JP2023159080A - 医用画像処理装置及び医用画像処理システム - Google Patents
医用画像処理装置及び医用画像処理システム Download PDFInfo
- Publication number
- JP2023159080A JP2023159080A JP2023120899A JP2023120899A JP2023159080A JP 2023159080 A JP2023159080 A JP 2023159080A JP 2023120899 A JP2023120899 A JP 2023120899A JP 2023120899 A JP2023120899 A JP 2023120899A JP 2023159080 A JP2023159080 A JP 2023159080A
- Authority
- JP
- Japan
- Prior art keywords
- medical image
- image data
- processing
- image
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012545 processing Methods 0.000 title claims abstract description 176
- 238000013528 artificial neural network Methods 0.000 claims abstract description 33
- 238000003384 imaging method Methods 0.000 claims abstract description 27
- 238000013135 deep learning Methods 0.000 claims description 82
- 238000002591 computed tomography Methods 0.000 claims description 60
- 230000009467 reduction Effects 0.000 abstract description 20
- 238000012805 post-processing Methods 0.000 abstract description 3
- 230000006872 improvement Effects 0.000 abstract description 2
- 238000007796 conventional method Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 152
- 230000006870 function Effects 0.000 description 52
- 238000012549 training Methods 0.000 description 46
- 230000008569 process Effects 0.000 description 40
- 238000005457 optimization Methods 0.000 description 29
- 238000002595 magnetic resonance imaging Methods 0.000 description 27
- 238000013527 convolutional neural network Methods 0.000 description 25
- 230000000875 corresponding effect Effects 0.000 description 23
- 238000010586 diagram Methods 0.000 description 21
- 210000002569 neuron Anatomy 0.000 description 21
- 238000002600 positron emission tomography Methods 0.000 description 20
- 238000003860 storage Methods 0.000 description 20
- 239000013078 crystal Substances 0.000 description 16
- 238000004422 calculation algorithm Methods 0.000 description 13
- 238000012937 correction Methods 0.000 description 12
- 230000005855 radiation Effects 0.000 description 12
- 238000011176 pooling Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 210000003484 anatomy Anatomy 0.000 description 9
- 230000007547 defect Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000009499 grossing Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 239000002872 contrast media Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 238000001994 activation Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000005251 gamma ray Effects 0.000 description 5
- 210000003128 head Anatomy 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000007781 pre-processing Methods 0.000 description 5
- 238000012879 PET imaging Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000002059 diagnostic imaging Methods 0.000 description 3
- 210000002216 heart Anatomy 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000012217 radiopharmaceutical Substances 0.000 description 3
- 229940121896 radiopharmaceutical Drugs 0.000 description 3
- 230000002799 radiopharmaceutical effect Effects 0.000 description 3
- 102100036769 Girdin Human genes 0.000 description 2
- 102100036442 Glutathione reductase, mitochondrial Human genes 0.000 description 2
- 101100283943 Homo sapiens GSR gene Proteins 0.000 description 2
- 101001071367 Homo sapiens Girdin Proteins 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 2
- 210000000038 chest Anatomy 0.000 description 2
- 238000002939 conjugate gradient method Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 229910052704 radon Inorganic materials 0.000 description 2
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 244000203593 Piper nigrum Species 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 101100428743 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) VPS5 gene Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 210000000617 arm Anatomy 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 210000003027 ear inner Anatomy 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 210000001513 elbow Anatomy 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 210000002364 input neuron Anatomy 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000004205 output neuron Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002832 shoulder Anatomy 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/008—Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/60—Image enhancement or restoration using machine learning, e.g. neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/24—Character recognition characterised by the processing or recognition method
- G06V30/242—Division of the character sequences into groups prior to recognition; Selection of dictionaries
- G06V30/244—Division of the character sequences into groups prior to recognition; Selection of dictionaries using graphical properties, e.g. alphabet type or font
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10104—Positron emission tomography [PET]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10108—Single photon emission computed tomography [SPECT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Optics & Photonics (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Quality & Reliability (AREA)
- Primary Health Care (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Epidemiology (AREA)
- Multimedia (AREA)
- Pulmonology (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Processing (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Analysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
Abstract
Description
本実施形態は、再構成画像の画質を改善するための深層学習(DL)ネットワーク(DNN:Deep Nural Network)の使用に関する。より具体的には、再構成コンピュータ断層撮像(CT)画像、陽電子放出断層撮像(PET)画像、磁気共鳴撮像(MRI)画像における、ノイズ及びアーチファクトを低減するためのDLネットワークを実現する医用画像処理装置を提供する。
検出器は、どんな世代のCTスキャナシステムであっても、被検体に対して回転及び/又は固定される。実施形態において、上に説明されたCTシステムは、第三世代ジオメトリシステムと第四世代ジオメトリシステムとが組み合わせられた例とする場合がある。第三世代ジオメトリシステムにおいて、X線管501とX線検出器503とは、環状フレーム502上に正反対に取り付けられ、環状フレーム502が回転軸RAの周りを回転する時に、被検体OBJの周りを回転する。第四世代ジオメトリシステムにおいて、検出器は被検体の周辺に固定して取り付けられており、X線管は被検体の周辺を回転する。代替的な実施形態において、放射線ガントリ500は、Cアーム及びスタンドによって支持されている、環状フレーム502上に配置された多数の検出器を有する。
次に、第2の実施形態に係る医用画像処理装置について説明する。
再構成処理部5141は、ノイズ低減、アーチファクト低減を目的として投影データ上と画像データ上との二段階でノイズモデルを用いたノイズ低減処理を実行し、S/N比及び質感の高い再構成画像を生成する。なお、本再構成処理部5141において実行される処理は、第1の実施形態において説明したノイズ低減処理と組み合わせることも可能である。
図9に示すデノイズ処理部5142は、サイズが異なる複数のFOVに対応する複数のDNNを有している。デノイズ処理部5142は、再構成処理部5141から出力される種々のFOVサイズを有する再構成画像を受け取り、DNNによってデノイズ処理を実行し、FOVサイズに依存しない同一レベルのノイズ粒状性を有する再構成画像を出力する。なお、本デノイズ処理部5142が実行するデノイズ処理は、上記FOVサイズに関わるデノイズ処理に限定されず、他のデノイズ処理を組み合わせることも可能である。
本実施形態に係るデノイズ処理部5142が有する各DNNの訓練(教師あり学習)は、自身に割り当てられたFOVサイズに応じたノイズ粒状性を有する入力データとしての再構成画像と、FOVサイズに関わらずノイズ粒状性レベルが最適化された出力データとしての再構成画像と、のペアから構成される訓練サンプルを数多くのパターンで準備し、これを訓練データとしてネットワークパラメータを最適化することで実施される。
第1の実施形態及び第2の実施形態において説明した再構成デバイス514が有する機能は、ネットワークを介したクライアント-サーバ型の構成を有する医用画像処理システムによっても実現することができる。
以上述べた構成によれば、FOVサイズの違いによってノイズ粒状性レベルが異なる再構成画像であっても、FOVサイズに依存しない同一レベル(ユーザの所望レベル)のノイズ粒状性を有する再構成画像を出力することができる。また、最終的に得られる再構成画像のノイズ粒状性レベルについても、撮像部位等に応じて任意に選択することができる。ユーザは、所望のノイズ粒状性レベルを再現する再構成画像を自由に取得することができる。その結果、比較しやすい画像を提供することができ、読影医師の作業効率の向上に寄与することができる。
Claims (11)
- 被検体を撮像して得られる二次元医用画像データに対して、画像のノイズまたはアーチファクトを低減するために複数の医用画像データを用いて訓練されたニューラルネットワークを適用することにより、処理後二次元医用画像データを得る処理部を備える医用画像処理装置であって、
前記処理部は、前記二次元医用画像データを一部として含む三次元ボリューメトリック画像データを前記ニューラルネットワークに入力することで、前記処理後二次元医用画像データを出力する、
医用画像処理装置。 - 前記処理部は、前記二次元医用画像データ及び当該二次元医用画像データの近傍の二次元医用画像データをまとめて前記ニューラルネットワークに入力することにより、前記処理後二次元医用画像データを得る、請求項1記載の医用画像処理装置。
- 前記二次元医用画像データは前記被検体のスライス画像であり、
前記処理部は、前記スライス画像及び当該スライス画像の空間的に近傍に位置する複数のスライス画像を前記ニューラルネットワークに入力することにより前記処理後二次元医用画像データを得る、
請求項1又は2記載の医用画像処理装置。 - 前記二次元医用画像データは前記被検体のスライス画像であり、
前記処理部は、前記スライス画像及び当該スライス画像に隣接する複数のスライス画像を前記ニューラルネットワークに入力することにより前記処理後二次元医用画像データを得る、
請求項1乃至3の何れか一項記載の医用画像処理装置。 - 前記二次元医用画像データは前記被検体のスライス画像であり、
前記処理部は、前記スライス画像及び当該スライス画像の直上及び直下のスライス画像を前記ニューラルネットワークに入力することにより前記処理後二次元医用画像データを得る、
請求項1乃至4の何れか一項記載の医用画像処理装置。 - 前記二次元医用画像データは、前記被検体をCTスキャンして得られるCT画像データである、請求項1乃至5の何れか一項記載の医用画像処理装置。
- 前記二次元医用画像データはMRI画像データである、請求項1乃至6の何れか一項記載の医用画像処理装置。
- 前記ニューラルネットワークは、入力層、出力層および前記入力層と前記出力層との間に設けられる中間層を有し、複数の医用画像データを用いた深層学習により得られる、請求項1乃至7の何れか一項記載の医用画像処理装置。
- 前記二次元医用画像データは医用画像撮像装置により前記被検体をスキャンして得られるスキャンデータに基づいて再構成された再構成画像データである、請求項1乃至8の何れか一項記載の医用画像処理装置。
- 前記処理部は、前記二次元医用画像データのノイズ又はアーチファクトが低減された前記処理後二次元医用画像データを出力する、請求項1乃至9の何れか一項記載の医用画像処理装置。
- サーバ装置と、クライアント装置とを備えた医用画像処理システムであって、
前記サーバ装置は、
被検体を撮像して得られる二次元医用画像データに対して、画像のノイズまたはアーチファクトを低減するために複数の医用画像データを用いて訓練されたニューラルネットワークを適用することにより、処理後二次元医用画像データを得る処理部を有し、
前記処理部は、前記二次元医用画像データを一部として含む三次元ボリューメトリック画像データを前記ニューラルネットワークに入力することで、前記処理後二次元医用画像データを出力し、
前記クライアント装置は、ネットワークを介して、前記処理後二次元医用画像データを受け取る、
医用画像処理システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024108299A JP2024133615A (ja) | 2017-10-06 | 2024-07-04 | 医用画像処理装置及び医用画像処理システム |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/727,216 US11517197B2 (en) | 2017-10-06 | 2017-10-06 | Apparatus and method for medical image reconstruction using deep learning for computed tomography (CT) image noise and artifacts reduction |
US15/727,216 | 2017-10-06 | ||
US16/143,161 US10803984B2 (en) | 2017-10-06 | 2018-09-26 | Medical image processing apparatus and medical image processing system |
US16/143,161 | 2018-09-26 | ||
JP2018189479A JP2019069145A (ja) | 2017-10-06 | 2018-10-04 | 医用画像処理装置及び医用画像処理システム |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018189479A Division JP2019069145A (ja) | 2017-10-06 | 2018-10-04 | 医用画像処理装置及び医用画像処理システム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024108299A Division JP2024133615A (ja) | 2017-10-06 | 2024-07-04 | 医用画像処理装置及び医用画像処理システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023159080A true JP2023159080A (ja) | 2023-10-31 |
JP7518255B2 JP7518255B2 (ja) | 2024-07-17 |
Family
ID=63762273
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018189479A Pending JP2019069145A (ja) | 2017-10-06 | 2018-10-04 | 医用画像処理装置及び医用画像処理システム |
JP2023120899A Active JP7518255B2 (ja) | 2017-10-06 | 2023-07-25 | 医用画像処理装置及び医用画像処理システム |
JP2024108299A Pending JP2024133615A (ja) | 2017-10-06 | 2024-07-04 | 医用画像処理装置及び医用画像処理システム |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018189479A Pending JP2019069145A (ja) | 2017-10-06 | 2018-10-04 | 医用画像処理装置及び医用画像処理システム |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024108299A Pending JP2024133615A (ja) | 2017-10-06 | 2024-07-04 | 医用画像処理装置及び医用画像処理システム |
Country Status (4)
Country | Link |
---|---|
US (2) | US10803984B2 (ja) |
EP (1) | EP3467766A1 (ja) |
JP (3) | JP2019069145A (ja) |
CN (2) | CN109805950B (ja) |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016217984A1 (de) * | 2016-09-20 | 2018-04-05 | Siemens Healthcare Gmbh | Sinogrammbasierte Streustrahlenkorrektur in der Computertomographie |
CN109300167B (zh) * | 2017-07-25 | 2023-10-10 | 清华大学 | 重建ct图像的方法和设备以及存储介质 |
WO2019173452A1 (en) * | 2018-03-07 | 2019-09-12 | Rensselaer Polytechnic Institute | Deep neural network for ct metal artifact reduction |
EP3542721A1 (de) * | 2018-03-23 | 2019-09-25 | Siemens Healthcare GmbH | Verfahren zur bearbeitung von parametern eines maschinenlernverfahrens sowie rekonstruktionsverfahren |
US10832383B2 (en) * | 2018-04-30 | 2020-11-10 | Disney Enterprises, Inc. | Systems and methods for distortion removal at multiple quality levels |
KR20210038903A (ko) | 2018-07-30 | 2021-04-08 | 하이퍼파인 리서치, 인크. | 자기 공명 이미지 재구성을 위한 딥 러닝 기술 |
JP2021534852A (ja) * | 2018-08-15 | 2021-12-16 | ハイパーファイン,インコーポレイテッド | 磁気共鳴画像においてアーティファクトを抑制するためのディープラーニング技術 |
US11069033B2 (en) * | 2018-09-10 | 2021-07-20 | University Of Florida Research Foundation, Inc. | Neural network evolution using expedited genetic algorithm for medical image denoising |
US11481934B2 (en) * | 2018-10-10 | 2022-10-25 | New York University | System, method, and computer-accessible medium for generating magnetic resonance imaging-based anatomically guided positron emission tomography reconstruction images with a convolutional neural network |
CN110809782B (zh) * | 2018-10-22 | 2023-09-12 | 上海联影医疗科技股份有限公司 | 衰减校正系统和方法 |
JP7077208B2 (ja) * | 2018-11-12 | 2022-05-30 | 富士フイルムヘルスケア株式会社 | 画像再構成装置および画像再構成方法 |
EP3886714A1 (en) | 2018-11-30 | 2021-10-06 | Accuray, Inc. | Asymmetric scatter fitting for optimal panel readout in cone-beam computed tomography |
US10867415B1 (en) * | 2019-01-17 | 2020-12-15 | National Technology & Engineering Solutions Of Sandia, Llc | Device and method for constructing and displaying high quality images from imaging data by transforming a data structure utilizing machine learning techniques |
US10867375B2 (en) * | 2019-01-30 | 2020-12-15 | Siemens Healthcare Gmbh | Forecasting images for image processing |
JP7312560B2 (ja) * | 2019-01-31 | 2023-07-21 | 株式会社Screenホールディングス | 情報処理装置、情報処理方法、情報処理プログラム、学習方法および学習済モデル |
US11185249B2 (en) | 2019-03-14 | 2021-11-30 | Hyperfine, Inc. | Self ensembling techniques for generating magnetic resonance images from spatial frequency data |
JP7294407B2 (ja) | 2019-03-29 | 2023-06-20 | 株式会社ニコン | 撮像素子、及び、撮像装置 |
DE102019207238A1 (de) | 2019-05-17 | 2020-11-19 | Siemens Healthcare Gmbh | Bereitstellen eines Ergebnisbilddatensatzes |
JP7362322B2 (ja) * | 2019-07-08 | 2023-10-17 | キヤノンメディカルシステムズ株式会社 | X線ctシステム及び医用処理装置 |
US11100684B2 (en) * | 2019-07-11 | 2021-08-24 | Canon Medical Systems Corporation | Apparatus and method for artifact detection and correction using deep learning |
US11547378B2 (en) * | 2019-07-11 | 2023-01-10 | Canon Medical Systems Corporation | Apparatus and method combining deep learning (DL) with an X-ray computed tomography (CT) scanner having a multi-resolution detector |
US11403791B2 (en) * | 2019-07-11 | 2022-08-02 | Canon Medical Systems Corporation | Apparatus and method using deep learning (DL) to improve analytical tomographic image reconstruction |
JP7254656B2 (ja) * | 2019-07-18 | 2023-04-10 | キヤノンメディカルシステムズ株式会社 | 医用画像処理装置、医用画像診断装置及び核医学診断装置 |
JP7245740B2 (ja) * | 2019-07-25 | 2023-03-24 | 富士フイルムヘルスケア株式会社 | 画像処理装置、画像処理方法及びx線ct装置 |
CN110415311B (zh) * | 2019-07-29 | 2024-04-16 | 上海联影医疗科技股份有限公司 | Pet图像重建方法、系统、可读存储介质和设备 |
US11120582B2 (en) * | 2019-07-31 | 2021-09-14 | Z2Sky Technologies Inc. | Unified dual-domain network for medical image formation, recovery, and analysis |
CN110459297A (zh) | 2019-08-14 | 2019-11-15 | 上海联影医疗科技有限公司 | 一种图像存储方法、系统及存储介质 |
WO2021041772A1 (en) | 2019-08-30 | 2021-03-04 | The Research Foundation For The State University Of New York | Dilated convolutional neural network system and method for positron emission tomography (pet) image denoising |
CN112584034B (zh) * | 2019-09-30 | 2023-04-07 | 虹软科技股份有限公司 | 图像处理方法、图像处理装置及应用其的电子设备 |
DE102019215460A1 (de) * | 2019-10-09 | 2021-04-15 | Siemens Healthcare Gmbh | Verfahren und Vorrichtung zur Rauschreduktion von Bildaufnahmen |
EP3816930A1 (de) * | 2019-10-29 | 2021-05-05 | Siemens Healthcare GmbH | Computerimplementiertes verfahren zur bereitstellung eines ausgangsdatensatzes mit verbesserter bildqualität |
EP3843041A1 (en) | 2019-12-23 | 2021-06-30 | Koninklijke Philips N.V. | Apparatus for computer tomography x-ray data acquired at high relative pitch |
CN111209475B (zh) * | 2019-12-27 | 2022-03-15 | 武汉大学 | 一种基于时空序列和社会嵌入排名的兴趣点推荐方法及装置 |
US11307278B2 (en) | 2020-01-02 | 2022-04-19 | General Electric Company | Reconstruction of MR image data |
JP7557944B2 (ja) | 2020-01-29 | 2024-09-30 | 浜松ホトニクス株式会社 | 画像処理装置および画像処理方法 |
DE102020104704A1 (de) | 2020-02-21 | 2021-08-26 | Carl Zeiss Microscopy Gmbh | Verfahren zur Verarbeitung von Bildern, Computerprogrammprodukt, Bildbearbeitungsvorrichtung und Strahlvorrichtung zum Ausführen des Verfahrens |
JP7256765B2 (ja) * | 2020-02-28 | 2023-04-12 | 株式会社日立製作所 | 医用撮像装置、医用画像処理装置、及び、画像処理プログラム |
US11166690B2 (en) | 2020-03-19 | 2021-11-09 | Accuray, Inc. | Noise and artifact reduction for image scatter correction |
WO2021226500A1 (en) * | 2020-05-08 | 2021-11-11 | The Johns Hopkins University | Machine learning image reconstruction |
US11315248B2 (en) * | 2020-06-10 | 2022-04-26 | Omniscient Neurotechnology Pty Limited | Identifying invalid medical images |
US12026853B2 (en) * | 2020-08-03 | 2024-07-02 | The Board Of Trustees Of The Leland Stanford Junior University | Deep learning based denoising and artifact reduction in cardiac CT cine imaging |
CN112419169B (zh) * | 2020-10-14 | 2024-04-02 | 浙江工业大学 | 基于噪声先验的cnn医学ct图像去噪方法 |
US20220130079A1 (en) * | 2020-10-23 | 2022-04-28 | Siemens Medical Solutions Usa, Inc. | Systems and methods for simultaneous attenuation correction, scatter correction, and de-noising of low-dose pet images with a neural network |
US11816832B2 (en) * | 2020-11-18 | 2023-11-14 | Canon Medical Systems Corporation | Devices, systems, and methods for medical imaging |
EP4019084A1 (en) * | 2020-12-22 | 2022-06-29 | Koninklijke Philips N.V. | Planning apparatus for planning a radiation therapy |
JPWO2022137841A1 (ja) * | 2020-12-25 | 2022-06-30 | ||
US11890124B2 (en) | 2021-02-01 | 2024-02-06 | Medtronic Navigation, Inc. | Systems and methods for low-dose AI-based imaging |
JP7520753B2 (ja) | 2021-03-05 | 2024-07-23 | 株式会社東芝 | 学習装置、方法およびプログラム |
US12099152B2 (en) | 2021-03-25 | 2024-09-24 | Rensselaer Polytechnic Institute | X-ray photon-counting data correction through deep learning |
US11712215B2 (en) | 2021-04-13 | 2023-08-01 | Canon Medical Systems Corporation | Devices, systems, and methods for motion-corrected medical imaging |
US20220343566A1 (en) * | 2021-04-22 | 2022-10-27 | Canon Medical Systems Corporation | Methods and systems for reconstructing a positron emission tomography image |
CN113139920B (zh) * | 2021-05-12 | 2023-05-12 | 闽南师范大学 | 一种古籍图像修复方法、终端设备及存储介质 |
US11647975B2 (en) | 2021-06-04 | 2023-05-16 | Accuray, Inc. | Radiotherapy apparatus and methods for treatment and imaging using hybrid MeV-keV, multi-energy data acquisition for enhanced imaging |
US11908044B2 (en) * | 2021-06-17 | 2024-02-20 | GE Precision Healthcare LLC | Systems and methods for computed tomography image reconstruction |
US11605186B2 (en) | 2021-06-30 | 2023-03-14 | Accuray, Inc. | Anchored kernel scatter estimate |
US11854123B2 (en) | 2021-07-23 | 2023-12-26 | Accuray, Inc. | Sparse background measurement and correction for improving imaging |
US20230048231A1 (en) * | 2021-08-11 | 2023-02-16 | GE Precision Healthcare LLC | Method and systems for aliasing artifact reduction in computed tomography imaging |
CN113823385B (zh) * | 2021-09-03 | 2024-03-19 | 青岛海信医疗设备股份有限公司 | 一种修改dicom图像的方法、装置、设备及介质 |
WO2023053755A1 (ja) * | 2021-09-30 | 2023-04-06 | 株式会社Lily MedTech | 画像診断支援装置、画像診断支援方法、及び画像診断支援プログラム |
CN113792736B (zh) * | 2021-10-22 | 2024-08-27 | 上海联影智能医疗科技有限公司 | 基于深度学习的医学图像处理方法、设备及介质 |
US20230177747A1 (en) * | 2021-12-06 | 2023-06-08 | GE Precision Healthcare LLC | Machine learning generation of low-noise and high structural conspicuity images |
CN114241074B (zh) * | 2021-12-20 | 2023-04-21 | 四川大学 | 一种深度学习和电子学噪声模拟的cbct图像重建方法 |
US20230197248A1 (en) * | 2021-12-21 | 2023-06-22 | Optellum Limited | System and method for processing medical images |
US12073539B2 (en) * | 2021-12-29 | 2024-08-27 | Shanghai United Imaging Intelligence Co., Ltd. | Systems and methods for denoising medical images |
CN117710513B (zh) * | 2024-02-06 | 2024-06-11 | 中国科学院深圳先进技术研究院 | 基于量子卷积神经网络的磁共振成像方法、装置 |
CN118133053B (zh) * | 2024-05-08 | 2024-07-09 | 山东瑞福锂业有限公司 | 一种工业数据汇集与处理系统及方法 |
Family Cites Families (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7415126B2 (en) * | 1992-05-05 | 2008-08-19 | Automotive Technologies International Inc. | Occupant sensing system |
US7243945B2 (en) * | 1992-05-05 | 2007-07-17 | Automotive Technologies International, Inc. | Weight measuring systems and methods for vehicles |
US7663502B2 (en) * | 1992-05-05 | 2010-02-16 | Intelligent Technologies International, Inc. | Asset system control arrangement and method |
US5305204A (en) * | 1989-07-19 | 1994-04-19 | Kabushiki Kaisha Toshiba | Digital image display apparatus with automatic window level and window width adjustment |
JP2694580B2 (ja) * | 1991-03-07 | 1997-12-24 | 富士写真フイルム株式会社 | 被写体像内画像点決定方法 |
US6738697B2 (en) * | 1995-06-07 | 2004-05-18 | Automotive Technologies International Inc. | Telematics system for vehicle diagnostics |
NL9200796A (nl) | 1991-09-13 | 1993-04-01 | Frederik Johannes Beekman | Restauratie van computer-tomografische beelden met neurale netwerken. |
US7983817B2 (en) * | 1995-06-07 | 2011-07-19 | Automotive Technologies Internatinoal, Inc. | Method and arrangement for obtaining information about vehicle occupants |
US5406479A (en) * | 1993-12-20 | 1995-04-11 | Imatron, Inc. | Method for rebinning and for correcting cone beam error in a fan beam computed tomographic scanner system |
US5640261A (en) * | 1994-08-18 | 1997-06-17 | Fuji Photo Film Co., Ltd. | Optical operation apparatus for finding an inner product of vectors using light |
US5732697A (en) * | 1995-11-22 | 1998-03-31 | Arch Development Corporation | Shift-invariant artificial neural network for computerized detection of clustered microcalcifications in mammography |
US6996549B2 (en) | 1998-05-01 | 2006-02-07 | Health Discovery Corporation | Computer-aided image analysis |
WO2001064481A2 (en) * | 2000-03-02 | 2001-09-07 | Donnelly Corporation | Video mirror systems incorporating an accessory module |
JP5388393B2 (ja) * | 2001-04-27 | 2014-01-15 | キヤノン株式会社 | 画像処理装置および画像処理方法、制御プログラム |
US6819790B2 (en) | 2002-04-12 | 2004-11-16 | The University Of Chicago | Massive training artificial neural network (MTANN) for detecting abnormalities in medical images |
US20050058242A1 (en) * | 2003-09-15 | 2005-03-17 | Peschmann Kristian R. | Methods and systems for the rapid detection of concealed objects |
US7545965B2 (en) * | 2003-11-10 | 2009-06-09 | The University Of Chicago | Image modification and detection using massive training artificial neural networks (MTANN) |
JP2005185560A (ja) * | 2003-12-25 | 2005-07-14 | Konica Minolta Medical & Graphic Inc | 医用画像処理装置及び医用画像処理システム |
CN101916359B (zh) | 2005-01-27 | 2012-06-20 | 剑桥研究和仪器设备股份有限公司 | 把样本的不同区域分类到相应类别的方法和设备 |
EP1922999B1 (en) * | 2005-09-05 | 2011-08-03 | Konica Minolta Medical & Graphic, Inc. | Image processing method and image processing device |
US7876938B2 (en) | 2005-10-06 | 2011-01-25 | Siemens Medical Solutions Usa, Inc. | System and method for whole body landmark detection, segmentation and change quantification in digital images |
GB0521640D0 (en) | 2005-10-24 | 2005-11-30 | Ccbr As | Automatic quantification of a pathology indicating measure from cartilage scan data |
EP1780677A1 (en) * | 2005-10-25 | 2007-05-02 | BRACCO IMAGING S.p.A. | Image processing system, particularly for use with diagnostics images |
US20090030295A1 (en) * | 2006-03-10 | 2009-01-29 | Masahiko Shioi | Instrument for measuring concentration of living body ingredient |
US10085643B2 (en) * | 2007-01-05 | 2018-10-02 | Jadran Bandic | Analytic methods of tissue evaluation |
WO2009142758A1 (en) * | 2008-05-23 | 2009-11-26 | Spectral Image, Inc. | Systems and methods for hyperspectral medical imaging |
US20100082506A1 (en) | 2008-09-30 | 2010-04-01 | General Electric Company | Active Electronic Medical Record Based Support System Using Learning Machines |
US8933837B2 (en) * | 2009-07-02 | 2015-01-13 | Univeristy Of Manitoba | Imaging system and method using spatially separated radiated fields |
JP2012235796A (ja) * | 2009-09-17 | 2012-12-06 | Sharp Corp | 診断処理装置、診断処理システム、診断処理方法、診断処理プログラム及びコンピュータ読み取り可能な記録媒体、並びに、分類処理装置 |
US9339202B2 (en) * | 2009-11-03 | 2016-05-17 | Vivaquant Llc | System for processing physiological data |
BR112012012231A2 (pt) | 2009-11-25 | 2017-12-19 | Koninl Philips Electronics Nv | método e sistema |
US8811724B2 (en) | 2010-05-11 | 2014-08-19 | The University Of Copenhagen | Classification of medical diagnostic images |
WO2012021862A2 (en) * | 2010-08-13 | 2012-02-16 | Aashiish Agnihotri | Detection of anatomical landmarks |
KR101805619B1 (ko) | 2011-01-25 | 2017-12-07 | 삼성전자주식회사 | 3차원 의료 영상으로부터 최적의 2차원 의료 영상을 자동으로 생성하는 방법 및 장치 |
CN102297873A (zh) * | 2011-05-03 | 2011-12-28 | 杭州一二八医院 | 利用软x射线显微成像进行癌细胞图形识别的方法 |
KR101460615B1 (ko) * | 2011-07-22 | 2014-11-14 | 삼성전자주식회사 | 다중 파장의 엑스선 투과 영상으로부터 단면 영상을 복원하는 방법 및 그 방법을 이용한 영상 처리 장치 |
US20130051516A1 (en) * | 2011-08-31 | 2013-02-28 | Carestream Health, Inc. | Noise suppression for low x-ray dose cone-beam image reconstruction |
US9292917B2 (en) * | 2011-11-23 | 2016-03-22 | Siemens Aktiengesellschaft | Method and system for model-based fusion of computed tomography and non-contrasted C-arm computed tomography |
EP2890300B1 (en) * | 2012-08-31 | 2019-01-02 | Kenji Suzuki | Supervised machine learning technique for reduction of radiation dose in computed tomography imaging |
WO2015001544A2 (en) * | 2013-07-01 | 2015-01-08 | Agent Video Intelligence Ltd. | System and method for abnormality detection |
US9445713B2 (en) * | 2013-09-05 | 2016-09-20 | Cellscope, Inc. | Apparatuses and methods for mobile imaging and analysis |
US9730643B2 (en) * | 2013-10-17 | 2017-08-15 | Siemens Healthcare Gmbh | Method and system for anatomical object detection using marginal space deep neural networks |
US9808216B2 (en) | 2014-06-20 | 2017-11-07 | Marquette University | Material decomposition of multi-spectral x-ray projections using neural networks |
KR102294734B1 (ko) * | 2014-09-30 | 2021-08-30 | 삼성전자주식회사 | 영상 정합 장치, 영상 정합 방법 및 영상 정합 장치가 마련된 초음파 진단 장치 |
CN104318536B (zh) * | 2014-10-21 | 2018-03-20 | 沈阳东软医疗系统有限公司 | Ct图像的校正方法及装置 |
EP3093821B1 (en) * | 2015-04-16 | 2019-10-09 | Siemens Healthcare GmbH | Method and system for anatomical object pose detection using marginal space deep neural networks |
EP3295374B8 (en) * | 2015-05-11 | 2023-10-18 | Siemens Healthcare GmbH | Method and system for landmark detection in medical images using deep neural networks |
US10282663B2 (en) | 2015-08-15 | 2019-05-07 | Salesforce.Com, Inc. | Three-dimensional (3D) convolution with 3D batch normalization |
KR102452945B1 (ko) * | 2015-08-27 | 2022-10-11 | 삼성전자주식회사 | 푸리에 변환을 수행하는 방법 및 장치 |
KR101880035B1 (ko) * | 2015-09-24 | 2018-07-19 | 주식회사 뷰노 | 영상 생성 방법 및 장치, 및 영상 분석 방법 |
US10102451B2 (en) | 2015-10-13 | 2018-10-16 | Elekta, Inc. | Pseudo-CT generation from MR data using tissue parameter estimation |
US10755395B2 (en) | 2015-11-27 | 2020-08-25 | Canon Medical Systems Corporation | Dynamic image denoising using a sparse representation |
US10255696B2 (en) | 2015-12-11 | 2019-04-09 | Shanghai United Imaging Healthcare Co., Ltd. | System and method for image reconstruction |
US11200664B2 (en) | 2015-12-18 | 2021-12-14 | The Regents Of The University Of California | Interpretation and quantification of emergency features on head computed tomography |
US9760807B2 (en) | 2016-01-08 | 2017-09-12 | Siemens Healthcare Gmbh | Deep image-to-image network learning for medical image analysis |
US9875527B2 (en) * | 2016-01-15 | 2018-01-23 | Toshiba Medical Systems Corporation | Apparatus and method for noise reduction of spectral computed tomography images and sinograms using a whitening transform |
US20170270406A1 (en) | 2016-03-18 | 2017-09-21 | Qualcomm Incorporated | Cloud-based processing using local device provided sensor data and labels |
JP6525912B2 (ja) | 2016-03-23 | 2019-06-05 | 富士フイルム株式会社 | 画像分類装置、方法およびプログラム |
US20170337682A1 (en) * | 2016-05-18 | 2017-11-23 | Siemens Healthcare Gmbh | Method and System for Image Registration Using an Intelligent Artificial Agent |
US10203393B2 (en) * | 2016-05-31 | 2019-02-12 | Shanghai United Imaging Healthcare Co., Ltd. | System and method for removing gibbs artifact in medical imaging system |
US10607321B2 (en) * | 2016-06-22 | 2020-03-31 | Intel Corporation | Adaptive sharpness enhancement control |
US20180018757A1 (en) | 2016-07-13 | 2018-01-18 | Kenji Suzuki | Transforming projection data in tomography by means of machine learning |
US10599977B2 (en) * | 2016-08-23 | 2020-03-24 | International Business Machines Corporation | Cascaded neural networks using test ouput from the first neural network to train the second neural network |
US9965863B2 (en) * | 2016-08-26 | 2018-05-08 | Elekta, Inc. | System and methods for image segmentation using convolutional neural network |
EP3509696A1 (en) * | 2016-09-06 | 2019-07-17 | Elekta, Inc. | Neural network for generating synthetic medical images |
US11850445B2 (en) * | 2016-09-07 | 2023-12-26 | Elekta, Inc. | System and method for learning models of radiotherapy treatment plans to predict radiotherapy dose distributions |
US10242443B2 (en) * | 2016-11-23 | 2019-03-26 | General Electric Company | Deep learning medical systems and methods for medical procedures |
US11003988B2 (en) * | 2016-11-23 | 2021-05-11 | General Electric Company | Hardware system design improvement using deep learning algorithms |
US10074038B2 (en) | 2016-11-23 | 2018-09-11 | General Electric Company | Deep learning medical systems and methods for image reconstruction and quality evaluation |
US10127659B2 (en) * | 2016-11-23 | 2018-11-13 | General Electric Company | Deep learning medical systems and methods for image acquisition |
CN106709917B (zh) * | 2017-01-03 | 2020-09-11 | 青岛海信医疗设备股份有限公司 | 神经网络模型训练方法、装置及系统 |
CN110337673B (zh) | 2017-01-05 | 2023-10-20 | 通用电气公司 | 基于深度学习的在断层摄影重建中估计数据的方法和系统 |
US10573003B2 (en) * | 2017-02-13 | 2020-02-25 | Amit Sethi | Systems and methods for computational pathology using points-of-interest |
US10685429B2 (en) * | 2017-02-22 | 2020-06-16 | Siemens Healthcare Gmbh | Denoising medical images by learning sparse image representations with a deep unfolding approach |
US10373313B2 (en) * | 2017-03-02 | 2019-08-06 | Siemens Healthcare Gmbh | Spatially consistent multi-scale anatomical landmark detection in incomplete 3D-CT data |
CN106940816B (zh) | 2017-03-22 | 2020-06-09 | 杭州健培科技有限公司 | 基于3d全卷积神经网络的ct图像肺结节检测系统 |
US10032281B1 (en) | 2017-05-03 | 2018-07-24 | Siemens Healthcare Gmbh | Multi-scale deep reinforcement machine learning for N-dimensional segmentation in medical imaging |
US11517768B2 (en) | 2017-07-25 | 2022-12-06 | Elekta, Inc. | Systems and methods for determining radiation therapy machine parameter settings |
JP6772112B2 (ja) * | 2017-07-31 | 2020-10-21 | 株式会社日立製作所 | 医用撮像装置及び医用画像処理方法 |
-
2018
- 2018-09-26 US US16/143,161 patent/US10803984B2/en active Active
- 2018-09-29 CN CN201811146155.0A patent/CN109805950B/zh active Active
- 2018-09-29 CN CN202310552379.6A patent/CN116616806A/zh active Pending
- 2018-10-03 EP EP18198432.9A patent/EP3467766A1/en active Pending
- 2018-10-04 JP JP2018189479A patent/JP2019069145A/ja active Pending
-
2020
- 2020-09-02 US US17/010,313 patent/US11847761B2/en active Active
-
2023
- 2023-07-25 JP JP2023120899A patent/JP7518255B2/ja active Active
-
2024
- 2024-07-04 JP JP2024108299A patent/JP2024133615A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2019069145A (ja) | 2019-05-09 |
EP3467766A1 (en) | 2019-04-10 |
CN109805950A (zh) | 2019-05-28 |
US20200402644A1 (en) | 2020-12-24 |
CN109805950B (zh) | 2023-06-02 |
CN116616806A (zh) | 2023-08-22 |
US11847761B2 (en) | 2023-12-19 |
US10803984B2 (en) | 2020-10-13 |
JP2024133615A (ja) | 2024-10-02 |
JP7518255B2 (ja) | 2024-07-17 |
US20190108904A1 (en) | 2019-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7518255B2 (ja) | 医用画像処理装置及び医用画像処理システム | |
US20230119427A1 (en) | Apparatus and method for medical image reconstruction using deep learning for computed tomography (ct) image noise and artifacts reduction | |
JP7486983B2 (ja) | 医用装置 | |
JP7433883B2 (ja) | 医用装置及びプログラム | |
JP7432356B2 (ja) | 医用装置及びプログラム | |
JP7455622B2 (ja) | 医用画像処理装置及び学習用画像の取得方法 | |
JP7234064B2 (ja) | 反復的画像再構成フレームワーク | |
Tong et al. | Image reconstruction for PET/CT scanners: past achievements and future challenges | |
JP5734664B2 (ja) | 希薄化制約補正を用いた画像復元法 | |
CN107111867B (zh) | 多模态成像系统及方法 | |
JP2021013725A (ja) | 医用装置 | |
JP2016152916A (ja) | X線コンピュータ断層撮像装置及び医用画像処理装置 | |
EP3937122A1 (en) | 3d-cnn processing for ct image noise removal | |
JP2015033581A (ja) | X線コンピュータ断層撮像装置及び医用画像処理プログラム | |
CN114494479A (zh) | 利用神经网络对低剂量pet图像进行同时衰减校正、散射校正和去噪声的系统和方法 | |
Li et al. | Multienergy cone-beam computed tomography reconstruction with a spatial spectral nonlocal means algorithm | |
JP7513487B2 (ja) | 情報処理方法、医用画像診断装置及び情報処理システム | |
US12073538B2 (en) | Neural network for improved performance of medical imaging systems | |
US20230237638A1 (en) | Apparatus and methods for unsupervised image denoising using double over-parameterization | |
US20220139006A1 (en) | Information processing method, medical image diagnostic apparatus, and information processing system | |
JP2023107528A (ja) | 情報処理方法、医用画像診断装置及び情報処理システム | |
Rank | Motion-Compensated Image Reconstruction for Magnetic Resonance (MR) Imaging and for Simultaneous Positron Emission Tomography/MR Imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230725 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240704 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7518255 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |