, USA)のウェルの一つに播種した。培養培地は公開されているプロトコルにしたがって調製した。簡潔に記載すると、基礎培地は、Opti-MEM-I(Life Technologies Corp., Carlsbad, CA, USA)、8%のウシ胎児血清(FBS)、5ng/mLの上皮成長因子(EGF; Life technologies)、20μg/mLのアスコルビン酸(Sigma-Aldrich Corp., St. Louis, MO, USA)、200mg/Lの塩化カルシウム(Sigma-Aldrich Corp., St. Louis, MO, USA)、0
.08%のコンドロイチン硫酸(Wako Pure Chemical Industries, Ltd., Osaka, Japan)および50μg/mLのゲンタマイシンを用いて調製した。馴化液は以前に記載されたとおりに調製した(Nakahara, M. et al. PLOS One (2013) 8(7), e69009)。この馴化液を用いて5%のCO2を含む加湿大気下において37℃でHCECを培養した。培養培地は週に2回交換した。コンフルエントに達した場合、37℃で12分間10xTrypLE Select(Life technologies)を使用してHCECを1:3の比率で継代培養した。第2~第5継代のHCECを全ての実験に使用した。
位相差顕微鏡画像は、倒立顕微鏡システム(CKX41, Olympus,Tokyo, Japan)によって撮影した。
Industries Inc., Tokyo, JAPAN)を使用してスキャンを行い、3D-Gene Extraction software(Toray)を使用して解析した。
ソフトウェアによってデジタル化された蛍光シグナルを生データとみなした。全ての正
規化したデータを、シグナル強度の中央値が調整されるように各マイクロアレイについて全体的に正規化した。
全RNAを、miRNeasy Miniキット(QIAGEN strasse1 40724 Hilden Germany)を使用して培養HCECから抽出した。cDNAを、RNase阻害剤を含むHigh Capacity cDNA Reverse Transcriptionキット(Applied Biosystems, Foster City, CA, USA)を使用して合成した。
全RNAを、miRNeasy Miniキット(QIAGEN strasse1 40724 Hilden Germany)を使用して培養HCECから抽出した。cDNA合成は、RT2 First Strandキット(Qiagen)を使用して96ウェルプレートのフォーマットのために100ngの全RNAを用いて実施した。内皮
のmRNAの発現は、製造元の推奨プロトコルに従ってRT2 Profiler PCR-Array Human Extracellular Matrix and Adhesion Molecules(Qiagen)を使用して調べ、RT2 Profiler PCR Array Data Analysis Tool version 3.5を使用して解析した。
cHCECの培養上清を4日間培養した後に回収し、回収後すぐに-80℃で凍結させ分析するまで保存した。培養上清のサイトカインレベルを、Luminex X-Map
technology(Bio-Plex 200, BioRad, Hercules, CA, USA)と、Bio-Plex Human 27-plex panel kit(BioRad)とをメーカーの説明書通りに用いて分析した。以下のサイトカインを測定した:インターロイキン-1β(IL-1β)、IL-1rα、IL-2、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-12p70、IL-13、IL-15、IL-17A、塩基性線維芽細胞増殖因子(b-FGF)、エオタキシン、顆粒球コロニー刺激因子(G-CSF)、顆粒球マクリファージコロニー刺激因子(GM-CSF)、インターフェロンγ(IFN-γ)、インターフェロン誘導タンパク質10(IP-10)、単球走化性タンパク質1(MCP-1)、マクロファージ炎症性タンパク質1α(MIP-1α)、MIP-1β、血小板由来成長因子BB(PDGF-BB)、regulated upon activation normal T-cell expressed and secreted(RANTES)、腫瘍壊死因子α(TNF-α)および血管内皮増殖因子(VEGF)。それぞれのサイトカイン(2回繰り返し)についての検量線を、このキット中で提供される参照サイトカインを使用して作成し、培養上清に含まれるサイトカイン濃度の算出に使用した。
細胞培養上清をcHCHCから回収し、10分間RTにおいて1580gで遠心分離して分離した細胞を除去した。上清を回収し、0.22μmフィルター(Millex-GV Millipore)を通して濾過した。
2つのサンプル比較についての平均値の統計的有意性(P値)は、Studentのt検定によって決定した。複数のサンプルセットの比較についての統計的有意性はDunnettの多重比較検定で決定した。グラフ中の値は平均±標準誤差を表す。
遺伝子およびmiRNAシグネチャは培養間で異なった
6名の高齢ドナー由来のヒト角膜内皮(Endo)組織および5種類の角膜上皮(EP)を、3D-gene(Toray)によってそのmRNAおよびmiRNAシグネチャについて分析した。EndoとEPとの間で遺伝子シグネチャが乖離していることは明らかであったのに対して、この2つの組織間でのmiRシグネチャの差異は、mRNAの場合ほど大きくなかった(図54-A(a)、54-A(b)および54-B)。このシグネチャは、6名のドナー間でほぼ同様であった。さらに、新生児ドナーのmRNAシグネチャ以外は、4つの世代から得た組織において、EndoおよびEpにおける変化は両方とも明確ではなかった。
HCECの培養中に遺伝子発現が顕著に変化するという知見とも一致するが、形態の明確に異なる典型的な培養物(図55-Aおよび55-B)を新鮮なEndoとともに、EMT、線維化および細胞老化についてのRT2 Profiler PCR-Arrayを使用するPCRアレイに供した。ヒートマップから、これら3つの群が明確に異なることが明らかになった。注目すべきことに、図55-Aおよび55-Bに示すcHCECの2つの群でさえ異なる遺伝子発現プロファイルを示した。ほぼ50種類の遺伝子が、2つの培養細胞において共通して向上していた。これらには、Col3A1、FN1、IGFBP3、4、5、ITGA3、5、MMP2、TIMP1、ZEB2、MAP1B、Serpine1、THBS2、TGFbR2、TGFb1、CD44が含まれた。図55-Aおよび55-Bの2つの培養物間で、多くのアップレギュレートされた遺伝子およびダウンレギュレートされた遺伝子が明らかとなり(データ示さず)、このことから同じ培養プロトコルを使用していてもcHCEC培養物間で遺伝子発現が異なることが示唆される。培養物間で遺伝子が異なるというこれらのスクリーニング結果をうけて、50種類の候補遺伝子を選択し、qRT-PCRによってさらなる検証を行った(スクリーニングにより32種類の遺伝子を選択し、これにCSTにおいて機能的に重要であると考えられる18種類の遺伝子を追加した)(表8)。
候補遺伝子を、図56-Aおよび56-Bに示す2つのcHCEC(すなわち、665A2および675A2であり、これらは形態的に好対照をなす)におけるこれらの発現をqRT-PCRによって比較することで検証した。図56-Aおよび56-Bは結果の一部を示す。CDH2、TGF-β2およびCol8A2の遺伝子発現は、CSTを起こしていないcHCEC(すなわち665A2)において明らかにアップレギュレートされていたのに対して、TIMP1、Col3A1、CD44、IL-6、IL-8およびBMP2は、CSTを起こしたcHCEC(すなわち675A2)においてアップレギュレートされていた。この比較において、VIM、CD166、CD105、CD24およびMMP4遺伝子は、両方のcHCECにおいて同程度のレベルで発現されていた。結果を図56-Bにまとめる(表には、極めて低い発現レベルを示した遺伝子は含まれていない)。
上記の結果から、CSTは、EMT、老化および線維化を考慮に入れてもなお、より大きくばらつくことが明確に示されたので、その発現レベルをより詳細に調べた。培養細胞の形態について0~10の点数を割り振って11種類のcHCECに分級した(3名が係わった)(図57-A)。調べたいくつかの遺伝子の発現レベルを図57-Bに示した。一つのグループはこの点数の順番に負の相関を示す発現のアップレギュレーションを示し、第2のグループはこれに正の相関を示したが、第3のグループはこの点数とほとんど相関しなかった。興味深いことに、点数が10であるcHCEC間においてさえ、CD24の発現は異なり、このことからこの遺伝子は図57-Bの他の遺伝子よりより緻密に制御されていることが示される。細胞処理センターでGMPの下で産生したcHCECを使用して次の検証を行った(図58-Aおよび58-B)。この比較において、CSTの様式が異なるとみられる2つのcHCEC(C9およびC11)は、対照的な遺伝子発現プロファイルを示した。例えば、CD24は、C9においてのみアップレギュレートされており、Col4A1、4A2も同様であったが、MMP2、TIMP1、IL-6、IL-8およびTGF-β1はC11においてのみ向上していた。CD44、THBS2、Col3A1およびHGFは、C9およびC11の両方においてアップレギュレートされていた。
遺伝子発現は通常、1本鎖からなる生産物に対応し、ヘテロダイマーとしての生産物を十分に反映するわけではない。この問題を克服し、培養上清により可能であるアッセイを確認するため、次に、Bio-Plexヒトサイトカイン27-plexパネル(Bio-Rad)によって様々なcHCECの培養上清を分析した。培養継代数の異なる3つのcHCEC(#82、#84、#88)を分析のために用意した。典型的な結果を図59-Aに示す。分泌されるサイトカインの多くは、継代数の増加にしたがう減少または増加を示した。この試験から、IL-6、MCP-1およびIL-8は、培養品質の悪化に伴って増加を示した。これに対して、培養物中のIL-1Rα、IFN-γ、IP-10、PDGF-bbおよびMIP-1βは培養品質の改善と対応して増加した。
さらなる試験によって、cHCECを再現性良く品質評価する方法を開発し、4つのサイトカイン(すなわち、TIMP1、MCP-1、IL-8およびPDGF-bb)を選択した。Kyoto Prefectural University of Medicineの細胞処理センターで産生したcHCECのロット32個を品質評価するのに実際的に使用することができるかどうかを試験した後で最終的な条件の絞り込みを行った。この選択はまた、その品質評価性能について、細胞注入療法を実施した日に細胞を回収した時点で行ったFACSによる品質評価と対応するかどうかによっても検証した。標準的な値は、それぞれのサイトカインについて、500ng/ml未満のTIMP1、500pg/ml未満のIL-8、3000pg/ml未満のMCP-1および30pg/mlより高濃度のPDGFである。この品質評価は細胞注入治療の7日前に実施するべきである。
さらに、様々な培養株、継代数、継代日数の培養物について、培養上清に分泌されたMCP-1、IL-8およびPDGF-bbの量における差異を調べた(図59-B~59-C)。亜集団比率が異なるとサイトカイン産生量も異なることが示される。
異なる培養ロット間でのcHCECの遺伝子およびmiRNAシグネチャは、年齢の異なるドナーに由来する新鮮な組織間のシグネチャよりばらついた。20個より多くの培養物のロットを比較することによって、32種類の候補遺伝子がcHCECの形態的特徴における違いに関連すると考えられた。qRT-PCRによる候補遺伝子の検証によって、cHCECにおける形態的ばらつき(例えば、EMTまたは細胞老化などの特徴)に対応してアップレギュレーションまたはダウンレギュレーションのいずれかを受ける遺伝子を明らかにした。Bio-Plexヒトサイトカイン27-plexパネルによるELISAの結果をさらに加えて、11種類の候補サイトカインをcHCECの機能を品質評価するのに適切であるとしてさらに選択した。前眼房中に存在するということを考慮して、IL-8、TIMP-1、MCP-1およびPDGFを採取的に選択し、臨床における本細胞注入研究に実際的に使用できるcHCECの品質評価の実施に適用した。
cHCECの機能的特徴を適切に区別する特定のサイトカインを決定し、これによって、角膜内皮機能不全の治療のためにドナー角膜の代わりに適用可能なcHCECを品質評価することが可能となった。
す傾向にある(実施例2も参照)。したがって、cHCECの臨床的使用のためにはその品質を慎重にモニタリングしなければならない。
って誘導されたものを含む。本研究の初めにおいては、このEMT様CSTがしばしば起こったが、培養プロトコルの改善を図った後には、多くの培養物が老化型CSTを示す傾向にあった。
スを伝播させ、注目すべきことに、これはSASPメディエーターと呼ばれる膨大な種類の炎症メディエーターの分泌によるものである(Lasry A, Ben-Neriah Y. Cell, 2015; 36:217-228)。
本実施例では、エキソゾームの解析を行った。特に、CD63およびCD9について解析を行
った。
ヒト角膜内皮細胞ドナー
本実施例で使用されるヒト組織は、ヘルシンキ宣言の倫理的原則に則って取り扱った。HCECを20のヒト死体角膜から得、核型分類分析を行う前に培養した。ヒトドナー角膜は、SightLife Inc.(Seattle,WA,USA)から得た。研究のための眼の提供に関する書面によるインフォームドコンセントが、すべての死亡したドナーの親族から得られた。すべての組織は、ドナーの同意を得て組織を回収した州の統一死体提供法(UAGA)の原則に則って回収した。
別途記載しない限り、HCECは、公開されているプロトコルにいくつかの変更を加えたものに従って培養した。異なる年齢のヒトドナー角膜を、実験に使用した。簡潔に記載すると、デスメ膜をCECとともにドナーの角膜から剥がし、37℃において1mg/mLのコラゲナーゼA(Roche Applied Science,Penzberg,Germany)で2時間処理して消化した。単一のドナー角膜から取得したHCECを、I型コラーゲンコーティング6ウェル細胞培養プレート(Corning Inc.,Corning,NY,USA)のウェルの一つに播種した。培養培地は公開されているプロトコルにしたがって調製した。簡潔に記載すると、基礎培地は、Opti-MEM-I(Life Technologies Corp.,Carlsbad,CA,USA)、8%のウシ胎児血清(FBS)、5ng/mLの上皮成長因子(EGF;Life technologies)、20μg/mLのアスコルビン酸(Sigma-Aldrich Corp.)、200mg/Lの塩化カルシウム(Sigma-Aldrich Corp.,St. Louis,MO,USA)、0.08%のコンドロイチン硫酸(Wako Pure Chemical Industries,Ltd.,Osaka,Japan)および50μg/mLのゲンタマイシンを用いて調製した。馴化液は以前に記載されたとおりに調製した(Nakahara,M. et al. PLOS One(2013) 8,e69009)。この馴化液を用いて5%のCO2を含む加湿大気下において37℃でHCECを培養した。培養培地は週に2回交換した。コンフルエントに達した場合、37℃で12分間10x TrypLE Select(Life technologies)を使用してHCECを1:3の比率で継代培養した。第2~第5継代のHCECを全ての実験に使用した。
Total Exosome isolation from cell culture media(invitorgen)を用い、製品のプロトコルに従って各細胞の培養上清からエキソゾームを単離した。
各細胞の培養上清からエキソゾームが単離されているか、エキソゾームの代表的な表面マーカーに特異的な抗体(抗CD63抗体、抗CD9抗体および抗CD81抗体)を用いてウェスタンブロット解析を行った。
。転写条件は、20Vで1分間、23Vで4分間、25Vで2分間であった。
CD63およびCD9について、ウェスタンブロットの検出バンドが確認され、その大きさを視覚的に比較することができた(図64-A)。CD81については検出することができなかった(データ示さず)。さらに、Exoscreen法を用い培養上清中エクソソームタンパク質におけるCD63および/またはCD9のマーカーを検出した結果を、図64-Bに示した。
したがって、HCECから分泌されるエキソゾームについて、少なくともCD63またはCD9をマーカーとして用いることによって検出することができることが確認された。
本実施例では、水疱性角膜症患者(後述の適用対象患者を総括して以後このように呼称する)に対する本発明のヒト角膜内皮特性具備機能性細胞の注入に関する臨床研究(以後本試験という)の目的は、従来、唯一の治療法がアロドナー角膜(他家角膜)を用いた角膜注入である水疱性角膜症の患者を対象に、培養ヒト角膜内皮細胞注入の安全性と有効性および移入細胞の品質規格の妥当性を確認した。
本試験は、厚生労働省の監督下で定められたヒト幹細胞臨床研究に関する審査委員会において「水疱性角膜症に対する培養角膜内皮細胞移植に関する臨床試験」の承認を得た上で、「ヘルシンキ宣言」、「再生医療等の安全性確保等に関する法律」、「ヒト(同種)体性幹細胞加工医薬品等の品質及び安全性の確保について」、「ヒト又は動物細胞株を用いて製造されるバイオテクノロジー応用医薬品のウイルス安全性評価」、及び「生物由来原料基準」に従って実施した。
1.実施要項および実施医療機関
本研究は厚労省科学技術部会審議会の最終承認を得たうえで、京都府立医科大学病院で
水疱性角膜症のため、角膜移植が必要と診断された15例を対象とした。
本試験参加に先立ち文書による同意が得られ、適格基準を判定するための選択規準:1)最良矯正視力が0.5未満、2)角膜内皮スペキュラマイクロスコープで角膜内皮細胞が観察
できないか、もしくは内皮細胞密度が1平方ミリあたり500未満、3)角膜厚が630μm以上、かつ角膜上皮浮腫の存在、4)同意取得時の年齢が20歳以上90歳未満の患者、5)本人ないし代諾者から文書同意を得た患者、の全ての要件を満たし、且つ、除外基準:1)活動性の角膜感染症(細菌・真菌・ウイルスなど)を有する患者、2)妊娠またはその可能性のある患者、授乳中の患者、3)出血性の疾患を有する患者、4)精神的無能力(中等度および重度認知症を含む)のため、担当医師により十分な理解と協力が得られないと判断された患者、5)眼圧のコントロールが不良な緑内障患者、6)血糖コントロール不良な糖尿病患者、7)ステロイド剤に対する過敏症を有する患者、8)全身性の自己免疫疾患を合併する患者(SLE
、ベーチェット病等)、9)他の原因による視力障害の関与が強く疑われる患者、10)既に
本プロトコル治療を実施した患者、11)抗がん剤の使用者および使用を予定された患者、12)心疾患(心筋梗塞、心不全、コントロール不良の不整脈等)、脳血管障害(脳卒中)の既往を有する(及び/又は合併する)患者、13)その他、合併症等のために本治療を実施
するのに不適当と考えられる患者等、研究責任医師または研究分担医師が本治療の参加に支障があると判断した患者、の何れにも抵触しない水疱性角膜症患者で、角膜移植手術が必要と診断された症例を対象とした。
以下の1)から3)の手順に従い、培養・調製した培養角膜内皮細胞を角膜注入手術の手技に準じ1回、1×106cells/300μLの細胞を前房内に移入した。1) 原材料の角膜組織
原材料の角膜は、米国シアトルのアイバンクSightLife Inc.社から、同社において実施
した角膜提供者の適格性診断と摘出した角膜の安全性試験より、角膜移植に適合していると判断されたヒト角膜の提供を受け、継代培養の原材料とした。2)培養角膜内皮細胞の
調製 培養角膜内皮細胞は、GMPに準拠した京都府立医科大学セルプロセッシングセンタ
ー(CPC)において規定の作業手順書(SOP)に従い調製した。手短に述べると、ヒト角膜よりデスメ膜ごと角膜内皮細胞を剥離して、コラゲナーゼAで酵素処理後、細胞培養用培
地に懸濁して培養皿に播種し継代培養を行った。具体的な条件については、本明細書の実施例2または11に記載される本発明の角膜内皮特性具備機能性細胞の調製方法において記載されている条件を用いてこれらの培養を行った。移植手術時に供する際に細胞の汚染や異常がないことを確認したうえで、TrypLEによる酵素処理により細胞を回収し、フェノールレッド不含Opti-MEM I で洗浄を行った。最終濃度が100μMとなるY-27632((R)-(+)-トランス-(4-ピリジル)-4-(1-アミノエチル)-シクロヘキサンカルボキサミド2塩酸塩1水和物)を添加したOpti-MEM Iに、培養角膜内皮細胞数が1.5×106cells/450μLとなるようにプロテオセーブに分注し、移植用サンプルとした。
3)培養角膜内皮細胞の移入
手術は原則として局所麻酔により行った。角膜輪部に約2mmの切開創を作成したうえで
、角膜内皮剥離用シリコンニードル(イナミ等から入手可能)を用いて直径5-10mmのレシピエントの変性角膜内皮細胞または異常な細胞外マトリクスを取り除いた。取り除いた後、Y-27632を最終濃度100μM含有するOpti-MEM I(Life Technologies)に懸濁した培養角膜内皮細胞を、26G針を用いて前房内に1×106/300μL注入した。結膜下にステロイド剤(下記参照)の注射を行った。手術終了直後より、患者には3時間以上のうつむき姿勢を
とらせた。
1)検査項目および検査実施時期
検査項目および検査実施時期の試験スケジュールを表9に示す。
移入後:2日±1日、7日±2日、14日±2日を許容範囲とする。さらに、4週間±7日、8週間±7日、12週間±7日、16週間±7日、20週間±7日、24週間±14日を許容範囲とする。8週、16週、20週の諸検査について、遠方で来院できない場合は連携先の近医にて確認することを許容する。12週間(±7日)、24週間(±14日)の臨床検査については、薬剤の全身投与継続中であれば実施する。経過観察期間として、細胞注入の1年後は15症例のすべておよび2年後は8症例のデータが利用可能であった。
凡例 ○:症例報告書記載項目 △:症例報告書記載不要項目 ●:症例報告時期であり、いずれも本実施例において実施した項目である。
なお、本実施例および関連する図において、4週との表示は1カ月と同義であり、12週との表示は3カ月と同義であり、24週との表示は6カ月と同義である。
<2>術前の臨床検査として、(1)血液学的検査:赤血球数、白血球数、ヘモグロビン
量、ヘマトクリット値、血小板数、白血球分画、[INR(PT/APTT)、フィブリノーゲン]、(2)血液生化学的検査:血糖、総コレステロール、中性脂肪、総蛋白、アルブミン、クレ
アチニン、総ビリルビン、GOT、GPT、γ-GTP、LDH、ALPおよび(3)感染症検査:HBV,HCV,HIV,HTLV,梅毒感染および活動性の角膜感染症(細菌・真菌・ウイルスなど)の有無を確認した。
<3>眼科基本検査としての視力は、小数視力として測定し、角膜厚はペンタカムを用いて経時的に測定した。角膜内皮細胞検査は非接触型もしくは接触型スペキュラーマイクロ
スコープを用いて、眼圧は非接触型もしくは接触型眼圧計を用いて測定した。
<4>眼科所見Aは、細隙灯顕微鏡による角膜所見(上皮浮腫、上皮障害、実質浮腫、実
質混濁)、前房所見、結膜所見(結膜充血、結膜浮腫)を、0:ない、1:軽度、2:中等
度、3重度の4段階に分類しスコア化すると伴に、前眼部所見を写真撮影により記録した。<5>眼科所見Bは、視力に影響を及ぼす虹彩所見、白内障、緑内障、網膜疾患について
、細隙灯顕微鏡検査あるいは視野検査、眼底検査を実施し、0:ない、1:軽度、2:中等
度、3重度の4段階で判定した。
<6>移植前・後の視機能の変化とQOLとの関係を評価するため、NEI VFQ-25(The 25-item National Eye Institute Visual Function Questionnaire)によるアンケー
トを実施した。
本試験の経過観察中に生じた全ての好ましくない、あるいは意図しない徴候、症状または病気を有害事象として扱い、当該プロトコル治療に伴う移植手技、移植細胞あるいは治療全般との因果関係が否定できない反応を副作用とした。有害事象が発現した場合、その事象名、発現日、死亡・入院・不可逆的な障害に関する重篤・非重篤の判定、重症度、有害事象の転帰確認日および転帰を消失、軽減、不変、悪化の4段階で判定することとした
。なお、有害事象が認められた場合は、本注入治療との因果関係の有無に係わらず、転帰が確定するまで追跡調査を行うこととした。本治療との因果関係が否定できない有害事象に関しては、注入手技、注入細胞あるいは関連治療との因果関係を記録することとした。
通常の角膜移植における薬剤投与レジメンに準じ、術後炎症の制御と拒絶反応の抑制目的で副腎皮質ステロイド薬(メチルプレドニゾロン静注、ベタメタゾン静注・内服、ベタメタゾン点眼、フルオロメトロン点眼)、および術後感染症の予防として抗生物質、合成抗菌剤(フロモキセフナトリウム静注、セフカペンピボキシル内服、ガチフロキサシン点眼)の全身および局所投与による併用治療を行った。なお、経過観察期間中の悪性腫瘍治療目的の抗がん剤、薬物の硝子体内投与等、また、移植眼に対する白内障手術等の侵襲的な処置・手術は禁止した。
培養角膜内皮細胞が注入された全症例を解析対象集団とし、主要評価項目として設定した注入手術後24週の角膜内皮細胞密度が500個/mm2以上の症例数の割合とその95%信頼区間、および注入前から注入後24週の角膜厚の変化とその95%信頼区間、ならびに注入後24週
の角膜厚が650μm以下の症例数の割合とその95%信頼区間を算出した。
合とその95%信頼区間、注入前から注入後24週の角膜実質浮腫+混濁のスコアの和が1ポ
イント以上改善した症例の割合とその95%信頼区間、および注入前から注入後24週のVFQ-25スコアが改善した症例の割合とその95%信頼区間を算出した。
水疱性角膜症を対象とした培養角膜内皮細胞注入手術による安全性と有効性を探索的に
検討するとともに、培養角膜内皮細胞の規格設定の妥当性を検討するために必要と考えられる15症例を設定した。
1-83,2014)の正常あるいはGrade 1(軽度)にまで回復していた。本実施例において、対象となった15例は、手術前の状態が角膜実質浮腫と混濁のためスペキュラーマイクロスコープ(以下、スペキュラー)による手術前の角膜内皮細胞密度の観察・測定が不能で、重症度分類Grade 4の水疱性角膜症と診断された症例であった。これらの症例が、術後4
週から24週の間に重症度分類Grade 1にまで回復しており、更に15例中12例80.0%(95%信頼区間:51.9~95.7%)は、角膜の内皮機能を維持するうえで支障のない、正常角膜と考えられる2,000cells/mm2以上の内皮密度を維持していることが確認できた。
信頼区間:51.9~95.7%)が、また術後12週には13例中14例86.7%(95%信頼区間:59.5~98.3%)が、米国における角膜厚の異常所見の概ね基準となる650μm以下に減少しており、術後24週には15例全てがこの基準をクリアしていた。術前745±61μmの角膜厚は、術後4週には596±69μmと統計学的にも有意な(p<0.001)菲薄化を示し、その後も術後12
週には569±57μm、術後24週には557±48μmまで漸減し、ほぼ正常に近い安定した角膜厚が維持されていた。さらなる結果(1および2年)については表12を参照のこと。
は6.4段階(95%信頼区間:4.2段階~8.7段階)の改善を認め、24週後に2段階以上の視力改善を得た症例は15例中13例86.7%(95%信頼区間:59.5~98.3%)であった。注入療法による角膜内皮細胞の再生に伴い、角膜浮腫の軽減・菲薄化が可能となり、これらの組織学的あるいは形態学的な改善が、患者のQOLに直結する視力に反映された結果と言える。
表中、カッコ内に小数視力を示す。
において副次的評価項目であるスコア合計の和が1ポイント以上の改善を示した。
ことから、E-Ratioの角膜厚および角膜内皮細胞に及ぼす影響をE-Ratio≧90%群とE-Ratio<90群の2群に分けて比較検討した。
で角膜厚が600μm未満にまで減少し、5例の患者で主要評価項目の指標となる角膜厚650μm未満の基準に達していた。一方、E-Ratio≧90%群の症例I~Oでは、7例すべての患者
において術後4週に主要評価項目の角膜厚650μm未満の基準を達成しており、さらに7例
中6例の角膜厚は600μm未満にまで回復していた。
上の細胞集団を注入した患者(患者I~O)の注入前および注入後4週、12週および24週
までの角膜厚の推移を示すグラフである。本発明の角膜内皮特性具備機能性細胞により、早期に角膜の菲薄化が達成されていることが理解できる。本発明による注入手術(亜集団選択あり、E-Ratio≧90%)を施行した患者群のI~Oでは角膜厚の低下も顕著であり、
図69に示すように、術前747±63μmの角膜厚は、術後4週の時点で596±69μmと有意な
菲薄化を認め、24週後には7例中6例がほぼ正常角膜厚と言っても過言ではない550μm前後のレベルにまで達成していたことが確認できた。
%)の結果を、および下段には本発明による注入手術(亜集団選択あり、E-Ratio≧90%
)の結果を示す。また、各段の左側から、継代培養時の位相差顕微鏡写真の結果、注入する細胞のCD24、CD26、CD44に基づくFACS分析の結果、および右側には術後のスペキュラーの写真と角膜内皮細胞密度の数値(細胞数/mm2)を示す。従来法によって調製した細胞集団を注入した場合、症例数は少ないものの、角膜実質の混濁や浮腫の影響により術後12週後でもスペキュラーによる角膜内皮細胞の撮影が困難な症例が散見されている。しかし、本発明による注入手術(亜集団選択あり、E-Ratio<90%)を用いた場
合、スペキュラーによる内皮細胞の観察は、術後3カ月から可能となった。さらに、下段に示すように、注入手術(亜集団選択あり、E-Ratio≧90%)を用いた場合は、術後4週の時点でスペキュラーによる角膜内皮細胞の観察と鮮明な写真撮影が得られている。E-R<90群においては術後1ヶ月でスペキュラー撮影が可能となった症例は8例中2例(25.0%)に対しE-R≧90群においては注入した7例全例であった。また、E-R≧90群の平均内皮密度は、
術後4週の時点で3604±666cells/mm2と若年者の内皮細胞密度と同程度の組織学的な再生
が得られていた。術後12週の時点では、E-R<90においても8例全例でスペキュラーによる撮影が可能となり、平均内皮細胞密度も2329±696cells/mm2と正常の内皮密度まで回復していた。一方、E-R≧90においては術後12週の時点でも3331±551 cells/mm2と、E-R<90よりも有意な(p=0.00899)角膜内皮細胞密度が確認され、最終観察時点での術後24週においても、E-R<90の2014±567cells/mm2に対しE-R≧90は3302±535 cells/mm2と、E-R
<90よりも有意な(p<0.001)角膜内皮細胞密度が維持されていた。本発明の亜集団選択によって調製した細胞であれば、従来法に比べて早期に顕著な効果が現れることが判明した。図71は、本発明の角膜内皮細胞注入療法、DSAEK(従来法)およびPKP(全層角膜移植、従来法)における術後の前眼部スリット所見を示す。本発明の内皮細胞注入療法後はPKPのような注入縫合部の顕著な歪みや不正乱視が発現する可能性も少なく、またDSAEKのような角膜内皮面の段差や歪みを生じることも少ない術式と言える。移植後24週の角膜内皮スペキュラーについても、6カ月経過までに主要評価項目の角膜内皮細胞密度が500個/mm2以上という基準を上回り、15例すべての症例で1,000個/mm2以上の内皮細胞密度に達成していた。E-Ratioによる層別では、術後24週でE-Ratio<90%群のA~Hまでの患者の8
例中5例は、角膜内皮障害の重症度分類で正常角膜内皮に分類されている2,000個/mm2以上のレベルにまで回復していた。また、E-Ratioを90%以上に高めた患者群のI~Oでは、
術後24週の時点に7例すべての患者で2,500個/mm2以上の内皮細胞密度が維持されており、さらに7例中4例は3,000個/mm2以上という若年者のような極めて高いレベルの角膜内皮細胞密度が得られており、顕著な治療成績を示した。
品質で画期的な治療法の可能が示された。
の角膜内皮特性具備機能性細胞の比率が認識可能になったことが挙げられる。このように、本発明において、E-Ratioまたは本発明の角膜内皮特性具備機能性細胞の比率を上昇さ
せることで、治療成績が改善できることを見出した。このようなことは、従来の細胞調製技術や細胞の分類、選択手法では解明されていなかったことであり、本発明の亜集団分類に基づく細胞、その製法、細胞医薬としての効果が証明され、これらを品質管理の間接的または直接的な指標とするべきことも判明した。
、また、手術時のドナー角膜の入手を待つ間の精神的あるいは手術時の肉体的な負担も軽減され、本発明により角膜内皮治療から得られるQOLも飛躍的に改善したことが理解される。
本実施例では、水疱性角膜症の治療を目指したヒト培養角膜内皮細胞の製造法に関して
、以下概略する。
養を行った。P0培養には同一ドナーの左右2眼分の内皮細胞を2ウェル/6ウェルプレートのコラーゲンIプレートに播種して培養を開始した。培養には成熟分化細胞への分化を誘導
するために10μM Y-27632(ROCK阻害剤)を添加した。また、培養期間中に細胞の相転移抑制を目的に10μMのSB203580を添加した。約4~8週間後細胞がコンフルエントになった
後に継代を行った。コンフルエントになった後は、培地交換のみで数週間にわたり同品質が保持されていた。継代は細胞をTrypLEでプレートから剥離して培地で洗浄後、細胞密度を400細胞/mm2以上でT25コラーゲンIフラスコに播種する。臨床研究には基本的にP2或い
はP3までの培養の細胞が用いられているが、P5~P6までの培養細胞を用いることができる。培養に用いる主な生物由来原材料はFBS(原産国オーストラリア)である。
公開されているプロトコルにいくつかの変更を加えたものに従ってHCECを培養した(Nayak SK, Binder PS. Invest Ophthalmol Vis Sci. 1984; 25:1213-6)。合計30名の異なる年齢のヒトドナーの角膜を実験に使用した。簡潔に記載すると、デスメ膜をCECとともにドナーの角膜から剥がし、37℃において1mg/mLのコラゲナーゼA(Roche Applied Science, Penzberg, Germany)で2時間処理して消化した。単一のドナー角膜から取得したHCECを、I型コラーゲンコーティング6ウェル細胞培養プレート(Corning Inc., Corning, NY, USA)のウェルの一つに播種した。培養培地は公開されているプロトコルにしたがって調製した。簡潔に記載すると、基礎培地は、Opti-MEM-I(Life Technologies
Corp., Carlsbad, CA, USA)、8%のウシ胎児血清(FBS)、5ng/mLの上皮成長因子(EGF;
Life technologies)、20μg/mLのアスコルビン酸(Sigma-Aldrich Corp.)、200mg/Lの塩化カルシウム(Sigma-Aldrich Corp., St. Louis, MO, USA)、0.08%のコンドロイ
チン硫酸(Wako Pure Chemical Industries, Ltd., Osaka, Japan)および50μg/mL
のゲンタマイシンを用いて調製した。馴化液は以前に記載されたとおりに調製した(Nakahara, M. et al. PLOS One (2013) 8, e69009)。この馴化液を用いて5%のCO2を含む加湿大気下において37℃でHCECを培養した。培養培地は週に2回交換した。コンフルエントに達した場合、37℃で12分間10xTrypLE Select (Life technologies)を使用してHCECを細胞密度800 cells/mm2で継代培養した。第2~第5継代のHCECを全ての実験に使
用した。
細胞懸濁液を等量の0.4%トリパンブルー溶液(Sigma, T8154)と混和した後、血球計
算盤にて細胞数を計測した。
細胞ソーティング実験のために、HCECを回収し、上記の通りFITC結合抗ヒトCD24 mAb
およびPE-Cy 7結合抗ヒトCD44 mAb(BD Biosciences)で染色した。バッファーで洗浄した後、細胞をFACSバッファーに再懸濁させた。CD24ネガティブ/CD44ポジティブ細胞およ
びCD24ネガティブ/CD44ネガティブ細胞をBD FACSJazzセルソーター(BD Biosciences)を使用してソーティングし、後の解析のために24ウェル細胞培養プレート上に4.2×104細胞の密度で播種した。
HCECを、上記の通りTrypLE Select処理によって培養ディッシュから回収し、FACSバッ
ファー(1%のBSAおよび0.05%のNaN3を含むPBS)中に4×106細胞/mLの濃度で懸濁した。同じ体積の抗体溶液を添加し、4℃で2時間インキュベートした。FACSバッファーで洗浄した
後、HCECをFACS Canto II(BD Biosciences)で解析した。
HCECを、上記の通りTrypLE Selectで遊離させ、CD44-HCEC亜集団(エフェクター亜集団)を抗ヒトCD44マイクロビーズ(Miltenyi Biotec, Bergisch Gladbach, Germany)およびautoMACS Pro separator(Miltenyi Biotec)のプログラムdepl05を用いて単離した。フローサイトメトリーにより確かめたところ、単離したエフェクター亜集団の純度は、全ての場合において90%より高かった(図65~図67)。
水疱性角膜症患者への注入用細胞懸濁液の調整の概略を以下に示す。
を確認した。また、注入ビヒクル中の長時間の安定性の検討試験も実施した。Opti-MEMとの比較で眼科領域でよく使用されている眼還流液であるオペガード(10%HSAを添加)と最長72時間にわたって細胞生存率を比較した。
クル中の細胞の安定性に関して、多施設治験を想定して再度CPCで調整後24時間~48時間
の安定性試験として生存率のみならず細胞表面のマーカーならびに産生物など品質規格試験項目について安定性が示される。
ることから、医療産業およびその周辺産業において利用可能性が見出される。
Claims (1)
- 図面に記載の発明。
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016026424 | 2016-02-15 | ||
JP2016026424 | 2016-02-15 | ||
JP2016026426 | 2016-02-15 | ||
JP2016026425 | 2016-02-15 | ||
JP2016026426 | 2016-02-15 | ||
JP2016026425 | 2016-02-15 | ||
JP2016026423 | 2016-02-15 | ||
JP2016026423 | 2016-02-15 | ||
JP2016077450 | 2016-04-07 | ||
JP2016077450 | 2016-04-07 | ||
JP2020022800A JP7453669B2 (ja) | 2016-02-15 | 2020-02-13 | ヒト機能性角膜内皮細胞およびその応用 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020022800A Division JP7453669B2 (ja) | 2016-02-15 | 2020-02-13 | ヒト機能性角膜内皮細胞およびその応用 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024019306A true JP2024019306A (ja) | 2024-02-08 |
Family
ID=58261691
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018561784A Active JP7008337B2 (ja) | 2016-02-15 | 2017-02-14 | ヒト機能性角膜内皮細胞およびその応用 |
JP2020022800A Active JP7453669B2 (ja) | 2016-02-15 | 2020-02-13 | ヒト機能性角膜内皮細胞およびその応用 |
JP2020022799A Active JP6954682B2 (ja) | 2016-02-15 | 2020-02-13 | ヒト機能性角膜内皮細胞およびその応用 |
JP2023205812A Pending JP2024019306A (ja) | 2016-02-15 | 2023-12-06 | ヒト機能性角膜内皮細胞およびその応用 |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018561784A Active JP7008337B2 (ja) | 2016-02-15 | 2017-02-14 | ヒト機能性角膜内皮細胞およびその応用 |
JP2020022800A Active JP7453669B2 (ja) | 2016-02-15 | 2020-02-13 | ヒト機能性角膜内皮細胞およびその応用 |
JP2020022799A Active JP6954682B2 (ja) | 2016-02-15 | 2020-02-13 | ヒト機能性角膜内皮細胞およびその応用 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20190083543A1 (ja) |
EP (2) | EP3416658B1 (ja) |
JP (4) | JP7008337B2 (ja) |
ES (1) | ES2947826T3 (ja) |
PL (1) | PL3416658T3 (ja) |
WO (1) | WO2017141926A1 (ja) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUE041929T2 (hu) | 2011-12-06 | 2019-06-28 | Astellas Inst For Regenerative Medicine | Eljárás szaruhártya endotél sejtek irányított differenciálására |
PL3416658T3 (pl) | 2016-02-15 | 2023-09-04 | Kyoto Prefectural Public University Corporation | Funkcjonalna ludzka komórka śródbłonka rogówki i jej zastosowanie |
CN107629999A (zh) * | 2017-10-18 | 2018-01-26 | 清华大学深圳研究生院 | 一种增加间充质干细胞外泌体产生及分泌的方法 |
US12350294B2 (en) | 2018-01-16 | 2025-07-08 | Keio University | Medium comprising serum replacement, IGF1, STAT3 activator and adrenal gland hormone without BFGF or rock inhibitor for producing corneal endothelial substitute cells from iPS cells and a method thereof |
US20220025325A1 (en) * | 2018-12-12 | 2022-01-27 | The Johns Hopkins University | Generation and cryopreservation of pluripotent stem cell-derived clinical grade corneal endothelial cells |
WO2020213969A2 (ko) * | 2019-04-17 | 2020-10-22 | 연세대학교 산학협력단 | 각막 내피 세포의 기능 부전 진단용 바이오마커 |
JP2020200296A (ja) * | 2019-06-13 | 2020-12-17 | 久貴 藤本 | 角膜内皮障害の予防及び/又は治療のための薬剤 |
US12230397B2 (en) * | 2019-08-21 | 2025-02-18 | Case Western Reserve University | Assessment of endothelial cells and corneas at risk from ophthalmological images |
CN115427551A (zh) | 2020-02-27 | 2022-12-02 | 京都府公立大学法人 | 人功能性角膜内皮细胞及其应用 |
WO2022025239A1 (ja) * | 2020-07-31 | 2022-02-03 | 学校法人同志社 | 角膜内皮細胞注入療法の治療効果増強法 |
AU2021366805B2 (en) * | 2020-10-22 | 2025-04-24 | Kyoto Prefectural Public University Corporation | A storage method of human corneal endothelial cells and/or human corneal endothelial precursor cells |
CN112538458A (zh) * | 2020-11-26 | 2021-03-23 | 北京赛尔湃腾科技咨询合伙企业(有限合伙) | 用于重编程细胞的方法 |
KR20240039135A (ko) | 2021-07-07 | 2024-03-26 | 가부시키가이샤 셀루전 | 세포 이식 용도를 위한 세포 씨딩제 및 기질 |
WO2023282337A1 (ja) | 2021-07-07 | 2023-01-12 | 株式会社セルージョン | 角膜内皮代替細胞を含有する治療用組成物 |
CN114507635B (zh) * | 2022-01-24 | 2024-03-22 | 上海纽仁生物医药科技有限公司 | 一种动物神经系统内皮细胞单细胞的分离方法 |
JPWO2023190941A1 (ja) * | 2022-03-31 | 2023-10-05 | ||
WO2023230171A2 (en) * | 2022-05-24 | 2023-11-30 | University Of Pittsburgh - Of Thecommonwealth System Of Highereducation | Compositions and methods of treating corneal scarring |
WO2024158290A2 (en) * | 2023-01-27 | 2024-08-02 | Universiteit Maastricht | Methods for selecting cultured corneal endothelial cells |
WO2024182683A1 (en) * | 2023-03-01 | 2024-09-06 | The Regents Of The University Of California | Rapid, accurate, and reproducible screening of endothelial cell morphology in diseased and healthy corneas |
KR20250024502A (ko) * | 2023-08-11 | 2025-02-18 | 재단법인 아산사회복지재단 | 분화 유도된 각막 내피 세포를 포함하는 각막 질환 예방 또는 치료용 약학적 조성물 |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4678783B1 (en) | 1983-11-04 | 1995-04-04 | Asahi Chemical Ind | Substituted isoquinolinesulfonyl compounds |
EP1195372A1 (en) | 1994-04-18 | 2002-04-10 | Mitsubishi Pharma Corporation | N-heterocyclic substituted benzamide derivatives with antihypertensive activity |
JP3421217B2 (ja) | 1995-11-20 | 2003-06-30 | 麒麟麦酒株式会社 | Rho標的タンパク質Rhoキナーゼ |
AU9646198A (en) | 1997-10-22 | 1999-05-10 | Nippon Shinyaku Co. Ltd. | Isoquinoline derivative and drug |
EP1094055B1 (en) | 1998-05-25 | 2006-04-26 | Santen Pharmaceutical Co., Ltd. | Novel vinylbenzene derivatives |
US6410278B1 (en) | 1998-11-09 | 2002-06-25 | Eiken Kagaku Kabushiki Kaisha | Process for synthesizing nucleic acid |
AU2878200A (en) | 1999-02-11 | 2000-08-29 | Schepens Eye Research Institute, Inc., The | Growth medium for human corneal endothelial cells |
PT1370552E (pt) | 2001-03-23 | 2007-04-30 | Bayer Pharmaceuticals Corp | Inibidores de rho-quinase |
ES2264477T3 (es) | 2001-03-23 | 2007-01-01 | Bayer Corporation | Inhibidores de quinasa rho. |
CN101310771B (zh) | 2001-04-11 | 2012-08-08 | 千寿制药株式会社 | 视觉功能障碍改善剂 |
JPWO2002100833A1 (ja) | 2001-06-12 | 2004-09-24 | 住友製薬株式会社 | Rhoキナーゼ阻害剤 |
EP1465900B1 (en) | 2002-01-10 | 2008-05-14 | Bayer HealthCare AG | Rho-kinase inhibitors |
US6690307B2 (en) | 2002-01-22 | 2004-02-10 | Nokia Corporation | Adaptive variable length coding of digital video |
ATE381557T1 (de) | 2002-01-23 | 2008-01-15 | Bayer Pharmaceuticals Corp | Rho-kinase inhibitoren |
AU2003281623B8 (en) | 2002-07-22 | 2009-06-11 | Asahi Kasei Pharma Corporation | 5-substituted isoquinoline derivative |
CA2400996A1 (en) | 2002-09-03 | 2004-03-03 | Lisa Mckerracher | 1,4-substituted cyclohexane derivatives |
US7160894B2 (en) | 2003-06-06 | 2007-01-09 | Asahi Kasei Pharma Corporation | Tricyclic compound |
CA2530389A1 (en) | 2003-07-02 | 2005-01-13 | Biofocus Discovery Limited | Pyrazine and pyridine derivatives as rho kinase inhibitors |
US20050182061A1 (en) | 2003-10-02 | 2005-08-18 | Jeremy Green | Phthalimide compounds useful as protein kinase inhibitors |
ATE552834T1 (de) | 2003-10-06 | 2012-04-15 | Glaxosmithkline Llc | Zubereitung von 1,6-disubstituierten azabenzimidazolen als kinasehemmer |
US20070123561A1 (en) | 2003-10-06 | 2007-05-31 | Dennis Lee | Preparation of 1,7-disubstituted azabensimidazoles as kinase inhibitors |
JP2007507549A (ja) | 2003-10-06 | 2007-03-29 | グラクソ グループ リミテッド | キナーゼ阻害剤としての1,6,7−三置換アザベンゾイミダゾールの調製 |
JP2007015928A (ja) | 2003-10-15 | 2007-01-25 | Ube Ind Ltd | 新規オレフィン誘導体 |
JP2007008816A (ja) | 2003-10-15 | 2007-01-18 | Ube Ind Ltd | 新規イソキノリン誘導体 |
US7563906B2 (en) | 2003-10-15 | 2009-07-21 | Ube Industries, Ltd. | Indazole derivatives |
EP1720874A4 (en) | 2004-02-24 | 2010-03-03 | Bioaxone Therapeutique Inc | 4-SUBSTITUTED PIPERIDINE DERIVATIVES |
RU2006138621A (ru) | 2004-04-02 | 2008-05-10 | Вертекс Фармасьютикалз Инкорпорейтед (Us) | Азаиндолы, полезные в качестве ингибиторов rock и других протеинкиназ |
WO2006057270A1 (ja) | 2004-11-26 | 2006-06-01 | Asahi Kasei Pharma Corporation | 含窒素3環化合物 |
BRPI0614974A2 (pt) | 2005-08-30 | 2010-12-14 | Asahi Kasei Pharma Corp | composto, medicamento, inibidor da fosforilaÇço da cadeia leve regulatària da miosina, inibidor da via rho/rho quinase, e, mÉtodo para tratamento terapÊutico e/ou profilÁtico de glaucoma |
CN103937738B (zh) * | 2007-08-29 | 2017-04-12 | 千寿制药株式会社 | 促进角膜内皮细胞粘附的药剂 |
EP2249800B1 (en) * | 2008-02-04 | 2024-04-17 | Jeffrey L. Goldberg | Iron magnetic cells for localizing delivery and eye tissue repair |
US8606848B2 (en) | 2009-09-10 | 2013-12-10 | Opentv, Inc. | Method and system for sharing digital media content |
WO2011080984A1 (en) * | 2009-12-29 | 2011-07-07 | Senju Pharmaceutical Co., Ltd. | Therapeutic agent (y - 39983 ) for corneal endothelial dysfunction |
EP2532738B1 (en) * | 2010-02-05 | 2016-12-21 | Cornea Regeneration Institute Co., Ltd. | Method for culture of corneal endothelial cells, process for production of corneal endothelial cell sheet for transplantation purposes, and culture kit for corneal endothelial cells |
JPWO2011111443A1 (ja) | 2010-03-08 | 2013-06-27 | 日本電気株式会社 | 携帯通信端末装置、携帯通信端末装置の消費電力制御方法およびプログラム |
CN102884792B (zh) | 2010-05-12 | 2016-08-17 | 汤姆森许可贸易公司 | 用于统一显著图编码的方法和设备 |
JP6041270B2 (ja) * | 2011-10-06 | 2016-12-07 | 学校法人慶應義塾 | 角膜内皮細胞の製造方法 |
ES2917222T3 (es) * | 2011-12-28 | 2022-07-07 | Kyoto Prefectural Public Univ Corp | Normalización del cultivo de células endoteliales de la córnea |
EP2876160B1 (en) * | 2012-07-06 | 2020-05-13 | Kyoto Prefectural Public University Corporation | Differentiation marker for and differentiation control for ocular cells |
US10017735B2 (en) | 2012-07-18 | 2018-07-10 | Singapore Health Services Pte Ltd | Cell culture of corneal endothelial cells |
US10174284B2 (en) * | 2012-09-07 | 2019-01-08 | Jcr Pharmaceuticals Co., Ltd. | Medium, for culturing corneal endothelial cells, containing conditioned medium from mesenchymal stem cells |
JP6548576B2 (ja) | 2013-07-30 | 2019-07-24 | 京都府公立大学法人 | 角膜内皮細胞マーカー |
US10813920B2 (en) * | 2013-11-14 | 2020-10-27 | The Doshisha | Drug for treating corneal endothelium by promoting cell proliferation or inhibiting cell damage |
JP2016077450A (ja) | 2014-10-15 | 2016-05-16 | タツタ電線株式会社 | 医療用チューブ |
PL3416658T3 (pl) | 2016-02-15 | 2023-09-04 | Kyoto Prefectural Public University Corporation | Funkcjonalna ludzka komórka śródbłonka rogówki i jej zastosowanie |
-
2017
- 2017-02-14 PL PL17709487.7T patent/PL3416658T3/pl unknown
- 2017-02-14 WO PCT/JP2017/005386 patent/WO2017141926A1/en active Application Filing
- 2017-02-14 EP EP17709487.7A patent/EP3416658B1/en active Active
- 2017-02-14 JP JP2018561784A patent/JP7008337B2/ja active Active
- 2017-02-14 US US16/078,002 patent/US20190083543A1/en active Pending
- 2017-02-14 EP EP23160003.2A patent/EP4218773A1/en active Pending
- 2017-02-14 ES ES17709487T patent/ES2947826T3/es active Active
-
2020
- 2020-02-13 JP JP2020022800A patent/JP7453669B2/ja active Active
- 2020-02-13 JP JP2020022799A patent/JP6954682B2/ja active Active
- 2020-10-20 US US17/074,912 patent/US20210046124A1/en active Pending
-
2023
- 2023-12-06 JP JP2023205812A patent/JP2024019306A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JP7453669B2 (ja) | 2024-03-21 |
EP4218773A1 (en) | 2023-08-02 |
EP3416658A1 (en) | 2018-12-26 |
WO2017141926A1 (en) | 2017-08-24 |
JP2020073602A (ja) | 2020-05-14 |
PL3416658T3 (pl) | 2023-09-04 |
JP2020072753A (ja) | 2020-05-14 |
JP6954682B2 (ja) | 2021-10-27 |
JP7008337B2 (ja) | 2022-02-10 |
ES2947826T3 (es) | 2023-08-21 |
US20190083543A1 (en) | 2019-03-21 |
US20210046124A1 (en) | 2021-02-18 |
JP2019510509A (ja) | 2019-04-18 |
EP3416658B1 (en) | 2023-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7453669B2 (ja) | ヒト機能性角膜内皮細胞およびその応用 | |
JP2020532745A (ja) | 子癇前症と関連したバイオマーカーを検出するための方法及び装置 | |
Kim et al. | Upregulated stromal cell-derived factor 1 (SDF-1) expression and its interaction with CXCR4 contribute to the pathogenesis of severe pterygia | |
WO2010096574A1 (en) | A method of diagnosis or prognosis of a neoplasm comprising determining the level of expression of a protein in stromal cells adjacent to the neoplasm | |
Shi et al. | Exosome-shuttled miR-7162-3p from human umbilical cord derived mesenchymal stem cells repair endometrial stromal cell injury by restricting APOL6 | |
Vu-Phan et al. | The thyroid cancer PAX8–PPARG fusion protein activates Wnt/TCF-responsive cells that have a transformed phenotype | |
US20250123297A1 (en) | Supermere Nanoparticles and Methods of Isolation and Use Thereof | |
Cai et al. | Secretory phosphoprotein 1 secreted by fibroblast-like synoviocytes promotes osteoclasts formation via PI3K/AKT signaling in collagen-induced arthritis | |
Ferreira et al. | Activin A increases invasiveness of endometrial cells in an in vitro model of human peritoneum | |
Lyu et al. | Protein kinase A inhibitor H89 attenuates experimental proliferative vitreoretinopathy | |
WO2014007402A1 (ja) | 眼細胞の分化マーカーおよび分化制御 | |
Tang et al. | CDC42 deficiency leads to endometrial stromal cell senescence in recurrent implantation failure | |
Schröder‐Heurich et al. | Downregulation of miR‐1270 mediates endothelial progenitor cell function in preeclampsia: Role for ATM in the Src/VE‐cadherin axis | |
Hu et al. | Endometrial BMP2 deficiency impairs ITGB3-mediated trophoblast invasion in women with repeated implantation failure | |
US20230257700A1 (en) | Functional human corneal endothelial cells and application thereof | |
Liu et al. | MicroRNA‐3061 downregulates the expression of PAX7/Wnt/Ca2+ signalling axis genes to induce premature ovarian failure in mice | |
Wu et al. | The effect and mechanism of low-molecular-weight heparin on the decidualization of stromal cells in early pregnancy | |
CN103820528B (zh) | Reelin及其拮抗剂在骨髓瘤患者分期及预后中的新应用 | |
CN114636825B (zh) | Golm1作为肺纤维化生物标记物、靶点的应用及检测Golm1的试剂的应用 | |
Hayden et al. | Modulation of the tumour promoting functions of cancer associated fibroblasts by phosphodiesterase type 5 inhibition increases the efficacy of chemotherapy in human preclinical models of esophageal adenocarcinoma | |
Cui et al. | High-mannose glycosylation of ITGAM regulates the development and differentiation of trophoblast in the placenta | |
Parkes-Reed | Endometrial cancer cell lines as a model for metastasis | |
Roozitalab | The effect of DCIS-associated myoepithelial cells on macrophage phenotype–drivers of DCIS progression | |
Ronan et al. | Comprehensive Multi-omics Mapping of Vesicle Cargo from Plasma or Novel Tissue Vesicles Reveals Pathological Changes in Cargo with Patient Age | |
Weiss et al. | Schwann cell plasticity regulates neuroblastic tumor cell differentiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241203 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20250123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20250331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20250701 |