JP2023504039A - 運搬機器 - Google Patents

運搬機器 Download PDF

Info

Publication number
JP2023504039A
JP2023504039A JP2022530878A JP2022530878A JP2023504039A JP 2023504039 A JP2023504039 A JP 2023504039A JP 2022530878 A JP2022530878 A JP 2022530878A JP 2022530878 A JP2022530878 A JP 2022530878A JP 2023504039 A JP2023504039 A JP 2023504039A
Authority
JP
Japan
Prior art keywords
movement
drive
coil
transport unit
conveying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2022530878A
Other languages
English (en)
Inventor
フリクセーダー・シュテファン
ハウアー・ミヒャエル
ハウドゥム・マルティン
Original Assignee
ベーウントエル・インダストリアル・オートメイション・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベーウントエル・インダストリアル・オートメイション・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング filed Critical ベーウントエル・インダストリアル・オートメイション・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
Publication of JP2023504039A publication Critical patent/JP2023504039A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Control Of Linear Motors (AREA)

Abstract

より効率的な動作を可能にする非対称的に設計された平面モーターの形の運搬機器1を提示するために、本発明では、少なくとも一つの運搬セグメント2が、運搬ユニットに対して予め与えられた、定義された始点と定義された終点の間を延びる移動パスに対して相対的な方向に向けられて、この移動パスの移動パス長における第一の主移動方向H1の第一の移動パス部分が、この移動パス長における第二の主移動方向H2の第二の移動パス部分と同じ大きさになるか、或いはそれよりも大きくなる形で、この移動パスが運搬面3内に在ると規定される。

Description

本発明は、運搬面を形成する少なくとも1つの運搬セグメントと、この運搬面内を少なくとも二次元的に2つの主移動方向に移動可能な少なくとも1つの運搬ユニットとを備えた平面モーターの形の運搬機器であって、この運搬セグメントには、第一の主移動方向を定義する複数の駆動コイルから成る第一のコイルグループが配置されるとともに、第二の主移動方向を定義する複数の駆動コイルから成る第二のコイルグループが配置され、第一のコイルグループの駆動コイルが、運搬ユニットを第一の主移動方向に動かすために、少なくとも運搬ユニットの駆動磁石の一部と電磁気的に協力して動作するように、制御ユニットによって駆動可能であるとともに、第二のコイルグループの駆動コイルが、運搬ユニットを第二の主移動方向に動かすために、少なくとも運搬ユニットの駆動磁石の一部と電磁気的に協力して動作するように、制御ユニットによって駆動可能であり、第一と第二のコイルグループの駆動コイルが、異なる磁場の影響を及ぼすコイル特性を有することと、第一のコイルグループの駆動コイルと協力して動作する運搬ユニットの駆動磁石が、第二のコイルグループの駆動コイルと協力して動作する駆動磁石と異なる磁場の影響を及ぼす磁石特性を有することとの中の1つ以上によって、駆動ユニットが、異なる効率、異なる最大の力及び異なる精度の中の1つ以上を有する2つの主移動方向に移動可能である運搬機器に関する。更に、本発明は、そのような運搬機器を動作させる方法に関する。
平面モーターは、基本的に従来技術により周知である。特許文献1は、例えば、そのような平面モーターの基本的な構造と機能形態を開示している。平面モーターは、主に運搬面を形成する固定子を有し、1つ又は複数の運搬ユニットが、その運搬面内を少なくとも二次元的に移動することができる。その固定子は、通常1つ又は複数の運搬セグメントから構成されている。運搬面内において運搬ユニットを移動させるために、固定子の(1つ又は複数の運搬セグメントの)磁界と運搬ユニットの磁界が協力して動作することによって、運搬ユニットに作用する駆動力を発生させている。所定の移動方向への運搬ユニットの動きを実現するためには、それらの磁界の中の少なくとも一方、即ち、固定子の磁界及び/又は運搬ユニットの磁界を運搬ユニットの動きに追随するように時間的に変化させなければならない。しかし、大抵は一方の磁界、通常は固定子の磁界だけが時間的に変化して、それぞれ(運搬ユニットにおける)他方の磁界は、一般的に一定である、即ち、時間的に変化しない。
時間的に変化する磁界は、例えば、運搬ユニットにも、固定子、特に、運搬セグメントにも配置できるコイル(電磁石)によって発生させることができる。それらのコイルは、多くの場合駆動コイルとも呼ばれる。時間的に変化しない、即ち、一定の磁界は、典型的には、永久磁石を用いて発生させている。多くの場合、それらの構成部品は駆動磁石と呼ばれる。それらも、平面モーターの実施構成に応じて、運搬ユニットにも、運搬セグメントにも配置することができる。より簡単な駆動のために、駆動コイルは、多くの場合、平面モーターの運搬セグメントに配置され、駆動磁石が運搬ユニットに配置されている。
駆動コイルは、可動磁界を所望の移動方向に発生させるために、通常は制御ユニットによって駆動される。運搬ユニットには、その可動磁界と協力して動作する駆動磁石が、少なくとも二次元に分散して配置されており、その結果、運搬ユニットに対する駆動力及び浮上力を発生させることができる。その浮上力によって、運搬ユニットを一定の位置に保持することができて、即ち、例えば、運搬ユニットと運搬セグメントの間に空隙を作るか、或いは設定して維持することができて、追加的に作用する駆動力によって、運搬ユニットを所望の移動方向に動かすことができるとともに、傾転力又は傾転モーメントを発生させることができる。平面モーターに関して特徴的な運搬ユニットの二次元の動きを実現可能にするためには、運搬セグメントと運搬ユニットの磁界の二次元の協力動作が必要であり、2つの磁界の中の一方を少なくとも2つの次元において、或いは2つの磁界を(それぞれ他方の次元に対して相補的に)少なくとも1つの次元において時間的に変化させなければならない。その場合、駆動コイルと駆動磁石は、有利には、運搬面によって規定される軸に沿った一次元の動き以外に、運搬面内における運搬ユニットのより複雑な二次元の動きも可能であるように配置されている。
平面モーターは、例えば、製造プロセスにおける運搬機器として利用することができ、複雑な運動プロファイルによって非常に柔軟な運搬プロセスを実現することができる。特許文献2及び3には、例えば、運搬機器としての平面モーターのそのような用途が示されている。
そのような平面モーターの固定子は、駆動コイルの異なる配列を有することができるとともに、運搬ユニットにおける駆動磁石の配列も同じく非常に異なるようにすることができる。特許文献1には、例えば、複数の重なり合ったコイル面から成る固定子の複層構造を備えた平面モーターが開示されている。隣接するコイル面内の駆動コイルは、運搬ユニットが移動できる2つの主移動方向を形成するために、互いに直交している。それにより、平均すると、コイル面は、運搬ユニットの駆動磁石から異なる間隔を有する。その結果、2つの主移動方向における平面モーターの効率が異なることとなる。その状況を正すために、運搬ユニットの駆動磁石からより遠く離れた方のコイル面における駆動コイルに、より近い方のコイル面の駆動コイルよりも大きなコイル電流を加えて、駆動力を発生させることが提案されている。
非特許文献1には、2つのコイル面の積層配列を備えた平面モーターが開示されている。運搬ユニットの磁石からの間隔が異なることから生じる異なる効率を均すために、2つのコイル面に対して異なる強さの駆動コイルを使用することが提案されている。
米国特許登録第9,202,719号明細書 欧州特許登録第3172156号明細書 欧州特許登録第3172134号明細書
J.M.M., Rovers, et. al, 2013. Design and measurements of the Double Layer Planar Motor. In: International Electric Machines & Drives Conference. Chicago, 12-15.05.2013. IEEE Jansen, J. W., 2007. Magnetically levitated planar actuator with moving magnets. in: electromechanical analysis and Design Eindhoven: Technische Universiteit Eindhoven DOI: 10.6100/IR630846
以上のことから、本発明の課題は、運搬機器のより効率的な動作を可能にする平面モーターの形の運搬機器及び平面モーターの形の運搬機器を動作させる方法を提示することである。
この課題は、本発明に基づき、この少なくとも1つの運搬セグメントが、運搬ユニットに対して予め与えられた、定義された始点と定義された終点の間を延びる移動パスに対して相対的な方向に向けられて、この移動パスの移動パス長における第一の主移動方向の第一の移動パス部分が、移動パス長における第二の主移動方向の第二の移動パス部分と同じ大きさになるか、或いはそれよりも大きくなるように、この移動パスが運搬面内に在ることによって解決される。それによって、運搬ユニットの動きが、主に第一の主移動方向に実行されて、それにより、運搬機器の効率的な動作が達成されることが保証される。
本運搬機器の有利な実施形態は、従属請求項2~12に提示されている。
更に、本課題は、請求項12に基づく方法によって解決される。本方法の有利な実施形態は、従属請求項13~19に提示されている。
以下において、本発明の有利な実施形態の例を模式的に本発明を限定しない形で図示する図面1a~10を参照して、本発明を詳しく説明する。
平面モーターの形の運搬機器の平面図 平面モーターの形の運搬機器の側面図 平面モーターの形の運搬機器の側面図 運搬セグメントにおける駆動コイルの考え得る配列の模式図 運搬セグメントにおける駆動コイルの考え得る配列の模式図 運搬セグメントにおける駆動コイルの考え得る配列の模式図 運搬セグメントにおける駆動コイルの考え得る配列の模式図 運搬セグメントにおける駆動コイルの考え得る配列の模式図 運搬ユニットにおける駆動磁石の考え得る一次元配列の模式図 運搬ユニットにおける駆動磁石の考え得る一次元配列の模式図 運搬ユニットにおける駆動磁石の考え得る一次元配列の模式図 運搬ユニットにおける駆動磁石の考え得る一次元配列の模式図 運搬ユニットにおける駆動磁石の考え得る一次元配列の模式図 運搬ユニットにおける駆動磁石の考え得る一次元配列の模式図 運搬ユニットにおける駆動磁石の考え得る二次元配列の模式図 運搬ユニットにおける駆動磁石の考え得る二次元配列の模式図 運搬ユニットにおける駆動磁石の考え得る二次元配列の模式図 運搬ユニットにおける駆動磁石の考え得る二次元配列の模式図 処理ステーションを備えた平面モーターの形の運搬機器の実施例の模式図 処理ステーションを備えた平面モーターの形の運搬機器の別の実施例の模式図 運搬ユニットの磁石グループと運搬セグメントのコイルグループの協力した動作の模式図 浮上力の配分係数の推移のグラフ図 運搬セグメントの2つの主移動方向の銅損の推移のグラフ図 平面モーターの形の運搬機器の代替実施構成の平面図
図1a~1cには、平面モーターの形の運搬機器1の実施例が簡略化して図示されている。この場合、図1aが、運搬機器1を平面図で図示し、図1bと1cが、運搬機器1を側面図で図示している。この運搬機器1は、固定子として、運搬面3を形成する少なくとも1つの運搬セグメント2と、この運搬面3内を少なくとも二次元的に2つの主移動方向H1,H2に移動可能な少なくとも1つの運搬ユニットTEとを有する。本発明の範囲内において、運搬面3とは、運搬セグメント2の大きさと形状によって決定される、運搬セグメント2の平坦な表面であると理解する。図1aには、簡略化のために、1つの運搬セグメント2だけが図示されているが、当然のことながら、例えば、図5と図6に図示されている通り、より大きな運搬面3を形成するために、多数の運搬セグメント2を(異なる形で)互いに接して並べることもできる。それによって、運搬機器1は、モジュール式に構成することができ、形状と面積の大きさが異なる運搬面3を実現することができる。しかし、当然のことながら、このモジュール式構造は、任意選定であり、単一の構造グループの形の単一の運搬セグメント2だけを配備することもできる。この運搬セグメント2の運搬面3内において、当然のことながら、複数の運搬ユニットTEも、異なる運搬ユニットTEも同時に互いに独立して動かすことができる。
運搬セグメント2には、第一の主移動方向H1を定義する、複数の駆動コイルAS1から成る第一のコイルグループSG1と、第二の主移動方向H2を定義する、複数の駆動コイルAS2から成る第二のコイルグループSG2とが配置されている。第一のコイルグループSG1の駆動コイルAS1は、ここでは、X軸に沿って延びる、運搬ユニットTEの移動に関する第一の主移動方向H1を形成するために、所定の方向に、ここでは、X方向に順番に配置されている。第二のコイルグループSG2の駆動コイルAS2は、ここでは、Y軸に沿って延びる、運搬ユニットTEに関する第二の主移動方向H2を形成するために、所定の方向に、ここでは、Y方向に順番に配置されている。有利には、第一と第二のコイルグループSG1,SG2の駆動コイルAS1,AS2は、図1aに図示されている通り、2つの主移動方向H1,H2が互いに直交するように互いに相対的に配置されている。しかし、当然のことながら、主移動方向H1,H2のそれ以外の相対的な配置構成、例えば、主移動方向H1,H2の間の直角と異なる角度も考えられる。
第一のコイルグループSG1の駆動コイルAS1と第二のコイルグループSG2の駆動コイルAS2は、ここでは、それぞれ従来通り巻回された縦長のコイルとして構成されている。第一のコイルグループSG1の駆動コイルAS1は、それぞれY方向への長手方向延伸部LAS1と、それに対して相対的に短い、X方向への横方向延伸部QAS1とを有し、その横方向延伸部QAS1の方向に、ここでは、X方向に順番に配置されている。駆動コイルASiの横方向延伸部QASiは、典型的には、その駆動コイルと協力して動作する磁石グループMGiの駆動磁石4の磁極ピッチTiと、駆動コイルASiの巻線形態、即ち、例えば、集中的な巻線形態(単一歯巻線)であるのか、分散した巻線形態であるのかとの中の1つ以上に依存する。これらの巻線形態は、従来技術で周知である。それにより、第一のコイルグループSG1の駆動コイルAS1が順番に配置された方向は、運搬ユニットTEの移動に関する第一の主移動方向H1を定義する。第一のコイルグループSG1の駆動コイルAS1は、所謂「長いコイル」として構成されている。それは、その長手方向延伸部LAS1が、各方向(ここでは、Y方向)における運搬ユニットTEの延伸部よりも大きいこと、ここでは、例えば、運搬ユニットTEの運搬ユニット幅BTEよりも長いことを意味する。図示された例では、長手方向延伸部LAS1は、Y方向における運搬セグメント2の拡がりとほぼ同じ大きさになる。それにより、基本的にY方向における如何なる場所でも、X方向、即ち、第一の主移動方向H1への運搬ユニットTEの動きが可能である。
第二のコイルグループSG2の駆動コイルAS2は、同じく、ここでは、第一のコイルグループSG1の駆動コイルAS1の長手方向延伸部LAS1よりも小さな長手方向延伸部LAS2を有する。この第二のコイルグループSG2の駆動コイルAS2の長手方向延伸部LAS2は、ここでは、X方向に延びる。また、第二のコイルグループSG2の駆動コイルAS2は、ここでは、Y方向において、それぞれ長手方向延伸部LAS2に対して相対的に小さな横方向延伸部QAS2を有する。横方向延伸部QAS2は、ここでは、第一のコイルグループSG1の駆動コイルAS1の横方向延伸部QAS1とほぼ同じ大きさであるが、より大きくするか、或いはより小さくすることもできる。第二のコイルグループSG2の駆動コイルAS2は、同じく、その横方向延伸部QAS2の方向に、ここでは、Y方向に順番に配置されている。それにより、第二のコイルグループSG2の駆動コイルAS2が順番に配置されている方向は、運搬ユニットTEの移動に関する第二の主移動方向H2を定義する。
第二のコイルグループSG2の駆動コイルAS2は、所謂「短いコイル」として構成されている。それは、長手方向延伸部LAS2が、各方向(ここでは、X方向)における運搬ユニットTEの延伸部と、ここでは、例えば、運搬ユニットTEの運搬ユニット長LTEと同じ大きさであるか、或いはそれよりも小さいことを意味する。しかし、それにも関わらず運搬面3内全体において、第二の主移動方向H2への運搬ユニットTEの動きを可能にするために、第二のコイルグループSG2の駆動コイルAS2が、X方向に複数の列で、ここでは、例えば、三列で並んで配置されている。しかし、全く同様に、その逆の配置も、即ち、第二の主移動方向H2に対して「長い」コイルを配置し、第一の主移動方向H1に対して「短い」コイルを配置することも可能である。2つの主移動方向H1,H2に対して、それぞれ「長い」コイルを使用することも、或いはそれぞれ「短い」コイルを使用することもできる。例えば、コストの節約に関して、2つのコイルグループSG1,SG2に対して同形の駆動コイルAS1=AS2を使用するのが有利であるとすることができる。
しかし、当然のことながら、図示された実施構成は、単なる例であると理解すべきであり、当業者は、コイルグループSG1,SG2のそれ以外の配列及び/又は駆動コイルのそれ以外の構造形態を規定することもできる。例えば、周知の手法により、所謂PCBコイルを使用することができる。この場合、「PCB」とは、「Printed Circuit board」を表し、コイルが直に回路基板に統合されていることを意味する。両方の実施構成は、従来技術で周知であり、そのため、ここでは、詳しい説明は行わない。コイルグループSG1,SG2の互いのそれ以外の相対的な配列及び/又は運搬セグメント2に対するそれ以外の相対的な配列も考えられるか、更に別の主移動方向Hiを形成する駆動コイルASiから成る更に別のコイルグループSGiを配備することができるか、或いはその両方である。しかし、最も一般的なケースでは、それぞれ複数の駆動コイルAS1,AS2から成る2つの異なる向きのコイルグループSG1,SG2で十分であり、各コイルグループSG1,SG2が1つの主移動方向H1,H2を定義する。しかし、有利には、これらの少なくとも2つの主移動方向H1,H2は、図示されている通り、互いに直交し、それによって、運搬セグメント2を構造的により簡単に構築することができる。
更に、複数の運搬セグメント2から構成される運搬面3のモジュール式構造に関して、運搬セグメント2が、それぞれ正方形又は長方形の運搬面3を有することも有利である。そして、これらの運搬セグメント2は、簡単に互いに接して並べることができ、その結果、例えば、図6に図示されている通り、運搬セグメント2のそれぞれの第一の主移動方向H1が、それぞれ隣接する運搬セグメント2の第一の主移動方向H1に対して平行に、或いは直角に延びる。それにより、運搬面3は、複数の運搬セグメント2から簡単かつ柔軟に構成することができる。この場合、隣接する運搬セグメント2が、必ずしも互いに一直線に並ぶ必要はなく、ずらすことも可能である。
図示された運搬機器1を用いて、例えば、運搬セグメント2の運搬面3内において、2つの主移動方向H1,H2への運搬ユニットTEのほぼ制限されない動きが可能である。この場合、運搬ユニットTEは、例えば、それぞれX軸に沿ってのみ、或いはY軸に沿ってのみ動かすことができる。しかし、当然のことながら、運搬ユニットTEは、2つの主移動方向H1,H2に、例えば、図1aの運搬ユニットTEで示される通り、運搬面3内に在るX座標とY座標による二次元の移動パスBPに沿って同時に動かすことができる。運搬セグメント2と各運搬ユニットTEの相応の構造的な実現形態において、周知の手法で、それ以外の4つの運動自由度(高さ方向Zにおける並進運動と3つの軸X,Y,Zの周りの回転)を少なくとも限定的に使用することもできる。
この運搬機器1には、図1aに示されている通り、運搬セグメント2の駆動コイルAS1,AS2を駆動することができる制御ユニット5も配備されている。この制御ユニット5は、例えば、上位の設備制御ユニット6と接続するか、或いはそれに統合することもできる。複数の運搬セグメント2が運搬機器1に配備されている場合、運搬セグメント2又は運搬セグメント2のグループ毎に、それぞれ(図示されていない)セグメント制御ユニットを配備することと、制御ユニット5に統合することもできるコイル制御ユニットを駆動コイルASi毎に配備することとの中の1つ以上も可能である。この制御ユニット5及び/又は設備制御ユニット6によって、例えば、運搬機器1を統合可能な設備の所定の製造プロセスに応じて、運搬ユニットTEの移動パスBPを予め与えることができる。
前述した通り、この運搬機器1では、当然のことながら、複数の運搬ユニットTEを同時に互いに独立して動かすことができる。そして、制御ユニット5及び/又は設備制御ユニット6は、例えば、運搬ユニットTEの互いの衝突及び/又は運搬されている物体との衝突を防止するために、運搬ユニットTEの移動進路を互いに同期させるか、或いは互いに同調させる役割を果たす。制御ユニット5では、個々の運搬ユニットTEの所望の移動パスを実現する制御プログラムが作動する。制御ユニット5又は設備制御ユニット6は、例えば、移動パスBPの計画を策定するプラニングモジュールPLMと接続することもできる。このプラニングモジュールPLMは、例えば、実際に構築する運搬機器1、特に、運搬面3を、例えば、仮想的に実装したコンピュータであるとすることができる。
この少なくとも1つの運搬ユニットTEには、運搬ユニットTEを動かすために、少なくとも2つのコイルグループSG1,SG2の駆動コイルAS1,AS2と電磁気的に協力して動作する複数の駆動磁石4が配置されている。そのために、運搬ユニットTEは、図1bで分かる通り、通常本体部分9を有し、その(運搬面3の方を向いた)下側には、駆動磁石4が配置されている。図1aでは、駆動磁石4の配列を見ることができるように、本体部分9が、それぞれ大部分破断された形で図示されている。
図示された例では、2つの第一の磁石グループMGaと2つの第二の磁石グループMGbが運搬ユニットTEに配置されている。運搬機器1を動作させるためには、基本的に運搬ユニットTE当たり単一の第一の磁石グループMGaと単一の第二の磁石グループMGbでも十分である。しかし、当然のことながら、運搬ユニットTE当たり3つ以上の第一の磁石グループMGaと3つ以上の第二の磁石グループMGbを配備することもできる。等しくない数の第一と第二の磁石グループMGa,MGb、例えば、2つの第一の磁石グループMGaと1つの第二の磁石グループMGbも考えられる。これらの磁石グループMGa,MGbには、それぞれ所定の配列方向に所定の磁極ピッチTa,Tbで順番に配置された、異なる磁化方向の複数の駆動磁石4が配備されている。ここでは、第一の磁石グループMGaの配列方向がX方向と一致し、第二の磁石グループMGbの配列方向がY方向と一致する。それにより、これらの配列方向は、主移動方向H1,H2と同様に互いに直交する。有利には、磁石グループMGa,MGbの配列方向は、出来る限り効率的に電磁気的な力を発生できるように、主移動方向H1,H2に対して出来る限り平行に延びる。図示された例では、運搬ユニットTEにおける駆動磁石4の周知の一次元配列であるが、図4a~4dに基づき更に詳しく説明する通り、同じく周知の二次元配列も可能である。
運搬面3内において運搬ユニットTEを動かすために、第一と第二の駆動コイルAS1,AS2を制御ユニット5によって個々に駆動する(電流を流す)ことができる。そのために場合によっては必要となるパワーエレクトロニクス機器を制御ユニット5又は運搬セグメント2に配置することができる。第一の駆動コイルAS1を相応に時間的にずらして駆動することによって、基本的な可動磁界を第一の主移動方向H1に発生させている。この第一の主移動方向H1における可動磁界は、第一の主移動方向H1への各運搬ユニットTEの所与の運動状態を設定する駆動力を発生させるために、例えば、加速、定速又は停止状態までの減速のために、概ね第一の磁石グループMGaの駆動磁石4と電磁気的に協力して動作する。同様に、第二の駆動コイルAS2を時間的にずらして駆動することによって、基本的な可動磁界を第二の主移動方向H2に発生させており、この可動磁界は、運搬ユニットTEを第二の主移動方向H2に動かす駆動力を発生させるために、概ね第二磁石グループMGbの駆動磁石4と電磁気的に協力して動作する。駆動コイルAS1,AS2の駆動に応じて、可動磁界の重なり合いが生じ、それによって、所望の通り、運搬ユニットTEを運搬面3内の所与の二次元の移動パスBPに沿って動かすことができる。
運搬面3内の主移動方向H1,H2におけるほぼ無制限の2つの並進運動自由度の外に、運搬面3に対する法線方向、ここでは、Z軸の方向における運搬ユニットTEの限定的な並進運動も可能である。コイルグループSG1,SG2の駆動コイルAS1,AS2とそれと協力して動作する第一及び第二の磁石グループMGa,MGbの配列及び構造的な実施形態に応じて、3つの空間軸X,Y,Zの周りの運搬ユニットTEの限定的な回転も可能である。
前述した通り、磁石グループMGa,MGbの互いに隣接する駆動磁石4は、異なる磁化方向を有し、(ここでは、それぞれ駆動磁石4の中心からその隣の駆動磁石4の中心までの)所定の磁極ピッチTa,Tbで互いに間隔を開けて配置されている。一般的に、磁極ピッチTi内において、磁石グループMGiにより生成される磁界の向きが180°交番する。この場合、所望の磁極ピッチTiで磁界を発生させるのに必要な駆動磁石4の間隔は、磁石グループMGi内の駆動磁石4の配列にも、特に、隣り合う駆動磁石4の間の生じるかもしれない隙間の隙間幅、隣り合う駆動磁石4の磁化方向(例えば、180°逆向き又はハルバッハ配列)及び駆動磁石4の磁石幅MBiにも依存する。ハルバッハ配列では、例えば、磁石グループMGiのそれぞれ最も外側の駆動磁石4が、例えば、それぞれ間に在る駆動磁石4の磁石幅MBiの半分を有するのが有利であるとすることができる。
これは、例えば、図1aで運搬ユニットTEにおける斜線を付けられた駆動磁石4と斜線を付けられていない駆動磁石4によって示される通り、それぞれ磁石のN極とS極が交番し、それが隣り合う駆動磁石4の180°回転した配列に相当することを意味することができる。隣接する駆動磁石4の磁化方向がそれぞれ互いに90°回転した周知のハルバッハ配列も有利であることが分かっている。この場合、「磁極ピッチTa,Tb」とは、それぞれ配列方向に隣り合う磁化方向(N極/S極)が逆である2つの駆動磁石4の間の間隔であると理解されたい。駆動磁石4が(配列方向に)同じ磁石幅MBを有し、隣り合う駆動磁石4が180°回転した配向方向を有し、駆動磁石4が互いに直に隣接する(これは一般的なケースである)場合、磁極ピッチTa,Tbが、それぞれの磁石幅MBa、MBbと一致する。これらの磁極ピッチTa,Tb及び磁石幅MBa,MBbは、例えば、図4aと図4cの運搬ユニットTEに表示されている。
動作時に、運搬セグメント2の運搬面3と運搬ユニットTEの磁石グループMGa,MGbの駆動磁石4の間には、図1bで明らかな通り、空隙Lが設けられる。有利には、運搬セグメント2に、有利には、磁気伝導性のカバー層を配備して、その下に在る駆動コイルAS1,AS2を外部の影響から遮蔽するとともに、ほぼ滑らかな運搬面3を形成することができる。このカバー層は、その下に在る駆動コイルAS1,AS2の配列を見ることができるように、図1aでは部分的に破断された形で表示されている。同様に、当然のことながら、運搬ユニットTEにも、駆動磁石4を覆うカバー層を配備することができる。そして、空隙Lが、カバー層と各運搬ユニットTEの駆動磁石4の間に拡がる。この空隙Lを作るとともに、特に、維持するために、駆動コイルAS1,AS2と駆動磁石4が、動作時に、周知の手法で(主移動方向H1,H2への動きに必要な)駆動力を発生させるためだけでなく、ここでは、Z方向に浮上力FSを発生させるためにも協力して動作する。この浮上力FSは、運搬ユニットTEの静止状態においても、空隙Lを発生させて、維持するために作用する。運搬セグメント2の図示されたほぼ水平の取付姿勢以外に、当然のことながら、傾いた面の形の傾斜した取付姿勢も考えられる。ほぼ垂直の取付姿勢も可能である。
この場合、運搬ユニットTEに作用する、並びに重力FGに、場合によっては重力方向に生じるプロセス力FP(例えば、運搬されている物体Oの重力や、場合によっては、運搬機器1の処理ステーションでの作業プロセスのために運搬ユニットTEに作用する追加的な作業プロセス力)に対して逆向きの電磁気的に発生される力の如何なる部分も浮上力と呼ばれる。それにより、浮上力FSは、絶対値に関して、ほぼ重力FGと(重力方向における)プロセス力FPのベクトル和に等しく、その結果、空隙を維持することで、運搬ユニットTEの静的な平衡状態が達成される。運搬ユニットTEの運動状態の変化(例えば、定速、加速、減速など)を引き起こす、電磁気的に発生される力の如何なる部分も、或いはプロセス力FPが重力方向に作用しない場合に、運搬ユニットTEを停止状態に維持するために、浮上力FSに追加して適用しなければならない如何なる部分も駆動力と呼ばれる。運搬面3内の二次元の動き以外に、高さ方向、即ち、運搬面3に対する法線方向における運搬ユニットTEの或る程度の動きも可能である。駆動コイルAS1,AS2の相応の駆動によって、限定された範囲内で空隙Lを増減することができ、それによって、図1bの運搬ユニットTEにおいて両方向矢印で示されている通り、運搬ユニットTEを高さ方向に、ここでは、Z方向に動かすことができる。この場合、高さ方向において提供可能な動きの遊びスペースの大きさは、基本的に運搬機器1の構造的な実施形態に、特に、駆動コイルAS1,AS2と駆動磁石4の最大限に発生可能な磁界と、運搬ユニットTEの重量及び荷重とに依存する。運搬機器1の大きさと設計に応じて、高さ方向において提供可能な移動範囲は、例えば、数mmから数cmの範囲内であるとすることができる。
更に、第一と第二のコイルグループSG1,SG2の駆動コイルAS1,AS2が、異なる磁場の影響を及ぼすコイル特性を有することと、第一のコイルグループSG1の駆動コイルAS1と主に協力して動作する運搬ユニットTEの駆動磁石4(ここでは、第一の磁石グループ)が、第二のコイルグループSG2の駆動コイルAS2と主に協力して動作する駆動磁石4(ここでは、第二の磁石グループMGb)と異なる磁場の影響を及ぼす磁石特性を有することとの中の1つ以上であると規定される。それによって、異なる効率μH1≠μH2、異なる最大の力及び異なる精度の中の1つ以上を有する2つの主移動方向H1,H2に駆動ユニットTEを動かすことができる。
この場合、「磁場の影響を及ぼすコイル特性」とは、駆動コイルASiが発生する磁界、特に、磁束に影響を及ぼすことができる、駆動コイルASiの変更可能な構造パラメータ又はエネルギーパラメータであると理解する。それには、例えば、駆動コイルASiと協力して動作する運搬ユニットTEの駆動磁石4からのその駆動コイルの法線方向における平均コイル間隔Si(図1b)、コイルグループSGiの隣り合う駆動コイルASiのコイルピッチTASi、駆動コイルASiの導体抵抗、駆動コイルASiに印加可能な最大コイル電流、駆動コイルASiの巻線数及び駆動コイルASiのコイルの幾何学的形状が挙げられる。この「コイルの幾何学的形状」とは、特に、運搬面3に対して平行な駆動コイルASiの長手方向延伸部LASiと横方向延伸部QASi、並びに図1bの駆動コイルAS2において示されている通り、運搬面3に対して法線方向における駆動コイルASiのコイルの高さhASiであると理解する。更に、巻線形態、即ち、集中的な巻線であるのか、分散した巻線であるのかも、駆動コイルASiのコイルの幾何学的形状に影響を及ぼす。運搬ユニットTEの駆動磁石4の「磁場の影響を及ぼす磁石特性」とは、例えば、駆動磁石4の残留磁束、駆動磁石4とそれと協力して動作する駆動コイルASiの間の相対的な向き、駆動磁石4の磁極ピッチTi及び駆動磁石の磁石の幾何学的形状であると理解する。磁石の幾何学的形状は、例えば、図1bと図3dに図示されている通り、特に、磁石の長さLMi、磁石の幅MBi及び磁石の高さHMiと関連する。
以下において、磁場の影響を及ぼす磁石特性及び/又は磁場の影響を及ぼすコイル特性を用いて、運搬機器1の主移動方向Hiに電磁気的な力を発生させる効率μHiが如何にして向上できるのかに関する幾つかの措置の例を列挙する。当然のことながら、複数の磁石特性及び/又はコイル特性を変えることもできる。
駆動磁石4と駆動コイルASiの間の相対的な方向設定は、出来る限り、駆動コイルASiの導体の向きが駆動磁石4によって発生される磁界と直交するように実行すべきである。これは、現実の実施形態において、例えば、縦長の駆動コイルASi及び長手方向延伸部LASiに対して出来る限り平行に配置された、その駆動コイルと協力して動作する磁石グループMGiの縦長の駆動磁石4を使用することによって達成される(例えば、図1aを参照)。更に、コイルグループSGi(例えば、SG1)の駆動コイルASiと、主にそれぞれ別のコイルグループSGi(例えば、SG2)の駆動コイルASiと協力して動作する磁石グループMGi(例えば、MGb)との間の相対的な向きは、発生する結合効果が僅かとなるか、或いは無くなるように、出来る限り直交すべきである。これは、図1aの例では、例えば、第二の磁石グループMGbの駆動磁石4が第一のコイルグループSG1の駆動コイルASiの横方向延伸部QAS1に対して出来る限り平行に配置されることによって達成される。磁束密度が法線方向の間隔に対して指数関数的に低下するので、駆動コイルASiの導体とそれと協力して動作する駆動磁石4の間の(図示された例では、平均コイル間隔Siに等しい)間隔は、出来る限り小さくすべきである。
駆動コイルASiの導体抵抗は、出来る限り小さくすべきである。導体抵抗を低減する手法は、例えば、駆動コイルASiの所謂「オーバーラップ長」を出来る限り大きくするようにすること及び/又は駆動コイルASiの導体の横断面を増大させることである。この場合、「オーバーラップ長」は、駆動磁石4の磁界の影響範囲内に在る、導体の部分である。有利には、「オーバーラップ長」は、出来る限り導体又は駆動コイルASiの延伸部全体と一致すべきである。駆動力/浮上力を発生させるために複数の導体が使用される場合(これは、一般的に、駆動コイルASiの使用によって実現される)、高い銅充填率(銅充填率の定義は、基本的に周知であり、コイルの横断面積全体に対するコイルの個々の導体の横断面積の合計の比率にほぼ等しい)が有利である。導体の抵抗率は温度と共に上昇するので、例えば、排熱により温度を低下させることによって、導体の効率を増大させることができる。
運搬ユニットTEに対して(移動方向にも、高さ方向にも)発生可能な最大の力は、例えば、駆動コイルASiに印加可能な(ほぼパワーエレクトロニクスにより制限される)最大のコイル電流とコイルの幾何学的形状及び巻線数の中の1つ以上とによって調節することができる。運搬ユニットTEの位置決め精度は、例えば、コイルピッチTASiの大きさによって調節することができる。このコイルピッチTASiは、例えば、図1aの第二のコイルグループSG2の駆動コイルAS2において示されている通り、隣り合う駆動コイルASiの間隔、一般的にはコイル軸の間の間隔を表す。このことから、運搬ユニットTEを動かす効率μHi、運搬ユニットTEに対して発生可能な最大の力及び/又は運搬ユニットTEを動かす位置決め精度に影響を及ぼすことができる多様なパラメータが存在することが分かる。当然のことながら、駆動コイルASiの磁場の影響を及ぼすコイル特性と駆動磁石4の磁場の影響を及ぼす磁石特性の全て又は出来る限り多くを最適化することを追求することができる。しかし、多くの場合、これは、例えば、費用効率の理由から、可能でないか、或いは望まれていない。例えば、費用の理由から、第一のコイルグループSG1の駆動コイルAS1と第二のコイルグループSG2の駆動コイルAS2に対して構造的に同じ実施形態のコイルを使用するのが有利であるとすることができ、それによって、例えば、駆動コイルAS1,AS2の平均コイル間隔が異なる(S1≠S2)場合に、ほぼ自動的に効率の違いが得られる。以下において、図1a~1cに基づき、単なる例として、駆動コイルAS1,AS2の異なる平均コイル間隔S1≠S2を取り上げ、その際、2つの主移動方向H1,H2における残る磁場の影響を及ぼすコイル特性と磁場の影響を及ぼす磁石特性は等しいとする。
第一のコイルグループSG1の駆動コイルAS1は、運搬面3に対する法線方向(ここでは、Z方向)に、第一の磁石グループMGaから第一の平均コイル間隔S1を開けて配置され、第二のコイルグループSG2の駆動コイルAS2は、運搬面3に対する法線方向に、第二の磁石グループMGbから第一の平均コイル間隔S1に対して相対的により大きな第二の平均コイル間隔S2を開けて配置されている。それにより、Z方向において、第一のコイルグループSG1の駆動コイルAS1が、第一の磁石グループMGaの駆動磁石4に対して、第二の磁石グループMGaの駆動磁石4に対する第二のコイルグループSG2の駆動コイルAS2よりも近くに在る。図1bに図示された例では、2つのコイルグループSG1,SG2が重なり合って配置されている。
この場合、平均コイル間隔S1,S2は、各駆動コイルAS1,AS2のコイル中心からZ方向に見る向きで計測される。これらの駆動コイルAS1,AS2は、各運搬ユニットTEと運搬セグメント2の間の擾乱性の磁気的な引力を防止するために、有利には、鉄心の無い形で実現されており、所謂「空芯コイル」とも呼ばれる。図1aと1bに図示された例では、駆動コイルAS1,AS2は、従来通り巻回されたほぼ楕円形の縦長のコイルとして実現されており、それぞれコイル軸が運搬面3に対する法線方向を向いている。しかし、駆動コイルAS1,AS2は、所謂「PCBコイル」として実現することもできる。しかし、各コイルグループSG1,SG2の駆動コイルAS1,AS2は、図1cに図示されている通り、例えば、第一の駆動コイルAS1から成る複数の第一のコイル面SE1と第二の駆動コイルAS2から成る複数の第二のコイル面SE2による層形態により、運搬面3に対する法線方向に重なり合った形で運搬セグメント2に配置することができる。
図1cの左側の例では、4つの第一のコイル面SE1から成るコイルブロックと4つの第二のコイル面SE2から成るコイルブロックが重なり合った形で運搬セグメント2に配置されている。図1cの右側の図では、それぞれ4つの第一のコイル面SE1と4つの第二のコイル面SE2がZ方向に交番する形で運搬セグメント2に配置されている。この場合、平均コイル間隔S1,S2は、それぞれZ方向における運搬面3からのコイル面SE1,SE2の平均的な間隔であり、次の式が成り立ち、
Figure 2023504039000002
ここで、S1.i,S2.iは、第一と第二のコイル面SE1,SE2のコイル間隔であり、j,kは、第一と第二のコイル面SE1,SE2の数である。
第一のコイルグループSG1の駆動コイルAS1は、同じ構造的な制約条件(同一の幾何学的形状(長さ、幅、高さ)、同じ巻線数など)と同じエネルギー的な制約条件(同じ最大電流又は電圧など)において、第二のコイルグループSG2の駆動コイルAS2と同じ(最大)磁界を発生させる。運搬ユニットTEにおける磁石グループMGa,MGbは、ほぼ同形(同じ幾何学的形状(磁石の長さ、磁石の幅、磁石の高さ)、同じ数の駆動磁石4、同じ磁極ピッチTi、同じ磁化方向、同じ磁界強度など)に実現されており、その結果、磁石グループMGa,MGbは、ほぼ同じ大きさの磁界を発生させて、その磁界が、駆動コイルAS1,AS2が発生する磁界と協力して動作していた。しかしながら、第一のコイルグループSG1の駆動コイルAS1が、第一の磁石グループMGaの駆動磁石4に対して、平均して第二の磁石グループMGbの駆動磁石4に対する第二のコイルグループSG2の駆動コイルAS2よりも近くに在ることによって、そのことが、第一の主移動方向H1に電磁気的な力を発生させる効率を第二の主移動方向H2よりも大きくしていた。それは、駆動力の発生にも、浮上力の発生にも関連する。それによって、周知の通り、第二の主移動方向H2よりも大きな効率が第一の主移動方向H1において得られていた。
図2a~2eには、運搬セグメント2における第一と第二のコイルグループSG1,SG2の駆動コイルAS1,AS2の配列の異なる手法が模式的に図示されている。図2aと2bは、第一と第二のコイルグループSG1,SG2が同じ面内に配置された所謂「単層」又は単層の変化形態を図示している。図2cと2eは、前に図1bと1cに基づき説明した通り、第一と第二のコイルグループSG1,SG2が高さ方向に重なり合って積層された形で配置された所謂「複層」又は複層の構造形態を図示している。「二重層」の構造形態では、例えば、重なり合って配置された2つの駆動コイルAS1,AS2の層が配備されている。この場合、運搬面3に対する法線方向において、第一のコイルグループSG1の駆動コイルAS1が、運搬面3に対して第二のコイルグループSG2の駆動コイルAS2よりも近くに在るので、(より高い効率(μH1>μH2)を有する)第一の主移動方向H1がほぼ自動的に得られる(そうでなければ、磁場の影響を及ぼすコイル特性と磁場の影響を及ぼす磁石特性が同じになる)。
「単層」の構造形態は、一般的に、2つの等価の主移動方向H1,H2を有する運搬機器1に使用される。ここでは、第一と第二のコイルグループSG1,SG2の駆動コイルAS1,AS2は、それぞれ運搬面3に対して同じコイル間隔S1=S2を有する。そうではなく磁場の影響を及ぼすコイル特性と磁場の影響を及ぼす磁石特性が同じ場合、2つの主移動方向H1,H2に対してほぼ同じ効率μH1=μH2が得られる。しかし、前述した通り、コイル間隔Si以外に、それ以外の多くの磁場の影響を及ぼすコイル特性と磁場の影響を及ぼす磁石特性も存在し、それを変えることによって、効率μH1,μH2を変えることができる。そのため、基本的には、「単層」の構造形態においても、例えば、2つの磁石グループMGa,MGbの駆動磁石4の異なる磁極ピッチTa≠Tb及び/又は2つの磁石グループMGa,MGbの駆動磁石4の磁石の異なる幾何学的形状によって、2つの主移動方向H1,H2の異なる効率μH1≠μH2を作り出すことが考えられる。
図2aには、2つのコイルグループSG1,SG2の駆動コイルAS1,AS2の所謂「矢筈」配列が図示されている。ここでは、図2b~2eの別の実施形態と異なり、2つの主移動方向H1,H2が運搬セグメント2の縁に対して平行に(ここでは、XとY方向に)延びるのではなく、それに対して傾斜して延びている。それに関する詳細は、例えば、非特許文献2に開示されている。図2cには、第一のコイルグループSG1にも、第二のコイルグループSG2にも「長い」駆動コイルAS1,AS2が配備された「二重層」の実施構成が図示されている。図2dは、図1aと同様に、第一のコイルグループSG1における「長い」駆動コイルAS1と第二のコイルグループSG2における「短い」駆動コイルAS2から成る実施構成を図示している。図2eは、第一のコイルグループSG1における「短い」駆動コイルAS1と第二のコイルグループSG2における「長い」駆動コイルAS2から成る例を図示している。
図3a~fと図4a~dには、運搬ユニットTEにおける駆動磁石4の異なる配列が模式的に図示されている。基本的に、所謂「一次元配列」(図3a~3f)と「二次元配列」の間を区別する。既に詳しく説明した通り、一次元配列では、それぞれ第一の主移動方向H1(ここでは、X軸)に関する複数の駆動磁石4から成る少なくとも1つの第一の磁石グループMGaと第二の主移動方向H2(ここでは、Y軸)に関する複数の駆動磁石4から成る少なくとも1つの第二の磁石グループMGbとが配備されている。これらの磁石グループMGa,MGbは、それぞれ所定の配列方向に(ここでは、MGaではX方向に、MGbではY方向に)順番に配置された所定の数の駆動磁石4、特に、永久磁石を有する。この場合、隣り合う駆動磁石4は、異なる磁化方向を有する。例えば、隣り合う駆動磁石4の磁化方向を互いに180°回転させることができる、即ち、斜線を付けた駆動磁石4と斜線を付けていない駆動磁石4により示される通り、磁石のN極とS極を交番させた形で回転させることができる。しかし、既に述べた通り、磁石グループMGiの駆動磁石4を周知のハルバッハ配列で配置することもでき、その場合、例えば、磁化方向(N極とS極)が逆の駆動磁石4の間に、それに対して磁化方向が90°回転した駆動磁石4がそれぞれ配備されている。このハルバッハ配列は、磁石グループMGiの一方の側(有利には、運搬面3の方を向いた側)における磁束がそれと反対側の磁束よりも大きくなるとの利点を有する。例えば、図7に図示されている通り、磁石グループMGiのそれぞれ最も外側の駆動磁石4が、磁石グループMGiの間に在る駆動磁石4よりも短い、特に、半分の磁石幅MBiを有する場合、磁石グループMGiの磁界の特に有利な正弦形状の磁界パターンを達成することができる。このハルバッハ配列は、従来技術で周知であり、そのため、ここでは、更なる詳細を省略する。
この二次元配列では、異なる磁化方向の個々の駆動磁石4が、ほぼチェス盤形態で運搬ユニットTEに配置されている。この場合、異なる磁化方向の駆動磁石4が、2つの配列方向(ここでは、XとY方向)に、それぞれ交番してずれた形で配置されている。この場合、2つの方向は、有利には、互いに2つの主移動方向H1,H2と同様の方向を向いている、即ち、例えば、互いに直交する。多数の異なる配列手法が得らえることが直ぐに分かり、一次元配列の最も一般的な変化形態が図3a~3fに図示され、二次元配列の最も一般的な変化形態が図4a~4dに図示されている。この二次元配列では、第一の磁石グループMGaが一方の方向に(例えば、X方向に)配置された駆動磁石4に相当し、第二の磁石グループMGbがそれぞれ他方の方向に(例えば、Y方向に)交番して配置された駆動磁石4に相当する。それにより、この二次元配列では、磁石グループMGa,MGbが、一次元配列の場合のように別個に在るのではなく、駆動磁石4が第一の磁石グループMGaの部分にも、第二の磁石グループMGbの部分にもなっている。
例えば、運搬セグメント2での「単層」配列のコイルグループSG1,SG2(図2aと2b)において(そうでなければ駆動コイルAS1,AS2の磁場の影響を及ぼすコイル特性が同じである場合に)運搬ユニットTEの異なる効率μH1,μH2、異なる最大の力及び異なる位置決め精度の中の1つ以上を達成するために、既に述べた通り、運搬ユニットTEの駆動磁石4の磁場の影響を及ぼす磁石特性を変えることもできる。1つの手法は、例えば、第一の磁石グループMGaの磁極ピッチTaが、例えば、一次元配列に関しては図3dと3fに図示され、二次元配列に関しては図4cと4dに図示されている通り、第二の磁石グループMGbの磁極ピッチTbと異なることである。第一のコイルグループSG1の駆動コイルAS1が第二のコイルグループSG2の駆動コイルAS2よりも小さなコイル間隔S1を有する、図1a~1cに図示された運搬セグメント2の「複層」の実施構成において、運搬ユニットTEの磁石グループMGa,MGbにおいて異なる磁極ピッチTa≠Tbを規定する場合でも、有利には、(第一のコイルグループSG1と協力して動作する)第一の磁石グループMGaの磁極ピッチTaを第二の磁石グループMGbの磁極ピッチTbよりも小さくする。そのため、駆動磁石4が発生する磁界が磁極ピッチTiの増大に応じてZ方向に関して益々運搬セグメント2内に侵入するので、これは有利である。従って、より大きな磁極ピッチTiを有する磁石グループMGiが、より遠く離れたコイルグループSGiの駆動コイルASiとより効率的に協力して動作することとなる。
冒頭で言及した通り、従来技術では、これまで、提供可能な電磁気力に関して、出来る限り同等の主移動方向を達成するために、2つの主移動方向H1,H2の効率の違いを補償することを追求していた。それに対して、本発明では、以下において、詳しく説明する通り、2つの主移動方向H1,H2の効率の違いを目的通りに利用している。
図5には、所望の形状と大きさの運搬面3を構成するために、複数の互いに隣接する運搬セグメント2が配備された運搬機器1を図示している。これらの運搬セグメント2は、前に述べた通り、それぞれ第一の主移動方向H1と、それに対して、ここでは、直交する第二の主移動方向H2とを有する。この場合、第二の主移動方向H2は、第一の主移動方向H1に対して相対的により小さな効率を有する(μH2<μH1)。これらの運搬セグメント2は、例えば、図1a~1cに図示された通りに構築することができる。具体的には、ここでは、八つの同形の運搬セグメント2が配備され、ここでは、それぞれ長方形に構成されている。それにより、運搬セグメント2は、それぞれ運搬面3全体の中の1つの長方形の区画を形成する。しかし、最も簡単な場合、1つの運搬セグメント2だけを配備することもできる。当然のことながら、図5の配列は、単なる例であると理解すべきであり、運搬セグメント2は、運搬セグメント2aで示される通り、それ以外の形状、例えば、正方形であるとするか、別の形状の運搬面3を構成するために、別の手法で組み立てることができるか、或いはその両方である。最も簡単な場合、単一の運搬セグメント2だけを配備することもできる。
これらの運搬セグメント2は、それぞれその短辺がその隣の運搬セグメント2の短辺と接し、その長辺が別の隣の運搬セグメント2の長辺と接している。それによって、個々の運搬セグメント2の第一と第二の主移動方向H1,H2が、それぞれ互いに平行に延びている。しかし、当然のことながら、これは、必ずしも必要ではなく、それ以外の任意の配列にすることもできる。それにより、互いに隣接する運搬セグメント2が、1つ又は複数の運搬ユニットTEを少なくとも二次元的に動かすことができる単一の大きな運搬面3を形成する。既に述べた通り、運搬ユニットTEの構造的な実施形態に応じて(例えば、一次元配列(図3a~f)又は二次元配列(図4a~d)における駆動磁石4の実施形態と配列に応じて)、更なる自由度(高さ方向の動き、3つの空間軸の周りの回転)も可能である。
本発明の範囲内において、運搬ユニットTEの動きに関して、定義された始点APと定義された終点EPの間の移動パスBPが予め与えられることを出発点とする。それにより、この移動パスBPは、先ずは運搬機器1に依存せず、例えば、運搬機器1を採用する所与の製造プロセスに応じて定めることができる。例えば、製造プロセスに関して、所与の移動パスBPに沿って始点APから終点EPまで物体を運搬すべきであると要求することができる。以下において、図6により更に詳しく説明する通り、製造プロセスを実行するために、例えば、異なる処理ステーションPSiを運搬機器1に配備して、それらの処理ステーションの間で運搬ユニットTEが移動可能であるようにすることもできる。
本発明では、運搬機器1の2つの主移動方向H1,H2の異なる効率(ここでは、μH1>μH2)の特性(と運搬ユニットTEに対して発生可能な異なる最大の力及び異なる位置決め精度の中の1つ以上)を利用するために、移動パスBPの移動パス長LBPにおける第一の主移動方向H1の第一の移動パス部分BPA1が、この移動パス長LBPにおける第二の主移動方向H2の第二の移動パス部分BPA2と同じ大きさになるか、或いはそれよりも大きくなる形で、移動パスBPが運搬面3内に在るように、この少なくとも1つの運搬セグメント2が、所与の移動パスBPに対して相対的な方向に向けられると規定される。この場合、「移動パス長LBP」とは、移動パスBPの現実の幾何学的な長さ、即ち、移動方向における移動パスBPの始点PAと移動パスBPの終点PEの間の長さであると理解する。即ち、この移動パス長LBPは、運搬ユニットTEが移動パスBPに沿って始点PAから終点PEにまで動かされる場合に、その運搬ユニットが巡る道程である。
即ち、運搬セグメント2は、移動パスBPが完全に運搬面3内に在り、その結果、運搬面3内において、始点APと終点EPの間で運搬ユニットTEを動かすことができるように、外部から予め与えられた移動パスBPに対して相対的な方向に向けられている。更に、本発明に基づき運搬セグメント2を移動パスBPに対して相対的な方向に向けることによって、第一の主移動方向H1における運搬ユニットTEの動きの大部分が、より大きな効率μH1で実行されることが保証される。出来る限り効率的な動作を達成するためには、移動パスBPの移動パス長LBPにおける第一の主移動方向H1の第一の移動パス部分BPA1が最大化されるように、この少なくとも1つの運搬セグメント2が移動パスBPに対して相対的な方向に向けられるのが特に有利である。
当然のことながら、これらの1つ又は複数の運搬セグメント2の配列が予め与えられて、移動パスBPが自由に選定可能である場合には、この逆の手法を選定することもできる。その場合、運搬セグメント2の向きを所与の移動パスBPに適合させるのではなく、移動パスBPの移動パス長LBPにおける第一の主移動方向H1の第一の移動パス部分BPA1が、この移動パス長LBPにおける第二の主移動方向H2の第二の移動パス部分BPA2と同じ大きさになるか、或いはそれよりも大きくなるように、移動パスBPが運搬面3内において定められる。当然のことながら、同じことが、以下の実施例の処理移動パスPBPiと移行パスUPiに関しても成り立つ。
移動パスBPは、基本的に、2つの主移動方向H1,H2、ここでは、X方向とY方向における座標から組み立てられる。図5に図示された第一と第二の主移動方向H1,H2が平行である運搬セグメント2の配列では、運搬面3全体におけるX方向が第一の主移動方向H1に相当し、運搬面3全体におけるY方向が第二の主移動方向H2に相当する。複数の運搬セグメント2が組み立てられて、1つの運搬面3を形成する場合、移動パスBPは、運搬面3の一部に渡って、或いは全体に渡って、即ち、複数の運搬セグメント2に渡って延びることができる。1つの運搬セグメント2だけが運搬機器1に配備されている場合、移動パスBPは、その1つの運搬セグメント2によって形成される運搬面3内にだけ延びる。
移動パスBPに沿って運搬ユニットTEを動かすために、例えば、運搬機器1の制御ユニット5によって、運搬セグメント2のそのために必要な駆動コイルAS1,AS2をそれぞれ駆動することができる。当然のことながら、運搬セグメント2毎に、運搬機器1の制御ユニット5と接続された別個のセグメント制御ユニットを配備することと、1つ又は複数の駆動コイルAS1,AS2に対して専用のコイル制御ユニットを配備することとの中の1つ以上が可能である。前に述べた通り、運搬機器1の制御ユニット5は、例えば、移動パスBPを策定するプラニングモジュールPLMと接続することができる。それにより、異なる移動パスBPを計画して、そのパスを運搬機器1の制御ユニット5に渡すことができ、制御ユニットは、それに対応して、所望の移動パスBPに沿って運搬ユニットTEを動かすために、駆動コイルAS1,AS2を駆動する。
有利な実施形態では、図5に模式的に図示されている通り、運搬ユニットTEにより運搬される物体Oに対して作業プロセスを実行する少なくとも1つの処理ステーションPSが運搬機器1に配備される。移動パスBPの一部としての処理移動パスPBPが、処理ステーションPSの領域に定められ、それに沿って、運搬ユニットTEが、作業プロセスを実行するために運搬面3内を移動可能である(図5に破線で示されている)。この処理ステーションPSは、基本的に任意に構成することができる、即ち、任意の形状と大きさを有することができる。処理ステーションPSは、例えば、運搬セグメント2の側方の傍に配置することができ、その結果、処理ステーションPSは、(運搬面3に対して法線方向に見て)運搬面3の外に在る(図6を参照)。しかし、処理ステーションPSは、例えば、図5の処理ステーションPSにより示される通り、(運搬面3に対して法線方向に見て)運搬面3内に在ることもできる。
しかし、処理ステーションPSの具体的な実施形態、形式、形状及び大きさは、本発明に関して重要でなく、基本的には運搬機器1が採用された実行すべき処理プロセスに依存する。例えば、物体として容器を運搬ユニットTEにより運搬することができ、処理ステーションPSが、例えば、瓶詰め設備などの所定の処理媒体用の充填設備であるとすることができる。そして、例えば、充填設備の下方において、運搬ユニットTEを所与の処理移動パスPBPに沿って動かして、その移動中に連続的又は断続的に充填することもできる。しかし、処理ステーションPSにおいて、例えば、運搬ユニットTEにより運搬される(物体としての)加工物に対して所定の作業工程を実行することもできる。処理ステーションの別の例は、例えば、好適な測定器、例えば、カメラシステムなどを用いて、物体Oに対して所定の測定プロセスを実行できる計測ステーションであるとすることができる。運搬ユニットTEへの物体Oの積み降ろしも、処理ステーションPS内での作業プロセスの例である。このことから、多様な様々な考え得る処理ステーションPSが存在し得ることが分かる。
それに代わって、図5には、一般的な作業プロセスを実行する一般的な処理ステーションPSが図示されている。ここでは、処理ステーションPSが、ほぼ長方形の基盤面を有し、(平面図で運搬面3の方を見て)運搬面3内に配置されている。処理ステーションPSの長辺に沿って、処理移動パスPBPが移動パスBPの一部として延びており、それに沿って、運搬ユニットTEが運搬面3内を移動可能である。ここでは、処理移動パスPBPは、破線で示されている通り、処理ステーションPSの長辺に対してほぼ平行に処理の始点PAPと処理の終点PEPの間を延びている。
この処理移動パスPBPは、例えば、処理ステーションPSの一部だけが使用される場合(例えば、充填設備で、使用可能な充填機器の一部だけが利用される場合)、処理ステーションPS全体に渡って延びる必要もない。一般的に、処理移動パスPBPは、処理ステーションPSの領域内に在る移動パスBPの区画であり、その区画内で、作業プロセスを実行するために、運搬ユニットTE(又はそれにより運搬される物体O)と処理ステーションPSの間の相互動作が行われる。図5に図示された処理ステーションPSは、(単なる例として)斜めに配置されており、その結果、(処理ステーションPSの長辺に対して平行に延びる)処理移動パスPBPは、X方向に対して平行でない形かつY方向に対して平行でない形で延びている。
有利には、処理ステーションPSと運搬セグメント2(或いは、ここでは、複数の運搬セグメント2)は、処理移動パスPBPの処理移動パス長LPBPにおける主移動方向H1の第一の処理移動パス部分PBPA1が、この処理移動パス長LPBPにおける第二の主移動方向H2の第二の処理移動パス部分PBPA2と同じ大きさになるか、或いはそれよりも大きくなるように、互いに相対的な方向に向けられている。特に有利には、この方向設定は、第一の処理移動パス部分PBPA1が最大になるように行われる。それによって、運搬ユニットTEが処理ステーションPSの領域内においても主により大きな効率を有する第一の主移動方向H1に動かされることが保証され、それにより、運搬機器1の動作の効率を一層向上させることができる。この方向設定は、第一の主移動方向H1において、第二の主移動方向H2よりも大きな最大の力を運搬ユニットTEに対して発生できることも有利であるとすることができ、何故なら、それによって、例えば、処理ステーションPSでの作業プロセス中に運搬ユニットTEに作用する処理力をより良好に電磁気的にサポートできるからである。
しかし、多くの場合、図6の運搬機器1により示される通り、運搬ユニットTEで運搬される物体Oに対してそれぞれ作業プロセスを実行する複数の処理ステーションPSiが運搬機器1に配備されている。この運搬機器1では、運搬面3を形成するために、複数の同形の運搬セグメント2.1~2.12が互いに接して並べられている。前記と同様に、運搬セグメント2.1~2.12は、長辺と短辺を有する長方形で構成され、又もやそれぞれより高い効率μH1を有する第一の主移動方向H1と、それに対して相対的により低い効率μH2<μH1を有する第二の主移動方向H2とを有する。この第一の主移動方向H1は、それぞれ長辺に対して平行に延び、この第二の主移動方向H2は、それぞれ長方形の運搬セグメント2の短辺に対して平行に延びている。当然のことながら、前の図5の例と同様に、それに代わって、或いはそれに追加して、それ以外の構成の運搬セグメント2を配備することもできる。運搬セグメント2.1の代わりに配置できるほぼ正方形の4つの運搬セグメント2aが、単なる例として示されている。ここでは、図示された運搬機器1は、単なる例であり、本発明に関して限定しない実施形態を図示していることに言及しておきたい。
運搬セグメント2.1~2.4は、それぞれ短辺を互いに接した形で長手方向(X方向)に互いに一直線に並んで配置されている。それにより、運搬セグメント2.1~2.4の第一の主移動方向H1が、平行であり、X軸の方向にほぼ同軸の方向を向くとともに、第二の主移動方向H2が、それぞれY軸の方向に互いに平行に延びている。
運搬セグメント2.1~2.4の両側には、運搬セグメント2.1~2.3の中の2つに渡って部分的に延びる処理ステーションPS1~PS4が配置されている。それにより、運搬ユニットTEは、運搬面3内を第一の主移動方向H1に沿って処理ステーションPS1~PS4に対して平行に動かすことができるとともに、第二の主移動方向H2には処理ステーションPS1~PS4に対して法線方向に動かすことができる。運搬セグメント2.4に続いて、それぞれ短辺がその運搬セグメント2.4の長辺と接する2つの別の運搬セグメント2.5,2.6が配置されている。それにより、2つの運搬セグメント2.5,2.6の第一の主移動方向H1は、それぞれ運搬セグメント2.4の第一の主移動方向H1と直交する。
同様に、残る運搬セグメント2.7~2.12は、運搬面3の残る区画を形成するために組み合わされている。処理ステーションPS5は、Y方向に対して、運搬セグメント2.7,28と運搬セグメント2.9,2.10の間の中央に配置されている。作業プロセスは、例えば、処理ステーションPS5の一方の側でのみ(例えば、運搬セグメント2.7,2.8でのみ)実行するか、さもなければ両側で実行することもできる。一方の側での作業プロセスの場合、それぞれ他方の側(例えば、運搬セグメント2.9,2.10)は、例えば、作業プロセスを実行せずに運搬ユニットTEが処理ステーションPS5を通過するようにする一種のバイパスとして利用することができる。運搬ユニットTEは、運搬セグメント2.11で再び合流することができる。更に、このパスは、作業プロセスを繰り返すための一種のフィードバックとして利用することができる。バイパス及び/又はフィードバックは、運搬ユニットTEの幾何学的な大きさが許す限り、個々の運搬セグメントにおいて実現することもできる。例えば、図6には、移動パスBPの異なる形態が図示されており、それに沿って、運搬ユニットTEを運搬面3内において動かすことができる。
移動パスBPは、例えば、一種の仮想的な転轍機VWを有することもでき、その転轍機において、例えば、運搬セグメント2.2で第一の仮想的な転轍機VW1により示される通り、移動パスBPが2つ(又はそれを上回る数)の平行な移動パス区画に分岐する。そのため、この転轍機は物理的なユニットではなく、例えば、プラニングモジュールPLMにおいて、運搬面3内においてほぼ任意に定めることができるので、仮想的である。図示された例では、移動パスBPが、第一の仮想的な転轍機VW1において、第四の処理ステーションPS4に沿って延びる(上方の)第四の処理移動パスPBP4と、第三の処理ステーションPS3に沿って延びる(下方の)第三の処理移動パスPBP3とに分岐している。図6では、個々の処理ステーションPSiの処理移動パスPBPiが破線で表示されている。これは、例えば、所定の運搬ユニットTEを選択的に第四の処理移動パスPBP4に沿って転向できるとともに、別の運搬ユニットTEを第三の処理移動パスPBP3に沿って転向できることを意味する。2つの平行な移動パス区画、ここでは、第四の処理移動パスPBP4と第三の処理移動パスPBP3は、好適な所で、ここでは、例えば、運搬セグメント2.3で再び1つの共通の移動パスBPとして合流することができる。
同じことが、運搬セグメント2.4の第二の仮想的な転轍機VW2に関しても同様に成り立ち、そこでは、移動パスが2つの平行な移動パス区画BPa,BPbに分かれている。ここでは、第一の移動パス区画BPaが、部分的に運搬セグメント2.6に延びるとともに、運搬ユニットTEを第五の処理ステーションPS5に案内するために、更に運搬セグメント2.7と2.8に渡って延びている。第五の処理ステーションPS5の領域では、第一の移動パス区画BPaが、移動パスBPの一部としての第五の処理移動パスPBP5を有する。ここでは、第二の移動パス区画BPbが、部分的に運搬セグメント2.5に延びるとともに、運搬ユニットTEが第五の処理ステーションPS5を通過するために、更に運搬セグメント2.9と2.10に渡って延びている。第一と第二の移動パス区画BPa,BPbが、運搬セグメント2.11で再び一体となって、運搬セグメント2.12における運搬面3の終点にまで、共通の移動パスBPとして延びている。
既に図5に基づき説明した通り、本発明では、移動パスBPの移動パス長LBPにおける第一の主移動方向H1の第一の移動パス部分BPA1が、その移動パス長LBPにおける第二の主移動方向H2の第二の移動パス部分BPA2と同じであるか、或いはそれよりも大きいと規定される。本発明の有利な実施形態では、処理移動パスPBPiの処理移動パス長LPBPiの合計ΣLPBPiにおける主移動方向H1の第一の処理移動パス部分PBPA1が、それらの処理移動パス長LPBPiの合計ΣLPBPiにおける主移動方向H2の第二の処理移動パス部分PBPA2と同じ大きさであるか、或いはそれよりも大きいと規定することができる。即ち、処理移動パスPBPiの個々の幾何学的な長さの合計における主移動方向H1,H2の実際の部分が比較される。
それによって、複数の処理ステーションPSiの場合でも、処理ステーションPSiの領域内での運搬ユニットTEの動きが、合計して主により大きな効率μH1を有する第一の主移動方向H1で行われることを保証できる。例えば、それによって、運搬機器1において、処理移動パスPBPiが専ら、或いは大部分(より小さな効率μH2を有する)第二の主移動方向H2に延び、それにも関わらず、全ての処理ステーションPSiに渡る動きが合計して大部分第一の主移動方向H1に行われることが保証される1つ又は複数の処理ステーションPSiを配備することもできる。
更に、2つの処理ステーションPSiの間の領域に、移動パスBPの一部としての移行パスUPを定めることができ、その移行パスに沿って、運搬ユニットTEが、1つの処理ステーションから別の処理ステーションPSiに運搬面3内を移動可能である。図6には、例えば、第五の処理ステーションPS5と第六の処理ステーションPS6の間の(移動方向において)移行長LUPを有する移行パスUPが破線により表示されている。有利には、この移行パスUPに関して、移行パス長LUPにおける第一の主移動方向H1の第一の移行パス部分UPA1が、第二の主移動方向H2の第二の移行パス部分UPA2と同じ大きさであるか、或いはそれよりも大きいと規定される。それによって、2つの処理ステーションPSiの間においても、主に第一の主移動方向H1に運搬ユニットTEを動かすことができる。これは、例えば、第一の主移動方向H1の駆動コイルAS1によって、第二の主移動方向H2の駆動コイルAS2よりも大きな最大の力(駆動力+浮上力)が発生可能である場合にも有利であるとすることができる。例えば、移行パスUPに沿った運搬ユニットTEの動きに関して、相対的に大きな力が必要である場合、例えば、第五の処理ステーションPS5で運搬ユニットTEに相対的に重い物体Oを積み込んで、加速し、第六の処理ステーションPS6で再び減速して物体を降ろす場合に、運搬ユニットTEに対して駆動力と浮上力を発生するために、主に(より大きな最大の力を発生可能な)第一の主移動方向H1の駆動コイルAS1を有利な手法で利用することができる。
以下において、本発明の別の有利な実施形態に基づき、効率が異なる(μH1>μH2)2つの主移動方向H1,H2を有する少なくとも1つの運搬セグメント2を用いて、如何にして出来る限り効率的に運搬機器1を動作させることができるのかを説明する。主移動方向Hiの効率μは、周知の通り、供給されるエネルギーに対する利用エネルギーの比率であり、本発明の平面モーターの形の運搬機器1の場合、μ=Pm/Peの形で記述することができる。この場合、Pmは、出力される機械的なパワーであり、Peは、供給される電気的なパワーである。この機械的なパワーは、運搬ユニットTEの力Fと速度vの積Pm=F*vとして記述することができ、この電気的なパワーPeは、駆動コイルASiにおける電流Iと電圧Uの積Pe=U*Iとして記述することができる。エネルギー変換による損失から、この効率が常に1を下回ることが分かる。これらの損失は、損失パワーPv=Pe-Pmとして記述することもできる。以下において、駆動コイルASiの導体損失が、平面モーターの損失全体に関して主要なものであることを出発点とする。駆動コイルAS1の導体材料として銅が使用されている場合(しばしば、この場合である)、導体損失と呼ぶ代わりに、「銅損」とも呼ばれる。本発明は銅に限定されないが、導体損失の代わりに、銅損に基づき以下の例を説明する。しかし、当然のことながら、同じことが、それ以外の如何なる導体材料にも成り立つ。
電流Iが流れる導体Lにおける銅損Pcu,Lに関して、Pcu,L=kI,L*I が成り立ち、ここで、比例定数kI,Lは、典型的には、導体Lの導体横断面、導体材料、温度及び長さに依存する。外部磁界内における電流が流れる導体Lの電磁気的な(ローレンツ)力Fは、係数kF,Lを用いて、F=kF,L*Iにより簡略化して表すことができ、ここで、係数kF,Lは、ベクトル磁界内での導体Lの向きと長さの関数である。この数学的な関係式は基本的に周知であるので、ここでは、詳細を省略する。それにより、銅損Pcu,Lは、導体Lを用いて発生させる電磁気的な力Fに関して、Pcu,L=kI,L*(1/kF,L )F =k に基づき計算することができる。
以下では、簡略化して、平面モーターの駆動コイルASiが二種類の導体L(導体LH1と導体LH2)に分類できることを出発点とする。この場合、導体LH1は、(より高い効率μH1を有する)第一の主移動方向H1の駆動コイルAS1に対応し、導体LH2は、(それに対して相対的により低い効率μH2<μH1を有する)第二の主移動方向H2の駆動コイルAS2に対応する。運搬ユニットTEの空隙L、即ち、浮上状態を維持するためには、引力に対抗する(第一の磁石グループMGaの駆動磁石4との駆動コイルAS1の電磁気的な協力した動作と第二の磁石グループMGbの駆動磁石4との駆動コイルAS2の電磁気的な協力した動作とによって発生される)浮上力FSが、運搬ユニットTEの重力FGと(重力方向に)場合によっては生じる一定のプロセス力FPを補償することが必要である。しかし、運搬機器1の運搬セグメント2の設置状況に応じて、この浮上力FSは、必ずしも運搬セグメント2の運搬面3に対して法線方向に作用しない。
それにより、浮上力FSは、運搬ユニットTEの重量により生じる重力FGと、例えば、運搬される物体Oによって発生する、重力方向に場合によっては生じるプロセス力FPの力の成分とを補償する。それにより、この浮上力FSによって、動作中に運搬セグメント2に対して相対的な運搬ユニットTEの位置を一定に保持することができる。冒頭で述べた通り、高さ方向(ここでは、Z方向)における運搬ユニットTEの或る程度の動きも実行することができ、これは、駆動コイルAS1,AS2の相応の制御によって達成することができる。
導体LH1(=第一の駆動コイルAS1)を用いて発生される電磁気的な浮上力FS,H1に関する銅損Pcu,H1は、Pcu,H1=kH1*FS,H1 により算出され、導体LH2(=第二の駆動コイルAS2)を用いて発生される電磁気的な浮上力FS,H2に関する銅損Pcu,H2は、Pcu,H2=kH2*FS,H2 により算出される。ここで、所要の全体的な浮上力FS=FS,H1+FS,H2は、有利には、コイル分類H1(駆動コイルAS1)とH2(駆動コイルAS2)に対して、関係式FS,H1=κ*FSとFS,H1=(1-κ)*FS(配分係数0κ1)に基づき、より大きな効率μを有する駆動コイルASi(ここでは、第一の主移動方向H1の駆動コイルAS1)に有利なように配分される。この場合、有利には、配分係数κは、全体的な銅損Pcu=Pcu,H1+Pcu,H2が最小化されるように選定される。即ち、式Pcu=(kH1*κ+kH2*(1-κ))*F を最小化することが重要である。
効率が同じ(μH1=μH2、即ち、kH1=kH2)である主移動方向H1,H2を有する平面モーターの対称的な実施形態の場合、全体的な銅損Pcuは、期待通り、対称的な重み付け(κ=0.5)で最も低くなる。ここでの効率μH1を有する第一の主移動方向H1と効率μH2を有する第二の主移動方向H2による非対称的な場合、即ち、kH1≠kH2の場合、最適な配分係数κは、パラメータkH1とkH2の関数となり、κ=kH2/(kH1+kH2)として全体的な銅損Pcuの上記の式の極値問題を解くことによって決定することができる。
設置状況に応じて、第一の主移動方向H1、第二の主移動方向H2及び運搬面3に対して法線方向における浮上力FSの力の成分が、運搬セグメント2の傾斜に依存して生じる。法線方向における浮上力FSの力の成分は、一般的に、第一のコイルグループSG1の駆動コイルAS1によっても、第二のコイルグループSG2の駆動コイルAS2によっても引き起こすことができる。第一の主移動方向H1における浮上力FSの力の成分は、一般的に、第一のコイルグループSG1の駆動コイルAS1によってのみ引き起こされ、第二の主移動方向H2における浮上力FSの力の成分は、一般的に、第二のコイルグループSG2の駆動コイルAS2によってのみ引き起こされる。それにより、2つ以上の軸の周りの傾斜の場合、浮上力FSは、その傾斜に応じて、駆動コイルAS1,AS2に配分される。それにより、運搬セグメント2の設置状況が水平でない場合、浮上力FSの配分係数κは、運搬セグメント2の傾きの関数となる。
以下において、水平な設置状況に関する最適な配分係数κの選定を図7に基づき更に詳しく説明し、理解を容易にするために、第一の主移動方向H1(X方向、例えば、図1aを参照)の(第二の主移動方向H2と比べて)より高い効率μH1が駆動コイルAS1,AS2のより小さな平均コイル間隔S1<S2によってのみ達成されることを出発点とし、そうでなければ、2つの主移動方向H1,H2における磁場の影響を及ぼすコイル特性と磁場の影響を及ぼす磁石特性が同じになる。それにより、効率μiは、一般的に、コイル間隔Siの関数である。
従来の考察では、主移動方向H1,H2に関する浮上力FS,H1,FS,H2は、
Figure 2023504039000003
又は
Figure 2023504039000004
に基づき設定することができる。この場合、Biは、磁束密度の(平均的な)大きさに等しく、2つの主移動方向H1,H2に関して、
Figure 2023504039000005
又は
Figure 2023504039000006
に基づき設定することができ、ここで、駆動コイルASi(ここでは、駆動コイルASiのブロック)のコイルの高さがhAS1=hAS2であり、各磁石グループMGiの平均コイル間隔がそれぞれSiであり、各磁石グループMGiの磁極ピッチがTiである。コイルの高さが等しくない(hAS1≠hAS2)場合、
Figure 2023504039000007
又は
Figure 2023504039000008
が成り立つ。
図7に図示された例では、より容易に識別できるように、2つの主移動方向H1,H2が、別個に並べて図示され、左には、第一の主移動方向H1の第一の駆動コイルSG1の駆動コイルAS1とそれと協力して動作する第一の磁石グループMGaが図示され、右には、第二の主移動方向H2の第二の駆動コイルSG2の駆動コイルAS2とそれと協力して動作する第二の磁石グループMGbが図示されている。ここでは、磁石グループMGa,MGbの駆動磁石4は、それぞれ周知のハルバッハ配列で運搬ユニットTEに配置されている。これは、図7に矢印(矢印の方向は、磁石のS極を指す)で表示されている通り、隣り合う駆動磁石4の磁化方向がそれぞれ互いに90°回転していることを意味する。ここでは、見易くするとの理由から、運搬機器1の残りの構成部品(例えば、運搬セグメント2、運搬ユニットTEの本体部分9)は図示されていない。それぞれ発生される磁界の磁力線だけが模式的に表示されている。
第一の主移動方向H1の第一のコイルグループSG1の駆動コイルAS1は、第一の磁石グループMGaから平均コイル間隔S1を開けて配置されている。第二の主移動方向H2の第二のコイルグループSG2の駆動コイルAS2は、第二の磁石グループMGbから平均コイル間隔S2を開けて配置されている。この場合、条件μH1>μH2を満たすために、S1<S2,hAS1=hAS2及びTa=Tbが成り立つ。運搬機器1の(全体的な)効率μを最大化するためには、(全体的な)銅損Pcuに関する上記の式の右辺を最小化することが重要である。これは、配分係数κopt=(1/BH2 )/(1/BH1 +1/BH2 )=BH1 /(BH1 +BH2 )となる。
図8には、(空隙Lが一定の場合の)平均コイル間隔の差分(ΔS=S2-S1)に関する最適な配分係数κoptの推移のグラフが図示されている。上述した関係式から、駆動コイルAS1,AS2の平均コイル間隔が等しい(S1=S2)平面モーターの場合(そうでなければ、磁場の影響を及ぼすコイル特性と磁場の影響を及ぼす磁石特性が等しい場合)、最適な配分係数κoptが期待通りκopt=0.5になることが分かる。平均コイル間隔S1,S2の差分ΔSが大きくなる程、即ち、第二のコイルグループSG2の駆動コイルAS2が、第一のコイルグループSG1の駆動コイルAS1と比べて、各磁石グループMGa,MGbから運搬面3に対して法線方向に遠く離れる程、最適な配分係数κoptが大きくなる。それにより、最適な配分係数κoptは、空隙Lの絶対的な大きさに依存しない、即ち、平均コイル間隔S1,S2の差分ΔSにのみ依存する。それにより、最適な配分係数κoptの選定によって、効率μH1の第一の主移動方向H1と効率μH2<μH1の第二の主移動方向H1を有する運搬機器1の損失を低減することができ、それにより、運搬機器1の出来る限り効率的な動作を保証することができる。2つの主移動方向H1,H2の効率の差が大きくなる程、最適な配分係数κoptを選定する利点も大きくなる。
図9は、浮上力FSに関する2つの主移動方向H1,H2の銅損Pcu,H1とPcu,H2の定性的な推移のグラフを図示している。星印を付けた実線が、従来の配分κ=0.5による第二の主移動方向H2の銅損Pcu,H2の推移を表し、星印を付けていない実線が、従来の配分κ=0.5による第一の主移動方向H1の銅損Pcu,H1の推移を表す。それらと比較して、丸印を付けた破線が、最適な配分係数κoptによる第二の主移動方向H2の銅損Pcu,H2の推移を表し、丸印を付けていない破線が、最適な配分係数κoptによる第一の主移動方向H1の銅損Pcu,H1の推移を表す。これらから、最適な配分係数κoptの選定によって、従来の駆動形態と比べて、2つの主移動方向H1,H2の銅損Pcuの合計を明らかに低減でき、それにより、運搬機器1の全体的な効率も向上できることが分かる。
本発明の別の有利な実施形態では、浮上力FSの発生に関して配分係数κを選定する際に、例えば、運搬ユニットTEの速度v及び/又は加速度aなどの運搬ユニットTEの運動量も考慮することができる。例えば、第一の主移動方向H1への運搬ユニットTEの加速中に、停止状態又は速度vが一定のフェーズ中と異なる配分係数κを選定するのが有利であるとすることができる。それによって、浮上力FSの発生に加えて、第一の主移動方向H1に駆動力を発生させなければならなくなるので、最適な配分係数κoptを、場合によっては、加速フェーズ(a>0)中に、停止状態よりも小さくすることができる。それによって、浮上力FSの発生に加えて、第一の駆動コイルAS1に追加の負担をかけることが行われ、それにより、通常は、停止状態又は定速vと比べて、より大きなコイル電流Iを駆動コイルAS1に印加しなければならならなくなる。前述した通り、コイル電流Iは、電流Iが流れる導体Lに対して二乗で銅損Pcu,L=kI,L*I に作用するので、例えば、運搬ユニットTEの加速フェーズでは、高い比率で大きな銅損Pcuを引き起こすことができる。そのため、運搬ユニットTEの停止状態に関して最適な配分係数κoptは、場合によっては、加速フェーズにおいて、もはや有効でなくなる。そのため、例えば、速度v又は加速度aなどの運搬ユニットTEの異なる運動学的な動作状態jに対して、異なる最適な配分係数κopt_j=f{v,a}を特定するのが有利であるとすることができる。そして、この、或いはこれらの最適な配分係数κopt_jは、例えば、制御ユニット5に保存することができて、制御ユニット5が、その時々の動作状態に応じて、運搬ユニットTEに対して、その動作状態に最適な配分係数κopt_jを選定して、それに対応するコイル電流Iにより駆動コイルAS1,AS2を駆動することができる。
図10には、運搬機器1の別の有利な実施形態が運搬面3に対する平面図で図示されている。この運搬機器は、図1a~図1cによる実施形態にほぼ等しく、そのため、ここでは、主要な相違点だけを取り上げる。ここでは、運搬機器1の固定子は、少なくとも1つの運搬ユニットTEが移動可能な運搬面3を共に形成する複数の、特に、4つの同様の運搬セグメント2を有する。しかし、これらの運搬セグメント2は、図1aの実施形態と異なり、長方形に構成されるのではなく、それぞれ菱形の形状を有する。同様に、この少なくとも1つの運搬ユニットTEは、運搬面3に投影される運搬ユニットTEの面が菱形の形状に形成されるように構成されている。しかし、当然のことながら、運搬ユニットは、例えば、図3a~図4dに基づき説明した通り、長方形に構成することもできる。第一の主移動方向H1は、例えば、菱形形状の運搬面3の第一の縁K1と直交することができ、第二の主移動方向H2は、その第一の縁K1と隣接する、菱形形状の運搬面3の第二の縁K2と直交することができる。これらの運搬セグメント2は、それぞれ第一の縁K1と第二の縁K2が、互いに菱形の角度ω<90°で配置されて、菱形形状を形成するように構成されている。図10に図示されている通り、それぞれ対向する辺は、平行に延びている。
既に詳しく説明した通り、2つの主移動方向H1,H2の方向が、コイルグループSG1,SG2の駆動コイルAS1,AS2の配列から得られる。図1aの例と同様に、図示された例では、第一と第二のコイルグループSG1,SG2の駆動コイルAS1,AS2が、それぞれ長手方向延伸部LAS1,LAS2と、それと直交する、それに対して相対的により短い横方向延伸部QAS1,QAS2とを有する長いコイルとして構成されている。この場合、異なる磁場の影響を及ぼすコイル特性を達成するために、第一のコイルグループSG1の駆動コイルAS1が、例えば、運搬面3に対して法線方向(ここでは、Z方向)において、第二のコイルグループSG2の駆動コイルAS2よりも運搬面3の近くに存在することができる。それにより、第一の主移動方向H1は、第一の駆動コイルAS1の長手方向延伸部LAS1に対して直角に、ここでは、運搬セグメント2の第一の縁K1に対して法線方向に延びている。第二の主移動方向H2は、第二の駆動コイルAS2の長手方向延伸部LAS2に対して直角に、ここでは、運搬セグメント2の第二の縁K2に対して法線方向に延びている。従って、図示された例では、第二の主移動方向H2は、第一の主移動方向H1に対して菱形の角度ωで延びている。この菱形の形状は、有利には、主移動方向H1,H2の間の所望の角度が90°よりも小さいケースに対して規定することができる。(例えば、図1aの)運搬セグメント2の形状が長方形の場合、これは、確かに同様に可能であるが、その場合、長手方向延伸部が長方形の運搬面3の縁に対してもはや平行に延びないように、主移動方向H1,H2の中の少なくとも一方の駆動コイルAS1,AS2が配置されなければならず、それは、構造的により負担がかかる。
この運搬ユニットTEには、又もやそれぞれ異なる磁化方向の複数の駆動磁石4から成る第一の磁石グループMGaと第二の磁石グループMGbが配置されている。この場合、駆動磁石4の配置は、図10に図示されているように、複数の縦長の駆動磁石4から成る一次元配列の形で行うことができる(これに関しては、図3a~3fも参照)。しかし、当然のことながら、又もや駆動磁石4のチェス盤形態の配列から成る二次元配列も可能である(例えば、図4a~4dを参照)。これらの一次元と二次元の配列は、既に詳しく説明したため、ここでは、更なる詳細を省略する。この場合、図10の例では、第一の磁石グループMGaは、有利には、第一の磁石グループMGaの駆動磁石4の長手方向が出来る限り第一の主移動方向H1に対して法線方向に延びるように配置されている。同様に、第二の磁石グループMGbは、有利には、第二の磁石グループMGbの駆動磁石4の長手方向が出来る限り第二の主移動方向H2に対して法線方向に延びるように配置されている。運搬ユニットTEの動きから、特に、高さ軸(ここでは、Z軸)の周りの運搬ユニットTEの回転によって、当然のことながら、例えば、既に図5eに基づき説明した通り、2つの主移動方向H1,H2の効率μH1,μH2を低減させる可能性のある変位が又もや発生し得る。しかし、磁石グループMGa,MGbが同じ磁場の影響を及ぼす磁石特性を有する場合、それによって、2つの主移動方向H1,H2の割り当ては変わらない。既に詳しく説明した本発明による所与の移動パスBPに対して相対的な運搬セグメント2の配置構成は、当然のことながら、図10の実施例に対しても有効であり、そのため、ここでは、詳細な説明を省略する。

Claims (19)

  1. 運搬面(3)を形成する少なくとも1つの運搬セグメント(2)と、この運搬面(3)内を少なくとも二次元的に2つの主移動方向(H1,H2)に動かすことが可能な少なくとも1つの運搬ユニット(TE)とを備えた、平面モーターの形の運搬機器(1)であって、
    この運搬セグメント(2)には、第一の主移動方向(H1)を定義する、駆動コイル(AS1)から成る第一のコイルグループが配置されるとともに、第二の主移動方向(H2)を定義する、駆動コイル(AS2)から成る第二のコイルグループが配置され、
    第一のコイルグループの駆動コイル(AS1)は、第一の主移動方向(H1)に運搬ユニット(TE)を動かすために、少なくとも運搬ユニット(TE)の駆動磁石(4)の一部と電磁気的に協力して動作するように、制御ユニット(5)によって駆動可能であり、第二のコイルグループの駆動コイル(AS2)は、第二の主移動方向(H2)に運搬ユニット(TE)を動かすために、少なくとも運搬ユニット(TE)の駆動磁石(4)の一部と電磁気的に協力して動作するように、制御ユニット(5)によって駆動可能であり、
    第一と第二のコイルグループ(SG1,SG2)の駆動コイル(AS1,AS2)が異なる磁場の影響を及ぼすコイル特性を有することと、第一のコイルグループ(SG1)の駆動コイル(AS1)と協力して動作する運搬ユニット(TE)の駆動磁石(4)が、第二のコイルグループ(SG2)の駆動コイル(AS2)と協力して動作する駆動磁石(4)と異なる磁場の影響を及ぼす磁石特性を有することとの中の1つ以上によって、運搬ユニット(TE)が、異なる効率(μH1>μH2)、異なる最大の力及び異なる精度の中の1つ以上を有する2つの主移動方向(H1,H2)に移動可能である当該運搬機器において、
    この少なくとも1つの運搬セグメント(2)が、運搬ユニット(TE)に対して予め与えられた、定義された始点(AP)と定義された終点(EP)の間を延びる移動パス(BP)に対して相対的な方向に向けられて、この移動パス(BP)の移動パス長(LBP)における第一の主移動方向(H1)の第一の移動パス部分(BPA1)が、この移動パス長(LBP)における第二の主移動方向(H2)の第二の移動パス部分(BPA2)と同じ大きさになるか、或いはそれよりも大きくなる形で、この移動パス(BP)が運搬面(3)内に在ることを特徴とする運搬機器。
  2. 請求項1に記載の運搬機器(1)において、
    前記の主移動方向(H1,H2)が互いに直交し、前記の少なくとも1つの運搬セグメント(2)が、有利には、長方形の運搬面(3)を形成するように長方形に構成されていることを特徴とする運搬機器。
  3. 請求項1又は2に記載の運搬機器(1)において、
    前記の少なくとも1つの運搬セグメント(2)が菱形の形状の運搬面(3)を形成するように菱形の形状に構成されることと、前記の少なくとも1つの運搬ユニット(TE)の運搬面(3)に投影される面が菱形の形状に構成されることとの中の1つ以上であり、
    第一の主移動方向(H1)が、有利には、この菱形の形状の運搬面(3)の第一の縁(K1)と直交するとともに、第二の主移動方向(H2)が、有利には、この菱形の形状の運搬面(3)の第一の縁(K1)と隣接する第二の縁(K2)と直交することを特徴とする運搬機器。
  4. 請求項1~3のいずれか1項に記載の運搬機器(1)において、
    この運搬機器(1)には、この運搬機器(1)の運搬面(3)を形成する複数の運搬セグメント(2)が配備されており、
    それぞれ少なくとも2つの運搬セグメント(2)が互いに隣接し、
    前記の移動パス(BP)が、複数の運搬セグメント(2)に渡って延び、
    運搬セグメント(2)の第一の主移動方向(H1)が、それと隣接する運搬セグメント(2)の第一又は第二の主移動方向(H1,H2)に対して平行に延びていることを特徴とする運搬機器。
  5. 請求項1~4のいずれか1項に記載の運搬機器(1)において、
    前記の第一の移動パス部分(BPA1)が最大になるように、前記の少なくとも1つの運搬セグメント(2)が、移動パス(BP)に対して相対的な方向に向けられていることを特徴とする運搬機器。
  6. 請求項1~5のいずれか1項に記載の運搬機器(1)において、
    この運搬機器(1)には、運搬ユニット(TE)に対して作業プロセスを実行する少なくとも1つの処理ステーション(PSi)が配備されており、
    この処理ステーション(PSi)の領域内に、移動パス(BP)の一部としての処理移動パス(PBP)が定められて、それに沿って、運搬ユニット(TE)が運搬面(3)内を移動可能であり、
    前記の少なくとも1つの運搬セグメント(2)とこの少なくとも1つの処理ステーション(PSi)は、処理移動パス(PBPi)の処理移動パス長(LPBP)における主移動方向(H1)の第一の処理移動パス部分(PBPA1)が、この処理移動パス長(LPBP)における第二の主移動方向(H2)の第二の処理移動パス部分(PBPA2)と同じ大きさになるか、或いはそれよりも大きくなるように、互いに相対的な方向に向けられ、
    前記の少なくとも1つの運搬セグメント(2)とこの少なくとも1つの処理ステーション(PSi)は、有利には、第一の処理移動パス部分(PBPA1)が最大になるように、互いに相対的な方向に向けられていることを特徴とする運搬機器。
  7. 請求項1~6のいずれか1項に記載の運搬機器(1)において、
    この運搬機器(1)には、運搬ユニット(TE)に対してそれぞれ1つの作業プロセスを実行する複数の処理ステーション(PSi)が配備されており、
    これらの処理ステーション(PSi)の領域内に、それぞれ移動パス(BP)の一部としてのそれぞれ1つの処理移動パス(PBP)が定められて、それに沿って、運搬ユニット(TE)が運搬面(3)内を移動可能であり、
    前記の少なくとも1つの運搬セグメント(2)とこれらの処理ステーション(PSi)は、処理移動パス(PBPi)の処理移動パス長(LPBPi)の合計(ΣLPBPi)における主移動方向(H1)の第一の処理移動パス部分(PBPA1)が、これらの処理移動パス長(LPBP)の合計(ΣLPBPi)における主移動方向(H2)の第二の処理移動パス部分(PBPA2)と同じ大きさになるか、或いはそれよりも大きくなるように、互いに相対的な方向に向けられ、
    前記の少なくとも1つの運搬セグメント(2)とこれらの処理ステーション(PSi)は、有利には、第一の処理移動パス部分(PBPA1)が最大になるように、互いに相対的な方向に向けられていることを特徴とする運搬機器。
  8. 請求項1~7のいずれか1項に記載の運搬機器(1)において、
    この運搬機器(1)には、運搬ユニット(TE)に対してそれぞれ1つの作業プロセスを実行する少なくとも2つの処理ステーション(PSi)が配備されており、
    これらの処理ステーション(PSi)の間の領域内に、移動パス(BP)の一部としての移行パス(UP)が定められて、それに沿って、運搬ユニット(TE)が運搬面(3)内を移動可能であり、
    この移行パス(UP)の移行パス長(LUP)における第一の主移動方向(H1)の第一の移行パス部分(UPA1)が、この移行パス(UP)の移行パス長(LUP)における第二の主移動方向(H2)の第二の移行パス部分(UPA2)と同じ大きさであるか、或いはそれよりも大きいことを特徴とする運搬機器。
  9. 請求項1~8のいずれか1項に記載の運搬機器(1)において、
    磁場の影響を及ぼすコイル特性として、運搬ユニット(TE)の駆動磁石(4)から法線方向におけるコイルグループ(SG1,SG2)の駆動コイル(AS1,AS2)の平均コイル間隔(S1)、コイルグループ(SG1,SG2)の駆動コイル(AS1,AS2)の導体抵抗、コイルグループ(SG1,SG2)の駆動コイル(AS1,AS2)の最大コイル電流、コイルグループ(SG1,SG2)の駆動コイル(AS1,AS2)の巻線数及び駆動コイル(AS1,AS2)のコイルの幾何学的な形状の中の1つ以上が規定されることと、
    運搬ユニット(TE)の駆動磁石(4)の磁場の影響を及ぼす磁石特性として、駆動磁石(4)の残留磁束、駆動磁石(4)とコイルグループ(SG1,SG2)の駆動コイル(AS1,AS2)の間の相対的な向き、駆動磁石(4)の磁極ピッチ(Ta,Tb)及び駆動磁石(4)の磁石の幾何学的な形状の中の1つ以上が規定されることとの中の1つ以上を特徴とする運搬機器。
  10. 請求項1~9のいずれか1項に記載の運搬機器(1)において、
    前記の制御ユニット(5)は、運搬ユニット(TE)の駆動磁石(4)と協力して動作する第一のコイルグループ(SG1)の駆動コイル(AS1)を駆動して、運搬ユニット(TE)に作用する、重力に対抗する浮上力(FS)の第一の浮上力成分を発生させるとともに、運搬ユニット(TE)の駆動磁石(4)と協力して動作する第二のコイルグループ(SG2)の駆動コイル(AS2)を駆動して、第一の浮上力成分に対して相補的な浮上力(FS)の第二の浮上力成分を発生させるように構成されており、
    より大きな効率(μH1)を有する第一の主移動方向(H1)の駆動コイル(AS1)の浮上力成分の方が、より大きいことを特徴とする運搬機器。
  11. 請求項1~10のいずれか1項に記載の運搬機器(1)において、
    前記の浮上力成分が、主移動方向(H1,H2)の効率(μH1,μH2)に応じて、或いは主移動方向(H1,H2)の駆動コイル(AS1,AS2)の少なくとも1つの磁場の影響を及ぼすコイル特性及び/又は主移動方向(H1,H2)の駆動磁石(4)の少なくとも1つの磁場の影響を及ぼす磁石特性に応じて、有利には、駆動磁石(4)からのコイルグループ(SG1,SG2)の駆動コイル(AS1,AS2)のコイル間隔(S1,S2)の差分に応じて定められることを特徴とする運搬機器。
  12. 請求項1~11のいずれか1項に記載の運搬機器(1)において、
    運搬ユニット(TE)の移動中の浮上力成分が、運搬ユニット(TE)の運動量に応じて、有利には、運搬ユニットの速度(v)及び/又は運搬ユニットの加速度(a)に応じて定められることを特徴とする運搬機器。
  13. 運搬面(3)を形成する少なくとも1つの運搬セグメント(2)と、この運搬面(3)内を少なくとも二次元的に2つの主移動方向(H1,H2)に動かされる少なくとも1つの運搬ユニット(TE)とを備えた平面モーターの形の運搬機器(1)を動作させる方法であって、
    この運搬セグメント(2)には、第一の主移動方向(H1)を定義する、複数の駆動コイル(AS1)から成る第一のコイルグループ(SG1)が配置されるとともに、第二の主移動方向(H2)を定義する、複数の駆動コイル(AS2)から成る第二のコイルグループ(SG2)が配置されて、この運搬ユニット(TE)には、駆動磁石(4)が配置されており、
    第一のコイルグループ(SG1)の駆動コイル(AS1)が、第一の主移動方向(H1)に運搬ユニット(TE)を動かすために、少なくとも運搬ユニット(TE)の駆動磁石(4)の一部と電磁気的に協力して動作するとともに、第二のコイルグループ(SG2)の駆動コイル(AS2)が、第二の主移動方向(H2)に運搬ユニット(TE)を動かすために、少なくとも運搬ユニット(TE)の駆動磁石(4)の一部と電磁気的に協力して動作し、
    第一と第二のコイルグループ(SG1,SG2)の駆動コイル(AS1,AS2)に対して異なる磁場の影響を及ぼすコイル特性が規定されることと、第一のコイルグループ(SG1)の駆動コイル(AS1)と協力して動作する運搬ユニット(TE)の駆動磁石(4)に対して、第二のコイルグループ(SG2)の駆動コイル(AS2)と協力して動作する駆動磁石(4)と異なる磁場の影響を及ぼす磁石特性を規定することとの中の1つ以上によって、運搬ユニット(TE)が、異なる効率(μH1>μH2)、異なる最大の力及び異なる精度の中の1つ以上を有する2つの主移動方向(H1,H2)に動かされる、
    方法において、
    この少なくとも1つの運搬セグメント(2)は、運搬ユニット(TE)に対して予め与えられた、定義された始点(AP)と定義された終点(EP)の間を延びる移動パス(BP)に対して相対的な方向に向けられて、この移動パス(BP)に沿って運搬ユニット(TE)が運搬面(3)内を動かされるとともに、この移動パス(BP)の移動パス長(LBP)における第一の主移動方向(H1)の第一の移動パス部分(BPA1)が、この移動パス長(LBP)における第二の主移動方向(H2)の第二の移動パス部分(BPA2)と同じ大きさになるか、或いはそれよりも大きくなることを特徴とする方法。
  14. 請求項13に記載の方法において、
    運搬ユニット(TE)は、運搬機器(1)の処理ステーション(PS)の領域内で、運搬ユニット(TE)に対して作業プロセスを実行するために、移動パス(BP)の一部を形成する処理移動パス(PBP)に沿って動かされ、
    前記の少なくとも1つの運搬セグメント(2)とこの処理ステーション(PS)は、処理移動パス(PBP)の処理移動パス長(LPBP)における主移動方向(H1)の第一の処理移動パス部分(PBPA1)が、この処理移動パス長(LPBP)における第二の主移動方向(H2)の第二の処理移動パス部分(PBPA2)と同じ大きさになるか、或いはそれよりも大きくなるように、有利には、最大になるように、互いに相対的な方向に向けられることを特徴とする方法。
  15. 請求項13又は14に記載の方法において、
    運搬ユニット(TE)は、運搬機器(1)の複数の処理ステーション(PSi)で、運搬ユニット(TE)に対してそれぞれ作業プロセスを実行するために、それぞれ移動パス(BP)の一部を形成する処理移動パス(PBPi)に沿って動かされ、
    前記の少なくとも1つの運搬セグメント(2)とこれらの処理ステーション(PSi)は、処理移動パス(PBPi)の処理移動パス長(LPBPi)の合計(ΣLPBPi)における主移動方向(H1)の第一の処理移動パス部分(PBPA1)が、これらの処理移動パス長(LPBPi)の合計(ΣLPBPi)における主移動方向(H2)の第二の処理移動パス部分(PBPA2)と同じ大きさになるか、或いはそれよりも大きくなる、有利には、最大になるように、互いに相対的な方向に向けられる、
    ことを特徴とする方法。
  16. 請求項13~15のいずれか1項に記載の方法において、
    運搬ユニット(TE)は、運搬機器(1)において、運搬ユニット(TE)に対してそれぞれ作業プロセスを実行する2つの処理ステーション(PSi)の間で、移動パス(BP)の一部を形成する移行パス(UP)に沿って動かされ、
    移行パス長(LUP)における第一の主移動方向(H1)の第一の移行パス部分(UPA1)が、この移行パス長(LUP)における第二の主移動方向(H2)の第二の移行パス部分(UPA2)と同じ大きさであるか、或いはそれよりも大きい、有利には、最大であることを特徴とする方法。
  17. 請求項13~16のいずれか1項に記載の方法において、
    第一のコイルグループ(SG1)の駆動コイル(AS1)が、運搬ユニット(TE)に作用する、重力に対抗する浮上力(FS)の第一の浮上力成分を発生させるために、運搬ユニット(TE)の駆動磁石(4)と協力して動作するとともに、第二のコイルグループ(SG2)の駆動コイル(AS2)が、第一の浮上力成分に対して相補的な浮上力(FS)の第二の浮上力成分を発生させるために、運搬ユニット(TE)の駆動磁石(4)と協力して動作し、
    より大きな効率(μH1)を有する主移動方向(H1)の駆動コイル(AS1)が、より大きな浮上力成分を発生させることを特徴とする方法。
  18. 請求項17に記載の方法において、
    前記の浮上力成分が、主移動方向(H1,H2)の効率(μH1,μH2)に応じて、或いは駆動コイル(AS1,AS2)の少なくとも1つの磁場の影響を及ぼすコイル特性及び/又は駆動磁石(4)の少なくとも1つの磁場の影響を及ぼす磁石特性に応じて、有利には、運搬ユニット(TE)の駆動磁石(4)から法線方向におけるコイルグループ(SG1,SG2)の駆動コイル(AS1,AS2)の平均コイル間隔(S1,S2)の差分(ΔS)に応じて定められることを特徴とする方法。
  19. 請求項17又は18に記載の方法において、
    運搬ユニット(TE)の移動中の浮上力成分が、運搬ユニット(TE)の運動量に応じて、有利には、運搬ユニットの速度(v)及び/又は運搬ユニットの加速度(a)に応じて定められることを特徴とする方法。
JP2022530878A 2019-11-27 2020-11-25 運搬機器 Withdrawn JP2023504039A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT510342019 2019-11-27
ATA51034/2019 2019-11-27
PCT/EP2020/083290 WO2021105165A1 (de) 2019-11-27 2020-11-25 Transporteinrichtung

Publications (1)

Publication Number Publication Date
JP2023504039A true JP2023504039A (ja) 2023-02-01

Family

ID=73598851

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022530880A Withdrawn JP2023508259A (ja) 2019-11-27 2020-11-25 運搬機器
JP2022530878A Withdrawn JP2023504039A (ja) 2019-11-27 2020-11-25 運搬機器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022530880A Withdrawn JP2023508259A (ja) 2019-11-27 2020-11-25 運搬機器

Country Status (5)

Country Link
US (2) US20230026030A1 (ja)
EP (2) EP4066365A1 (ja)
JP (2) JP2023508259A (ja)
CN (2) CN114731105A (ja)
WO (2) WO2021105165A1 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610054B (zh) * 2009-07-21 2011-02-16 清华大学 采用三维永磁阵列的平面电机
KR20140084238A (ko) 2011-10-27 2014-07-04 더 유니버시티 오브 브리티쉬 콜롬비아 변위 장치 및 변위 장치의 제조, 사용 그리고 제어를 위한 방법
WO2013112761A2 (en) * 2012-01-25 2013-08-01 Nikon Corporation Planar motor with asymmetrical conductor arrays
WO2015179962A1 (en) * 2014-05-30 2015-12-03 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
WO2015184553A1 (en) * 2014-06-07 2015-12-10 The University Of British Columbia Methods and systems for controllably moving multiple moveable stages in a displacement device
DE102014214696A1 (de) 2014-07-25 2016-01-28 Robert Bosch Gmbh Vorrichtung zum Transport eines Behältnisses relativ zu einer Füllstation
JP6514316B2 (ja) 2014-07-25 2019-05-15 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 搬送装置
DE102015209618A1 (de) * 2015-05-26 2016-12-01 Robert Bosch Gmbh Transportvorrichtung
DE102016224951A1 (de) * 2016-12-14 2018-06-14 Robert Bosch Gmbh Beförderungsvorrichtung mit einem Stator zur kontrollierten Beförderung eines Transportkörpers relativ zum Stator
WO2018176137A1 (en) * 2017-03-27 2018-10-04 Planar Motor Incorporated Robotic devices and methods for fabrication, use and control of same

Also Published As

Publication number Publication date
EP4066365A1 (de) 2022-10-05
WO2021105166A1 (de) 2021-06-03
US20230006529A1 (en) 2023-01-05
US20230026030A1 (en) 2023-01-26
JP2023508259A (ja) 2023-03-02
WO2021105165A1 (de) 2021-06-03
CN114747125A (zh) 2022-07-12
CN114731105A (zh) 2022-07-08
EP4066364A1 (de) 2022-10-05

Similar Documents

Publication Publication Date Title
US6445093B1 (en) Planar motor with linear coil arrays
JP6970194B2 (ja) リニア電気機械およびリニア電気機械を制御するためのパワーエレクトロニクスコンバータ
CN105960371A (zh) 线性推进系统
US20220239212A1 (en) Transport device
CN101527484A (zh) 水平行程易扩展的气磁混合悬浮平面电机
US20160233754A1 (en) Continuous winding for electric motors
AU2004203882A1 (en) Electric motor, lift with a cage movable by an electric motor, and lift with a cage and with an electric motor for movement of a guide element relative to the cage
JP2023507712A (ja) 運搬機器
CN101610022B (zh) 一种采用槽型线圈的平面电机
CN100562826C (zh) 用于定位负载的电动机系统
JP2023504039A (ja) 運搬機器
JPH118263A (ja) 積荷を高度に精密かつ動的に移動させるためのx−yテーブル
KR102593127B1 (ko) 리니어 모터 및 생산장치
CN113891845B (zh) 运输装置
JP2023520294A (ja) 搬送装置
US20210078830A1 (en) Linear motor and elevator
CN204205908U (zh) 一种多相嵌套绕组式永磁同步平面电机
CN104218770A (zh) 多相嵌套绕组式永磁同步平面电机
EP3231747B1 (en) Transport apparatus with a simplified linear motor
CA2988383A1 (en) Electrical machine & electrical drive
CN108964404B (zh) 一种永磁平面电机及其解耦算法
JPH0515011A (ja) 磁気浮上式走行装置
JP3817484B2 (ja) 駆動装置,搬送装置及びドアシステム
JPS63257406A (ja) 磁気浮上搬送装置
JPH1169513A (ja) 永久磁石による高速地上輸送の自己調整システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231006

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20240527