JP2023084665A - 蒸着フィルム、包装材及び真空断熱体 - Google Patents

蒸着フィルム、包装材及び真空断熱体 Download PDF

Info

Publication number
JP2023084665A
JP2023084665A JP2022164078A JP2022164078A JP2023084665A JP 2023084665 A JP2023084665 A JP 2023084665A JP 2022164078 A JP2022164078 A JP 2022164078A JP 2022164078 A JP2022164078 A JP 2022164078A JP 2023084665 A JP2023084665 A JP 2023084665A
Authority
JP
Japan
Prior art keywords
layer
ethylene
ppm
content
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022164078A
Other languages
English (en)
Inventor
瑞子 尾下
Tamako Oshita
達也 長谷川
Tatsuya Hasegawa
健太郎 吉田
Kentaro Yoshida
稔 岡本
Minoru Okamoto
公男 岡田
Kimio Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JP2023084665A publication Critical patent/JP2023084665A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Wrappers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

【課題】ガスバリア性の均一性が高く、蒸着欠点が少なく且つ無機蒸着層の密着強度が高い蒸着フィルム等の提供。【解決手段】樹脂組成物からなる基材層(α)と、基材層(α)の少なくとも片面に積層される無機蒸着層(β)とを備え、上記樹脂組成物が、エチレン単位含有量が20モル%以上60モル%以下であるエチレン-ビニルアルコール共重合体(A)及びクロトンアルデヒド(B1)を含み、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含む。【選択図】なし

Description

本発明は樹脂組成物、蒸着フィルム、包装材及び真空断熱体に関する。
エチレン-ビニルアルコール共重合体(以下「EVOH」と略記する場合がある。)は酸素等のガス遮断性、耐油性、非帯電性、機械強度、溶融成形性等に優れた高分子材料である。このため、EVOH樹脂組成物は容器、シート、フィルム等の成形材料として広く用いられる。また、EVOH樹脂組成物から形成されたフィルムを基材層とし、これに無機蒸着層を設けた蒸着フィルムも知られている。このような蒸着フィルムは、高いガスバリア性を有することから、包装材等として使用される。フィルム、容器等の成形には、一般に溶融成形が多く用いられる。従って、溶融成形に供される樹脂組成物には、長時間の溶融成形を行ってもフィッシュアイ、ストリーク等の欠陥が発生しないといった、ロングラン性に優れる性能が必要とされる。
しかし、EVOHは分子内に比較的活性な水酸基を有するため、酸素がほとんどない状態の押出成形機内部でも、高温溶融状態で酸化・架橋反応が進行し、熱劣化物が生じる場合がある。特に、長期連続運転を行うと上記熱劣化物が成形機内部に堆積し、フィッシュアイの原因となるゲル・ブツを発生させるため、EVOH樹脂組成物はロングラン性が不十分となる場合がある。
これに対し、特許文献1には、EVOH及び0.01~100ppmの不飽和アルデヒドを含む樹脂組成物が、フィッシュアイ、ゲル、ストリーク等の欠陥の発生を抑制し、かつ、ロングラン性に優れることが記載されている。
国際公開第2013/146961号
上記特許文献1のEVOH樹脂組成物を用いた場合、Tダイによるフィルム成形において、ダイの有効幅より押出されたフィルムの幅の方が小さくなるネックインが問題となる場合があることが分かった。そして、このようなネックインが生じやすいEVOH樹脂組成物は、形成される層の幅方向の厚み等にムラが生じ易いためか、このEVOH樹脂組成物を用いて得られたフィルム等は、ガスバリア性が部分毎に不均一になる傾向にあることも分かった。本発明者らが鋭意検討した結果、驚くべきことに、特定の複数種類の不飽和アルデヒドを特定の比率で含むEVOH樹脂組成物が、かかるネックインを抑制できることを見出した。しかしながら、ネックイン抑制を試み複数種類の不飽和アルデヒドの含有量を調整した際に、上記複数種類の不飽和アルデヒドの比率によっては、溶融樹脂組成物の吐出口(ダイリップ)の外面にダイビルドアップ(目ヤニ:ダイリップ外面の堆積物を意味する)が付着しやすくなるという問題が新たに生じることが分かった。
一方、近年、層構成の多様化により、また、無機蒸着層との積層によるバリア性改善の相乗効果を得るなどのため、EVOH層を最外層として共押出することにより多層構造体を製造するケースが増大している。上記のダイビルドアップの発生は、ダイリップに接する範囲が大きい多層構造体の最外層としてEVOH層が共押出される場合、及びEVOH層のみの単層フィルムである場合に著しく問題となることがある。そして、このようなダイビルドアップが生じやすいEVOH樹脂組成物を用いて得られたフィルム等は、ダイビルドアップを原因とするブツ・ストリーク等が発生し易くなるため、無機蒸着を行ったときに欠陥が生じ易くなり、無機蒸着層の密着性等が低下する傾向にあることが分かった。
本発明は、このような事情に基づいてなされたものであり、その目的は、EVOHを含み、溶融成形の際のネックイン及びダイビルドアップが抑制された樹脂組成物を用いて形成された基材層を有し、基材層のガスバリア性の均一性が高く、蒸着欠点が少なく且つ無機蒸着層の密着強度が高い蒸着フィルム、並びにそれを用いた包装材及び真空断熱体を提供するものである。
上記の目的は、
[1]樹脂組成物からなる基材層(α)と、基材層(α)の少なくとも片面に積層される無機蒸着層(β)とを備え、上記樹脂組成物が、エチレン単位含有量が20モル%以上60モル%以下であるエチレン-ビニルアルコール共重合体(A)(以下、「EVOH(A)」と略記する場合がある)及びクロトンアルデヒド(B1)を含み、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、上記樹脂組成物が、下記式(1)及び(2)を満たす、蒸着フィルム;
2.0≦b/(b+b)<150.0 ・・・(1)
+2b≦0.65 ・・・(2)
上記式(1)及び(2)中、bは、エチレン-ビニルアルコール共重合体(A)に対するクロトンアルデヒド(B1)の含有量(ppm)であり、bは、エチレン-ビニルアルコール共重合体(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、bは、エチレン-ビニルアルコール共重合体(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。
[2]上記樹脂組成物において、EVOH(A)に対するクロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)の含有量の合計(b+b+b)が0.01ppm以上7.0ppm以下である、[1]の蒸着フィルム;
[3]上記樹脂組成物において、クロトンアルデヒド(B1)の含有量bが0.01ppm以上4.0ppm以下である、[1]又は[2]の蒸着フィルム;
[4]上記樹脂組成物において、2,4-ヘキサジエナール(B2)の含有量bが0.005ppm以上0.65ppm以下である、[1]~[3]のいずれかの蒸着フィルム;
[5]上記樹脂組成物において、2,4,6-オクタトリエナールの含有量bが0.325ppm以下である、[1]~[4]のいずれかの蒸着フィルム;
[6]上記樹脂組成物が共役ポリエン化合物(C)をさらに含み、上記樹脂組成物において、EVOH(A)に対する共役ポリエン化合物(C)の含有量cが1ppm以上300ppm未満である、[1]~[5]のいずれかの蒸着フィルム;
[7]共役ポリエン化合物(C)がソルビン酸である、[6]の蒸着フィルム;
[8]EVOH(A)が、EVOH(Aa)及びEVOH(Ab)を含み、EVOH(Aa)とEVOH(Ab)との融点差(Aa-Ab)が8℃以上であり、EVOH(Aa)とEVOH(Ab)との質量比(Aa/Ab)が60/40以上95/5以下である、[1]~[7]のいずれかの蒸着フィルム;
[9]EVOH(Aa)のエチレン単位含有量が20モル%以上50モル%以下であり、EVOH(Ab)のエチレン単位含有量が30モル%以上60モル%以下であり、EVOH(Ab)とEVOH(Aa)とのエチレン単位含有量の差(Ab-Aa)が4.5モル%以上である、[8]の蒸着フィルム;
[10]EVOH(A)の少なくとも一部が、下記式(I)で表される構造単位、及び下記式(II)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を、上記少なくとも一部のEVOH(A)の全ビニルアルコール単位に対して0.3モル%以上40モル%以下有する、[1]~[9]のいずれかの蒸着フィルム;
Figure 2023084665000001
上記式(I)中、R、R及びRは、それぞれ独立して、水素原子、炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基、炭素数6~10の芳香族炭化水素基又は水酸基を表す。R、R及びRのうちの一対が結合していてもよい(但し、R、R及びRのうちの一対が共に水素原子の場合は除く)。上記炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基及び炭素数6~10の芳香族炭化水素基が有する水素原子の一部又は全部は、水酸基、アルコキシ基、カルボキシル基又はハロゲン原子で置換されていてもよい。
上記式(II)中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基、炭素数6~10の芳香族炭化水素基又は水酸基を表す。RとRとは、又はRとRとは、結合していてもよい(但し、RとRとが、又はRとRが、共に水素原子の場合は除く)。上記炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基及び炭素数6~10の芳香族炭化水素基が有する水素原子の一部又は全部は、水酸基、アルコキシ基、カルボキシル基又はハロゲン原子で置換されていてもよい。
[11]無機蒸着層(β)の平均厚みが15nm以上150nm以下である、[1]~[10]のいずれかの蒸着フィルム;
[12]基材層(α)が延伸された層である、[1]~[11]のいずれかの蒸着フィルム;
[13]接着層(γ)と、接着層(γ)に積層される熱可塑性樹脂層(δ)とをさらに備える、[1]~[12]のいずれかの蒸着フィルム;
[14]基材層(α)の片面に無機蒸着層(β)が積層され、基材層(α)の無機蒸着層(β)が積層される面とは反対側に、接着層(γ)を介して熱可塑性樹脂層(δ)が積層されている、[13]の蒸着フィルム;
[15]少なくとも基材層(α)、接着層(γ)及び熱可塑性樹脂層(δ)が一体で延伸されてなる、[13]又は[14]の蒸着フィルム;
[16][1]~[15]のいずれかの蒸着フィルムを備える、包装材;
[17][1]~[15]のいずれかの蒸着フィルムを備える、真空断熱体;
を提供することで達成される。
本発明によれば、EVOHを含み、溶融成形の際のネックイン及びダイビルドアップが抑制された樹脂組成物を用いて形成された基材層を有し、基材層のガスバリア性の均一性が高く、蒸着欠点が少なく且つ無機蒸着層の密着強度が高い蒸着フィルム、並びにそれを用いた包装材及び真空断熱体を提供できる。
<蒸着フィルム>
本発明の蒸着フィルムは、所定の樹脂組成物からなる基材層(α)と、基材層(α)の少なくとも片面に積層される無機蒸着層(β)とを備える蒸着フィルムである。本発明の蒸着フィルムは、酸素バリア性が要求される用途、例えば食品、化粧品、医化学薬品、トイレタリー等の包装材、或いは家電製品、住宅用、自動車用の断熱材等、種々の分野で利用される。当該蒸着フィルムは、上述した層以外に、接着層(γ)、熱可塑性樹脂層(δ)、樹脂コート層(ε)、及びその他の層を備えてもよい。以下、各層について説明する。
[基材層(α)]
基材層(α)は、所定の樹脂組成物からなる層である。以下、当該樹脂組成物について詳説する。
(樹脂組成物)
当該樹脂組成物は、EVOH(A)及びクロトンアルデヒド(B1)を含み、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、下記式(1)及び(2)を満たす。
2.0≦b/(b+b)<150.0 ・・・(1)
+2b≦0.65 ・・・(2)
上記式(1)及び(2)中、bは、EVOH(A)に対するクロトンアルデヒド(B1)の含有量(ppm)であり、bは、EVOH(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、bは、EVOH(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。なお、本明細書において、ppmで表される含有量は、質量基準の含有量である。
/(b+b)の値が2.0以上150.0未満であることでネックイン耐性が良好となり、得られる基材層(α)の厚みムラが低減される。このため、基材層(α)のガスバリア性の均一性が高まり、その結果、蒸着フィルムのガスバリア性の均一性が高まる傾向にある。一方、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)は、ダイビルドアップへ影響を与え、特に2,4,6-オクタトリエナール(B3)は、ダイビルドアップへ与える影響が大きい。そのため、b+2bの値が0.65ppm以下であることでダイビルドアップが抑制され、得られる蒸着フィルムにおける蒸着欠点が少なく且つ無機蒸着層の密着強度が高まる。この結果、当該蒸着フィルムは、高いガスバリア性を発揮することができる。さらに、当該樹脂組成物は、繰り返し溶融成形してもブツ、ストリーク等が生じ難い。このため、当該樹脂組成物を用いて得られる蒸着フィルムはリサイクル性にも優れる。なお、本明細書においてクロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)をまとめて不飽和脂肪族アルデヒド(B)と称する場合がある。
(EVOH(A))
EVOH(A)は、エチレン単位とビニルアルコール単位とを有し、エチレン単位含有量が20モル%以上60モル%以下である共重合体である。EVOH(A)は、通常、エチレン-ビニルエステル共重合体のケン化により得られる。エチレン-ビニルエステル共重合体の製造及びケン化は公知の方法により行うことができる。ビニルエステルとしては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、及びその他の脂肪族カルボン酸ビニルエステル等が挙げられ、酢酸ビニルが好ましい。
EVOH(A)のエチレン単位含有量は20モル%以上であり、25モル%以上が好ましく、27モル%以上がより好ましい。EVOH(A)のエチレン単位含有量は60モル%以下であり、55モル%以下が好ましく、50モル%以下がより好ましい。エチレン単位含有量が20モル%未満では、溶融押出時の熱安定性が低下し、ゲル化しやすくなり、ストリーク、フィッシュアイ、ブツ等が発生する傾向にある。なお、ストリーク、フィッシュアイ、ブツ等の発生は、特に一般的な条件よりも高温または高速で長時間運転する際に顕著になる。エチレン単位含有量が60モル%を超えると、ガスバリア性が低下する傾向にある。
EVOH(A)のケン化度は90モル%以上が好ましく、95モル%以上がより好ましく、99モル%以上がさらに好ましい。EVOH(A)のケン化度が90モル%以上であると、得られる基材層(α)及び蒸着フィルムにおけるガスバリア性、熱安定性、耐湿性等が良好となる傾向がある。また、ケン化度は100モル%以下であっても、99.97モル%以下であっても、99.94モル%以下であってもよい。
また、EVOH(A)は、本発明の目的が阻害されない範囲で、エチレン単位、ビニルアルコール単位及びビニルエステル単位以外の他の構造単位を有していてもよい。EVOH(A)が上記他の構造単位を有する場合、上記他の構造単位のEVOH(A)の全構造単位に対する含有量は30モル%以下が好ましく、20モル%以下がより好ましく、10モル%以下がさらに好ましく、5モル%以下がよりさらに好ましく、1モル%以下が特に好ましいこともある。また、EVOH(A)が上記他の構造単位を有する場合、その含有量は0.05モル%以上であっても、0.10モル%以上であってもよい。上記他の構造単位は、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸等の不飽和カルボン酸またはその無水物、塩、またはモノ若しくはジアルキルエステル等;アクリロニトリル、メタクリロニトリル等のニトリル;アクリルアミド、メタクリルアミド等のアミド;ビニルスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸またはその塩;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β-メトキシ-エトキシ)シラン、γ-メタクリルオキシプロピルメトキシシラン等のビニルシラン化合物;アルキルビニルエーテル類、ビニルケトン、N-ビニルピロリドン、塩化ビニル、塩化ビニリデン等に由来する構造単位が挙げられる。
上記他の構造単位は、下記式(I)で表される構造単位(I)、下記式(II)で表される構造単位(II)、及び下記式(III)で表される構造単位(III)の少なくともいずれか一種であってもよい。
Figure 2023084665000002
式(I)、式(II)及び式(III)中、R、R、R、R、R、R、R、R、R、R10及びR11は、それぞれ独立して、水素原子、炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基、炭素数6~10の芳香族炭化水素基または水酸基を表す。また、R、R及びRのうちの一対、RとR、RとRは結合して環構造の一部を形成していてもよい。上記炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基及び炭素数6~10の芳香族炭化水素基が有する水素原子の一部または全部は、水酸基、アルコキシ基、カルボキシ基またはハロゲン原子で置換されていてもよい。式(III)中、R12及びR13は、それぞれ独立して、水素原子、ホルミル基または炭素数2~10のアルカノイル基を表す。
EVOH(A)が上記構造単位(I)、(II)または(III)を有する場合、樹脂組成物の柔軟性及び加工特性が向上し、延伸性及び熱成形性等が良好になる傾向がある。
上記構造単位(I)、(II)または(III)において、上記炭素数1~10の脂肪族炭化水素基としてはアルキル基、アルケニル基等が挙げられ、炭素数3~10の脂環式炭化水素基としてはシクロアルキル基、シクロアルケニル基等が挙げられ、炭素数6~10の芳香族炭化水素基としてはフェニル基等が挙げられる。
上記構造単位(I)において、上記R、R及びRは、それぞれ独立に水素原子、メチル基、エチル基、水酸基、ヒドロキシメチル基又はヒドロキシエチル基であることが好ましい。これらの中でも、樹脂組成物における成形性等をさらに向上させることができる観点から、それぞれ独立に水素原子、メチル基、水酸基又はヒドロキシメチル基であることがより好ましい。
EVOH(A)中に上記構造単位(I)を含有させる方法は特に限定されず、例えば、上記エチレンとビニルエステルとの重合において、構造単位(I)に誘導される単量体を共重合させる方法等が挙げられる。構造単位(I)に誘導される単量体としては、例えばプロピレン、ブチレン、ペンテン、ヘキセン等のアルケン;3-ヒドロキシ-1-プロペン、3-アシロキシ-1-プロペン、3-アシロキシ-1-ブテン、4-アシロキシ-1-ブテン、3,4-ジアシロキシ-1-ブテン、3-アシロキシ-4-ヒドロキシ-1-ブテン、4-アシロキシ-3-ヒドロキシ-1-ブテン、3-アシロキシ-4-メチル-1-ブテン、4-アシロキシ-2-メチル-1-ブテン、4-アシロキシ-3-メチル-1-ブテン、3,4-ジアシロキシ-2-メチル-1-ブテン、4-ヒドロキシ-1-ペンテン、5-ヒドロキシ-1-ペンテン、4,5-ジヒドロキシ-1-ペンテン、4-アシロキシ-1-ペンテン、5-アシロキシ-1-ペンテン、4,5-ジアシロキシ-1-ペンテン、4-ヒドロキシ-3-メチル-1-ペンテン、5-ヒドロキシ-3-メチル-1-ペンテン、4,5-ジヒドロキシ-3-メチル-1-ペンテン、5,6-ジヒドロキシ-1-ヘキセン、4-ヒドロキシ-1-ヘキセン、5-ヒドロキシ-1-ヘキセン、6-ヒドロキシ-1-ヘキセン、4-アシロキシ-1-ヘキセン、5-アシロキシ-1-ヘキセン、6-アシロキシ-1-ヘキセン、5,6-ジアシロキシ-1-ヘキセン等の水酸基あるいはエステル基を有するアルケンが挙げられる。中でも、共重合反応性、及び得られる基材層(α)及び蒸着フィルムの加工性、ガスバリア性の観点からは、プロピレン、3-アシロキシ-1-プロペン、3-アシロキシ-1-ブテン、4-アシロキシ-1-ブテン、3,4-ジアシロキシ-1-ブテンが好ましい。なお、“アシロキシ”はアセトキシであることが好ましく、具体的には3-アセトキシ-1-プロペン、3-アセトキシ-1-ブテン、4-アセトキシ-1-ブテン及び3,4-ジアセトキシ-1-ブテンが好ましい。エステルを有するアルケンの場合は、ケン化反応の際に、上記構造単位(I)に誘導される。
上記構造単位(II)において、R及びRは共に水素原子であることが好ましい。特にR及びRが共に水素原子であり、上記R及びRのうちの一方が炭素数1~10の脂肪族炭化水素基、他方が水素原子であることがより好ましい。この脂肪族炭化水素基は、アルキル基及びアルケニル基が好ましい。得られる基材層(α)及び蒸着フィルムにおけるガスバリア性を特に重視する観点からは、R及びRのうちの一方がメチル基またはエチル基、他方が水素原子であることがより好ましい。また上記R及びRのうちの一方が(CHOHで表される置換基(但し、hは1~8の整数)、他方が水素原子であることがさらに好ましい。(CHOHで表される置換基において、hは1~4の整数であることが好ましく、1または2であることがより好ましく、1であることがさらに好ましい。
EVOH(A)中に上記構造単位(II)を含有させる方法は特に限定されず、例えば、ケン化反応によって得られたEVOH(A)に一価エポキシ化合物を反応させることにより含有させる方法等が用いられる。一価エポキシ化合物としては、下記式(IV)~(X)で示される化合物が好適に用いられる。
Figure 2023084665000003
上記式(IV)~(X)中、R14、R15、R16、R17及びR18は、それぞれ独立して、水素原子、炭素数1~10の脂肪族炭化水素基(アルキル基、アルケニル基等)、炭素数3~10の脂環式炭化水素基(シクロアルキル基、シクロアルケニル基等)または炭素数6~10の脂肪族炭化水素基(フェニル基等)を表す。また、i、j、k、p及びqは、それぞれ独立して、1~8の整数を表す。ただし、R17が水素原子である場合、R18は水素原子以外の基である。
上記式(IV)で表される一価エポキシ化合物としては、例えばエポキシエタン(エチレンオキサイド)、エポキシプロパン、1,2-エポキシブタン、2,3-エポキシブタン、3-メチル-1,2-エポキシブタン、1,2-エポキシペンタン、3-メチル-1,2-エポキシペンタン、1,2-エポキシヘキサン、2,3-エポキシヘキサン、3,4-エポキシヘキサン、3-メチル-1,2-エポキシヘキサン、3-メチル-1,2-エポキシヘプタン、4-メチル-1,2-エポキシヘプタン、1,2-エポキシオクタン、2,3-エポキシオクタン、1,2-エポキシノナン、2,3-エポキシノナン、1,2-エポキシデカン、1,2-エポキシドデカン、エポキシエチルベンゼン、1-フェニル-1,2-エポキシプロパン、3-フェニル-1,2-エポキシプロパン等が挙げられる。上記式(V)で表される一価エポキシ化合物としては、各種アルキルグリシジルエーテル等が挙げられる。上記式(VI)で表される一価エポキシ化合物としては、各種アルキレングリコールモノグリシジルエーテルが挙げられる。上記式(VII)で表される一価エポキシ化合物としては、各種アルケニルグリシジルエーテルが挙げられる。上記式(VIII)で表される一価エポキシ化合物としては、グリシドール等の各種エポキシアルカノールが挙げられる。上記式(IX)で表される一価エポキシ化合物としては、各種エポキシシクロアルカンが挙げられる。上記式(X)で表される一価エポキシ化合物としては、各種エポキシシクロアルケンが挙げられる。
上記一価エポキシ化合物の中では炭素数が2~8のエポキシ化合物が好ましい。特に化合物の取り扱いの容易さ、及び反応性の観点から、一価エポキシ化合物の炭素数は2~6がより好ましく、2~4がさらに好ましい。また、一価エポキシ化合物は上記式(IV)または式(V)で表される化合物であることが特に好ましい。具体的には、EVOH(A)との反応性、樹脂組成物及び得られる基材層(α)及び蒸着フィルムの加工性、ガスバリア性等の観点からは、1,2-エポキシブタン、2,3-エポキシブタン、エポキシプロパン、エポキシエタンまたはグリシドールが好ましく、中でもエポキシプロパンまたはグリシドールがより好ましい。
上記構造単位(III)において、R、R、R10及びR11は水素原子または炭素数1~5の脂肪族炭化水素基であることが好ましく、かかる脂肪族炭化水素基は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基またはn-ペンチル基が好ましい。
EVOH(A)中に上記構造単位(III)を含有させる方法については、特に限定されず、例えば、特開2014-034647号公報に記載の方法が挙げられる。
EVOH(A)の融点の下限としては、140℃が好ましく、150℃がより好ましく、160℃がさらに好ましい。一方、この融点の上限としては、220℃が好ましく、210℃がより好ましく、200℃がさらに好ましい。EVOH(A)の融点が上記範囲内である場合、溶融成形性が向上し、溶融成形の際のネックイン及びダイビルドアップがより抑制される傾向にある。EVOH(A)の融点は、実施例に記載の方法により測定される値とすることができる。
EVOH(A)は、1種を単独で用いてもよく、2種以上を併用してもよい。
EVOH(A)は、融点の異なる2種のEVOH(Aa)及びEVOH(Ab)を含むことが好ましい。例えば当該樹脂組成物について、実施例に記載の方法により融点を測定した場合、それぞれのEVOHに対応するピーク温度が確認できるものであってもよい。また、当該樹脂組成物においては、一方のEVOHに他方のEVOHが分散した相分離構造を有する形態であってもよく、2種のEVOHが完全に相溶した形態であってもよい。EVOH(Aa)とEVOH(Ab)とは、エチレン単位含有量の異なる2種のEVOHであってよい。
EVOH(Aa)とEVOH(Ab)との融点の差(Aa-Ab)、すなわちEVOH(Aa)の融点からEVOH(Ab)の融点を減じた値の下限としては、例えば5℃であってもよいが、8℃が好ましい。この融点差が8℃以上であると、成形性等が高まる。この融点差の下限は、12℃がより好ましく、16℃がさらに好ましく、20℃がよりさらに好ましく、24℃がよりさらに好ましい。この融点差の下限は、さらに30℃、40℃、50℃又は60であってもよい。EVOH(Aa)とEVOH(Ab)との融点の差の上限としては、例えば100℃であってもよいが、90℃が好ましく、80℃、70℃、60℃、50℃、40℃又は30℃がより好ましい場合もある。上記融点差を上記下限以上とすることで、当該樹脂組成物の成形性、加熱延伸性等を高めることができる。逆に、上記融点差を上記上限以下とすることで、ガスバリア性や、当該樹脂組成物のロングラン(長期間の連続運転)時のフローマークの抑制性効果を高めることができる。
EVOH(Aa)の融点の下限としては、150℃が好ましく、160℃がより好ましく、170℃がさらに好ましい。一方、この融点の上限としては、220℃が好ましく、210℃がより好ましく、200℃がさらに好ましい。EVOH(Aa)の融点が上記範囲内である場合、溶融成形性が向上し、溶融成形の際のネックイン及びダイビルドアップがより抑制される傾向にある。
EVOH(Aa)のエチレン単位含有量の下限としては、20モル%が好ましく、23モル%がより好ましく、25モル%がさらに好ましい。一方、EVOH(Aa)のエチレン単位含有量の上限としては、50モル%が好ましく、47モル%がより好ましく、43モル%、40モル%又は35モル%がさらに好ましい場合もある。EVOH(Aa)のエチレン単位含有量を上記下限以上とすることで、該樹脂組成物及び得られる基材層(α)等の成形性、柔軟性等の効果が十分に奏される。一方、EVOH(Aa)のエチレン単位含有量を上記上限以下とすることで、該樹脂組成物、及び当該樹脂組成物から得られる基材層(α)及び蒸着フィルムのガスバリア性を高めることができる。
EVOH(Aa)のケン化度は90モル%以上が好ましく、95モル%以上がより好ましく、99モル%以上がさらに好ましい。EVOH(Aa)のケン化度が90モル%以上であると、当該樹脂組成物、及び当該樹脂組成物から得られる基材層(α)及び蒸着フィルムにおけるガスバリア性、熱安定性、耐湿性等が良好となる傾向がある。また、EVOH(Aa)のケン化度は100モル%以下であっても、99.97モル%以下であっても、99.94モル%以下であってもよい。
EVOH(Ab)の融点の下限としては、90℃が好ましく、100℃がより好ましく、110℃、120℃、130℃、140℃又は150℃がさらに好ましい場合もある。一方、この融点の上限としては、220℃が好ましく、210℃がより好ましく、200℃がさらに好ましく、190℃、180℃又は170℃がよりさらに好ましい場合もある。EVOH(Ab)の融点が上記範囲内である場合、溶融成形性が向上し、溶融成形の際のネックイン及びダイビルドアップがより抑制される傾向にある。
EVOH(Ab)のエチレン単位含有量の下限としては、30モル%が好ましく、34モル%がより好ましく、38モル%がさらに好ましい。一方、EVOH(Ab)のエチレン単位含有量の上限としては、60モル%が好ましく、55モル%がより好ましく、52モル%がさらに好ましい。EVOH(Ab)のエチレン単位含有量を上記下限以上とすることで、該樹脂組成物及び得られる基材層(α)等の成形性、柔軟性等の効果が十分に奏される。一方、EVOH(Ab)のエチレン単位含有量を上記上限以下とすることで、該樹脂組成物及び得られる基材層(α)等のガスバリア性を高めることができる。
EVOH(Ab)の好適なケン化度は、EVOH(Aa)と同様とすることができる。
EVOH(Ab)とEVOH(Aa)とのエチレン単位含有量の差(Ab-Aa)、すなわちEVOH(Ab)のエチレン単位含有量からEVOH(Aa)のエチレン単位含有量を減じた値の下限としては、4.5モル%が好ましく、8モル%がより好ましく、12モル%がさらに好ましく、15モル%がよりさらに好ましい。また、上記エチレン単位含有量の差(Ab-Aa)の上限としては、40モル%が好ましく、30モル%がより好ましく、20モル%がさらに好ましい。EVOH(Ab)とEVOH(Ab)とのエチレン単位含有量差を上記下限以上とすることで、当該樹脂組成物及び得られる基材層(α)等の成形性、加熱延伸性等を高めることができる。逆に、上記エチレン単位含有量差を上記上限以下とすることで、当該樹脂組成物のガスバリア性をより高めることなどができる。
EVOH(Aa)とEVOH(Ab)との質量比(Aa/Ab)、すなわち、EVOH(Ab)の含有量に対するEVOH(Aa)の含有量の質量比の下限としては、60/40が好ましく、62/38がより好ましく、65/35、68/32、70/30又は75/25がさらに好ましい場合もある。該質量比の上限としては、95/5が好ましく、93/7がより好ましく、92/8がさらに好ましく、91/9がよりさらに好ましく、85/15がよりさらに好ましい場合もある。該質量比が上記範囲であると、各種ガスに対するガスバリア性を保ちつつ、該樹脂組成物及び得られる基材層(α)等の成形性、柔軟性等が優れる。例えば上記質量比(Aa/Ab)を上記下限以上とすることで、当該樹脂組成物及び得られる基材層(α)等のガスバリア性及び耐油性等を高めることができる。一方、上記質量比(Aa/Ab)を上記上限以下とすることで、当該樹脂組成物及び得られる基材層(α)等の成形性、柔軟性等を高めることができる。
EVOH(A)の少なくとも一部は、該樹脂組成物及び得られる基材層(α)等の成形性、柔軟性等の向上の観点から、上記式(I)で表される構造単位、及び下記式(II)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位(x)を有することが好ましい。中でも、EVOH(Ab)が、構造単位(x)を有することが好ましい。
少なくとも一部のEVOH(A)である構造単位(x)を有するEVOHにおける全ビニルアルコール構造単位に対する構造単位(x)の含有率の下限としては、0.3モル%が好ましく、1モル%がより好ましく、3モル%がさらに好ましい。構造単位(x)の含有率を上記下限以上とすることで、当該樹脂組成物及び得られる基材層(α)等の成形性、柔軟性等を十分に高めることができる。一方、この含有率の上限としては、40モル%が好ましく、30モル%がより好ましく、20モル%がさらに好ましい。構造単位(x)の含有率を上記上限以下とすることで、ガスバリア性等を高めることができる。
当該樹脂組成物におけるEVOH(A)の含有量は、ガスバリア性等の観点から、70質量%以上が好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましく、95質量%以上であっても、99質量%以上であっても、99.9質量%以上であってもよい。当該樹脂組成物を構成する樹脂が実質的にEVOH(A)のみから構成されていてもよい。一方、当該樹脂組成物におけるEVOH(A)の含有量は、例えば99.9質量%以下であってよく、99質量%以下であってもよい。
(不飽和脂肪族アルデヒド(B))
当該樹脂組成物はクロトンアルデヒド(B1)を含み、かつ、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含む。
当該樹脂組成物におけるEVOH(A)に対するクロトンアルデヒド(B1)の含有量bの下限は、0.01ppmが好ましく、0.20ppmがより好ましく、0.40ppmがさらに好ましく、0.70ppm又は1.20ppmがよりさらに好ましい場合もある。一方、含有量bの上限は、4.0ppmが好ましく、3.5ppmがより好ましく、2.7ppmがさらに好ましく、2.0ppm又は1.5ppmがよりさらに好ましい場合もある。含有量bが上記範囲であると、後述するb/(b+b)、b+b+b及びb+2bの値を好適な範囲に調整しやすくなる。また、含有量bが上記範囲であると着色を抑制できる傾向となる。
当該樹脂組成物は、一実施形態として、2,4-ヘキサジエナール(B2)をクロトンアルデヒド(B1)に対して特定比率で含むことで、ダイビルドアップを抑制しつつ、ネックイン耐性に優れる傾向となる。当該樹脂組成物におけるEVOH(A)に対する2,4-ヘキサジエナール(B2)の含有量bの下限は、0.005ppmが好ましく、0.01ppmがより好ましく、0.02ppmがさらに好ましい。一方、含有量bの上限は、0.65ppmが好ましく、0.20ppmがより好ましく、0.10ppmがさらに好ましく、0.08ppmがよりさらに好ましく、0.06ppmが特に好ましい。含有量bが上記範囲であると、後述するb/(b+b)、b+b+b及びb+2bの値を好適な範囲に調整しやすくなる。また、含有量bが上記範囲であると着色を抑制できる傾向となる。
当該樹脂組成物は、一実施形態として、2,4,6-オクタトリエナール(B3)をクロトンアルデヒド(B1)に対して特定比率で含むことで、ダイビルドアップを抑制しつつ、ネックイン耐性に優れる傾向となる。2,4,6-オクタトリエナール(B3)は、2,4-ヘキサジエナール(B2)と比べ、添加量に対するダイビルドアップへの影響が大きい。このため、ダイビルドアップを抑制しつつ、ネックイン耐性を向上させる視点からは当該樹脂組成物は、2,4,6-オクタトリエナール(B3)よりは、2,4-ヘキサジエナール(B2)を含むことが好ましい。当該樹脂組成物におけるEVOH(A)に対する2,4,6-オクタトリエナール(B3)の含有量bの上限は、0.325ppmが好ましく、0.23ppmがより好ましく、0.07ppmがさらに好ましく、0.04ppmが特に好ましい。含有量Bの下限は、0ppmであってもよく、0.005ppmであってもよい。含有量bが上記範囲であると、後述するb/(b+b)、b+b+b及びb+2bの値を好適な範囲に調整しやすくなる。また、含有量bが上記範囲であると着色を抑制できる傾向となる。
当該樹脂組成物においては、クロトンアルデヒド(B1)の含有量b(ppm)に対する2,4-ヘキサジエナール(B2)の含有量b(ppm)と2,4,6-オクタトリエナール(B3)の含有量b(ppm)との合計の比率(b/(b+b))の値が2.0以上150.0未満であることでネックイン耐性に優れる。かかるネックイン耐性は、不飽和脂肪族アルデヒド(B)のいずれかの化合物を単独で用いた場合には見られない効果であり、b/(b+b)が特定範囲となることで初めて奏される効果である。b/(b+b)の下限は、4.0が好ましく、8.0がより好ましい。一方、b/(b+b)の上限は、60.0が好ましく、25.0がより好ましく、13.0がさらに好ましい。b/(b+b)を上記範囲内とすることで、ネックインをより十分に抑制することができる。その結果、得られる基材層(α)の厚みの均一性が高まることなどにより、基材層(α)及び蒸着フィルムのガスバリア性の均一性を高めることができる。
当該樹脂組成物においては、2,4-ヘキサジエナール(B2)の含有量b(ppm)と2,4,6-オクタトリエナール(B3)の含有量b(ppm)の2倍量との合計(b+2b)の上限は、0.65ppm以下であり、0.50ppmが好ましく、0.30ppmがより好ましく、0.10ppmがさらに好ましい。b+2bが上記上限を超えると、ダイビルドアップの発生を抑制できない。ダイビルドアップが発生した場合、得られる基材層(α)におけるダイビルドアップ由来のスジ等の発生により、蒸着フィルムにおける蒸着欠点の発生、無機蒸着層の密着強度の低下、ガスバリア性の低下、リサイクル性の低下等を引き起こす。b+2bは、0.005ppm以上であってもよく、0.01ppm以上であってもよい。
当該樹脂組成物において、EVOH(A)に対するクロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)の含有量の合計(b+b+b)の上限は、7.0ppmが好ましく、4.0ppmがより好ましく、3.5ppmがさらに好ましく、3.0ppmがよりさらに好ましく、1.5ppmがよりさらに好ましく、1.0ppmが特に好ましい場合もある。b+b+bを上記上限以下とすることで、樹脂組成物の着色を十分に抑えることができる。一方、b+b+bの下限としては、0.01ppmが好ましく、0.10ppmがより好ましく、0.30ppm又は0.50ppmがさらに好ましい場合もある。
(共役ポリエン化合物(C))
当該樹脂組成物は、共役ポリエン化合物(C)をさらに含むことが好ましい。共役ポリエン化合物(C)は、溶融成形時のEVOH(A)の酸化劣化による色調悪化を抑制することができる。ここで、共役ポリエン化合物(C)とは、炭素-炭素二重結合と炭素-炭素単結合とが交互に繋がってなる構造を有し炭素-炭素二重結合の数が2個以上である、いわゆる共役二重結合を有する化合物である。但し、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)は、共役ポリエン化合物(C)には該当しないものとする。共役ポリエン化合物(C)は、共役二重結合を2個有する共役ジエン、3個有する共役トリエン、又はそれ以上の数を有する共役ポリエンであってもよい。また、共役二重結合の構造が1分子中に複数組あってもよい。例えば、桐油のように共役トリエン構造が同一分子内に3個ある化合物も共役ポリエン化合物(C)に含まれる。共役ポリエン化合物(C)の共役二重結合の数の上限としては、7個が好ましい。当該樹脂組成物は、共役二重結合を8個以上有する共役ポリエン化合物(C)を含有すると、ペレットひいては成形体の着色が起こる可能性が高くなる。
共役ポリエン化合物(C)は、共役二重結合に加えて、カルボキシ基及びその塩、水酸基、エステル基、エーテル基、アミノ基、イミノ基、アミド基、シアノ基、ジアゾ基、ニトロ基、スルホン基及びその塩、スルホニル基、スルホキシド基、スルフィド基、チオール基、リン酸基及びその塩、フェニル基、ハロゲン原子、二重結合、三重結合等のその他の官能基を有していてもよい。
共役ポリエン化合物(C)の炭素数の下限としては、4が好ましい。また、共役ポリエン化合物(C)の炭素数の上限としては、30が好ましく、10がより好ましい。
共役ポリエン化合物(C)としては、例えばイソプレン、2,3-ジメチル-1,3-ブタジエン、2,3-ジエチル-1,3-ブタジエン、2-t-ブチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ペンタジエン、2,4-ジメチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ペンタジエン、3-エチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,5-ジメチル-2,4-ヘキサジエン、1,3-オクタジエン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1-フェニル-1,3-ブタジエン、1,4-ジフェニル-1,3-ブタジエン、1-メトキシ-1,3-ブタジエン、2-メトキシ-1,3-ブタジエン、1-エトキシ-1,3-ブタジエン、2-エトキシ-1,3-ブタジエン、2-ニトロ-1,3-ブタジエン、クロロプレン、1-クロロ-1,3-ブタジエン、1-ブロモ-1,3-ブタジエン、2-ブロモ-1,3-ブタジエン、オシメン、フェランドレン、ミルセン、ファルネセン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩等の共役ジエン化合物;1,3,5-ヘキサトリエン、2,4,6-オクタトリエン-1-カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール、フルベン、トロポン等の共役トリエン化合物;シクロオクタテトラエン、2,4,6,8-デカテトラエン-1-カルボン酸、レチノール、レチノイン酸等が挙げられる。
共役ポリエン化合物(C)としては、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、ミルセンまたはこれらのうちの2以上の混合物が好ましく、ソルビン酸、ソルビン酸塩(ソルビン酸ナトリウム、ソルビン酸カリウム等)またはこれらの混合物がより好ましい。ソルビン酸、ソルビン酸塩またはこれらの混合物は、高温での酸化劣化の抑制効果が高く、また食品添加剤としても広く工業的に使用されているため衛生性や入手性の観点からも好ましい。
共役ポリエン化合物(C)の分子量としては、通常1,000以下であり、500以下が好ましく、300以下がより好ましい。共役ポリエン化合物(C)の分子量が上記上限以下である場合、樹脂組成物中への共役ポリエン化合物(C)の分散状態が良好になり、溶融成形後の外観が高まる傾向にある。共役ポリエン化合物(C)の分子量の下限は例えば54であり、60であってもよく、80であってもよい。
当該樹脂組成物におけるEVOH(A)に対する共役ポリエン化合物(C)の含有量cの下限は、1ppmが好ましく、3ppmがより好ましい。また、当該樹脂組成物におけるEVOH(A)に対する共役ポリエン化合物(C)の含有量cは300ppm未満が好ましく、100ppm以下がより好ましく、70ppm以下がさらに好ましく、30ppm以下がよりさらに好ましく、20ppm以下、10ppm以下が特に好ましい場合もある。共役ポリエン化合物(C)の含有量cが上記範囲であると溶融成形時の色相の悪化をより抑制できる傾向となる。
(その他の任意成分)
当該樹脂組成物は、EVOH(A)、不飽和脂肪族アルデヒド(B)及び共役ポリエン化合物(C)以外のその他の任意成分として、ホウ素化合物、カルボン酸類、リン化合物、金属イオン、酸化防止剤、紫外線吸収剤、可塑剤、帯電防止剤、滑剤、着色剤、充填剤、熱安定剤、EVOH(A)以外の他の樹脂、高級脂肪族カルボン酸の金属塩等を含んでいてもよい。当該樹脂組成物は、これらの成分を2種以上含有してもよい。当該樹脂組成物が、その他の任意成分を含む場合、その合計含有量の上限は1質量%が好ましく、0.5質量%が好ましい場合もある。
ホウ素化合物は、溶融成形時のゲル化を抑制すると共に押出成形機等のトルク変動(加熱時の粘度変化)を抑制するものである。上記ホウ素化合物としては、例えばオルトホウ酸、メタホウ酸、四ホウ酸等のホウ酸類;ホウ酸トリエチル、ホウ酸トリメチル等のホウ酸エステル;上記ホウ酸類のアルカリ金属塩又はアルカリ土類金属塩、ホウ砂等のホウ酸塩;水素化ホウ素類などが挙げられる。これらの中でも、ホウ酸類が好ましく、オルトホウ酸(以下、「ホウ酸」ともいう)がより好ましい。EVOH(A)に対するホウ素化合物の含有量の下限としては、100ppmが好ましく、500ppmがより好ましい。また、EVOH(A)に対するホウ素化合物の含有量の上限としては、5,000ppmが好ましく、3,000ppmがより好ましく、1,000ppmがさらに好ましい。ホウ素化合物の含有量を上記下限以上とすることで、押出成形機等のトルク変動を十分に抑制することができる。一方、ホウ素化合物の含有量を上記上限以下とすることで、溶融成形時にゲル化が起こりにくくなり蒸着フィルムの外観等が向上する。なお、ホウ素化合物の含有量は、ホウ素化合物のオルトホウ酸換算含有量である。
カルボン酸類は、基材層(α)の着色を防止すると共に溶融成形時のゲル化を抑制するものである。カルボン酸類としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸、これらの塩等が挙げられる。カルボン酸類としては、炭素数4以下のカルボン酸類又は飽和カルボン酸類が好ましく、酢酸類がより好ましい。この酢酸類は、酢酸及び酢酸塩を含む。酢酸類としては、酢酸及び酢酸塩を併用することが好ましく、酢酸及び酢酸ナトリウムを併用することがより好ましい。EVOH(A)に対するカルボン酸類の含有量の下限としては、50ppmが好ましく、100ppmがより好ましく、150ppmがさらに好ましい。また、EVOH(A)に対するカルボン酸類の含有量の上限としては、1,000ppmが好ましく、500ppmがより好ましく、400ppmがさらに好ましい。カルボン酸類の含有量を上記下限以上とすることで、十分な着色抑制効果が得られ、黄変の発生を十分に抑制することができる。一方、カルボン酸類の含有量を上記上限以下とすることで、溶融成形時、特に長時間に及ぶ溶融成形時にゲル化が生じにくくなり、蒸着フィルムの外観等が良好になる。
リン化合物は、ストリーク、フィッシュアイ等の欠陥の発生及び着色を抑制すると共に、ロングラン性を向上させるものである。このリン化合物としては、例えばリン酸、亜リン酸等のリン酸塩等が挙げられる。上記リン酸塩としては、第一リン酸塩、第二リン酸塩及び第三リン酸塩のいずれの形でもよい。また、リン酸塩のカチオン種についても特に限定されるものではないが、アルカリ金属塩及びアルカリ土類金属塩が好ましく、これらのうちリン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム及びリン酸水素二カリウムがより好ましく、リン酸二水素ナトリウム及びリン酸水素二カリウムがさらに好ましい。EVOH(A)に対するリン化合物の含有量の下限としては、1ppmが好ましく、10ppmがより好ましく、20ppmがさらに好ましく、30ppmが特に好ましい。EVOH(A)に対するリン化合物の含有量の上限としては、200ppmが好ましく、150ppmがより好ましく、100ppmがさらに好ましい。リン化合物の含有量を上記下限以上とすること、又は上記上限以下とすることで、熱安定性が向上し、長時間にわたる溶融成形を行なう際のゲル状ブツの発生、着色等が生じにくくなる。
金属イオンとしては、一価金属イオン、二価金属イオン、その他遷移金属イオンが挙げられ、これらは1種又は複数種からなっていてもよい。中でも一価金属イオン及び二価金属イオンが好ましい。一価金属イオンとしては、アルカリ金属イオンが好ましく、例えばリチウム、ナトリウム、カリウム、ルビジウム及びセシウムのイオンが挙げられ、工業的な入手容易性の点からはナトリウム又はカリウムのイオンが好ましい。また、アルカリ金属イオンを与えるアルカリ金属塩としては、例えば脂肪族カルボン酸塩、芳香族カルボン酸塩、炭酸塩、塩酸塩、硝酸塩、硫酸塩、リン酸塩及び金属錯体が挙げられる。中でも、脂肪族カルボン酸塩及びリン酸塩が入手容易である点から好ましく、具体的には、酢酸ナトリウム、酢酸カリウム、リン酸ナトリウム及びリン酸カリウムが好ましい。金属イオンとして二価金属イオンを含むことが好ましい場合もある。金属イオンが二価金属イオンを含むと、例えばトリムを回収して再利用した際のEVOHの熱劣化が抑制され、得られる成形体のゲル及びブツの発生が抑制される場合がある。二価金属イオンとしては、例えばベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム及び亜鉛のイオンが挙げられるが、工業的な入手容易性の点からはマグネシウム、カルシウム又は亜鉛のイオンが好ましい。また、二価金属イオンを与える二価金属塩としては、例えばカルボン酸塩、炭酸塩、塩酸塩、硝酸塩、硫酸塩、リン酸塩及び金属錯体が挙げられカルボン酸塩が好ましい。カルボン酸塩を構成するカルボン酸としては、炭素数1~30のカルボン酸が好ましく、具体的には、酢酸、プロピオン酸、酪酸、ステアリン酸、ラウリン酸、モンタン酸、ベヘン酸、オクチル酸、セバシン酸、リシノール酸、ミリスチン酸、パルミチン酸等が挙げられ、中でも、酢酸及びステアリン酸が好ましい。EVOH(A)に対する金属イオンの含有量の下限は1ppmが好ましく、100ppmがより好ましく、150ppmがさらに好ましい。一方、金属イオンの含有量の上限は1,000ppmが好ましく、400ppmがより好ましく、350ppmがさらに好ましい。EVOH(A)に対する金属イオンの含有量が1ppm以上であると、得られる蒸着フィルムの層間接着性が良好となる傾向となる。一方、金属イオンの含有量が1,000ppm以下であると、着色耐性が良好となる傾向となる。
酸化防止剤としては、例えば、2,5-ジ-t-ブチルハイドロキノン、2,6-ジ-t-ブチル-p-クレゾール、4,4’-チオビス(6-t-ブチルフェノール)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート等が挙げられる。紫外線吸収剤としては、例えばエチレン-2-シアノ-3,3’-ジフェニルアクリレート、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オキトシキベンゾフェノン等が挙げられる。
可塑剤としては、例えばフタル酸ジメチル、フタル酸ジエチル、フタル酸ジオクチル、ワックス、流動パラフィン、リン酸エステル等が挙げられる。帯電防止剤としては、例えばペンタエリスリットモノステアレート、ソルビタンモノパルミテート、硫酸化ポリオレフィン類、ポリエチレンオキシド、ポリエチレングリコール(商品名:カーボワックス)等が挙げられる。
滑剤としては、例えばエチレンビスステアロアミド、ブチルステアレート等が挙げられる。着色剤としては、例えばカーボンブラック、フタロシアニン、キナクリドン、インドリン、アゾ系顔料、ベンガラ等が挙げられる。充填剤としては、例えばグラスファイバー、ウォラストナイト、ケイ酸カルシウム、タルク、モンモリロナイト等が挙げられる。熱安定剤としては、例えばヒンダードフェノール系化合物、ヒンダードアミン系化合物等が挙げられる。
EVOH(A)以外の他の樹脂としては、例えばポリアミド、ポリオレフィン等が挙げられる。高級脂肪族カルボン酸の金属塩としては、例えばステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸カルシウム、ステアリン酸マグネシウム等が挙げられる。
当該樹脂組成物において、EVOH(A)及び不飽和脂肪族アルデヒド(B)(クロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3))の合計含有量は、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上がさらに好ましく、99質量%以上が特に好ましい。当該樹脂組成物は実質的にEVOH(A)及び不飽和脂肪族アルデヒド(B)のみから構成されていてもよく、当該樹脂組成物はEVOH(A)及び不飽和脂肪族アルデヒド(B)のみから構成されていてもよい。なお、本明細書において「実質的に~のみからなる」とは、本発明の効果に影響を与えない範囲で任意成分の含有を許容するものであり、本明細書において「のみからなる」とは、不可避的に含まれてしまう不純物以外の任意成分を除外するものである。
当該樹脂組成物の210℃、2,160g荷重下でのメルトフローレート(MFR)の下限としては、0.5g/10分が好ましく、1g/10分がより好ましい。一方、このMFRの上限としては、30g/10分が好ましく、20g/10分がより好ましい。当該樹脂組成物のMFRが上記範囲であることで、溶融成形性等を高めることができる。また、当該樹脂組成物のMFRが上記範囲であると、ネックイン耐性がより良好となる傾向となる。
<樹脂組成物の調製方法>
当該樹脂組成物の製造方法は、EVOH(A)中に不飽和脂肪族アルデヒド(B)をブレンドできる方法であれば特に限定されない。当該製造方法は、例えば、
(1)エチレンとビニルエステルとを共重合させる工程、及び
(2)工程(1)により得られた共重合体をケン化する工程
を備える樹脂組成物の製造方法であって、上記樹脂組成物中に所定量及び所定比率の不飽和脂肪族アルデヒド(B)を含有させることを特徴とする製造方法等が挙げられる。
樹脂組成物中に不飽和脂肪族アルデヒド(B)を含有させる方法としては、特に限定されないが、例えば、上記工程(1)において不飽和脂肪族アルデヒド(B)を添加する方法、上記工程(2)において不飽和脂肪族アルデヒド(B)を添加する方法、上記工程(2)により得られたEVOH(A)に、不飽和脂肪族アルデヒド(B)を添加する方法等が挙げられる。なお、上記工程(1)において不飽和脂肪族アルデヒド(B)を添加する方法、又は上記工程(2)において不飽和脂肪族アルデヒド(B)を添加する方法を採用する場合には、得られる樹脂組成物中に所望量の不飽和脂肪族アルデヒド(B)を含有させるために、上記工程(1)における重合反応、上記工程(2)におけるケン化反応で消費される量を考慮して添加量を多くする必要がある。したがって、重合反応やケン化反応工程で不飽和脂肪族アルデヒド(B)を添加する場合は消費される不飽和脂肪族アルデヒド(B)の量を加算して添加することが好ましい。一方、上記工程(2)より得られたEVOH(A)に不飽和脂肪族アルデヒド(B)を添加する方法は工程内での消費を考慮せずに添加できるため、操作性に優れている。
EVOH(A)に不飽和脂肪族アルデヒド(B)を添加する方法としては、例えば不飽和脂肪族アルデヒド(B)を予めEVOH(A)に配合してペレットを造粒する方法、エチレン-ビニルエステル共重合体のケン化後にペーストを析出させる工程で析出させたストランドに不飽和脂肪族アルデヒド(B)を含浸させる方法、析出させたストランドをカットした後に不飽和脂肪族アルデヒド(B)を含浸させる方法、乾燥樹脂組成物のチップを再溶解したものに不飽和脂肪族アルデヒド(B)を添加する方法、EVOH(A)及び不飽和脂肪族アルデヒド(B)の各成分をブレンドしたものを溶融混練する方法、押出機の途中からEVOH(A)溶融物に不飽和脂肪族アルデヒド(B)をフィードし含有させる方法、不飽和脂肪族アルデヒド(B)をEVOH(A)の一部に高濃度で配合して造粒したマスターバッチを作成しEVOH(A)とドライブレンドして溶融混練する方法等が挙げられる。
これらのうち、EVOH(A)中に微量の不飽和脂肪族アルデヒド(B)を均一性高く分散することができる観点から、不飽和脂肪族アルデヒド(B)を予めEVOH(A)に配合してペレットを造粒する方法が好ましい。具体的には、EVOH(A)を水/メタノール混合溶媒等の良溶媒に溶解させた溶液に、不飽和脂肪族アルデヒド(B)を添加し、その混合溶液をノズル等から貧溶媒中に押出して析出及び/又は凝固させ、それを洗浄及び/又は乾燥することにより、EVOH(A)に不飽和脂肪族アルデヒド(B)が均一性高く混合された樹脂組成物ペレットを得ることができる。
EVOH(A)中に不飽和脂肪族アルデヒド(B)以外のその他成分を含有させる方法としては、例えば上記ペレットをその他成分と共に混合して溶融混練する方法、上記ペレットを調製する際に、不飽和脂肪族アルデヒド(B)と共にその他成分を混合する方法、上記ペレットをその他成分が含まれる溶液に浸漬させる方法、上記ペレットにその他成分をドライブレンドする方法等が挙げられる。なお、その他成分の混合には、リボンブレンダー、高速ミキサーコニーダー、ミキシングロール、押出機、インテンシブミキサー等を用いることができる。
基材層(α)の製造に用いるときの樹脂組成物は、ペレット形状であることが、取扱性が容易である点から好ましい。当該樹脂組成物のペレットの形状は特に限定されるものではないが、円柱状、角柱状、球状、略球状(lenticular)などが挙げられ、中でも、ペレットの搬送安定性、取扱性、生産性等の観点から、円柱状、球状または略球状(lenticular)が好ましい。円柱状の場合、直径は1mm以上10mm以下が好ましく、2mm以上8mm以下がより好ましく、高さは1mm以上10mm以下が好ましく、2mm以上8mm以下がより好ましく、3mm以上5mm以下がさらに好ましい。球状または略球状(lenticular)である場合、短手方向の長さは1mm以上10mm以下が好ましく、2mm以上8mm以下がより好ましく、長手方向の長さは1mm以上10mm以下が好ましく、2mm以上8mm以下がより好ましい。
(基材層(α)の厚み等)
基材層(α)の平均厚みは特に限定されず、下限は例えば0.5μm、1μm、5μm、7μm又は10μmであってよい。基材層(α)の平均厚みを上記下限以上とすることでガスバリア性を高めることなどができる。一方、平均厚みの上限は例えば100μm、30μm、25μm又は20μmであってもよい。基材層(α)の平均厚みを上記上限以下とすることで外観特性やリサイクル性が良好となる傾向にある。なお、基材層(α)及びその他の各層の平均厚みは、別に指定がない場合、任意の5ヶ所以上で測定される厚みの平均値である。
基材層(α)の酸素透過度の上限としては、50mL・20μm/m・day・atmが好ましく、10mL・20μm/m・day・atmがより好ましく、5mL・20μm/m・day・atmがさらに好ましく、1mL・20μm/m・day・atmが特に好ましい。
基材層(α)は、延伸された層であることが好ましい。蒸着フィルムが延伸された基材層(α)を備える場合、ガスバリア性をより高めることなどができる。
(単層フィルム)
基材層(α)は、例えば、当該樹脂組成物からなる単層フィルム(基材フィルム)として形成することができる。この場合の形成方法としては、特に限定されず、例えば溶融法、溶液法、カレンダー法等が挙げられ、これらの中で溶融法が好ましい。溶融法としては、キャスト法、インフレーション法が挙げられ、これらの中でキャスト法が好ましい。
キャスト法によるフィルム形成の場合、延伸を行ってもよい。延伸方法としては、特に限定されるものではなく、一軸延伸、同時二軸延伸、及び逐次二軸延伸のいずれであってもよい。面積換算の延伸倍率の下限としては、8倍が好ましく、9倍がより好ましい。延伸倍率の上限としては、12倍が好ましく、11倍がより好ましい。延伸倍率が上記範囲であることで、フィルムの厚みの均一性、ガスバリア性及び機械的強度の点を向上させることができる。
延伸を行う場合、原反(延伸前のフィルム)に予め含水させておくことが好ましい。これにより、連続延伸が容易となる。延伸前原反の含水率の下限としては、2質量%が好ましく、5質量%がより好ましく、10質量%がさらに好ましい。延伸前原反の含水率の上限としては、30質量%が好ましく、25質量%がより好ましく、20質量%がさらに好ましい。
延伸温度は、延伸前の原反の含水率、延伸方法によって多少異なるが、一般に50℃以上130℃以下とされる。延伸温度としては、延伸斑の少ない二軸延伸フィルムが得るためには、同時二軸延伸では70℃以上100℃以下が好ましく、逐次二軸延伸ではロールでの長手方向の延伸においては70℃以上100℃以下が好ましく、テンターでの幅方向の延伸においては80℃以上120℃以下が好ましい。
(多層フィルム)
基材層(α)は、他の層をさらに有する多層フィルム(基材フィルム)の一つの層であってもよい。例えば、本発明の蒸着フィルムは、基材層(α)の片面に無機蒸着層(β)が積層され、基材層(α)の無機蒸着層(β)が積層される面とは反対側に、接着層(γ)を介して熱可塑性樹脂層(δ)が積層されている構造を有するものであってよい。このような場合、基材層(α)、接着層(γ)及び熱可塑性樹脂層(δ)がこの順に積層された多層フィルム(基材フィルム)を作製し、この多層フィルムにおける基材層(α)が露出した側の面に蒸着により無機蒸着層(β)を積層することができる。なお、多層フィルムは上記層構造に限定されるものでなく、一方の最外層として基材層(α)を有し、その他の一層以上の他の層を有するものであればよい。但し、多層フィルムは、基材層(α)と共に熱可塑性樹脂層(δ)を有することが好ましく、さらに基材層(α)と熱可塑性樹脂層(δ)との間に設けられる接着層(γ)を有することがより好ましい。
多層フィルムの製造方法としては、特に限定されず、例えば、共押出キャスト成形、共押出インフレーション成形、共押出コート成形等が挙げられる。
多層フィルムの全体厚みは、用途に応じて適宜設定することができる。全体厚みは10μm以上が好ましく、13μm以上がより好ましく、15μm以上がさらに好ましい。全体厚みが10μm以上であることで、工業的な生産性が向上する傾向となる。また、全体厚みは300μm以下が好ましく、200μm以下がより好ましく、100μm以下がさらに好ましく、50μm以下が特に好ましい。全体厚みが300μm以下であることで、工業的な生産性が向上する傾向となる。
多層フィルムは、延伸されていることが好ましい。この場合、例えば多層フィルムが少なくとも基材層(α)、接着層(γ)及び熱可塑性樹脂層(δ)を備える場合、得られる蒸着フィルムは、少なくとも基材層(α)、接着層(γ)及び熱可塑性樹脂層(δ)が一体で延伸されてなるものとなることが好ましい。延伸の程度としては、少なくとも一軸方向に面積換算の延伸倍率として3倍以上12倍以下延伸されていることが好ましく、4倍以上10倍以下延伸されていることがより好ましく、5倍以上8倍以下延伸されていることがさらに好ましい。上記延伸倍率が3倍以上であることで、ガスバリア性が向上する。一方、上記延伸倍率が12倍以下であることで、膜面が良好になる。
多層フィルムは、二軸方向に面積換算の延伸倍率として9倍以上144倍以下延伸されていても良く、16倍以上100倍以下延伸されていることが好ましく、25倍以上64倍以下延伸されていることがより好ましい。上記延伸倍率が9倍以上であることで、ガスバリア性が向上する。一方、上記延伸倍率が144倍以下であることで、膜面が良好になる。
多層フィルムの延伸方法としては、特に限定されず、例えば、テンター延伸法、チューブラー延伸法、ロール延伸法などが例示される。製造コストの観点からは、テンター延伸法及びチューブラー延伸法による逐次二軸延伸又は同時二軸延伸が好ましい。また、設備コストの観点からは、ロール延伸法による一軸延伸が好ましい。また、多層フィルムがインフレーション成形体である場合、インフレーション成形後の折りたたまれた円筒状の多層フィルムを容易に一軸方向に延伸できる観点からも、ロール延伸法であることが好ましい。
[無機蒸着層(β)]
無機蒸着層(β)は、当該蒸着フィルムにおいて主としてガスバリア性を確保するものである。この無機蒸着層(β)は、基材層(α)上に積層されている。無機蒸着層(β)は、基材層(α)の両面に積層されていても、基材層(α)の片面のみに積層されていてもよいが、基材層(α)の両面に積層されていることが好ましい場合もある。無機蒸着層(β)を基材層(α)の両面に積層することで、ガスバリア性をより向上させ、ガスバリアの安定性が得られる。すなわち、一方の無機蒸着層(β)に物理的衝撃等により欠陥が生じても、他方の無機蒸着層(β)がバリア性を維持することにより、蒸着フィルムとしてのガスバリア性が好適に維持される。
無機蒸着層(β)は無機物を蒸着することで形成できる。無機物としては、金属(例えば、アルミニウム)、金属酸化物(例えば、酸化ケイ素、酸化アルミニウム)、金属窒化物(例えば、窒化ケイ素)、金属窒化酸化物(例えば、酸窒化ケイ素)、または金属炭化窒化物(例えば、炭窒化ケイ素)等が挙げられる。中でもアルミニウム、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、または窒化ケイ素で形成される無機蒸着層が、工業的な生産性の観点から好ましく、アルミニウムがより好ましい。
なお、アルミニウムの蒸着層であったとしても、不可逆的に酸化が生じ、一部酸化アルミニウムが含まれる場合がある。無機蒸着層(β)に一部酸化アルミニウムが含まれる場合、無機蒸着層(β)を構成するアルミニウム原子の物質量(Almol)に対する酸素原子の物質量(Omol)の比(Omol/Almol)は、0.5以下が好ましく、0.3以下がより好ましく、0.1以下がさらに好ましく、0.05以下が特に好ましい。
無機蒸着層(β)の平均厚みの下限としては、15nmが好ましく、20nmがより好ましく、30nmがさらに好ましく、40nmが特に好ましい。無機蒸着層(β)の平均厚みの上限としては、150nmが好ましく、130nmがより好ましく、80nmがさらに好ましい。無機蒸着層(β)の平均厚みを上記下限以上とすることで、ガスバリア性を高めることができる。一方、無機蒸着層(β)の平均厚みを上記上限以下とすることで、ヒートブリッジを抑制し、断熱効果を高めることなどができる。なお、無機蒸着層(β)が複数の層から構成される場合、各層の平均厚みが上記範囲であることが好ましい。無機蒸着層(β)が複数の層から構成される場合、無機蒸着層(β)の合計厚みは、1μm以下であることが好ましい。
無機蒸着層(β)におけるアルミニウム粒子等の蒸着粒子の平均粒子径の下限としては、特に限定されないが、10nmが好ましく、15nmがより好ましく、20nmがさらに好ましい。一方、蒸着粒子の平均粒子径の上限としては、150nmが好ましく、125nmがより好ましく、100nmがさらに好ましく、75nmが特に好ましく、50nmが最も好ましい。ここで、蒸着粒子の平均粒子径は、無機蒸着層(β)表面を走査型電子顕微鏡で観察し、同一方向に存在する複数の蒸着粒子の最大径(定方向最大径)の合算値を測定粒子個数で除した平均値を意味する。また、平均粒子径は、蒸着粒子が粒塊を形成している場合、粒塊を構成する蒸着粒子の粒子径(一次粒子径)を意味する。
基材層(α)に無機蒸着層(β)を形成する場合、以下のいずれかの条件を満たすことで、蒸着粒子の平均粒子径が150nm以下である無機蒸着層(β)を形成することが可能となる。
(1)蒸着時の基材層(α)の表面温度を60℃以下にする。
(2)蒸着前の基材層(α)に含まれる揮発分の含有量を1.1質量%以下にする。
(3)蒸着前の基材層(α)の表面をプラズマ処理し改質する。
これらの方法の中でも、条件(1)を満たすことが好ましく、条件(1)に加えて、条件(2)及び条件(3)のうちの少なくとも一方の条件をさらに満たすことがより好ましい。
蒸着を行う際の基材層(α)の表面温度の上限としては、上述のように60℃が好ましく、55℃がより好ましく、50℃がさらに好ましい。また、蒸着時の基材層(α)の表面温度の下限としては、特に限定されないが、0℃が好ましく、10℃がより好ましく、20℃がさらに好ましい。
蒸着前の基材層(α)に含まれる揮発分の含有量の下限としては、特に限定されないが、0.01質量%が好ましく、0.03質量%がより好ましく、0.05質量%がさらに好ましい。上記揮発分の上限としては、1.1質量%が好ましく、0.5質量%がより好ましく、0.3質量%がさらに好ましい。ここで、揮発分の含有量は、105℃で3時間乾燥した乾燥前後の質量変化から、後述する蒸着フィルムの揮発分の含有量と同様の式により求められる。
蒸着前の基材層(α)の表面をプラズマ処理する方法としては、公知の方法を用いることができるが、大気圧プラズマ処理が好ましい。この大気圧プラズマ処理においては、放電ガスとしては、例えば窒素ガス、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が挙げられる。これらの中でも、窒素、ヘリウム及びアルゴンが好ましく、コスト低減の観点から窒素がより好ましい。
[接着層(γ)]
本発明の蒸着フィルムは、接着層(γ)と、この接着層(γ)に積層される熱可塑性樹脂層(δ)とをさらに備えることが好ましい。接着層(γ)は、基材層(α)に直接積層されていることがより好ましい。すなわち、基材層(α)、接着層(γ)及び熱可塑性樹脂層(δ)がこの順にそれぞれ他の層を介することなく積層されていることがより好ましい。また、本発明の蒸着フィルムをリサイクルする際に、接着層(γ)が存在すると、基材層(α)中のEVOH(A)と熱可塑性樹脂層(δ)中の熱可塑性樹脂との相溶性を高められ、リサイクル性が向上する傾向となるため、その観点からも接着層(γ)を有することが好ましい。
接着層(γ)は、接着性樹脂から形成される層であることが好ましい。接着性樹脂としては、カルボキシ基、カルボン酸無水物基又はエポキシ基を有するポリオレフィンを用いることが好ましい。このような接着性樹脂は、基材層(α)等と熱可塑性樹脂層(δ)との接着性にも優れている。
カルボキシ基を含有するポリオレフィンとしては、アクリル酸やメタクリル酸を共重合したポリオレフィンなどが挙げられる。このとき、アイオノマーに代表されるようにポリオレフィン中に含有されるカルボキシル基の全部あるいは一部が金属塩の形で存在していてもよい。カルボン酸無水物基を有するポリオレフィンとしては、無水マレイン酸やイタコン酸でグラフト変性されたポリオレフィンが挙げられる。また、エポキシ基を有するポリオレフィンとしては、グリシジルメタクリレートを共重合したポリオレフィンが挙げられる。中でも、無水マレイン酸等のカルボン酸無水物基を有するポリオレフィン、特にカルボン酸無水物基を有するポリエチレン及びカルボン酸無水物基を有するポリプロピレンが接着性に優れる点から好ましい。
接着層(γ)を構成する接着性樹脂のJIS K 7210:2014に従って測定した190℃、2160g荷重におけるメルトフローレート(MFR)は0.1g/10分以上20.0g/10分以下が好ましく、1.0g/10分以上10.0g/10分以下がより好ましい。接着性樹脂のMFRが前記範囲であると、成形時の製膜安定性が良好になる傾向となる。
接着層(γ)の平均厚みは、工業的な生産性、品質安定性の観点から、0.5μm以上20μm以下が好ましく、1μm以上10μm以下がより好ましい。本発明の蒸着フィルムが複数の基材層(α)及び熱可塑性樹脂層(δ)を有する場合や、基材層(α)とは異なるEVOH層等を備える場合、接着層(γ)はそれぞれの層間に設けられていてもよく、本発明の蒸着フィルムにおける接着層(γ)の層数は特に限定されない。
[熱可塑性樹脂層(δ)]
本発明の蒸着フィルムは、熱可塑性樹脂層(δ)を含むことで、機械強度を高められる。また、基材層(α)と多層で製膜することで、基材層(α)の膜厚を薄くすることができる傾向となり、結果として、本発明の蒸着フィルムのリサイクルが容易となる傾向となる。また、ヒートシール性、機械強度等の特性を、熱可塑性樹脂層(δ)を構成する熱可塑性樹脂の種類に応じて付与できる。
熱可塑性樹脂層(δ)に用いられる熱可塑性樹脂としては、直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン等のポリエチレン、エチレン-酢酸ビニル共重合体、アイオノマー、エチレン-プロピレン(ブロック又はランダム)共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、ポリプロピレン、プロピレン-α-オレフィン共重合体、ポリブテン、ポリペンテン等のオレフィンの単独又は共重合体、或いはこれらを不飽和カルボン酸又はそのエステルでグラフト変性したものなどのポリオレフィン;ポリエステル;ポリアミド(共重合ポリアミドも含む);ポリ塩化ビニル;ポリ塩化ビニリデン;アクリル樹脂;ポリスチレン;ポリビニルエステル;ポリエステルエラストマー;ポリウレタンエラストマー;塩素化ポリスチレン;塩素化ポリプロピレン;芳香族ポリケトン又は脂肪族ポリケトン、及びこれらを還元して得られるポリアルコール;ポリアセタール;ポリカーボネート等が挙げられる。中でも、ヒートシール性及びリサイクル性に優れる観点からは、ポリオレフィンが好ましく、ポリエチレン、ポリプロピレンがより好ましい。ポリエチレンとしては、直鎖状低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレン等のポリエチレンからなる群より選ばれる少なくとも一種が好ましい。
熱可塑性樹脂層(δ)における、熱可塑性樹脂の含有量は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、98質量%以上が特に好ましく、熱可塑性樹脂層(δ)は、実質的に熱可塑性樹脂のみから構成されていてもよく、熱可塑性樹脂のみから構成されていてもよい。
熱可塑性樹脂層(δ)を構成する熱可塑性樹脂のJIS K 7210:2014に従って測定した190℃、2160g荷重におけるメルトフローレート(MFR)は0.10g/10分以上10.0g/10分以下が好ましく、0.30g/10分以上5.0g/10分以下がより好ましい。熱可塑性樹脂のMFRが前記範囲であると、製膜安定性が良好になる傾向となる。
熱可塑性樹脂層(δ)の平均厚みは、工業的な生産性、機械物性の観点から、5μm以上200μm以下が好ましく、7μm以上100μm以下がより好ましく、10μm以上50μm以下がさらに好ましい。なお、熱可塑性樹脂層(δ)を複数層有する場合は、その厚みの合計が上記範囲であることが好ましい場合がある。
本発明の蒸着フィルムにおいて、熱可塑性樹脂層(δ)は、一層でも複数層設けられていてもよい。本発明の蒸着フィルムに接着層(γ)及び熱可塑性樹脂層(δ)を設ける方法としては、各種の公知の製造方法を採用でき、ドライラミネート法、サンドラミネート法、押出ラミネート法、共押出ラミネート法、溶液コート法、などを採用できる。また、熱可塑性樹脂層(δ)は、上述した延伸又は非延伸の多層フィルムを構成する層の一つであってよく、多層フィルムとは別に作製され、積層された層であってもよく、これらの双方であってもよい。また、複数の熱可塑性樹脂層(δ)を備える場合、これらの組成は同一でも異なっていてもよく、延伸された層と延伸されていない層との双方が含まれていてもよい。
[樹脂コート層(ε)]
樹脂コート層(ε)は、蒸着フィルム製造後の工程、例えばラミネーション等のフィルム加工における屈曲等による無機蒸着層(β)の損傷を抑制するものである。このような樹脂コート層(ε)を備える蒸着フィルムはガスバリア性の低下を抑制できる。樹脂コート層(ε)は、例えばビニルアルコール系重合体(エチレン-ビニルアルコール共重合体、ポリビニルアルコールなど)を含んでいてもよく、必要に応じて膨潤性無機層状ケイ酸塩を含んでいてもよい。
膨潤性無機層状ケイ酸塩は、樹脂コート層(ε)の強度を向上させるものである。この膨潤性無機層状ケイ酸塩としては、例えば膨潤性モンモリロナイト、膨潤性合成スメクタイト、膨潤性フッ素雲母系鉱物等が挙げられる。樹脂コート層におけるビニルアルコール系重合体に対する膨潤性無機層状ケイ酸塩の含有量の下限としては、特に限定されないが、固形分換算で、0.5質量%が好ましく、1質量%がより好ましく、3質量%がさらに好ましく、5質量%が特に好ましい。一方、樹脂コート層(ε)におけるビニルアルコール系重合体に対する膨潤性無機層状ケイ酸塩の含有量の上限としては、特に限定されないが、固形分換算で、55質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましく、20質量%が特に好ましい。膨潤性無機層状ケイ酸塩の含有量が上記下限より小さいと、樹脂コート層(ε)の強度を十分に向上させることができないおそれがある。一方、膨潤性無機層状ケイ酸塩の含有量が上記上限を超えると、樹脂コート層(ε)の柔軟性が低下してクラック等の欠点を生じ易くなるおそれがある。
樹脂コート層(ε)の平均厚みの下限としては、特に限定されないが、効果的なガスバリア性を得るためには0.001μmが好ましい。一方、樹脂コート層(ε)の平均厚みの上限としては、特に限定されないが、10μmが好ましく、2μmがより好ましい。
無機蒸着層(β)に樹脂コート層(ε)を積層する方法としては、特に限定されないが、コーティング法、及びラミネート法が好ましい。コーティング方法としては、例えばダイレクトグラビア法、リバースグラビア法、マイクログラビア法、2本ロールビートコート法、ボトムフィード3本リバースコート法等のロールコーティング法;ドクターナイフ法;ダイコート法;ディップコート法;バーコーティング法;これらを組み合わせたコーティング法などが挙げられる。また、無機蒸着層(β)と樹脂コート層(ε)との界面は、コロナ処理、アンカーコート剤等による処理などが施されていてもよい。
[その他の層]
本発明の蒸着フィルムが有していてもよいその他の層としては、紙層、金属箔層等が挙げられる。また、本発明の蒸着フィルムは、無機蒸着層(β)とは別に蒸着層が備えられていてもよい。かかる蒸着層は、例えば、熱可塑性樹脂層(δ)を基材として、この熱可塑性樹脂層(δ)上に備えられていてもよい。かかる蒸着層を構成する成分としては、蒸着層として用いられる公知の成分を適宜用いることができる。
[層構造、物性等]
本発明の蒸着フィルムの層構造としては、例えば、
(1)α/β、
(2)δ/γ/α/β、
(3)δ/γ/δ/γ/α/β、
(4)δ/γ/α/β/γ/δ、
(5)δ/γ/δ/γ/α/β/γ/δ、
(6)α/β/ε、
(7)δ/γ/α/β/ε、
(8)δ/γ/δ/γ/α/β/ε、
(9)δ/γ/δ/γ/α/β/ε/γ/δ、
(10)δ/γ/α/β/ε/γ/δ、
(11)α/β/γ/δ、
等が挙げられる。なお、α:基材層、β:無機蒸着層、γ:接着層、δ:熱可塑性樹脂層、及びε:樹脂コート層である。
例えば、上記(2)等における「δ/γ/α」の層構造部分は、上述のような多層フィルム(基材フィルム)として成形されていてよい。多層フィルムの部分は、延伸されていてもよく、延伸されていなくてもよい。上記「δ/γ/α」の層構造からなる多層フィルムが延伸されている場合、蒸着フィルム中の上記「δ/γ/α」の層構造部分は、一体で延伸されたものとなっている。また、例えば上記(3)においては、「δ/γ/δ/γ/α」の層構造部分が多層フィルムとして成形されていてもよく、「δ/γ/α」の層構造部分のみが多層フィルムとして成形され、これにさらに別途接着層(γ)を介して熱可塑性樹脂層(δ)が積層されたものであってもよい。
本発明の蒸着フィルムの平均厚みは特に限定されず、下限は例えば5μm、10μm、13μm又は15μmであってよい。一方、平均厚みの上限は例えば300μm、200μm、100μm又は50μmであってもよい。当該蒸着フィルムの形状は、積層構造を有するものであれば特に限定されるものではない。
当該蒸着フィルムの40℃、無機蒸着層(β)側の湿度90%RH、基材層(α)側の湿度0%RHで測定した酸素透過度の上限としては、5mL/m・day・atmが好ましく、3mL/m・day・atmがより好ましく、2mL/m・day・atmがさらに好ましく、1mL/m・day・atmが特に好ましく、0.1mL/m・day・atmがさらに特に好ましい。酸素透過度が上記上限以下であることで、当該蒸着フィルムを備える包装材によって形成される容器等の内部空間の真空度を維持できる期間が長くなる。ここで、酸素透過度(mL/m・day・atm)とは、蒸着フィルムを透過する酸素量(mL)を蒸着フィルム面積(m)、透過時間(day)及び蒸着フィルムの一方の面側における酸素ガス圧力と他方の面側における酸素ガス圧力との差(atm)で割った値をいう。具体的には、酸素透過度が例えば「5mL/m・day・atm以下」である場合、酸素ガスの圧力差が1気圧のもとで、1日にフィルム1m当たりで5mLの酸素が透過することを表す。また、基材層(α)の両面に無機蒸着層(β)が積層されている場合、上記酸素透過度は、40℃、一方の無機蒸着層(β)側の湿度90%RH、他方の無機蒸着層(β)側の湿度0%RHで測定するものとする。
当該蒸着フィルムに含まれる揮発分の含有量の下限としては、特に限定されないが、0.01質量%が好ましく、0.03質量%がより好ましく、0.05質量%がさらに好ましい。揮発分の含有量の上限としては、1.1質量%が好ましく、0.5質量%がより好ましく、0.3質量%がさらに好ましい。
但し、当該蒸着フィルムを真空断熱体に適用する場合、当該蒸着フィルムにおける揮発分の含有量は、可能な限り小さいことが好ましい。これは、真空断熱体の真空部分に蒸着フィルムから発生する揮発分が侵入し、その結果、真空断熱体の内部の真空度が下がって断熱性能が低下するおそれがあるからである。
ここで、揮発分の含有量は、105℃で3時間乾燥前後の質量変化から下記式により求められる。
揮発分の含有量(質量%)=[(乾燥前質量-乾燥後質量)/乾燥後質量]×100
[リサイクル性]
本発明の蒸着フィルムは、リサイクル性に優れる構成となることが好ましい。近年では、環境問題や廃棄物問題が契機となり、市場で消費された包装材料を回収して再資源化する、いわゆるポストコンシューマーリサイクル(以下、単にリサイクルと略称することがある)の要求が世界的に高まっている。リサイクルにおいては、回収された包装材料を裁断し、必要に応じて分別・洗浄した後に、押出機を用いて溶融混合する工程が一般に採用される。
ここで、ポリエステルフィルムやポリアミドフィルムなどは、回収して再資源化する際に溶融混合工程において他の成分と均一に混合することが困難であり、再資源化の障害となっている。したがって、リサイクル性を高める観点から、熱可塑性樹脂層(δ)中には実質的にポリエステル及びポリアミドを含まないことが好ましい。具体的に熱可塑性樹脂層(δ)中のポリエステル及びポリアミドの含有量は、10質量%以下が好ましく、1質量%以下がより好ましく、実質的に0質量%であることが特に好ましい。また、本発明の蒸着フィルムにおけるポリエステル及びポリアミドの含有量は、10質量%以下が好ましく、1質量%以下がより好ましく、実質的に0質量%であることが特に好ましい。
また、上記リサイクル性の観点から、熱可塑性樹脂層(δ)におけるポリエチレンやポリプロピレンなどのポリオレフィンが占める含有割合は、80質量%以上が好ましく、90質量%以上がより好ましく、99質量%がさらに好ましい。同様に、本発明の蒸着フィルムにおいてポリオレフィンが占める含有割合は、80質量%以上が好ましく、90質量%以上がより好ましい。また、本発明の蒸着フィルムにおいて、EVOHが占める含有割合は20質量%以下が好ましく、10質量%以下がより好ましい。一方、本発明の蒸着フィルムにおいて、EVOHが占める含有割合は、0.1質量%以上であってよく、1質量%以上であってもよい。このような構成又は組成とすることでリサイクル性が高まり、また、リサイクル後の組成物の機械物性へ影響が小さくなる。
同様のリサイクル性の理由から、本発明の蒸着フィルムにおいて、熱可塑性樹脂層(δ)がポリオレフィンを含み、熱可塑性樹脂層(δ)の合計厚みが、当該蒸着フィルムの全層の厚みに対して、50%以上が好ましい場合があり、80%以上がより好ましい場合があり、90%以上がさらに好ましい場合がある。また、基材層(α)の合計厚みが、当該蒸着フィルムの全層の厚みに対して20%以下が好ましい場合があり、10%以下がより好ましい場合がある。一方、当該蒸着フィルムの全層の厚みに対する基材層(α)の合計厚みは、例えば0.1%以上であってよく、1%以上であってよい。
また、本発明の蒸着フィルムは、基材層(α)が所定の樹脂組成物から形成されていることによって、リサイクル性が高まり、リサイクルして得られる成形体の外観等が良好なものとなる。この理由も定かではないが、溶融成形の際のネックイン及びダイビルドアップが抑制された樹脂組成物は、熱安定性が高く、リサイクルのために繰り返し溶融成形をしても、ブツ、ストリーク等が生じ難いことなどが推測される。
[用途]
本発明の蒸着フィルムは、ガスバリア性の均一性が高く、蒸着欠点が少なく且つ無機蒸着層の密着強度が高く、高いガスバリア性を有する。このため、当該蒸着フィルムは、様々な用途に適用できる。当該蒸着フィルムの用途としては、例えば食品包装、医薬品包装、工業薬品包装、農薬包装等の各種包装材、真空断熱体等が挙げられる。
<包装材>
本発明の包装材は、本発明の蒸着フィルムを備える。本発明の包装材は、例えば本発明の蒸着フィルム、又はこれを備える多層構造体等を二次加工することで形成される。当該包装材は、当該蒸着フィルムを備えることで、ガスバリア性に優れる。
本発明の包装材は、例えば、本発明の蒸着フィルムと、少なくとも1層の他の層とを積層することによって形成されるものであってよい。他の層としては、例えばポリエステル層、ポリアミド層、ポリオレフィン層、紙層、無機蒸着フィルム層、EVOH層、接着層等が挙げられる。当該包装材における層数及び積層順には特に制限はないが、ヒートシールが行われる場合には少なくとも最外層がヒートシール可能な層とされる。なお、ポリオレフィン層は、当該包装材が後述のラミネートチューブ容器等として構成される場合には顔料を含有していてもよい。
本発明の包装材は、例えば食品、飲料物、農薬や医薬等の薬品、医療器材、機械部品、精密材料等の産業資材、衣料などを包装するために使用される。特に、当該包装材は、酸素に対するバリア性が必要となる用途、包装材の内部が各種の機能性ガスによって置換される用途に好ましく使用される。
本発明の包装材は、用途に応じて種々の形態、例えば縦製袋充填シール袋、真空包装袋、スパウト付パウチ、ラミネートチューブ容器、容器用蓋材等に形成される。
[縦製袋充填シール袋]
縦製袋充填シール袋は、例えば液体、粘稠体、粉体、固形バラ物、これらを組み合わせた形態の食品、飲料物等を包装するために使用される。
縦製袋充填シール袋は、蒸着フィルムをヒートシールすることで形成される。ヒートシールが行われる場合、通常、蒸着フィルムにおける縦製袋充填シール袋の内側となる層、又は縦製袋充填シール袋の内側となる層及び外側となる層の両方として、ヒートシール可能な層を配置することが必要である。ヒートシール可能な層が縦製袋充填シール袋の内側のみにある場合、通常、胴体部は合掌貼りよりシールされる。ヒートシール可能な層が縦製袋充填シール袋の内側及び外側の両方にある場合、通常、胴体部は封筒貼りによりシールされる。ヒートシール可能な層としては、ポリオレフィン層(以下、「PO層」ともいう)が好ましい。
縦製袋充填シール袋の層構成としては、蒸着フィルム/ポリアミド層/PO層、蒸着フィルム/PO層、PO層/蒸着フィルム/PO層が好ましく、層間に接着層を設けてもよい。また、基材層(α)の片面にのみ無機蒸着層(β)が形成されている蒸着フィルムを適用する場合、この蒸着フィルムは、無機蒸着層(β)が基材層(α)よりも外側に配置されるように積層されていても、無機蒸着層(β)が基材層(α)より内側に配置されるように積層されていてもよい。
本発明の包装材は、上述のようにガスバリア性に優れるため、当該包装材の一例である縦製袋充填シール袋によれば、内容物の品質劣化を長期間にわたって抑制できる。
[真空包装袋]
真空包装袋は、真空状態で包装することが望まれる用途、例えば食品、飲料物等の保存に使用される。真空包装袋の層構成としては、蒸着フィルム/ポリアミド層/PO層、ポリアミド層/蒸着フィルム/PO層が好ましく、層間に接着層を設けてもよい。このような真空包装袋は、当該蒸着フィルムを備えることから、真空包装後、真空包装後に行われる加熱殺菌後のガスバリア性に特に優れる。
[スパウト付パウチ]
スパウト付パウチは、液状物質、例えば清涼飲料等の液体飲料、ゼリー飲料、ヨーグルト、フルーツソース、調味料、機能性水、流動食などを包装するために使用される。このスパウト付パウチの層構成としては、蒸着フィルム/ポリアミド層/PO層、ポリアミド層/蒸着フィルム/PO層が好ましく、層間に接着層を設けてもよい。このようなスパウト付パウチは、当該蒸着フィルムを備えるため、ガスバリア性に優れる。そのため、スパウト付パウチは、輸送後、長期保存後においても、内容物の変質を防ぐことが可能である。
[ラミネートチューブ容器]
ラミネートチューブ容器は、例えば化粧品、薬品、医薬品、食品、歯磨等を包装するために使用される。このラミネートチューブ容器の層構成としては、PO層/蒸着フィルム/PO層、PO層/顔料含有PO層/PO層/蒸着フィルム/PO層が好ましく、層間に接着層を設けてもよい。このようなラミネートチューブ容器は、当該蒸着フィルムを備えるためガスバリア性に優れる。
[容器用蓋材]
容器用蓋材は、畜肉加工品、野菜加工品、水産加工品、フルーツ等の食品などが充填される容器の蓋材である。この容器用蓋材の層構成としては、蒸着フィルム/ポリアミド層/PO層、蒸着フィルム/PO層が好ましく、層間に接着層を設けてもよい。このような容器用蓋材は、当該蒸着フィルムを備えるためにガスバリア性に優れるため、内容物である食品の品質劣化を長期間にわたって抑制できる。
<真空断熱体>
本発明の真空断熱体は、本発明の蒸着フィルムを備える。真空断熱体は、保冷や保温が必要な用途に使用されるものである。この真空断熱体としては、例えば外包材内にポリウレタンフォーム等の芯材が真空状態で封入されるものが挙げられる。外包材は、例えば本発明の蒸着フィルムと、少なくとも1層の他の層とを積層することによって形成される一対の積層フィルムとをヒートシールすることで形成される。
他の層としては、例えばポリエステル層、ポリアミド層、ポリオレフィン層、接着層等が挙げられ、ヒートシール可能な層とであるポリオレフィン層を含むことが好ましい。
外包材における層数及び積層順には特に制限はないが、最外層がヒートシール可能な層(例えばポリオレフィン層)とされることが好ましい。外包材の層構成としては、蒸着フィルム/ポリアミド層/PO層、ポリアミド層/蒸着フィルム/PO層が好ましく、層間に接着層を設けてもよい。また、基材層(α)の片面にのみ無機蒸着層(β)が形成されている蒸着フィルムを適用する場合、この蒸着フィルムは、無機蒸着層(β)が基材層(α)よりも外側に配置されるように積層されていても、無機蒸着層(β)が基材層(α)より内側に配置されるように積層されていてもよい。
このような真空断熱体は外包材が本発明の蒸着フィルムを備えるためにガスバリア性に優れる。従って、当該真空断熱体は、長期間にわたって断熱効果を保持できることから、冷蔵庫、給湯設備、炊飯器等の家電製品用の断熱材;壁部、天井部、屋根裏部、床部等に用いられる住宅用断熱材;車両屋根材;自動販売機等の断熱パネルなどに利用できる。
以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[評価方法]
(1)エチレン単位含有量、ケン化度及びエポキシプロパンの変性量(全ビニルアルコール単位に対する変性量)の測定
合成例で得られたEVOHの粗乾燥物について、真空乾燥機にて120℃で12時間乾燥した。真空乾燥したEVOHを、内部標準物質としてテトラメチルシラン(TMS)、添加剤としてトリフルオロ酢酸(TFA)を含む重ジメチルスルホキシド(DMSO-d6)に溶解し、500MHzのH-NMR(日本電子株式会社製「GX-500」)を用いて80℃で測定し、エチレン単位、ビニルアルコール単位、ビニルエステル単位のピーク強度比よりエチレン単位含有量及びケン化度を求めた。なお、合成例9、10で得られたEVOHペレットについて測定する際には、真空乾燥せずに測定し、エポキシプロパン変性ビニルアルコール単位のピーク強度から、全ビニルアルコール単位に対する変性量も同時に算出した。なお、合成例9、10で得られたEVOH(A9、A10)において、全ビニルアルコール単位に対するエポキシプロパンの変性量は、全ビニルアルコール単位に対する構造単位(x)の含有率に等しい。
(2)ナトリウムイオン含有量、リン酸含有量及びホウ酸含有量
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレット0.5gをテフロン(登録商標)製圧力容器に入れ、ここに濃硝酸5mLを加えて室温で30分間分解させた。30分後に蓋をし、湿式分解装置(株式会社アクタック製「MWS-2」)を用いて150℃で10分間、次いで180℃で5分間加熱することで分解させ、その後室温まで冷却した。この処理液を50mLのメスフラスコ(TPX(登録商標)製)に移し純水でメスアップした。この溶液について、ICP発光分光分析装置(パーキンエルマー社製「OPTIMA4300DV」)で含有金属の分析を行い、ナトリウムイオン(ナトリウム元素)、リン酸及びホウ酸の含有量を測定した。リン酸の含有量に関してはリン酸根換算値として、ホウ酸の含有量についてはオルトホウ酸換算値として算出した。なお、定量に際しては、それぞれ市販の標準液を使用して作成した検量線を用いた。
(3)酢酸含有量
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレット20gをイオン交換水100mLに投入し、95℃で6時間加熱抽出した。フェノールフタレインを指示薬として、1/50規定のNaOHで抽出液を中和滴定し、酢酸含有量を定量した。
(4)メルトフローレート(MFR)
参考例及び参考比較例で得られた乾燥樹脂組成物ペレットを、メルトインデクサーL244(宝工業株式会社製)の内径9.55mm、長さ162mmのシリンダーに充填し、210℃で溶融した後、溶融した樹脂組成物に対して、質量2,160g、直径9.48mmのプランジャーを使用して均等に荷重をかけた。シリンダーの中央に設けた径2.1mmのオリフィスより単位時間当たりに押出される樹脂組成物量(g/10分)を測定し、これをMFRとした。
(5)クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールの定量
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレット0.50gを凍結粉砕して得られたサンプルを、加熱脱着ガスクロマトグラフ質量分析装置用ガラスチューブに50.0mg秤量し、サンプルチューブを作成した。下記の加熱脱着ガスクロマトグラフ質量分析装置を用い、下記条件にてサンプルを加熱して揮発性ガスをサンプルから吸着管に一度全量吸着させた後、吸着管から再放出されるガスをカラムで分離し、成分毎のピークを検出した。クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールの標準サンプルのピーク面積から検量線を作成し、絶対検量線法により、それぞれ定量した。なお、標準サンプルを測定する際は、吸着管(Tenax(登録商標)/Carboxen(登録商標)製)に標準サンプルを染み込ませ、サンプルチューブの代わりに標準サンプルを染み込ませた吸着管を用い、サンプル吸着後の放出時の温度について、サンプルチューブの温度170℃から吸着管の温度260℃に変更した以外は、サンプルチューブの測定の場合と同様の方法で測定した。
(加熱脱着部)
装置:TurboMatrix-ATD (パーキンエルマージャパン社製)
吸着管へサンプルを吸着する時の温度:170℃(サンプルチューブ)、-30℃(吸着管)、250℃(バルブ)、260℃(トランスファーライン)
吸着管への吸着時間:10分
サンプル吸着後の放出時の温度:170℃(サンプルチューブ)、260℃(吸着管)、250℃(バルブ)、260℃(トランスファーライン)
吸着管放出時間:35分
キャリアガス:ヘリウム
カラムへのキャリアガスの流速:1.0ml/min
圧力:120kPa
(ガスクロマトグラフ質量分析部)
装置:7890B GC System, 7977B MSD (アジレント・テクノロジー社製)
カラム:DB-WAX UI (長さ:30m、内径:0.25mm、膜厚:0.50μm)
カラムオーブン温度:40℃で5分保持後10℃/minの昇温速度で240℃まで温調後10分保持(合計測定温度35分)
トランスファーライン(接続部)温度:240℃
イオン化条件:EI+
検出イオン質量範囲:m/z=29-600
検出方法:SCAN
(標準サンプル)
クロトンアルデヒド:Aldrich社製
2,4-ヘキサジエナール:Aldrich社製
2,4,6-オクタトリエナール:ナード研究所製
(6)ソルビン酸及びミルセンの定量
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットを凍結粉砕し、粉砕物22gをソックスレー抽出器に充填し、クロロホルム100mLを用いて16時間抽出処理した。得られたクロロホルム抽出液中のソルビン酸及びミルセンの量を高速液体クロマトグラフィーにて定量分析して、樹脂組成物中のソルビン酸及びミルセンの含有量を定量した。なお、定量に際しては、ソルビン酸及びミルセンの標品を用いて作成した検量線を使用した。
(7)ダイビルドアップ評価
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットを下記条件で、押出機から吐出させ、60分後のダイス周辺(ダイリップ)のダイビルドアップ(目ヤニ)を目視で確認し、以下の基準で評価した。A~Dの場合、ダイビルドアップが抑制できていると判断した。
(押出機条件)
・装置:20mmφ単軸押出機(D2020、株式会社東洋精機製作所社製)
・L/D:20
・スクリュー:フルフライト
・スクリーンメッシュ:50メッシュ/100メッシュ/50メッシュ
・ダイス:φ1mm、1穴
・設定温度:C1/C2/C3/D=180℃/220℃/220℃/220℃
・吐出量:1.44kg/h
・回転数:100rpm
(評価:判断基準)
A(良好):目ヤニは付着していない
B(やや良好):目ヤニがごくわずかに付着している
C(可):少量の目ヤニが付着している
D(やや不良):明確な目ヤニが付着している
E(不良):大粒の目ヤニがダイホール全周にわたって付着している
(8)色相評価
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットのイエローインデックス(YI)値をHunter社製LAB Scan XEを用いて、JIS K7373:2006に従って測定、算出した。数値が小さいほど黄変が抑制されており、色相に優れていると判断した。
(9)製膜時のネックイン耐性評価
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットを用いて、下記の条件にて一軸押出機より樹脂組成物を押出し、乾燥樹脂組成物ペレットを投入して10分後のTダイから吐き出される溶融樹脂(メルトカーテン)の、リップ(Tダイの吐出口)から100mmの位置での幅を測定した。溶融樹脂の幅を、下記基準で評価した。A~Cの場合、ネックインを抑制できていると判断した。
(押出機条件)
・押出機:L/D=26、40mmφの一軸押出機
・スクリュー:フルフライト
・スクリュー回転数:50rpm
・スクリーンメッシュ:50メッシュ/100メッシュ/50メッシュ
・ダイス形状:T型、リップ幅550mm、リップ間隔0.7mm
・設定温度:C1/C2/C3/D=170℃/240℃/260℃/260℃
(評価:判断基準)
A(良好):リップ幅の85%以上
B(やや良好):リップ幅の82.5%以上85%未満
C(やや不良):リップ幅の80%以上82.5%未満
D(不良):リップ幅の80%未満
(10)融点測定
合成例で得られたEVOHの粗乾燥物について、真空乾燥機にて120℃で12時間乾燥した。真空乾燥したEVOHについてTA Instruments製の示差走査型熱量計「Q2000」を用い、30℃から250℃までを10℃/分の速度で昇温し、50℃/分で冷却したのち、二次昇温で測定されるピーク温度より融点を求めた。なお、合成例9、10で得られたEVOHペレットについて測定する際には、真空乾燥せずに測定した。
(11)酸素透過度(OTR)測定
<単層フィルム作成条件>
参考例、参考比較例、実施例及び比較例で得られた乾燥樹脂組成物ペレットについて、下記条件で製膜し、平均厚み20μmの単層フィルムを得た。
(押出機条件)
・L/D:26、40mmφの一軸押出機
・スクリュー:フルフライト
・スクリュー回転数:30rpm
・スクリーンメッシュ:50メッシュ/100メッシュ/50メッシュ
・ダイス形状:T型、リップ幅550mm、リップ間隔0.7mm
・設定温度:C1/C2/C3/D=170℃/230℃/230℃/230℃
・引取りロール温度:80℃
・引取りロール速度:10~11m/分
<OTR(酸素透過度)測定>
得られた厚さ20μmの単層フィルムについて、幅方向の中央を中心として直径90mmの円形にサンプルを切り出し、20℃、65%RHの条件下で調湿した後、酸素透過度測定装置(ModernControl社の「OX-Tran2/20」 検出下限0.01mL/(m・day・atm))を用いて、ISO14663-2 annex Cに準拠して、20℃、65%RHにおける酸素透過度を測定した。
(12)OTRの幅方向均一性
(11)の測定に用いた単層フィルムについて、フィルム端部から70mmの位置を中心に直径90mmの円形にサンプルを切り取り、(11)と同様の条件でOTRを測定した。中心部のサンプルのOTRとの差をとり、差の大きさをA~Cの三段階で評価した。
(評価:判断基準)
A:差が10%未満
B:差が10%以上15%未満
C:差が15%以上
(13)無機蒸着層厚み測定
実施例及び比較例で得られた蒸着フィルムをミクロトームでカットし断面を露出させた。この断面を走査型電子顕微鏡(SEM)(エス・アイ・アイナノテクノロジー株式会社製「ZEISS ULTRA 55」)を用いて観察し、反射電子検出器を用いて無機蒸着層の平均厚みを測定した。平均厚みは、任意の10か所で測定される厚みの平均値により算出した。
(14)蒸着欠点抑制性の評価
蒸着フィルムのロールをスリッターにかけて、フィルム下部から100Wの蛍光灯を当てながら巻き出し、幅0.5m、長さ2mの領域について異なる10箇所で蒸着欠点数を計測し、その平均値を1mあたりの蒸着欠点数とした。蒸着欠点数を基に、以下の基準で蒸着欠点抑制性を評価した。
(判定基準)
A:0~50個/m
B:51~100個/m
C:101個以上/m
(15)密着強度の測定
蒸着フィルムをA4サイズに切り出し、無機蒸着層側の表面に、ドライラミネート用接着剤(三井化学株式会社製「タケラック(登録商標)A-385/タケネート(登録商標)A-50」を6/1の質量比で混合し、固形分濃度23質量%の酢酸エチル溶液としたもの)を、バーコーターを用いてコートし、50℃で5分間熱風乾燥させた後、80℃に加熱したニップロールにて、PETフィルム(東洋紡製E5000)とラミネートを行った。このとき、フィルムの半分は、無機蒸着層とPETフィルムの間にアルミホイルを挟むことで貼り合わされない部分を設けた。その後、40℃で72時間養生し、ラミネートフィルムを得た。得られたラミネートフィルムをアルミ蒸着の境目を中心として100mm×15mmの短冊に裁断した。得られた短冊のうち、貼り合わされていない部分における積層体とPETフィルムの端を把持し、引張試験機(島津製作所社製「AUTOGRAPH AGS-H」)で、引っ張り速度10mm/分にてT型剥離試験を5回行った。得られた測定値の平均値を密着強度とし、以下の基準で評価した。
(判定基準)
A:400g/15mm以上
B:300g/15mm以上400g/15mm未満
C:300g/15mm未満
(16)蒸着フィルムのOTR(酸素透過速度)測定
得られた蒸着フィルムを用いて、無機蒸着層(β)を酸素供給側、熱可塑性樹脂層(δ)をキャリアガス側として酸素透過速度を測定した。具体的には、酸素透過量測定装置(ModernControl社の「OX-Tran2/21」 検出下限0.01mL/(m・day・atm))を用い、温度20℃、酸素供給側の湿度65%RH、キャリアガス側の湿度65%RH、酸素圧1気圧、キャリアガス圧力1気圧の条件下で酸素透過速度(単位:mL/(m・day・atm))を測定した。キャリアガスには2体積%の水素ガスを含む窒素ガスを使用した。結果を下記のA~Cの3段階で評価した。
判定基準
A:0.10mL/(m・day・atm)未満
B:0.10mL/(m・day・atm)以上0.50mL/(m・day・atm)未満
C:0.50mL/(m・day・atm)以上2.0mL/(m・day・atm)未満
(17)リサイクル性の評価
実施例及び比較例で得られた多層構造体について、4mm四方以下のサイズに粉砕し、下記に示す押出条件にて単層製膜を行うことで、厚み20μmの単層フィルムをそれぞれ得た。
(押出条件)
押出機:株式会社東洋精機製作所製一軸押出機
スクリュー径:20mmφ(L/D=20、圧縮比=3.5、フルフライト型)
押出温度:C1/C2/C3/D=190/230/230/230℃
引取りロール温度:80℃
得られた単層フィルムを目視で確認し、以下の基準でリサイクル性を評価した。
A:ブツ、ストリークは確認されなかった。
B:微細なブツやかすかなストリークが確認された。
C:多量のブツや明確なストリークが確認された。
<合成例1>
ジャケット、撹拌機、窒素導入口、エチレン導入口及び開始剤添加口を備えた200L加圧反応槽に、酢酸ビニル(以下、VAcと称することがある)を75.0kg、メタノール(以下、MeOHと称することがある。)を7.2kg仕込み、30分間窒素バブリングして反応槽内を窒素置換した。次いで、反応槽内の温度を65℃に調整した後、反応槽圧力(エチレン圧力)が4.13MPaとなるようにエチレンを導入し、重合開始剤として9.4gの2,2’-アゾビス(2,4-ジメチルバレロニトリル)(富士フィルム和光純薬工業株式会社製「V-65」)を添加し、重合を開始した。重合中はエチレン圧力を4.13MPaに、重合温度を65℃に維持した。4時間後にVAcの転化率(VAc基準の重合率)が49.7%となったところで冷却するとともに、酢酸銅0.2gを20kgのメタノールに溶解させた溶液を容器内に投入して重合を停止した。反応槽を開放して脱エチレンした後、窒素ガスをバブリングして脱エチレンを完全に行った。次いで重合液を容器から抜き取り、20LのMeOHで希釈した。この液を塔型容器の塔頂よりフィードし、塔底よりMeOHの蒸気をフィードして、重合液内に残る未反応モノマーをMeOH蒸気と共に除去して、エチレン-酢酸ビニル共重合体(以下、EVAcと称することがある。)のMeOH溶液を得た。
次いで、ジャケット、撹拌機、窒素導入口、還流冷却器及び溶液添加口を備えた300L反応槽にEVAcの20質量%MeOH溶液150kgを仕込んだ。この溶液に窒素ガスを吹き込みながら60℃に昇温し、水酸化ナトリウムの濃度が2規定のMeOH溶液を450mL/分の速度で2時間添加した。水酸化ナトリウムMeOH溶液の添加を終えた後、系内の温度を60℃に保ち、反応槽外にMeOH及びケン化反応で生成した酢酸メチルを流出させながら、2時間撹拌してケン化反応を進行させた。その後酢酸を8.7kg添加してケン化反応を停止した。
その後、80℃で加熱攪拌しながら、イオン交換水120Lを添加し、反応槽外にMeOHを流出させ、EVOHを析出させた。デカンテーションで析出したEVOHを収集し、粉砕機で粉砕した。得られたEVOH粉末を1g/Lの酢酸水溶液(浴比20:粉末1kgに対して水溶液20Lの割合)に投入して2時間攪拌洗浄した。これを脱液し、さらに1g/Lの酢酸水溶液(浴比20)に投入して2時間攪拌洗浄した。これを脱液したものを、イオン交換水(浴比20)に投入して攪拌洗浄を2時間行い脱液する操作を3回繰り返して精製を行った。洗浄液の電気伝導度は、3μS/cm(東亜電波工業株式会社の「CM-30ET」で測定)であった。次いで、得られた精製物を酢酸0.5g/L及び酢酸ナトリウム0.1g/Lを含有する水溶液250Lに4時間攪拌浸漬してから脱液し、これを60℃で16時間乾燥させることでEVOHの粗乾燥物を16.1kg得た。
上記のEVOHの合成に係る操作を再度行い、EVOHの粗乾燥物を15.9kg得ることで、合計32.0kgのEVOH(A1)の粗乾燥物を得た。EVOH(A1)の粗乾燥物について、上記評価方法(1)及び(10)に記載の方法にしたがって、エチレン単位含有量、ケン化度及び融点を測定した。結果を表2に示す。
<合成例2~8>
加圧反応槽のサイズ、VAc及びMeOHの仕込量、エチレン圧力、重合開始剤の添加量、反応槽内温度(重合時の温度)、反応時間、VAcの転化率、ケン化工程におけるEVAcのMeOH溶液の仕込量、並びに水酸化ナトリウムMeOH溶液の添加速度を表1に示す通りとし、合成を1回のみとした以外は合成例1と同様にして各EVOH(A2)~EVOH(A8)の粗乾燥物を得た。EVOH(A2)~EVOH(A8)の粗乾燥物について、上記評価方法(1)及び(10)に記載の方法にしたがって、エチレン単位含有量、ケン化度及び融点を測定した。結果を表2に示す。
<合成例9>
特開2003-231715号公報段落[0158]及び図1に記載の装置を用い、以下の手順でEVOH(A9)ペレットを作製した。東芝機械株式会社製TEM-35BS押出機(37mmφ、L/D=52.5)を使用し、バレルC1を水冷し、バレルC2~C3を200℃、バレルC4~C15を240℃に設定し、スクリュー回転数400rpmで運転した。C1の樹脂フィード口から後述する参考例38で得られた乾燥樹脂組成物ペレットをフィードし、溶融した後、ベント1から水及び酸素を除去し、C9の液圧入口から変性剤2としてエポキシプロパンをフィードした。その後、ベント2から未反応のエポキシプロパンを除去し、ペレタイズした後、80℃2時間熱風乾燥を行い、8モル%変性されたEVOH(A9)ペレットを得た。得られたEVOH(A9)ペレットについて、上記評価方法(1)及び(10)に記載の方法に従ってエチレン単位含有量、ケン化度、エポキシプロパン変性量(全ビニルアルコール単位に対する量)及び融点を測定した。エチレン単位含有量、ケン化度及び融点の結果を表2に示す。また、エポキシプロパンの変性量(全ビニルアルコール単位に対する構造単位(x)の含有率)は8モル%であった。
<合成例10>
原料としてフィードする乾燥樹脂組成物ペレットを参考例43で得られた乾燥樹脂組成物ペレットに変更した以外は合成例9と同様にしてペレタイズし、8モル%変性されたEVOH(A10)ペレットを得た。得られたEVOH(A10)ペレットについて、上記評価方法(1)及び(10)に記載の方法に従ってエチレン単位含有量、ケン化度、エポキシプロパン変性量(全ビニルアルコール単位に対する量)及び融点を測定した。エチレン単位含有量、ケン化度及び融点の結果を表2に示す。また、エポキシプロパンの変性量(全ビニルアルコール単位に対する構造単位(x)の含有率)は8モル%であった。
Figure 2023084665000004
Figure 2023084665000005
<参考例1>
ジャケット、撹拌機及び還流冷却器を備えた60L撹拌槽に、合成例1で得たEVOH(A1)の粗乾燥物2kg、水0.8kg及びMeOH2.2kgを仕込み、60℃で5時間攪拌し完全に溶解させた。得られた溶液に、ソルビン酸、クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールを添加した。この溶液を径4mmの金板を通して-5℃に冷却した水/MeOH=90/10の混合液中に押し出してストランド状に析出させ、このストランドをストランドカッターでペレット状にカットすることでEVOHの含水ペレットを得た。得られたEVOHの含水ペレットの含水率をメトラー社製ハロゲン水分計「HR73」で測定したところ、52質量%であった。
得られたEVOHの含水ペレットを1g/Lの酢酸水溶液(浴比20)に投入して2時間撹拌洗浄した。これを脱液し、さらに1g/Lの酢酸水溶液(浴比20)に投入して2時間撹拌洗浄した。脱液後、酢酸水溶液を更新し同様の操作を行った。酢酸水溶液で洗浄してから脱液したものを、イオン交換水(浴比20)に投入して撹拌洗浄を2時間行い脱液する操作を3回繰り返して、洗浄液の電気伝導度が、3μS/cm以下(東亜電波工業株式会社の「CM-30ET」で測定)となるまで精製を行い、ケン化反応時の触媒残渣が除去されたEVOHの含水ペレットを得た。
得られた含水ペレットを酢酸ナトリウム濃度0.510g/L、酢酸濃度0.8g/L、及びリン酸濃度0.04g/Lである水溶液(浴比20)に投入し、定期的に撹拌しながら4時間浸漬させ化学処理を行った。このペレットを脱液し、酸素濃度1体積%以下の窒素気流下80℃で3時間、及び105℃で16時間乾燥させることで、EVOH(A1)、酢酸、リン酸、ナトリウムイオン(ナトリウム塩)、クロトンアルデヒド、2,4-ヘキサジエナール、2,4,6-オクタトリエナール及びソルビン酸を含有した、円柱状(平均直径2.8mm、平均高さ3.2mm)の乾燥樹脂組成物ペレットを得た。得られた乾燥樹脂組成物ペレットについて、上記評価方法(2)~(9)に記載の方法に従って評価した。乾燥樹脂組成物ペレット中のナトリウムイオン含有量は100ppm、リン酸含有量はリン酸根換算値で40ppm、酢酸含有量は200ppmであった。EVOH以外の各成分の含有量は、いずれもEVOHの含有量を基準とした量である。その他の評価結果は表3に示す。なお、クロトンアルデヒド、2,4-ヘキサジエナール、2,4,6-オクタトリエナール及びソルビン酸の各成分の含有量が表3に記載の通りとなるように、各成分の添加量を調整した。
<参考例2~61、参考比較例1~4、6~24>
EVOH(A)の種類、不飽和脂肪族アルデヒド(B)の種類及び含有量、共役ポリエン化合物(C)の種類及び含有量、並びにホウ酸の含有量を表3~表10に示した通りとなるように調整した以外は、参考例1と同様にして乾燥樹脂組成物ペレットを作製し、評価した。なお、ホウ酸を800ppm含む場合は、酢酸ナトリウム等を含む水溶液(浴比20)をホウ酸濃度0.25g/Lとなるように調整した水溶液を用い、ホウ酸を1800ppm含む場合は、酢酸ナトリウム等を含む水溶液(浴比20)をホウ酸濃度0.57g/Lとなるように調整した水溶液を用いた。それぞれの乾燥樹脂組成物ペレット中のEVOHのナトリウムイオン含有量は100ppm、リン酸含有量はリン酸根換算値で40ppm、酢酸含有量は200ppmであった。その他の評価結果は表3~表10に示す。EVOH以外の各成分の含有量は、いずれもEVOHの含有量を基準とした量である。
<参考比較例5>
クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールを添加せず、ケン化反応時の触媒残渣が除去されたEVOHの含水ペレットをメタノール中(浴比10)に投入して撹拌洗浄を2時間行い脱液する操作を2回繰り返し、得られたペレットをイオン交換水(浴比20)に投入して撹拌洗浄を2時間行い脱液する操作を3回繰り返す操作を追加で行った以外は、参考例1と同様にして乾燥樹脂組成物ペレットを作製し、評価した。乾燥樹脂組成物ペレット中のナトリウムイオン含有量は100ppm、リン酸含有量はリン酸根換算値で40ppm、酢酸含有量は200ppmであった。EVOH以外の各成分の含有量は、いずれもEVOHの含有量を基準とした量である。その他の評価結果は表3に示す。なお、クロトンアルデヒド、2,4-ヘキサジエナール、2,4,6-オクタトリエナール及びソルビン酸の各成分の含有量は検出限界以下であった。
Figure 2023084665000006
Figure 2023084665000007
Figure 2023084665000008
Figure 2023084665000009
Figure 2023084665000010
Figure 2023084665000011
Figure 2023084665000012
Figure 2023084665000013
参考例及び参考比較例から、b/(b+b)が2.0以上150.0未満であるとネックイン耐性が良好であり、b+b+bが小さいほどYIが低く、共役ポリエン化合物(C)の含有量cが少量であるとYIが低く、b+2bが0.65ppm以下であるとダイビルドアップが抑制されていることがわかる。
表3に基づいてより詳細に考察すれば、以下の通りである。不飽和脂肪族アルデヒド(B)が含有されない参考比較例5及び不飽和脂肪族アルデヒド(B)の各種を単独で含有している参考比較例1~3、6~9は、ネックインが抑制されていない。また、b/(b+b)の値が2.0未満である参考比較例10でもネックインが抑制されていない。一方で参考例からわかるようにb/(b+b)の値が2.0以上150.0未満の範囲にあるとネックインが抑制され、特に参考例4、5、13、14、21及び24のようにb/(b+b)の値が10付近(例えば、8.0以上13.0以下)であると最もネックインが抑制される。また、b+2bが0.65ppmを超える参考比較例4はダイビルドアップが抑制されないのに対し、参考例からわかるようにb+2bが0.65ppm以下である場合はダイビルドアップが抑制され、特にb+2bが0.10ppm以下である場合に、よりダイビルドアップが抑制されている。また、クロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)の合計含有量b+b+bについては、参考比較例4、参考例1~7、12~26等から読み取れるように、合計含有量が低いほど色相に優れることが分かる。さらに、参考例6、9~11より共役ポリエン化合物の含有量が少量である方が色相に優れることがわかる。
<実施例1>
[単層フィルムを用いた蒸着フィルムの作製]
参考例5で得られた乾燥樹脂組成物ペレット(樹脂組成物)について、一軸押出機にて240℃にて溶融し、ダイからキャスティングロール上に押出すと同時にエアーナイフを用いて空気を風速30m/秒で吹付け、厚さ170μmの未延伸フィルムを得た。得られた未延伸フィルムを、80℃の温水に10秒接触させ、テンター式同時二軸延伸機を用い、90℃雰囲気下で縦方向に3.2倍、横方向に3.0倍延伸し、さらに170℃に設定したテンター内にて5秒間熱処理を行い、フィルム端部をカットすることで二軸延伸フィルムのロール(平均厚み12μm、幅50cm、巻長さ4,000m)を得た。
上記で得られた二軸延伸フィルムを基材層として用い、株式会社アルバック製「バッチ式蒸着設備EWA-105」を使用して、フィルム表面温度38℃、フィルム走行速度200m/分で、フィルム片側にアルミニウムを蒸着させ、蒸着フィルムを得た。
用いた参考例5の乾燥樹脂組成物ペレット(樹脂組成物)について、上記評価方法(11)、(12)に記載の方法に従って評価した。また、得られた蒸着フィルムについて、上記評価方法(13)~(16)に記載の方法に従って評価した。評価結果を表12に示す。なお、用いた参考例5の乾燥樹脂組成物ペレットにおける上記した他の評価結果を表11、12に再掲する。
<実施例2~7、比較例1、2>
参考例28、38、43、48、2、7及び参考比較例4、3で得られた各乾燥樹脂組成物ペレットを用いた以外は、実施例1と同様にして、蒸着フィルムを作製した。用いた各樹脂組成物ペレット及び得られた蒸着フィルムについて、上記(11)~(16)の評価を行った。評価結果を表12に示す。また、用いた参考例又は参考比較例の乾燥樹脂組成物ペレットにおける上記した他の評価結果を表11、12に再掲する。
<実施例8>
合成例10で得たEVOHの乾燥樹脂組成物ペレット(A10)ついて、上記評価方法(5)~(12)に記載の方法に従って評価した。評価結果を表11、12に示す。
また、このEVOH(A10)の乾燥樹脂組成物ペレットを用いた以外は、実施例1と同様にして、蒸着フィルムを作製し、上記(13)~(16)の評価を行った。評価結果を表12に示す。
Figure 2023084665000014
Figure 2023084665000015
<実施例9>
[多層フィルムを用いた蒸着フィルムの作製]
参考例5で得られた乾燥樹脂組成物ペレット(樹脂組成物)を用い、インフレーション押出成形機を用いて、以下の条件で円筒状の多層フィルムを作製した。なお、熱可塑性樹脂層(δ)は30μmの厚みで3層積層させており、結果として90μmの厚みの熱可塑性樹脂層(δ)を1層とした。
(多層フィルム作製条件)
多層フィルムの層構成:[外面側]熱可塑性樹脂層(δ)/接着層(γ)/基材層(α)[内面側]=90μm/20μm/20μm(総厚み130μm)
熱可塑性樹脂層(δ):δ-1(ポリエチレンTOTAL社製40ST05)
接着層(γ):γ-1(三井化学社製アドマー(商標)NF528)
基材層(α):上記参考例5で得られた樹脂組成物
装置:5種5層インフレーション押出成形機(Dr Collin社製)
ダイ温度:210℃
ブローアップ比:2.7
引取り速度:4m/min
フィルム折径幅:25cm
(熱可塑性樹脂層(δ)押出機1の条件)
押出機:30φ単軸押出機(Dr Collin社製)
回転数:60rpm
押出温度:供給部/圧縮部/計量部=170℃/190℃/210℃
(熱可塑性樹脂層(δ)押出機2の条件)
押出機:20φ単軸押出機(Dr Collin社製)
回転数:70rpm
押出温度:供給部/圧縮部/計量部=170℃/190℃/210℃
(熱可塑性樹脂層(δ)押出機3の条件)
押出機:20φ単軸押出機(Dr Collin社製)
回転数:70rpm
押出温度:供給部/圧縮部/計量部=170℃/190℃/210℃
(接着層(γ)押出機の条件)
押出機:20φ単軸押出機(Dr Collin社製)
回転数:70rpm
押出温度:供給部/圧縮部/計量部=170℃/190℃/210℃
(基材層(α)押出機の条件)
押出機:30φ単軸押出機(Dr Collin社製)
回転数:24rpm
押出温度:供給部/圧縮部/計量部=190℃/210℃/210℃
得られた円筒状の多層フィルムを、基材層(α)が重なるように折りたたみ、エトー株式会社の延伸装置(SDR-506WK)を用い、120℃で縦方向(MD方向)に6倍一軸延伸し、延伸後の多層フィルム(熱可塑性樹脂層(δ)/接着層(γ)/基材層(α)=15μm/3.3μm/3.3μmを得た。
得られた延伸後の多層フィルムの両端部を切断し、平面状の多層フィルムを作製した。得られた平面状の多層フィルムを用い、株式会社アルバック製「EWA-105」を用いて、厚みが50nmとなるようにアルミニウムを基材層(α)側に真空蒸着し、多層の蒸着フィルム(層構成:δ/γ/α/β)を作製した。
得られた多層の蒸着フィルムについて、上記評価方法(16)に記載の方法に従って酸素透過度を測定した。結果を表14に示す。
[多層構造体の作製]
得られた多層の蒸着フィルムにさらに熱可塑性樹脂層(δ’)として厚み30μmの一軸延伸PEフィルム(δ’-1)と厚み50μmのLLDPEフィルム(δ’-2)を用いて下記層構成の多層構造体(一軸延伸PEフィルム(δ’-1)/接着層(γ’)/熱可塑性樹脂層(δ)/接着層(γ)/基材層(α)/無機蒸着層(β)/接着層(γ’)/LLDPE(δ’-2))を作製した。蒸着フィルム(δ/γ/α/β)に対して一軸延伸PEフィルム(δ’-1)及びLLDPEフィルム(δ’-2)を積層させる際、二液型のウレタン系接着剤(三井化学株式会社製「タケラックA-520」及び「タケネートA-50」)を乾燥厚みが2μmとなるように塗工して接着層(γ’)を設け、ドライラミネート法により、積層させ、多層構造体を得た。
得られた多層構造体について、上記評価方法(17)に記載の方法に従ってリサイクル性を評価した。結果を表14に示す。
なお、実施例9の多層の蒸着フィルムの製造に用いた参考例5の乾燥樹脂組成物ペレット(樹脂組成物)を用いた他の各種評価結果を表13、14に再掲する。
<実施例10>
ジャケット、撹拌機及び還流冷却器を備えた60L撹拌槽に、合成例1で得たEVOH(A1)の粗乾燥物1.6kg、合成例7で得られたEVOH(A7)の粗乾燥物0.4kg、水0.8kg及びMeOH2.2kgを仕込み、60℃で5時間攪拌し完全に溶解させた。得られた溶液に、ソルビン酸、クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールを添加した。この溶液を径4mmの金板を通して-5℃に冷却した水/MeOH=90/10の混合液中に押し出してストランド状に析出させ、このストランドをストランドカッターでペレット状にカットすることでEVOHの含水ペレットを得た。得られたEVOHの含水ペレットの含水率をメトラー社製ハロゲン水分計「HR73」で測定したところ、52質量%であった。
得られたEVOHの含水ペレットを1g/Lの酢酸水溶液(浴比20)に投入して2時間撹拌洗浄した。これを脱液し、さらに1g/Lの酢酸水溶液(浴比20)に投入して2時間撹拌洗浄した。脱液後、酢酸水溶液を更新し同様の操作を行った。酢酸水溶液で洗浄してから脱液したものを、イオン交換水(浴比20)に投入して撹拌洗浄を2時間行い脱液する操作を3回繰り返して、洗浄液の電気伝導度が、3μS/cm以下(東亜電波工業株式会社の「CM-30ET」で測定)となるまで精製を行い、ケン化反応時の触媒残渣が除去されたEVOHの含水ペレットを得た。
得られた含水ペレットを酢酸ナトリウム濃度0.510g/L、酢酸濃度0.8g/L、リン酸濃度0.04g/L及びホウ酸濃度0.05g/Lである水溶液(浴比20)に投入し、定期的に撹拌しながら4時間浸漬させ化学処理を行った。このペレットを脱液し、酸素濃度1体積%以下の窒素気流下80℃で3時間、及び105℃で16時間乾燥させることで、EVOH(A1及びA7)、酢酸、リン酸、ナトリウムイオン(ナトリウム塩)、クロトンアルデヒド、2,4-ヘキサジエナール、2,4,6-オクタトリエナール及びソルビン酸を含有した、円柱状(平均直径2.8mm、平均高さ3.2mm)の乾燥樹脂組成物ペレットを得た。得られた乾燥樹脂組成物ペレットについて、上記評価方法(2)、(3)、(5)~(9)、(11)、(12)に記載の方法に従って評価した。乾燥樹脂組成物ペレット中のナトリウムイオン含有量は100ppm、リン酸含有量はリン酸根換算値で40ppm、酢酸含有量は200ppmであった。EVOH以外の各成分の含有量は、いずれもEVOHの含有量を基準とした量である。その他の評価結果は表13、14に示す。なお、クロトンアルデヒド、2,4-ヘキサジエナール、2,4,6-オクタトリエナール及びソルビン酸の各成分の含有量が表13に記載の通りとなるように、各成分の添加量を調整した。
上記にて得られた乾燥樹脂組成物ペレットを用いたこと以外は、実施例1と同様にして、蒸着フィルムを作製し、上記(13)~(15)の評価を行った。評価結果(蒸着フィルム評価結果)を表14に示す。さらに、上記にて得られた乾燥樹脂組成物ペレットを用いたこと以外は、実施例9と同様にして、蒸着フィルム及び多層構造体を作製し、上記(16)、(17)の評価を行った。評価結果(多層蒸着フィルム評価結果)を表14に示す。
<実施例12、14、15、比較例3、4>
表13に記載の通り、EVOH(Aa)の種類、EVOH(Ab)の種類、質量比(Aa)/(Ab)、ホウ酸含有量、不飽和アルデヒド(B)の含有量及び共役ポリエン(C)の含有量を変更した以外は、実施例10と同様の方法で乾燥樹脂組成物ペレット、各蒸着フィルム及び多層構造体を作製し、評価した。乾燥樹脂組成物ペレット中のナトリウムイオン含有量は100ppm、リン酸含有量はリン酸根換算値で40ppm、酢酸含有量は200ppmであった。EVOH以外の各成分の含有量は、いずれもEVOHの含有量を基準とした量である。その他の評価結果は表13、14に示す。なお、化学処理に用いる水溶液のホウ酸濃度は、得られる乾燥樹脂組成物ペレットのホウ酸含有量が表13に記載の通りとなるように適宜調整した。
<実施例11>
参考例5で得られた乾燥樹脂組成物ペレット80質量部と、参考例53で得られた乾燥樹脂組成物ペレット20質量部をドライブレンドして、乾燥樹脂組成物ペレット群を得た。得られた乾燥樹脂組成物ペレット群について、30mmφ二軸押出機(株式会社日本製鋼所製「TEX-30SS-30CRW-2V」)を用い、押出温度200℃、スクリュー回転数300rpm、押出樹脂量25kg/時間の条件で押出し、ペレタイズした後、80℃2時間熱風乾燥を行い、乾燥樹脂組成物ペレットを得た。得られた乾燥樹脂組成物ペレットについて、上記評価方法(2)、(3)、(5)~(9)、(11)、(12)に記載の方法に従って評価した。結果を表13、14に示す。上記にて得られた乾燥樹脂組成物ペレットを用いたこと以外は、実施例1と同様にして、蒸着フィルムを作製し、上記(13)~(15)の評価を行った。評価結果(蒸着フィルム評価結果)を表14に示す。さらに、上記にて得られた乾燥樹脂組成物ペレットを用いたこと以外は、実施例9と同様にして、蒸着フィルム及び多層構造体を作製し、上記(16)、(17)の評価を行った。評価結果(多層蒸着フィルム評価結果)を表14に示す。
<実施例13>
参考例48で得られた乾燥樹脂組成物ペレット90質量部と、合成例9で得られたEVOH(A9)ペレット10質量部とをドライブレンドしたこと以外は実施例11と同様にして、乾燥樹脂組成物ペレットを得た。得られた乾燥樹脂組成物ペレットについて、上記評価方法(2)、(3)、(5)~(9)、(11)、(12)に記載の方法に従って評価した。結果を表13、14に示す。上記にて得られた乾燥樹脂組成物ペレットを用いたこと以外は、実施例1と同様にして、蒸着フィルムを作製し、上記(13)~(15)の評価を行った。評価結果(蒸着フィルム評価結果)を表14に示す。さらに、上記にて得られた乾燥樹脂組成物ペレットを用いたこと以外は、実施例9と同様にして、蒸着フィルム及び多層構造体を作製し、上記(16)、(17)の評価を行った。評価結果(多層蒸着フィルム評価結果)を表14に示す。
Figure 2023084665000016
Figure 2023084665000017
表11~14に示されるように、実施例1~15で用いられた各樹脂組成物は、ネックイン及びダイビルドアップが抑制されていた。そして、ダイビルドアップが生じ易い樹脂組成物を用いた比較例1、3の各蒸着フィルムは、蒸着欠点が多く、無機蒸着層の密着強度及びガスバリア性が低かった。また、ネックインが生じ易い樹脂組成物を用いた比較例2、4の各単層フィルム(基材層)は、OTRの幅方向の均一性が低かった。また、これらの各比較例の蒸着フィルムはリサイクル性も低かった。これらに対し、ダイビルドアップ及びネックインが抑制された樹脂組成物を用いた実施例1~15においては、蒸着欠点が抑制され、無機蒸着層の密着強度及びガスバリア性が高い蒸着フィルムが得られ、単層フィルム(基材層)におけるOTRの幅方向の均一性も改善できた。また、実施例の各蒸着フィルムは、リサイクル性も良好であった。
また、各参考例の結果から、b/(b+b)が2.0以上150.0未満であるとネックイン耐性が良好であり、b+2bが0.65ppm以下であるとダイビルドアップが抑制されることがわかる。従って、蒸着フィルムを製造していない各参考例の樹脂組成物を用いて蒸着フィルムを製造した場合も、実施例1~15と同様の効果が奏されると推測できる。

Claims (17)

  1. 樹脂組成物からなる基材層(α)と、基材層(α)の少なくとも片面に積層される無機蒸着層(β)とを備え、
    上記樹脂組成物が、エチレン単位含有量が20モル%以上60モル%以下であるエチレン-ビニルアルコール共重合体(A)及びクロトンアルデヒド(B1)を含み、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、
    上記樹脂組成物が、下記式(1)及び(2)を満たす、蒸着フィルム。
    2.0≦b/(b+b)<150.0 ・・・(1)
    +2b≦0.65 ・・・(2)
    上記式(1)及び(2)中、bは、エチレン-ビニルアルコール共重合体(A)に対するクロトンアルデヒド(B1)の含有量(ppm)であり、bは、エチレン-ビニルアルコール共重合体(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、bは、エチレン-ビニルアルコール共重合体(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。
  2. 上記樹脂組成物において、エチレン-ビニルアルコール共重合体(A)に対するクロトンアルデヒド(B1)、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)の含有量の合計(b+b+b)が0.01ppm以上7.0ppm以下である、請求項1に記載の蒸着フィルム。
  3. 上記樹脂組成物において、クロトンアルデヒド(B1)の含有量bが0.01ppm以上4.0ppm以下である、請求項1又は2に記載の蒸着フィルム。
  4. 上記樹脂組成物において、2,4-ヘキサジエナール(B2)の含有量bが0.005ppm以上0.65ppm以下である、請求項1又は2に記載の蒸着フィルム。
  5. 上記樹脂組成物において、2,4,6-オクタトリエナール(B3)の含有量bが0.325ppm以下である、請求項1又は2に記載の蒸着フィルム。
  6. 上記樹脂組成物が共役ポリエン化合物(C)をさらに含み、上記樹脂組成物において、エチレン-ビニルアルコール共重合体(A)に対する共役ポリエン化合物(C)の含有量cが1ppm以上300ppm未満である、請求項1又は2に記載の蒸着フィルム。
  7. 共役ポリエン化合物(C)がソルビン酸である、請求項6に記載の蒸着フィルム。
  8. エチレン-ビニルアルコール共重合体(A)が、エチレン-ビニルアルコール共重合体(Aa)及びエチレン-ビニルアルコール共重合体(Ab)を含み、
    エチレン-ビニルアルコール共重合体(Aa)とエチレン-ビニルアルコール共重合体(Ab)との融点差(Aa-Ab)が8℃以上であり、
    エチレン-ビニルアルコール共重合体(Aa)とエチレン-ビニルアルコール共重合体(Ab)との質量比(Aa/Ab)が60/40以上95/5以下である、請求項1又は2に記載の蒸着フィルム。
  9. エチレン-ビニルアルコール共重合体(Aa)のエチレン単位含有量が20モル%以上50モル%以下であり、エチレン-ビニルアルコール共重合体(Ab)のエチレン単位含有量が30モル%以上60モル%以下であり、
    エチレン-ビニルアルコール共重合体(Ab)とエチレン-ビニルアルコール共重合体(Aa)とのエチレン単位含有量の差(Ab-Aa)が4.5モル%以上である、請求項8に記載の蒸着フィルム。
  10. エチレン-ビニルアルコール共重合体(A)の少なくとも一部が、下記式(I)で表される構造単位、及び下記式(II)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を、上記少なくとも一部のエチレン-ビニルアルコール共重合体(A)の全ビニルアルコール単位に対して0.3モル%以上40モル%以下有する、請求項1又は2に記載の蒸着フィルム。
    Figure 2023084665000018
    上記式(I)中、R、R及びRは、それぞれ独立して、水素原子、炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基、炭素数6~10の芳香族炭化水素基又は水酸基を表す。R、R及びRのうちの一対が結合していてもよい(但し、R、R及びRのうちの一対が共に水素原子の場合は除く)。上記炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基及び炭素数6~10の芳香族炭化水素基が有する水素原子の一部又は全部は、水酸基、アルコキシ基、カルボキシル基又はハロゲン原子で置換されていてもよい。
    上記式(II)中、R、R、R及びRは、それぞれ独立して、水素原子、炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基、炭素数6~10の芳香族炭化水素基又は水酸基を表す。RとRとは、又はRとRとは、結合していてもよい(但し、RとRとが、又はRとRが、共に水素原子の場合は除く)。上記炭素数1~10の脂肪族炭化水素基、炭素数3~10の脂環式炭化水素基及び炭素数6~10の芳香族炭化水素基が有する水素原子の一部又は全部は、水酸基、アルコキシ基、カルボキシル基又はハロゲン原子で置換されていてもよい。
  11. 無機蒸着層(β)の平均厚みが15nm以上150nm以下である、請求項1又は2に記載の蒸着フィルム。
  12. 基材層(α)が延伸された層である、請求項1又は2に記載の蒸着フィルム。
  13. 接着層(γ)と、接着層(γ)に積層される熱可塑性樹脂層(δ)とをさらに備える、請求項1又は2に記載の蒸着フィルム。
  14. 基材層(α)の片面に無機蒸着層(β)が積層され、
    基材層(α)の無機蒸着層(β)が積層される面とは反対側に、接着層(γ)を介して熱可塑性樹脂層(δ)が積層されている、請求項13に記載の蒸着フィルム。
  15. 少なくとも基材層(α)、接着層(γ)及び熱可塑性樹脂層(δ)が一体で延伸されてなる、請求項13に記載の蒸着フィルム。
  16. 請求項1又は2に記載の蒸着フィルムを備える、包装材。
  17. 請求項1又は2に記載の蒸着フィルムを備える、真空断熱体。

JP2022164078A 2021-12-07 2022-10-12 蒸着フィルム、包装材及び真空断熱体 Pending JP2023084665A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021198837 2021-12-07
JP2021198837 2021-12-07

Publications (1)

Publication Number Publication Date
JP2023084665A true JP2023084665A (ja) 2023-06-19

Family

ID=86771970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022164078A Pending JP2023084665A (ja) 2021-12-07 2022-10-12 蒸着フィルム、包装材及び真空断熱体

Country Status (1)

Country Link
JP (1) JP2023084665A (ja)

Similar Documents

Publication Publication Date Title
JP6043854B2 (ja) 多層構造体、積層体及びそれらの製造方法
EP2862897B1 (en) Ethylene-vinyl alcohol resin composition, multilayer sheet, packaging material, and container
WO2018074473A1 (ja) 樹脂組成物、成形体、二次加工品、樹脂組成物の製造方法及び成形体の製造方法
JP2015071709A (ja) 樹脂組成物、多層構造体及びそれからなる熱成形容器
JP2015071711A (ja) 樹脂組成物、多層構造体及びそれからなる熱成形容器
JP7161541B2 (ja) 樹脂組成物、成形体、二次加工品及び樹脂組成物の製造方法
JP6653727B2 (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法
JP7139945B2 (ja) 樹脂組成物およびそれからなる成形材料並びに多層構造体
JP7394029B2 (ja) 蒸着フィルム、包装材及び真空断熱体
JP2023084665A (ja) 蒸着フィルム、包装材及び真空断熱体
JP7407652B2 (ja) 樹脂組成物およびチューブ状容器の口頭部
JP7195891B2 (ja) 蒸着フィルム、包装材、及び真空断熱体
JP6454463B2 (ja) エチレン−ビニルアルコール樹脂組成物、多層構造体、多層シート、容器及び包装材
WO2023054506A1 (ja) 樹脂組成物、成形体、多層構造体、熱成形容器、ブロー成形容器及び蒸着フィルム
JP6473563B2 (ja) 樹脂組成物、多層シート、包装材及び容器
JP2023084664A (ja) 樹脂組成物、単層フィルム及び積層体
JP2023053942A (ja) 樹脂組成物、多層構造体、一軸延伸多層構造体、二軸延伸多層構造体、包装材及び容器
JP6653728B2 (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法
JP7149882B2 (ja) 樹脂組成物、成形体、二次加工品、樹脂組成物の製造方法及び成形体の製造方法
JP6653726B2 (ja) 樹脂組成物、多層構造体、熱成形容器及びその製造方法
JP2020084016A (ja) フィルム及びその製造方法、包装材、並びに真空包装袋
JP2023058035A (ja) 熱成形容器及びその製造方法
JP6454462B2 (ja) 樹脂組成物、多層シート、包装材及び容器
JP2023058468A (ja) 樹脂組成物、その製造方法、成形体、及び多層構造体
JP2023058469A (ja) ブロー成形容器及びその製造方法