JP2023081806A - ポリアミド組成物及び成形品 - Google Patents

ポリアミド組成物及び成形品 Download PDF

Info

Publication number
JP2023081806A
JP2023081806A JP2021212955A JP2021212955A JP2023081806A JP 2023081806 A JP2023081806 A JP 2023081806A JP 2021212955 A JP2021212955 A JP 2021212955A JP 2021212955 A JP2021212955 A JP 2021212955A JP 2023081806 A JP2023081806 A JP 2023081806A
Authority
JP
Japan
Prior art keywords
polyamide
mass
polyamide composition
carbon fiber
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021212955A
Other languages
English (en)
Inventor
知世 奥村
Tomoyo Okumura
太智 大嶌
Taichi Oshima
靖久 市橋
Yasuhisa Ichihashi
義公 近藤
Yoshikimi Kondo
秀人 板津
Hideto Itatsu
茂樹 飯山
Shigeki Iiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Carbon Fiber Recycle Industry Co Ltd
Original Assignee
Asahi Kasei Corp
Carbon Fiber Recycle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Carbon Fiber Recycle Industry Co Ltd filed Critical Asahi Kasei Corp
Publication of JP2023081806A publication Critical patent/JP2023081806A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】異なる成形条件においても成形品としたときの表面外観及び機械的強度が安定して優れるポリアミド組成物、及び、前記ポリアミド組成物を成形してなる成形品を提供する。【解決手段】ポリアミド組成物は、(A1)結晶化エンタルピーが50J/g以上であるポリアミドと、(A2)結晶化エンタルピーが50J/g未満であるポリアミドと、(B)炭素繊維と、を含有し、前記(B)炭素繊維を集束してなる炭素繊維束のかさ密度が0.05g/cm3以上0.34g/cm3以下である。成形品は、前記ポリアミド組成物を成形してなる。【選択図】なし

Description

本発明は、ポリアミド組成物及び成形品に関する。
ポリアミド6(以下、「PA6」と略記する場合がある)及びポリアミド66(以下、「PA66」と略記する場合がある)等に代表されるポリアミドは、成形加工性、機械物性又は耐薬品性に優れていることから、自動車用、電気及び電子用、産業資材用、工業材料用、日用及び家庭品用等の各種部品材料として広く用いられている。近年、自動車の燃費向上のため、自動車の軽量化が求められていることから、低比重且つ優れた強度、剛性の機械特性を有する材料が求められている。
このような要求に応えるため、炭素繊維強化ポリアミド組成物は工業的に重要な材料として注目され、種々の炭素繊維強化ポリアミド組成物が開示されている(例えば、特許文献1~5参照)。ただし、金属材料やガラス繊維強化樹脂組成物の代替品として十分に普及するまでには至っていない。その原因としては、ポリアミドと炭素繊維との界面接着性が悪く、炭素繊維が十分な補強効果を発揮できないこと、又は、炭素繊維そのものが製造時に多量のエネルギーを必要とし、複雑な製造工程を経て製造されるため、未だ高価であることが挙げられる。
炭素繊維そのものが製造時に多量のエネルギーを必要とし、複雑な製造工程を経て製造されるという課題に対し、「リサイクル炭素繊維」を用いることが提案されている(例えば、特許文献6~8参照)。特許文献6では補強効果に優れ、マトリックス樹脂への分散性にも優れたリサイクル炭素繊維が開示されている。また、特許文献7、8では、樹脂とリサイクル炭素繊維とにさらに第三成分を添加したリサイクル炭素繊維樹脂組成物が開示されている。
特開2014-145036号公報 特開2015-129271号公報 特開2015-199959号公報 国際公開第2013/080820号 国際公開第2013/077238号 特開2017-002125号公報 特表2016-540067号公報 国際公開第2007/058298号
しかし、特許文献6~8に開示されたような従来技術においては、リサイクル炭素繊維を含むポリアミド組成物における、成形品の機械特性と外観、特にそれらの特性が成形条件によって大きく異なってしまうといった課題については認識されていない。
本発明は、上記事情に鑑みてなされたものであって、異なる成形条件においても成形品としたときの表面外観及び機械的強度が安定して優れるポリアミド組成物、及び、前記ポリアミド組成物を成形してなる成形品を提供する。
すなわち、本発明は、以下の態様を含む。
(1) (A1)結晶化エンタルピーが50J/g以上であるポリアミドと、
(A2)結晶化エンタルピーが50J/g未満であるポリアミドと、
(B)炭素繊維と、
を含有するポリアミド組成物であり、
前記(B)炭素繊維を集束してなる炭素繊維束のかさ密度が0.05g/cm以上0.34g/cm以下である、ポリアミド組成物。
(2) (C)樹脂炭化物を更に含有する、(1)に記載のポリアミド組成物。
(3) (C)樹脂炭化物は、前記ポリアミド組成物をヘキサフルオロイソプロパノール溶媒中に溶解させて観察した際に、面積が20μm以上300μm以下であり、且つ、短径Dに対する長径Lのアスペクト比L/Dが5以下である、(2)に記載のポリアミド組成物。
(4) 前記ポリアミド組成物をヘキサフルオロイソプロパノール溶媒中に溶解させて観察した際の、(C)樹脂炭化物の面積占有比率が、前記(B)炭素繊維の面積に対して20%以上50%以下である、(2)又は(3)に記載のポリアミド組成物。
(5) 前記(B)炭素繊維を集束してなる炭素繊維束の大気雰囲気下での450℃2時間の質量減少量が2質量%以上20質量%以下であり、且つ、前記炭素繊維束の大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分の含有量が70質量%以上である、(1)~(4)のいずれか一つに記載のポリアミド組成物。
(6) X線光電分光分析による前記(B)炭素繊維を集束してなる炭素繊維束の表面元素中の炭素原子含有率が80atom%以上である、(1)~(5)のいずれか一つに記載のポリアミド組成物。
(7) 前記(B)炭素繊維を集束してなる炭素繊維束の含有量が、(A1)ポリアミド及び(A2)ポリアミドの合計100質量部に対して、20質量部以上100質量部以下である、(1)~(6)のいずれか一つに記載のポリアミド組成物。
(8) 前記(A1)結晶化エンタルピーが50J/g以上であるポリアミドの含有量がポリアミド組成物中の全ポリアミド樹脂の総質量に対して60質量%以上95質量%以下である、(1)~(7)のいずれか一つに記載のポリアミド組成物。
(9) 前記(B)炭素繊維がリサイクル炭素繊維である、(1)~(8)のいずれか一つに記載のポリアミド組成物。
(10) (1)~(9)のいずれか一つに記載のポリアミド組成物を成形してなる、成形品。
上記態様のポリアミド組成物によれば、異なる成形条件においても成形品としたときの表面外観及び機械的強度が安定して優れるポリアミド組成物を提供することができる。上記態様の成形品は、前記ポリアミド組成物を成形してなり、表面外観及び機械的強度に優れる。
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。
以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜変形して実施することができる。
なお、本明細書において、「ポリアミド」とは主鎖中にアミド(-NHCO-)結合を有する重合体を意味する。
≪ポリアミド組成物≫
本実施形態のポリアミド組成物は、(A1)結晶化エンタルピーが50J/g以上であるポリアミド(以下、単に「(A1)ポリアミド」と称する場合がある)、(A2)結晶化エンタルピーが50J/g未満であるポリアミド(以下、単に「(A2)ポリアミド」と称する場合がある)と、(B)炭素繊維と、を含有する。
(B)炭素繊維を集束してなる炭素繊維束のかさ密度が0.05g/cm以上0.34g/cm以下である。
本実施形態のポリアミド組成物は、上記構成を有する、特に、上記2種類のポリアミドを含むことで、異なる成形条件においても表面外観及び機械的強度が安定して優れる成形品が得られる。
本実施形態のポリアミド組成物に含まれる各構成成分について、以下に詳細を説明する。
なお、以降において、(A1)ポリアミド及び(A2)ポリアミドを総称して「(A)ポリアミド」と称する場合がある。
<構成成分>
[(A)ポリアミド]
(A)ポリアミドとしては、以下に制限されないが、例えば、(A-a)ラクタムの開環重合で得られるポリアミド、(A-b)ω-アミノカルボン酸の自己縮合で得られるポリアミド、(A-c)ジアミン及びジカルボン酸を縮合することで得られるポリアミド、並びに、これらの共重合物等が挙げられる。(A)ポリアミドとしては、単独で用いてもよく、2種以上組み合わせて用いてもよい。
(A-a)ポリアミドの製造に用いられるラクタムとしては、以下に制限されないが、例えば、ピロリドン、カプロラクタム、ウンデカラクタム、ドデカラクタム等が挙げられる。
(A-b)ポリアミドの製造に用いられるω-アミノカルボン酸としては、以下に制限されないが、例えば、上記ラクタムの水による開環化合物であるω-アミノ脂肪酸等が挙げられる。
また、上記ラクタム又は上記ω-アミノカルボン酸としては、それぞれ2種以上の単量体を併用して縮合させてもよい。
(A-c)ポリアミドの製造に用いられるジアミン(単量体)としては、以下に制限されないが、例えば、直鎖状の脂肪族ジアミン、分岐鎖状の脂肪族ジアミン、脂環族ジアミン、芳香族ジアミン等が挙げられる。
直鎖状の脂肪族ジアミンとしては、以下に制限されないが、例えば、ヘキサメチレンジアミン、ペンタメチレンジアミン等が挙げられる。
分岐鎖状の脂肪族ジアミンとしては、以下に制限されないが、例えば、2-メチルペンタンジアミン、2-エチルヘキサメチレンジアミン等が挙げられる。
脂環族ジアミンとしては、以下に制限されないが、例えば、シクロヘキサンジアミン、シクロペンタンジアミン、シクロオクタンジアミン等が挙げられる。
芳香族ジアミンとしては、以下に制限されないが、例えば、p-フェニレンジアミン、m-フェニレンジアミン等が挙げられる。
(A-c)ポリアミドの製造に用いられるジカルボン酸(単量体)としては、以下に制限されないが、例えば、脂肪族ジカルボン酸、脂環族ジカルボン酸、芳香族ジカルボン酸等が挙げられる。
脂肪族ジカルボン酸としては、以下に制限されないが、例えば、アジピン酸、ピメリン酸、セバシン酸等が挙げられる。
脂環族ジカルボン酸としては、以下に制限されないが、例えば、シクロヘキサンジカルボン酸等が挙げられる。
芳香族ジカルボン酸としては、以下に制限されないが、例えば、フタル酸、イソフタル酸等が挙げられる。
上記した単量体としてのジアミン及びジカルボン酸は、それぞれ単独又は2種以上組み合わせて縮合させてもよい。
なお、(A)ポリアミドは、必要に応じて、トリメリット酸、トリメシン酸、ピロメリット酸等の3価以上の多価カルボン酸に由来する単位をさらに含んでもよい。3価以上の多価カルボン酸は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
((A1)ポリアミド)
(A1)ポリアミドの結晶化エンタルピーは、50J/g以上であり、55J/g以上であることが好ましく、60J/g以上であることがより好ましく、65J/g以上であることがさらに好ましい。(A1)ポリアミドの結晶化エンタルピーが上記下限値以上であることで、成形体が良好な機械特性を示すことができる。一方、(A1)ポリアミドの結晶化エンタルピーの上限は特に限定されないが、例えば、150J/g以下とすることができ、100J/g以下とすることができる。
(A1)ポリアミドとしては、結晶化エンタルピーが50J/g以上であるものであれば、特に限定されないが、具体的には、例えば、ポリアミド4(ポリα-ピロリドン)、ポリアミド6(ポリカプロアミド)、ポリアミド11(ポリウンデカンアミド)、ポリアミド12(ポリドデカンアミド)、ポリアミド46(ポリテトラメチレンアジパミド)、ポリアミド56(ポリペンタメチレンアジパミド)、ポリアミド66(ポリヘキサメチレンアジパミド)、ポリアミド610(ポリヘキサメチレンセバカミド)、ポリアミド612(ポリヘキサメチレンドデカミド)、及び、これらを構成成分として含む共重合ポリアミド等が挙げられる。
中でも、(A1)ポリアミドとしては、ポリアミド46(PA46)、ポリアミド66(PA66)、ポリアミド610(PA610)又はポリアミド612(PA612)が好ましい。PA66は、耐熱性、成形性及び靭性に優れていることから、自動車部品に好適な材料である。また、PA610等の長鎖脂肪族ポリアミドは、耐薬品性に優れ、好ましい。
((A2)ポリアミド)
(A2)ポリアミドの結晶化エンタルピーは、50J/g未満であり、45J/g以下であることが好ましく、40J/g以下であることがより好ましい。(A2)ポリアミドの結晶化エンタルピーが上記上限値未満又は上記上限値以下であることで、成形体が良好な機械的特性と外観を示すことができる。一方、(A2)ポリアミドの結晶化エンタルピーの下限は特に限定されないが、例えば、0J/g以上とすることができる。
(A2)ポリアミドとしては、結晶化エンタルピーが50J/g未満であるものであれば、特に限定されないが、具体的には、ポリアミド6I(ポリヘキサメチレンイソフタラミド)、ポリアミド6I/6T(ポリヘキサメチレンイソフタラミドとポリヘキサメチレンテレフタラミドの共重合体)、ポリアミドMXD6(ポリメタキシリレンアジパミド)、及び、これらを構成成分として含む共重合ポリアミド等が挙げられる。
(末端封止剤)
(A)ポリアミドの末端は、公知の末端封止剤により末端封止されていてもよい。
このような末端封止剤は、上記ジカルボン酸と上記ジアミンと、必要に応じて、上記ラクタム及び上記アミノカルボン酸のうち少なくともいずれか一方とから、ポリアミドを製造する際に、分子量調節剤としても添加することができる。
末端封止剤としては、以下に限定されるものではないが、例えば、モノカルボン酸、モノアミン、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類等が挙げられる。酸無水物としては、以下に限定されるものではないが、例えば、無水フタル酸等が挙げられる。これら末端封止剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
中でも、末端封止剤としては、モノカルボン酸又はモノアミンが好ましい。ポリアミドの末端が末端封止剤で封鎖されていることにより、熱安定性により優れるポリアミド組成物となる傾向にある。
末端封止剤として使用できるモノカルボン酸としては、ポリアミドの末端に存在し得るアミノ基との反応性を有するものであればよい。モノカルボン酸として具体的には、以下に限定されるものではないが、例えば、脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等が挙げられる。
脂肪族モノカルボン酸としては、以下に限定されるものではないが、例えば、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチル酸、パルミチン酸、ステアリン酸、ピバリン酸、イソブチル酸等が挙げられる。
脂環族モノカルボン酸としては、以下に限定されるものではないが、例えば、シクロヘキサンカルボン酸等が挙げられる。
芳香族モノカルボン酸としては、以下に限定されるものではないが、例えば、安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等が挙げられる。
これらモノカルボン酸は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
末端封止剤として使用できるモノアミンとしては、ポリアミドの末端に存在し得るカルボキシ基との反応性を有するものであればよい。モノアミンとして具体的には、以下に限定されるものではないが、例えば、脂肪族モノアミン、脂環族モノアミン、芳香族モノアミン等が挙げられる。
脂肪族アミンとしては、以下に限定されるものではないが、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等が挙げられる。
脂環族アミンとしては、以下に限定されるものではないが、例えば、シクロヘキシルアミン、ジシクロヘキシルアミン等が挙げられる。
芳香族アミンとしては、以下に限定されるものではないが、例えば、アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等が挙げられる。
これらモノアミンは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
末端封止剤により末端封止されたポリアミドを含有するポリアミド組成物は、耐熱性、流動性、靭性、低吸水性及び剛性により優れる傾向にある。
((A)ポリアミドの含有量)
本実施形態のポリアミド組成物中の(A)ポリアミドの含有量は、ポリアミド組成物の総質量に対して、例えば50質量%以上99質量%以下とすることができ、例えば53質量%以上90質量%以下とすることができ、例えば55質量%以上80質量%以下とすることができる。
((A1)ポリアミドの含有量)
(A1)ポリアミドの含有量は、ポリアミド組成物中の全ポリアミド樹脂の総質量に対して60質量%以上95質量%以下が好ましく、70質量%以上90質量%以下がより好ましく、75質量%85質量%以下がさらに好ましい。
((A)ポリアミドの製造方法)
(A)ポリアミドを製造する際に、ジカルボン酸の添加量とジアミンの添加量とは、同モル量付近であることが好ましい。重合反応中のジアミンの反応系外への逃散分もモル比においては考慮して、ジカルボン酸全体のモル量1に対して、ジアミン全体のモル量は、0.9以上1.2以下が好ましく、0.95以上1.1以下が好ましく、0.98以上1.05以下がさらに好ましい。
ポリアミドの製造方法としては、以下に限定されるものではないが、例えば、ジカルボン酸単位を構成するジカルボン酸と、ジアミン単位を構成するジアミンと、必要に応じて、ラクタム単位を構成するラクタム及びアミノカルボン酸単位を構成するアミノカルボン酸のうち少なくともいずれかと、を重合して重合体を得る工程を含む。
また、ポリアミドの製造方法において、ポリアミドの重合度を上昇させる工程を、さらに含むことが好ましい。
また、必要に応じて、得られた重合体の末端を末端封止剤により封止する封止工程を含んでもよい。
ポリアミドの具体的な製造方法としては、例えば、以下の1)~4)に例示するように種々の方法が挙げられる。
1)ジカルボン酸-ジアミン塩若しくはジカルボン酸とジアミンとの混合物の水溶液、又は、これらの水の懸濁液を加熱し、溶融状態を維持したまま重合させる方法(以下、「熱溶融重合法」と称する場合がある)。
2)熱溶融重合法で得られたポリアミドを融点以下の温度で固体状態を維持したまま重合度を上昇させる方法(以下、「熱溶融重合・固相重合法」と称する場合がある)。
3)ジカルボン酸-ジアミン塩、又は、ジカルボン酸とジアミンとの混合物を固体状態を維持したまま重合させる方法(以下、「固相重合法」と称する場合がある)。
4)ジカルボン酸と等価なジカルボン酸ハライド成分及びジアミン成分を用いて重合させる方法(以下、「溶液法」と称する場合がある)。
中でも、ポリアミドの具体的な製造方法としては、熱溶融重合法を含む製造方法が好ましい。また、熱溶融重合法によりポリアミドを製造する際には、重合が終了するまで、溶融状態を保持することが好ましい。溶融状態を保持する方法としては、例えば、ポリアミドの組成に適した重合条件で製造する方法等が挙げられる。重合条件としては、例えば、以下に示す条件等が挙げられる。まず、熱溶融重合法における重合圧力を14kg/cm以上25kg/cm以下(ゲージ圧)に制御し、加熱を続ける。次いで、槽内の圧力が大気圧(ゲージ圧は0kg/cm)になるまで30分以上かけながら降圧することで、所望の組成のポリアミドが得られる。
ポリアミドの製造方法において、重合形態としては、特に限定されず、バッチ式でも連続式でもよい。
ポリアミドの製造に用いる重合装置としては、特に限定されるものではなく、公知の装置を用いることができ、例えば、オートクレーブ型の反応器、タンブラー型反応器、ニーダー等の押出機型反応器等が挙げられる。
以下、ポリアミドの製造方法として、バッチ式の熱溶融重合法によりポリアミドを製造する方法を具体的に示すが、ポリアミドの製造方法は、これに限定されない。
まず、ポリアミドの原料成分(ジカルボン酸、ジアミン、並びに、必要に応じて、ラクタム及びアミノカルボン酸のうち少なくともいずれか)を、約40質量%以上60質量%以下含有する水溶液を、110℃以上180℃以下の温度、及び、約0.035MPa以上0.6MPa以下(ゲージ圧)の圧力で操作される濃縮槽で、約65質量%以上90質量%以下に濃縮して濃縮溶液を得る。
次いで、得られた濃縮溶液をオートクレーブに移し、当該オートクレーブにおける圧力が約1.2MPa以上2.2MPa以下(ゲージ圧)になるまで加熱を続ける。
その後、オートクレーブにおいて、水及びガス成分のうち少なくともいずれかを抜きながら圧力を約1.2MPa以上2.2MPa以下(ゲージ圧)に保ち、温度が約220℃以上260℃以下に達した時点で、大気圧まで降圧する(ゲージ圧は、0MPa)。
オートクレーブ内の圧力を大気圧に降圧後、必要に応じて減圧することにより、副生する水を効果的に除くことができる。
その後、オートクレーブを窒素等の不活性ガスで加圧し、オートクレーブからポリアミド溶融物をストランドとして押し出す。押し出されたストランドを、冷却、カッティングすることにより、ポリアミドのペレットを得る。
(ポリアミドのポリマー末端)
(A)ポリアミドのポリマー末端としては、特に限定されないが、以下のように分類され、定義することができる。
すなわち、1)アミノ基末端、2)カルボキシ基末端、3)封止剤による末端、4)その他の末端である。
1)アミノ基末端は、アミノ基(-NH基)を有するポリマー末端であり、原料のジアミン単位に由来する。
2)カルボキシ基末端は、カルボキシ基(-COOH基)を有するポリマー末端であり、原料のジカルボン酸に由来する。
3)封止剤による末端は、重合時に封止剤を添加した場合に形成される末端である。封止剤としては、上述した末端封止剤が挙げられる。
4)その他の末端は、上述した1)~3)に分類されないポリマー末端である。その他の末端として具体的には、例えば、アミノ基末端が脱アンモニア反応して生成した末端、カルボキシ基末端から脱炭酸反応して生成した末端等が挙げられる。
[(B)炭素繊維]
(B)炭素繊維は、本実施形態のポリアミド組成物の製造時において、(C)樹脂炭化物をバインダーとして集束された炭素繊維束の形態で添加されることが好ましい。
(B)炭素繊維は、新品の炭素繊維を含んでもよいが、経済面から、リサイクル炭素繊維のみを含むことが好ましい。ここでいう、「リサイクル炭素繊維」とは、主に、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics;CFRP)から回収された炭素繊維を意味する。
また、一般に、「炭素繊維強化プラスチック(CFRP)」とは、炭素繊維と樹脂とを混ぜ合わせた複合材料を意味し、航空機や自動車の素材として、鉄よりも軽量且つ高強度の複合材料として用いられている。
(かさ密度)
炭素繊維束のかさ密度は、0.05g/cm以上0.34g/cm以下が好ましく、0.08g/cm以上0.32g/cm以下がより好ましく、0.10g/cm以上0.30g/cm以下がさらに好ましく、0.10g/cm以上0.20g/cm以下が特に好ましい。
かさ密度が上記数値範囲内であることにより、炭素繊維束の開繊性がより良好となる。さらに、炭素繊維束中のCFRP由来の樹脂炭化物の含有量が低減されているため、ポリアミド組成物へ混入される樹脂炭化物が異物となり得られる成形品の強度が低下する減少をより低減することができる。
(C)樹脂炭化物をバインダーとして(B)炭素繊維を集束した炭素繊維束のかさ密度を上記数値範囲とするためには、例えば、CFRPを加熱して樹脂分を燃焼させ、炭素繊維束(リサイクル炭素繊維)を取り出す方法を用いることができる。具体的には、CFRPの燃焼を適当な条件で実施することによって、CFRPの熱硬化性樹脂を十分に燃焼し分解することができる。これにより、炭素繊維束のかさ密度を上記数値範囲まで低下させることができる。さらに、CFRPの熱硬化性樹脂を十分に燃焼して炭素繊維束(リサイクル炭素繊維)を取り出すことで、取り出した炭素繊維束の開繊性が良好となり、また(C)樹脂炭化物がポリアミド組成物中で異物となり強度が低下する現象を低減することができる。
また、炭素繊維束のかさ密度を上記数値範囲とするために、例えばCFRPの熱硬化性樹脂の燃焼を複数回に分けて実施する方法を用いることができる。CFRPの熱硬化性樹脂の燃焼を複数回に分けて実施することで、炭素繊維束のかさ密度が上記数値範囲になるまで、CFRPの熱硬化性樹脂を燃焼することができる。
炭素繊維束のかさ密度は、容器に100cmになるように炭素繊維束を入れ、その質量を測定し、それを5回繰り返した平均値を用いて算出することができる。
(大気雰囲気下での450℃2時間の質量減少量及びクロロホルム不溶分)
また、炭素繊維束は、大気雰囲気下での450℃2時間の質量減少量が5質量%以上20質量%以下であり、且つ、炭素繊維束の大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分の含有量が70質量%以上であることが好ましい。
炭素繊維束の大気雰囲気下での450℃2時間の質量減少量は5質量%以上20質量%以下が好ましく、7質量%以上17質量%以下がより好ましく、10質量%以上15質量%以下がさらに好ましい。炭素繊維束の大気雰囲気下での450℃2時間の質量減少量が上記数値範囲であることで、溶融混練する際の押出機へのフィードの安定性がより向上し、一方で、過剰な(C)樹脂炭化物による(B)炭素繊維の開繊阻害や(C)樹脂炭化物に由来する溶融混練中の粉塵の発生をより低減できる。
また、炭素繊維束の大気雰囲気下での450℃2時間の質量減少量は、CFRPからリサイクル炭素繊維を取り出す過程において、樹脂の熱分解温度、時間を変化させることで調整できる。
また、ポリアミドとの界面形成による物性向上の観点から、炭素繊維束の大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分の含有量は、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。炭素繊維束の大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分の含有量が上記下限値以上であることにより、適度な量の(C)樹脂炭化物が(B)炭素繊維の表面に付着しているため、ポリアミドとの界面接着性がより向上する。これにより、得られる成形品の機械特性がより向上する。一方、炭素繊維束の大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分の含有量の上限値は特に限定されないが、例えば、100質量%以下とすることができ、99質量%以下とすることができる。
ここでいう、「大気雰囲気下での450℃2時間の質量減少量」とは、大気雰囲気下で450℃において2時間保持した際に減少した質量を意味し、加熱前の質量(W1)に対する大気雰囲気下で450℃において2時間保持した際に減少した質量(W3)の割合(W3/W1×100)(質量%)で表することができる。なお、大気雰囲気下で450℃において2時間保持した際に減少した質量(W3)は、加熱前の質量(W1)から、大気雰囲気下で450℃において2時間保持した際の質量(W2)を減ずることで算出できる。
また、大気雰囲気下での450℃2時間の質量減少量は、例えば、TG-DTA(理学電気(株)製:TG8120)等を用いて測定することができる。
また、ここでいう、「クロロホルム不溶分」とは、炭素繊維束を十分な量のクロロホルムに浸漬し、室温で3時間浸透し、ろ過した後、ろ過されず残った固形分についてクロロホルムを蒸発させて、得られる固形分を意味する。また、「クロロホルム溶解分」とは、炭素繊維を十分な量のクロロホルムに浸漬し、室温で3時間浸透し、ろ過した後、ろ液についてクロロホルムを蒸発させて、得られる固形分を意味する。
また、「クロロホルム不溶分」は、以下の測定方法により算出できる。
まず、上記方法を用いて、炭素繊維束(加熱前の質量(W1))を用いて、大気雰囲気下で450℃において2時間保持した際に減少した質量(W3)を算出する。次いで、上記加熱前の質量(W1)と同量の炭素繊維束を十分な量のクロロホルムに浸漬し、室温で3時間浸透し、ろ過した後、ろ液についてクロロホルムを蒸発させて、固形分(クロロホルム溶解分)を得る。次いで、得られた固形分(クロロホルム溶解分)の質量(W4)を測定する。次いで、得られた大気雰囲気下で450℃において2時間保持した際に減少した質量(W3)及びクロロホルム溶解分の質量(W4)を用いて、以下に示す式により、大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分の含有量を算出することができる。
「大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分の含有量(質量%)」
={(大気雰囲気下で450℃において2時間保持した際に減少した質量(W3)-クロロホルム溶解分(W4))/大気雰囲気下で450℃において2時間保持した際に減少した質量(W3)}×100
炭素繊維束の大気雰囲気下での450℃2時間の質量減少量及び大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分の含有量を上記数値範囲とするためには、例えば、CFRPを加熱して樹脂分を燃焼させ、リサイクル炭素繊維を取り出す方法を用いることができる。CFRPの燃焼を適当な条件で実施することによって、CFRPの熱硬化性樹脂を焼き残すことができる。それによって、炭素繊維束の大気雰囲気下での450℃2時間の質量減少量を変化させることができる。
大気雰囲気下での450℃2時間の質量減少量を上記数値範囲とするために、例えば、CFRPの熱硬化性樹脂の燃焼を複数回に分けて実施する手法を用いることができる。CFRPの熱硬化性樹脂の燃焼を複数回に分けて実施することで、炭素繊維束の大気雰囲気下での450℃2時間の質量減少量が上記数値範囲になるまでCFRPの熱硬化性樹脂の燃焼をすることができる。
また、CFRPを加熱して樹脂分を燃焼させ、リサイクル炭素繊維を取り出す方法では、炭素繊維の表面には(C)樹脂炭化物が付着する。(C)樹脂炭化物はクロロホルムに不溶であるため、炭素繊維束の大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分が上記数値範囲である炭素繊維束を得ることができる。
或いは、炭素繊維束の大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分を上記数値範囲とするために、例えば、CFRPの熱硬化性樹脂の燃焼時の焼成条件を調整する方法を用いることができる。CFRPの熱硬化性樹脂の燃焼時の焼成条件を調整することで、炭素繊維束の大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分が上記数値範囲になるように、CFRPの熱硬化性樹脂を燃焼させることができる。
このようにCFRPを燃焼させて得たリサイクル炭素繊維は、(C)樹脂炭化物が表面に付着しているためにポリアミドとの界面形成によって、得られる成形品の機械特性がより向上する。
(表面元素中の炭素原子含有率)
炭素繊維束は、X線光電分光(X-ray Photoelectron Spectroscopy;XPS)分析による表面元素中の炭素原子含有率が80atom%以上であることが好ましい。XPS分析による炭素繊維束の表面元素中の炭素原子含有率が上記下限値以上であることにより、炭素繊維束の開繊性がより良好となる。さらに、炭素繊維中のCFRP由来の樹脂炭化物の含有量が低減されているため、ポリアミド組成物へ混入される樹脂炭化物が異物となり得られる成形品の強度が低下する現象をより低減することができる。一方、XPS分析による炭素繊維束の表面元素中の炭素原子含有率の上限値は特に限定されないが、例えば、100atom%以下とすることができ、99atom%以下とすることができ、95tom%以下とすることができる。
炭素繊維束の表面元素中の炭素原子含有率を上記下限値以上とするためには、例えば、CFRPを加熱して樹脂分を燃焼させ、リサイクル炭素繊維を取り出す方法を用いることができる。CFRPの燃焼を適当な条件で実施することによって、炭素繊維の表面を十分に焼成することができる。それによって、熱硬化性樹脂や、熱硬化性樹脂に含浸する前に炭素繊維に塗布されていた収束剤に由来する官能基を除去することができる。そのため、炭素繊維束の表面元素中の炭素原子含有率をより上昇させることができる。熱硬化性樹脂や、熱硬化性樹脂に含浸する前に炭素繊維に塗布されていた収束剤に由来する官能基を除去することで、取り出した炭素繊維束の開繊性がより良好となり、また(C)樹脂炭化物がポリアミド組成物中で異物となり強度が低下する現象をより低減することができる。
(形状)
(B)炭素繊維は、その断面が真円状でも扁平状でもよい。かかる扁平状の断面としては、以下に制限されないが、例えば、長方形、長方形に近い長円形、楕円形、長手方向の中央部がくびれた繭型等が挙げられる。ここで、本明細書における「扁平率」は、当該繊維断面の長径をd2及び該繊維断面の短径をd1とするとき、d2/d1で表される値をいう。例えば、真円状は、扁平率が約1となる。
ポリアミド組成物中の(B)炭素繊維は、優れた機械的強度をポリアミド組成物に付与できる観点から、数平均繊維径(d)が3μm以上30μm以下であり、重量平均繊維長(l)が100μm以上750μm以下であり、且つ、重量平均繊維長(l)に対する数平均繊維径(d)の比であるアスペクト比(l/d)が10以上100以下であることが好ましい。なお、ここでいう「数平均繊維径(d)」は、(B)炭素繊維断面の長径(上記d2)の平均値であり、後述する算出方法を用いて求められる。
ここで、本明細書における「数平均繊維径(d)」及び「重量平均繊維長(l)」は、以下の方法により求められることができる。まず、ポリアミド組成物を電気炉に入れて、含まれる有機物を焼却処理する。当該処理後の残渣分から、100本以上の炭素繊維を任意に選択し、走査型電子顕微鏡(SEM)で観察して、これらの炭素繊維の繊維径(長径)を測定し、数に対する平均値を算出することにより、数平均繊維径(d)を求めることができる。加えて、倍率1000倍で撮影した、上記100本以上の炭素繊維についてのSEM写真を用いて繊維長を計測し、重量に対する平均値を算出することにより、重量平均繊維長(l)を求めることができる。
炭素繊維の数平均繊維径(d)は、靭性及び成形品の表面外観を向上させる観点から、3μm以上30μm以下が好ましく、3μm以上20μm以下がより好ましく、3μm以上12μm以下がさらに好ましく、3μm以上9μm以下が特に好ましく、4μm以上6μm以下が最も好ましい。
炭素繊維の数平均繊維径を上記上限値以下とすることにより、靭性及び成形品の表面外観により優れたポリアミド組成物とすることができる。一方、炭素繊維の数平均繊維径を上記下限値以上とすることにより、コスト面及び粉体のハンドリング面と物性(流動性等)とのバランスにより優れたポリアミド組成物が得られる。
さらに、炭素繊維の数平均繊維径を3μm以上9μm以下とすることにより、振動疲労特性及び摺動性により優れたポリアミド組成物とすることができる。
(炭素繊維束の含有量)
ポリアミド組成物中の炭素繊維束の含有量は、ポリアミド組成物の総質量に対して、例えば5質量%以上50質量%以下とすることができ、例えば10質量%以上45質量%以下とすることができ、例えば20質量%以上45質量%以下とすることができる。
また、炭素繊維束の含有量は、(A)ポリアミド100質量部(すなわち、(A1)ポリアミド及び(A2)ポリアミドの合計100質量部)に対して、10質量部以上100質量部以下とすることができ、20質量部以上100質量部以下が好ましく、30質量部以上100質量部以下がより好ましい。炭素繊維束の含有量が上記数値範囲内である場合に、押出加工時の切粉発生量を低減し、ペレット形状を良好に保ちながら、成形品としたときの表面外観及び機械的強度に優れるという効果が特に顕著である。
[(C)樹脂炭化物]
本実施形態のポリアミド組成物は、(C)樹脂炭化物を更に含むことが好ましい。
(C)樹脂炭化物は、熱硬化性樹脂を熱処理したものである。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂等が挙げられる。(C)樹脂炭化物は、ポリアミド組成物中における分散性の観点から、主に熱硬化性樹脂を1000℃以下で焼成処理させて得られた生成物が好ましく、熱硬化性樹脂を400℃以上600℃以下で焼成処理させて得られた生成物がより好ましく、熱硬化性樹脂を450℃以上500℃以下で焼成処理させて得られた生成物がさらに好ましい。
本実施形態のポリアミド組成物の製造時において、生産性を向上させる観点から、(C)樹脂炭化物は、(B)炭素繊維と同時に(A)ポリアミドに添加されることが好ましい。上述のとおり、CFRPを加熱して樹脂分を燃焼させ、取り出された炭素繊維束(リサイクル炭素繊維)は、(C)樹脂炭化物をバインダーとして(B)炭素繊維を集束した炭素繊維束である。この炭素繊維束を用いることで、(B)炭素繊維及び(C)樹脂炭化物を同時に(A)ポリアミドに添加することができる。
ポリアミド組成物をヘキサフルオロイソプロパノール(以下、「HFIP」と略記する場合がある)溶媒中に溶解させて観察した際の、(C)樹脂炭化物の面積が20μm以上300μm以下であり、且つ、(C)樹脂炭化物の短径Dに対する長径Lのアスペクト比L/Dが5以下であることが好ましい。
(C)樹脂炭化物が上記特性を有することで、炭素繊維の集束性及びポリアミド組成物の機械的強度をより良好なものとすることができる。
ポリアミド組成物をHFIP溶媒中に溶解させて観察した際の、(C)樹脂炭化物の面積占有比率が、前記(B)炭素繊維の面積に対して20%以上50%以下であることが好ましく、30%以上40%以下であることがより好ましい。
(C)樹脂炭化物の面積占有比率が上記数値範囲内であることで、炭素繊維の集束性と、ポリアミド組成物の機械特性をより良好なものとすることができる。
ポリアミド組成物をHFIP溶媒中に溶解させて観察した際の、(C)樹脂炭化物の面積、アスペクト比L/D、及び(C)樹脂炭化物の面積占有比率は、例えば、以下に示す方法を用いて求めることができる。
具体的には、まず、ポリアミド組成物のペレット10mgを、2mLのHFIP溶媒中に溶解させて、得られた溶液を実体顕微鏡にて撮影した後、得られた撮像を、画像解析ソフトを用いて処理する。処理結果から、(C)樹脂炭化物の面積、アスペクト比L/D、及び、(B)炭素繊維に対する(C)樹脂炭化物の面積占有比率を求める。
[(D)潤滑材]
本実施形態のポリアミド組成物は、上記(A)~(C)の各成分に加えて、(D)潤滑材をさらに含有してもよい。
(D)潤滑材としては、特に限定されないが、例えば、高級脂肪酸、高級脂肪酸金属塩、高級脂肪酸エステル、高級脂肪酸アミド等が挙げられる。
(高級脂肪酸)
高級脂肪酸としては、例えば、炭素数8以上40以下の直鎖状又は分岐鎖状の、飽和又は不飽和脂肪族モノカルボン酸等が挙げられる。
炭素数8以上40以下の直鎖状又は分岐鎖状の、飽和又は不飽和脂肪族モノカルボン酸としては、例えば、ラウリン酸、パルミチン酸、ステアリン酸、ベヘン酸、モンタン酸等が挙げられる。
炭素数8以上40以下の分岐鎖状飽和脂肪族モノカルボン酸としては、例えば、イソパルミチン酸、イソステアリン酸等が挙げられる。
炭素数8以上40以下の直鎖状不飽和脂肪族モノカルボン酸としては、例えば、オレイン酸、エルカ酸等が挙げられる。
炭素数8以上40以下の分岐鎖状不飽和脂肪族モノカルボン酸としては、例えば、イソオレイン酸等が挙げられる。
これら高級脂肪酸は、それぞれ単独で用いてもよく、2種類以上を組み合せて用いてもよい。
中でも、高級脂肪酸としては、ステアリン酸又はモンタン酸が好ましい。
(高級脂肪酸金属塩)
高級脂肪酸金属塩とは、高級脂肪酸の金属塩である。
金属塩の金属元素としては、例えば、元素周期律表の第1族元素、第2族元素及び第3族元素、亜鉛、アルミニウム等が挙げられる。
元素周期律表の第1族元素としては、例えば、ナトリウム、カリウム等が挙げられる。
元素周期律表の第2族元素としては、例えば、カルシウム、マグネシウム等が挙げられる。
元素周期律表の第3族元素としては、例えば、スカンジウム、イットリウム等が挙げられる。
中でも、金属元素としては、元素周期律表の第1及び2族元素、又は、アルミニウムが好ましく、ナトリウム、カリウム、カルシウム、マグネシウム、又は、アルミニウムがより好ましい。
高級脂肪酸金属塩として具体的には、例えば、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、モンタン酸カルシウム、モンタン酸ナトリウム、パルミチン酸カルシウム等が挙げられる。
これら高級脂肪酸金属塩は、それぞれ単独で用いてもよく、2種類以上を組み合せて用いてもよい。
中でも、高級脂肪酸金属塩としては、モンタン酸の金属塩又はステアリン酸の金属塩が好ましい。
(高級脂肪酸エステル)
高級脂肪酸エステルとは、高級脂肪酸とアルコールとのエステル化物である。
高級脂肪酸エステルとしては、炭素数8以上40以下の脂肪族カルボン酸と炭素数8以上40以下の脂肪族アルコールとのエステルが好ましい。
炭素数8以上40以下の脂肪族アルコールとしては、例えば、ステアリルアルコール、ベヘニルアルコール、ラウリルアルコール等が挙げられる。
高級脂肪酸エステルとして具体的には、例えば、ステアリン酸ステアリル、ベヘン酸ベヘニル等が挙げられる。
これら高級脂肪酸エステルは、それぞれ単独で用いてもよく、2種類以上を組み合せて用いてもよい。
(高級脂肪酸アミド)
高級脂肪酸アミドとは、高級脂肪酸のアミド化合物である。
高級脂肪酸アミドとしては、例えば、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、エチレンビスステアリルアミド、エチレンビスオレイルアミド、N-ステアリルステアリン酸アミド、N-ステアリルエルカ酸アミド等が挙げられる。
これら高級脂肪酸アミドは、それぞれ単独で用いてもよく、2種類以上を組み合せて用いてもよい。
ポリアミド組成物中の潤滑剤の含有量は、ポリアミド組成物中の(A)ポリアミド100質量部に対して、0.001質量部以上1質量部以下が好ましく、0.03質量部以上0.5質量部以下がより好ましい。
潤滑剤の含有量が上記数値範囲内にあることにより、離型性及び可塑化時間安定性により優れ、また、靭性により優れるポリアミド組成物とすることができる。また、分子鎖が切断されることによるポリアミドの極端な分子量低下をより効果的に防止することができる。
[(E)熱安定剤]
本実施形態のポリアミド組成物は、上記(A)~(C)の各成分に加えて、(E)熱安定剤をさらに含有してもよい。
熱安定剤としては、以下に制限されないが、例えば、フェノール系熱安定剤、リン系熱安定剤、アミン系熱安定剤、元素周期律表の第3族、第4族及び第11~14族の元素の金属塩、アルカリ金属及びアルカリ土類金属のハロゲン化物等が挙げられる。
(フェノール系熱安定剤)
フェノール系熱安定剤としては、以下に限定されるものではないが、例えば、ヒンダードフェノール化合物等が挙げられる。ヒンダードフェノール化合物は、ポリアミド等の樹脂や繊維に優れた耐熱性及び耐光性を付与する性質を有する。
ヒンダードフェノール化合物としては、以下に限定されるものではないが、例えば、N,N'-へキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオンアミド)、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N'-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピニロキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸等が挙げられる。
これらヒンダードフェノール化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
特に、耐熱エージング性向上の観点から、ヒンダードフェノール化合物としては、N,N'-へキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオンアミド)]が好ましい。
フェノール系熱安定剤を用いる場合、ポリアミド組成物中のフェノール系熱安定剤の含有量は、ポリアミド組成物の総質量に対して、0.01質量%以上1質量%以下が好ましく、0.1質量%以上1質量%以下がより好ましい。
フェノール系熱安定剤の含有量が上記の数値範囲内の場合、ポリアミド組成物の耐熱エージング性をより一層向上させ、さらにガス発生量をより低減させることができる。
(リン系熱安定剤)
リン系熱安定剤としては、以下に限定されるものではないが、例えば、ペンタエリスリトール型ホスファイト化合物、トリオクチルホスファイト、トリラウリルホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、トリスイソデシルホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイト、ジフェニルイソオクチルホスファイト、ジフェニルイソデシルホスファイト、ジフェニル(トリデシル)ホスファイト、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチル-5-メチルフェニル)ホスファイト、トリス(ブトキシエチル)ホスファイト、4,4'-ブチリデン-ビス(3-メチル-6-tert-ブチルフェニル-テトラ-トリデシル)ジホスファイト、テトラ(C12~C15混合アルキル)-4,4'-イソプロピリデンジフェニルジホスファイト、4,4'-イソプロピリデンビス(2-tert-ブチルフェニル)-ジ(ノニルフェニル)ホスファイト、トリス(ビフェニル)ホスファイト、テトラ(トリデシル)-1,1,3-トリス(2-メチル-5-tert-ブチル-4-ヒドロキシフェニル)ブタンジホスファイト、テトラ(トリデシル)-4,4'-ブチリデンビス(3-メチル-6-tert-ブチルフェニル)ジホスファイト、テトラ(C1~C15混合アルキル)-4,4'-イソプロピリデンジフェニルジホスファイト、トリス(モノ、ジ混合ノニルフェニル)ホスファイト、4,4'-イソプロピリデンビス(2-tert-ブチルフェニル)-ジ(ノニルフェニル)ホスファイト、9,10-ジ-ヒドロ-9-オキサ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)ホスファイト、水素化-4,4'-イソプロピリデンジフェニルポリホスファイト、ビス(オクチルフェニル)-ビス(4,4'-ブチリデンビス(3-メチル-6-tert-ブチルフェニル))-1,6-ヘキサノールジホスファイト、ヘキサトリデシル-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ジホスファイト、トリス(4、4'-イソプロピリデンビス(2-tert-ブチルフェニル))ホスファイト、トリス(1,3-ステアロイルオキシイソプロピル)ホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、2,2-メチレンビス(3-メチル-4,6-ジ-tert-ブチルフェニル)2-エチルヘキシルホスファイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4'-ビフェニレンジホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4'-ビフェニレンジホスファイト等が挙げられる。
これらリン系熱安定剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
中でも、リン系熱安定剤としては、ポリアミド組成物の耐熱エージング性の一層の向上及びガス発生量の低減という観点から、ペンタエリスリトール型ホスファイト化合物及びトリス(2,4-ジ-tert-ブチルフェニル)ホスファイトからなる群より選ばれる1種以上が好ましい。
ペンタエリスリトール型ホスファイト化合物としては、以下に限定されるものではないが、例えば、2,6-ジ-tert-ブチル-4-メチルフェニル-フェニル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-メチル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-2-エチルヘキシル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-イソデシル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-ラウリル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-イソトリデシル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-ステアリル・ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル・シクロヘキシル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-ベンジル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル・エチルセロソルブ-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-ブチルカルビトール-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-オクチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-ノニルフェニル・ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-2,6-ジ-tert-ブチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-2,4-ジ-tert-ブチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-2,4-ジ-tert-オクチルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-ブチル-4-メチルフェニル-2-シクロヘキシルフェニル-ペンタエリスリトールジホスファイト、2,6-ジ-tert-アミル-4-メチルフェニル-フェニル・ペンタエリストリトールジホスファイト、ビス(2,6-ジ-tert-アミル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-オクチル-4-メチルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。
これらペンタエリスリトール型ホスファイト化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
中でも、ペンタエリスリトール型ホスファイト化合物としては、ポリアミド組成物のガス発生量を低減させる観点から、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-アミル-4-メチルフェニル)ペンタエリスリトールジホスファイト、及び、ビス(2、6-ジ-tert-オクチル-4-メチルフェニル)ペンタエリスリトールジホスファイトからなる群より選ばれる1種以上が好ましく、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトがより好ましい。
リン系熱安定剤を用いる場合、ポリアミド組成物中のリン系熱安定剤の含有量は、ポリアミド組成物の総質量に対して、0.01質量%以上1質量%以下が好ましく、0.1質量%以上1質量%以下がより好ましい。
リン系熱安定剤の含有量が上記数値範囲内の場合、ポリアミド組成物の耐熱エージング性をより一層向上させ、さらにガス発生量をより低減させることができる。
(アミン系熱安定剤)
アミン系熱安定剤としては、以下に限定されるものではないが、例えば、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(フェニルアセトキシ)-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアリルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェノキシ-2,2,6,6-テトラメチルピペリジン、4-(エチルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(シクロヘキシルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(フェニルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-カーボネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-オキサレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-テレフタレート、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-エタン、α,α'-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-p-キシレン、ビス(2,2,6,6-テトラメチル-4-ピペリジルトリレン-2,4-ジカルバメート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサメチレン-1,6-ジカルバメート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,5-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,4-トリカルボキシレート、1-[2-{3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}ブチル]-4-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6-テトラメチルピペリジン、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールとβ,β,β',β'-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物等が挙げられる。
これらアミン系熱安定剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
アミン系熱安定剤を用いる場合、ポリアミド組成物中のアミン系熱安定剤の含有量は、ポリアミド組成物の総質量に対して、0.01質量%以上1質量%以下が好ましく、0.1質量%以上1質量%以下がより好ましい。
アミン系熱安定剤の含有量が上記数値範囲内の場合、ポリアミド組成物の耐熱エージング性をより一層向上させることができ、さらにガス発生量をより低減させることができる。
(元素周期律表の第3族、第4族及び第11~14族の元素の金属塩)
元素周期律表の第3族、第4族及び第11~14族の元素の金属塩としては、これらの族に属する金属の塩であれば何ら制限されることはない。
中でも、ポリアミド組成物の耐熱エージング性を一層向上させる観点から、銅塩が好ましい。かかる銅塩としては、以下に制限されないが、例えば、ハロゲン化銅、酢酸銅、プロピオン酸銅、安息香酸銅、アジピン酸銅、テレフタル酸銅、イソフタル酸銅、サリチル酸銅、ニコチン酸銅、ステアリン酸銅、キレート剤に銅の配位した銅錯塩等が挙げられる。
ハロゲン化銅としては、例えば、ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅等が挙げられる。
キレート剤としては、例えば、エチレンジアミン、エチレンジアミン四酢酸等が挙げられる。
これら銅塩は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
中でも、銅塩としては、ヨウ化銅、臭化第一銅、臭化第二銅、塩化第一銅及び酢酸銅からなる群より選ばれる1種以上が好ましく、ヨウ化銅及び酢酸銅からなる群より選ばれる1種以上がより好ましい。上記に挙げた好ましい銅塩を用いた場合、耐熱エージング性により優れ、且つ、押出時のスクリューやシリンダー部の金属腐食(以下、単に「金属腐食」と称する場合がある)をより効果的に抑制できるポリアミド組成物が得られる。
熱安定剤として銅塩を用いる場合、ポリアミド組成物中の銅塩の含有量は、(A)ポリアミドの総質量に対して、0.01質量%以上0.60質量%以下が好ましく、0.02質量%以上0.40質量%以下がより好ましい。
銅塩の含有量が上記数値範囲内の場合、ポリアミド組成物の耐熱エージング性をより一層向上させるとともに、銅の析出や金属腐食をより効果的に抑制することができる。
また、上記の銅塩に由来する銅元素の含有濃度は、ポリアミド組成物の耐熱エージング性を向上させる観点から、(A)ポリアミド10質量部(100万質量部)に対して、10質量部以上2000質量部以下が好ましく、30質量部以上1500質量部以下がより好ましく、50質量部以上500質量部以下がさらに好ましい。
(アルカリ金属及びアルカリ土類金属のハロゲン化物)
アルカリ金属及びアルカリ土類金属のハロゲン化物としては、以下に限定されるものではないが、例えば、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化ナトリウム、塩化ナトリウム等が挙げられる。
これらアルカリ金属及びアルカリ土類金属のハロゲン化物は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
中でも、アルカリ金属及びアルカリ土類金属のハロゲン化物としては、耐熱エージング性の向上及び金属腐食の抑制という観点から、ヨウ化カリウム及び臭化カリウムからなる群より選ばれる1種以上が好ましく、ヨウ化カリウムがより好ましい。
アルカリ金属及びアルカリ土類金属のハロゲン化物を用いる場合、ポリアミド組成物中のアルカリ金属及びアルカリ土類金属のハロゲン化物の含有量は、(A)ポリアミド100質量部に対して、0.05質量部以上20質量部以下が好ましく、0.2質量部以上10質量部以下がより好ましい。
アルカリ金属及びアルカリ土類金属のハロゲン化物の含有量が上記数値範囲内の場合、ポリアミド組成物の耐熱エージング性がより一層向上するとともに、銅の析出や金属腐食をより効果的に抑制することができる。
上記で説明してきた熱安定剤の成分は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
中でも、熱安定剤としては、ポリアミド組成物の耐熱エージング性をより一層向上させる観点から、銅塩と、アルカリ金属及びアルカリ土類金属のハロゲン化物との混合物が好ましい。
銅塩と、アルカリ金属及びアルカリ土類金属のハロゲン化物との含有比は、銅に対するハロゲンのモル比(ハロゲン/銅)として、2/1以上40/1以下が好ましく、5/1以上30/1以下がより好ましい。
銅に対するハロゲンのモル比(ハロゲン/銅)が上記した範囲内の場合、ポリアミド組成物の耐熱エージング性をより一層向上させることができる。
また、銅に対するハロゲンのモル比(ハロゲン/銅)が上記下限値以上である場合、銅の析出及び金属腐食をより効果的に抑制することができる。一方、銅に対するハロゲンのモル比(ハロゲン/銅)が上記上限値以下である場合、機械特性(靭性等)を殆ど損なうことなく、成形機のスクリュー等の腐食をより効果的に防止できる。
[(F)その他樹脂]
本実施形態のポリアミド組成物は、上記(A)~(C)の各成分に加えて、(F)その他樹脂をさらに含有してもよい。
その他樹脂としては、以下に限定されるものではないが、例えば、ポリエステル、液晶ポリエステル、ポリフェニレンスルフィド、ポリカーボネート、ポリアリレート、フェノール樹脂、エポキシ樹脂等が挙げられる。
(ポリエステル)
ポリエステルとしては、以下に限定されるものではないが、例えば、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。
ポリアミド組成物中のその他樹脂の含有量は、ポリアミド組成物中の(A)ポリアミド100質量部に対して、50質量部以下が好ましく、30質量部以下がより好ましく、10質量部以下がさらに好ましく、5質量部以下が特に好ましい。
ポリアミド組成物中のその他樹脂の含有量が上記数値範囲内であることにより、耐熱性及び離型性により優れるポリアミド組成物とすることができる。
[(G)亜リン酸金属塩及び次亜リン酸金属塩からなる群より選ばれる少なくとも1種の金属塩]
本実施形態のポリアミド組成物は、上記(A)~(C)の各成分に加えて、(G)亜リン酸金属塩及び次亜リン酸金属塩からなる群より選ばれる少なくとも1種の金属塩をさらに含有してもよい。
亜リン酸金属塩及び次亜リン酸金属塩としては、例えば、亜リン酸、次亜リン酸、ピロ亜リン酸又は二亜リン酸と、周期律表第1族及び第2族の元素、マンガン、亜鉛、アルミニウム、アンモニア、アルキルアミン、シクロアルキルアミン又はジアミンとの塩等が挙げられる。
中でも、亜リン酸金属塩及び次亜リン酸金属塩としては、次亜リン酸ナトリウム、次亜リン酸カルシウム、又は、次亜リン酸マグネシウムが好ましい。
これら亜リン酸金属塩及び次亜リン酸金属塩からなる群より選ばれる少なくとも1種を含むことにより、押出加工性及び成形加工安定性により優れるポリアミド組成物を得ることができる。
[(H)亜リン酸エステル化合物]
本実施形態のポリアミド組成物は、上記(A)~(C)の各成分に加えて、(H)亜リン酸エステル化合物をさらに含有してもよい。
亜リン酸エステル化合物としては、例えば、亜リン酸トリフェニル、亜リン酸トリブチル等が挙げられる。
亜リン酸エステル化合物を添加することによって、押出加工性及び成形加工安定により優れるポリアミド組成物を得ることができる。
亜リン酸エステル化合物として具体的には、例えば、トリオクチルホスファイト、トリラウリルホスファイト、トリデシルホスファイト、オクチル-ジフェニルホスファイト、トリスイソデシルホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイト、ジフェニルイソオクチルホスファイト、ジフェニルイソデシルホスファイト、ジフェニルトリデシルホスファイト、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ビス[2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル]エチルホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトール-ジ-ホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェニル-ジ-トリデシル)ホスファイト、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-tert-ブチル-フェニル)ブタン、4,4’-イソプロピリデンビス(フェニル-ジアルキルホスファイト)、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトール-ジ-ホスファイト等が挙げられる。
これら亜リン酸エステル化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[(J)その他添加剤]
本実施形態のポリアミド組成物は、上記(A)~(C)の各成分に加えて、ポリアミド組成物の効果を損なわない範囲で、ポリアミドに慣用的に用いられる、(J)その他添加剤を含有させることもできる。(J)その他添加剤としては、例えば、顔料及び染料等の着色剤(着色マスターバッチを含む)、難燃剤、フィブリル化剤、蛍光漂白剤、可塑化剤、酸化防止剤、紫外線吸収剤、帯電防止剤、流動性改良剤、展着剤、エラストマー等が挙げられる。
ポリアミド組成物中のその他添加剤の含有量は、その種類やポリアミド組成物の用途等によって様々であり、ポリアミド組成物の効果を損なわない範囲であれば特に制限されることはない。
<ポリアミド組成物の製造方法>
本実施形態のポリアミド組成物の製造方法としては、上記(A)ポリアミド(上記(A1)ポリアミド及び上記(A2)ポリアミド)、及び上記(B)炭素繊維を含む原料成分を溶融混練する工程を含む製造方法であれば、特に限定されるものではない。
溶融混錬工程において、例えば、上記原料成分を押出機で溶融混練する場合には、押出機の設定温度を、上記(A)ポリアミドの融点(Tm2)+30℃以下とすることが好ましい。
本実施形態のポリアミド組成物の製造方法において、(C)樹脂炭化物は(B)炭素繊維と同時に、(A)ポリアミドに添加されることが好ましく、(B)炭素繊維は、(C)樹脂炭化物をバインダーとして修飾された炭素繊維束の形態で(A)ポリアミドに添加されることがより好ましい。これにより、ポリアミド組成物の生産性がより向上する。
(A)ポリアミドを含む原料成分を溶融混練する方法としては、例えば、以下の(1)又は(2)の方法等が挙げられる。
(1)(A)ポリアミドとその他の原料とをタンブラー、ヘンシェルミキサー等を用いて混合し、溶融混練機に供給し混練する方法。
(2)単軸又は2軸押出機で溶融状態にした(A)ポリアミドに、サイドフィーダーからその他の原料を配合する方法。
ポリアミド組成物を構成する成分を溶融混練機に供給する方法は、すべての構成成分を同一の供給口に一度に供給してもよく、構成成分をそれぞれ異なる供給口から供給してもよい。
溶融混練温度は、樹脂温度にして250℃以上350℃以下程度であることが好ましい。
溶融混練時間は、0.25分間以上5分間以下程度であることが好ましい。
溶融混練を行う装置としては、特に限定されるものではなく、公知の装置、例えば、単軸又は2軸押出機、バンバリーミキサー、ミキシングロール等の溶融混練機を用いることができる。
本実施形態のポリアミド組成物を製造する際の各成分の配合量は、上述したポリアミド組成物における各成分の含有量と同様である。
≪成形品≫
本実施形態の成形品は、上記ポリアミド組成物を成形してなる。
本実施形態の成形品は、上記ポリアミド組成物を公知の成形方法を用いて、成形することにより得られる。
公知の成形方法としては、以下に限定されるものではないが、例えば、プレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形、溶融紡糸等、一般に知られているプラスチック成形方法が挙げられる。
<用途>
本実施形態の成形品は、上記ポリアミド組成物から得られるので、表面外観及び機械的強度に優れる。そのため、本実施形態の成形品は、自動車部品、電気及び電子部品、家電部品、OA(Office Automation)機器部品、携帯機器部品、産業機器部品、日用品及び家庭品用等の各種部品として、また、押出用途等に好適に用いることができる。中でも、本実施形態の成形品は、自動車部品、電気及び電子部品、家電部品、OA機器部品又は携帯機器部品として好適に用いられる。
自動車部品としては、特に限定されるものではないが、例えば、吸気系部品、冷却系部品、燃料系部品、内装部品、外装部品、電装部品等が挙げられる。
自動車吸気系部品としては、特に限定されるものではないが、例えば、エアインテークマニホールド、インタークーラーインレット、エキゾーストパイプカバー、インナーブッシュ、ベアリングリテーナー、エンジンマウント、エンジンヘッドカバー、リゾネーター、スロットルボディ等が挙げられる。
自動車冷却系部品としては、特に限定されるものではないが、例えば、チェーンカバー、サーモスタットハウジング、アウトレットパイプ、ラジエータータンク、オルタネーター、デリバリーパイプ等が挙げられる。
自動車燃料系部品では、特に限定されるものではないが、例えば、燃料デリバリーパイプ、ガソリンタンクケース等が挙げられる。
自動車内装部品としては、特に限定されるものではないが、例えば、インストルメンタルパネル、コンソールボックス、グローブボックス、ステアリングホイール、トリム等が挙げられる。
自動車外装部品としては、特に限定されるものではないが、例えば、モール、ランプハウジング、フロントグリル、マッドガード、サイドバンパー、ドアミラーステイ、ルーフレール等が挙げられる。
自動車電装部品としては、特に限定されるものではないが、例えば、コネクター、ワイヤーハーネスコネクタ、モーター部品、ランプソケット、センサー車載スイッチ、コンビネーションスイッチ等が挙げられる。
電気及び電子部品としては、特に限定されないが、例えば、コネクター、発光装置用リフレクタ、スイッチ、リレー、プリント配線板、電子部品のハウジング、コンセント、ノイズフィルター、コイルボビン、モーターエンドキャップ等が挙げられる。
発光装置用リフレクタとしては、発光ダイオード(LED)の他にレーザーダイオード(LD)等の光半導体をはじめ、フォットダイオード、電荷結合素子(CCD)、相補型金属酸化膜半導体(CMOS)等の半導体パッケージに広く使用することができる。
携帯機器部品としては、特に限定されるものではないが、例えば、携帯電話、スマートフォン、パソコン、携帯ゲーム機器、デジタルカメラ等の筐体及び構造体等が挙げられる。
産業機器部品としては、特に限定されるものではないが、例えば、ギア、カム、絶縁ブロック、バルブ、電動工具部品、農機具部品、エンジンカバー等が挙げられる。
日用品及び家庭品としては、特に限定されるものではないが、例えば、ボタン、食品容器、オフィス家具等が挙げられる。
押出用途としては、特に限定されるものではないが、例えば、フィルム、シート、フィラメント、チューブ、棒、中空成形品等に用いられる。
本実施形態の成形品は、これら種々の用途の中でも、外装用構造材料に特に好適である。外装用構造材料とは、成形品表面加工性(例えば、シボ加工性、高い表面光沢性等)が要求され、且つ、比較的大きな強度剛性の要求される機構部品又は構造部品のことである。
外装用構造材料として具体的には、例えば、OA機器分野用品、自動車部品、電気分野用品、その他分野用品等が挙げられる。
OA機器分野用品としては、例えば、机の脚、椅子の脚、座、キャビン、ワゴンの部品等の家具用品、ノート型パソコンハウジング等が挙げられる。
自動車部品としては、例えば、ドアミラーステイ、ホイールリム、ホイールキャップ、ワイパー、モーターファン、シートロック部品、ギア、ランプハウジング、ホイールリム、ホイールスポーク、サドル、サドルポスト、ハンドル、スタンド、荷台等が挙げられる。
電気分野用品としては、例えば、プリー、ギア、熱風機ハウジング等が挙げられる。
その他分野用品としては、例えば、バルブハウジング、釘、ネジ、ボルト、ボルトナット等が挙げられる。
また、本実施形態の成形品は、表面外観に優れているので、成形品表面に塗装膜を形成させた成形品としても好ましく用いられる。
塗装膜の形成方法は公知の方法であれば特に限定されるものではなく、例えば、スプレー法、静電塗装法等の塗装によることができる。
また、塗装に用いる塗料は、公知のものであれば特に限定されず、例えば、メラミン架橋タイプのポリエステルポリオール樹脂塗料、アクリルウレタン系塗料等を用いることができる。
中でも、本実施形態の成形品は、機械的強度、靱性、耐熱性に優れ、耐振動疲労性にも優れることから自動車用の部品材料としてより好適であり、さらに、摺動性に優れることから、ギア、ベアリング用の部品材料として特に好適である。また、機械的強度、靱性、耐熱性に優れることから、電気及び電子用の部品材料としてより好適である。
以下、具体的な実施例及び比較例を挙げて、本発明について詳細に説明するが、本発明は以下の実施例に限定されるものではない。
なお、実施例において、1kg/cmは、0.098MPaを意味する。
<構成成分>
以下、実施例及び比較例に用いた(A1)ポリアミド、(A2)ポリアミド、(B)炭素繊維及び(C)樹脂炭化物について説明する。
[(A1)結晶化エンタルピーが50J/g以上であるポリアミド]
A-1:ポリアミド66(旭化成社製 1300S、結晶化エンタルピー 65J/g)
[(A2)結晶化エンタルピーが50J/g未満であるポリアミド]
A2-1:ポリアミド6I(ランクセス社製 T-40、結晶化エンタルピー 0J/k(DSC測定において結晶化ピークが観測されなかった))
A2-2:ポリアミド6I/6T(エムス社製G21、結晶化エンタルピー 35J/K)
A2-3:ポリアミドMXD6(三菱エンジニアリングプラスチックス株式会社製 樹脂「レニー」(登録商標)#6002、結晶化エンタルピー 40J/K)
[(B)炭素繊維と(C)樹脂炭化物とを含む炭素繊維束]
BC-1:(B)炭素繊維と(C)樹脂炭化物とを含む炭素繊維束(リサイクル炭素繊維)(炭素繊維束の平均繊維長:3mm、炭素繊維束のかさ密度:0.15g/cm、炭素繊維束の大気雰囲気下での450℃2時間の質量減少量:13質量%、炭素繊維束の大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分:99質量%、炭素繊維束の表面元素中の炭素含有率:90atom%)
[(B)炭素繊維]
B-1:新品の炭素繊維(東邦テナックス社製、商品名「HTC413」)(かさ密度:0.4g/cm、大気雰囲気下での450℃2時間の質量減少量:3質量%、大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分:1質量%、表面元素中の炭素含有率:73atom%)
<物性の測定方法及び評価方法>
(A1)結晶化エンタルピーが50J/g以上であるポリアミド及び(A2)結晶化エンタルピーが50J/g未満であるポリアミド、並びに、ポリアミド組成物の物性測定は、下記の方法を用いて、実施した。
また、実施例及び比較例で得られた各ポリアミド組成物を成形してなる成形品を用いて、下記の方法により、各種評価を実施した。
[物性1]
((B)炭素繊維に対する(C)樹脂炭化物の面積占有比率)
実施例、比較例及び参考例で得られたポリアミド組成物のペレット10mgを、2mLのHFIP溶媒中に溶解させて、得られた溶液を実体顕微鏡にて撮影した後、得られた撮像を、画像解析ソフトを用いて処理した。処理結果から、面積が20μm2以上300μm2以下であり、アスペクト比l/dが5以下である(C)樹脂炭化物の量、及び、(C)樹脂炭化物の(B)炭素繊維に対する面積占有比率を求めた。
[物性2]
(融解ピーク温度Tm2(融点)、結晶化ピーク温度Tc、結晶化エンタルピーΔH)
JIS-K7121に準じて、PERKIN-ELMER社製Diamond-DSCを用いて測定した。具体的には、以下のとおり測定した。
まず、窒素雰囲気下、各ポリアミド約10mgを、室温からサンプルの融点に応じて300℃以上350℃以下程度まで、昇温速度20℃/minで昇温した。このときに現れる吸熱ピーク(融解ピーク)の最高ピーク温度をTm1(℃)とした。次に、昇温の最高温度で2分間保った。この最高温度ではポリアミドは溶融状態であった。その後、降温速度20℃/minで30℃まで降温した。このときに現れる発熱ピークを結晶化ピークとし、結晶化ピーク温度をTc、結晶化ピーク面積を結晶化エンタルピーΔH(J/g)とした。その後、30℃で2分間保持した後、30℃からサンプルの融点に応じて280℃以上300℃以下程度まで、昇温速度20℃/minで昇温した。このときに現れる吸熱ピーク(融解ピーク)の最高ピーク温度を融点Tm2(℃)とした。
[物性3]
(ポリアミド組成物のtanδピーク温度)
粘弾性測定解析装置(レオロジ製、DVE-V4)を用いて、各ポリアミド組成物から作製したASTM D1822 TYPE L試験片の平行部を短冊状に切削した試験片の動的粘弾性の温度分散スペクトルを以下の条件で測定した。なお、試験片寸法は、3.1mm(幅)×2.9mm(厚み)×15mm(長さ:つかみ具間距離)であった。貯蔵弾性率E1と損失弾性率E2の比E2/E1をtanδとし、最も高い温度をtanδピーク温度とした。
(測定条件)
測定モード:引張
波形:正弦波
周波数:3.5Hz
温度範囲:0℃以上180℃以下
昇温ステップ:2℃/min
静荷重:400g
変位振幅:0.75μm
[評価1]表面外観
平板プレート成形片の中央部を、目視で確認した。表面外観の評価結果は下記のとおりとした。
(評価基準)
5:表面平滑性、光沢に優れる
4:表面にやや平滑でない部分が見られ、光沢に優れる
3:表面に平滑でない部分が見られ、光沢にムラがある
2:表面が全体的に平滑でなく、光沢がほぼない
1:表面が全体的に荒れており、光沢がない
[評価2]引張強度
実施例及び比較例で得られた多目的試験片A型の成形片を用いて、ISO527に準拠し、80℃の温度条件下、引張速度50mm/minで引張試験を行い、引張降伏応力を測定し、引張強度とした。
<ポリアミド組成物及び成形品の製造>
[実施例1~7、比較例1~3及び参考例1~4]
(1)ポリアミド組成物PA-a1~PA-a7、PA-b1~PA-b3及びPA-c1~PA-c4の製造
(A1)結晶化エンタルピーが50J/g以上であるポリアミド、及び(A2)結晶化エンタルピーが50J/g未満であるポリアミド、並びに、(B)炭素繊維と(C)樹脂炭化物とを含む炭素繊維束又は(B)炭素繊維を下記表1に記載の種類及び割合となるように用いて、各ポリアミド組成物を以下の方法で製造した。
なお、(A1)結晶化エンタルピーが50J/g以上であるポリアミド、及び(A2)結晶化エンタルピーが50J/g未満であるポリアミドは、窒素気流中で乾燥し水分率を約0.2質量%に調整してから、ポリアミド組成物の原料として用いた。
ポリアミド組成物の製造装置としては、二軸押出機(ZSK-26MC:コペリオン社製(ドイツ))を用いた。
二軸押出機は、押出機上流側から1番目のバレルに上流側供給口を有し、6番目のバレルに下流側第1供給口を有し、9番目のバレルに下流側第2供給口を有していた。また、二軸押出機において、押出機長さ(l1)/スクリュー径(d1)は48であり、バレル数は12であった。
二軸押出機において、上流側供給口からダイまでの温度を各ポリアミドの融点Tm2+20℃に設定し、スクリュー回転数250rpm、吐出量25kg/時間に設定した。
上記製造装置を用いた具体的な製造方法としては、(A1)結晶化エンタルピーが50J/g以上であるポリアミド、及び(A2)結晶化エンタルピーが50J/g未満であるポリアミドを、二軸押出機の上流側供給口より供給し、二軸押出機の下流側第1供給口より、(B)炭素繊維と(C)樹脂炭化物とを含む炭素繊維束又は(B)炭素繊維を供給し、ダイヘッドより押し出された溶融混練物をストランド状で冷却し、ペレタイズして各ポリアミド組成物のペレットを得た。得られたポリアミド組成物のペレットを、窒素気流中で乾燥し、ポリアミド組成物中の水分量を500ppm以下にした。
(2)成形品1(平板プレート成形片)の製造
次いで、得られた各ポリアミド組成物のペレットについて、射出成形機(NEX50III-5EG、日精樹脂工業株式会社製)を用いて、以下の条件に設定し、充填時間が1.6±0.1秒の範囲となるように、射出圧力及び射出速度を適宜調整し、平板プレート成形片(6cm×9cm、厚さ2mm)を製造した。
(製造条件)
冷却時間:25秒
スクリュー回転数:200rpm
金型温度:Tanδピーク温度+5℃又はTanδピーク温度+10℃(290℃又は300℃)
シリンダー温度:(Tm2+10)℃以上(Tm2+30)℃以下
成形速度:30mm/分又は50mm/分
(3)成形品2(多目的試験片A型の成形片)の製造
次いで、得られた各ポリアミド組成物のペレットについて、射出成形機(PS-40E、日精樹脂工業株式会社製)を用いて、ISO3167に準拠し、それぞれ多目的試験片A型の成形片に成形した。具体的な成形条件は、射出+保圧時間25秒、冷却時間15秒、金型温度を290℃又は300℃、溶融樹脂温度をポリアミドの高温側の融解ピーク温度(Tm2)+20℃、成形速度を30mm/分又は50mm/分に設定した。
実施例及び比較例で得られたポリアミド組成物を用いて製造した各成形品の各種評価結果を以下の表1及び表2に示す。
Figure 2023081806000001
Figure 2023081806000002
表1~表2から、(A1)結晶化エンタルピーが50J/g以上であるポリアミドと、(A2)結晶化エンタルピーが50J/g未満であるポリアミド及び(B)炭素繊維を含み、(B)炭素繊維を集束してなる炭素繊維束のかさ密度が特定の数値範囲内であるポリアミド組成物PA-a1~PA-a7(実施例1~7)では、上記構成を有しないポリアミド組成物PA-b1~PA-b3(比較例1~3)よりも、成形品としたときの表面外観及び機械的強度(引張強度)に優れていた。
特に、上記構成を有するポリアミド組成物は、実施例で示されているように、表面外観及び機械的強度の成形条件依存性が低減されていた。一方、上記構成を有しないポリアミド組成物は、比較例で示されているように、表面外観及び機械的強度の成形条件依存性が大きかった。表面外観及び機械的強度の成形条件依存性が小さいことは、成形条件を広く設定することが可能であり、工業的に優位である。
また、新品の炭素繊維B-1を用いたポリアミド組成物PA-c1~PA-c4(参考例1~4)では、上記構成を有することによる効果が、実施例と比較して小さかった。新品の炭素繊維を用いた組成物は良好な表面外観及び機械的強度を比較的得やすい。一方、で、かさ密度が特定の数値範囲内である(B)炭素繊維を集束してなる炭素繊維束は良好な表面外観及び機械的強度を比較的得ることが難しく、上記構成を有するポリアミド組成物とすることでその課題を効果的に解決することができることが明らかとなった。
本実施形態のポリアミド組成物によれば、異なる成形条件においても成形品としたときの表面外観及び機械的強度が安定して優れるポリアミド組成物を提供することができる。本実施形態の成形品は、前記ポリアミド組成物を成形してなり、表面外観及び機械的強度に優れることから、自動車用、電気及び電子用、産業資材用、工業材料用、日用及び家庭品用等、各種部品の成形材料として好適に使用することができる。

Claims (10)

  1. (A1)結晶化エンタルピーが50J/g以上であるポリアミドと、
    (A2)結晶化エンタルピーが50J/g未満であるポリアミドと、
    (B)炭素繊維と、
    を含有するポリアミド組成物であり、
    前記(B)炭素繊維を集束してなる炭素繊維束のかさ密度が0.05g/cm以上0.34g/cm以下である、ポリアミド組成物。
  2. (C)樹脂炭化物を更に含有する、請求項1に記載のポリアミド組成物。
  3. (C)樹脂炭化物は、前記ポリアミド組成物をヘキサフルオロイソプロパノール溶媒中に溶解させて観察した際に、面積が20μm以上300μm以下であり、且つ、短径Dに対する長径Lのアスペクト比L/Dが5以下である、請求項2に記載のポリアミド組成物。
  4. 前記ポリアミド組成物をヘキサフルオロイソプロパノール溶媒中に溶解させて観察した際の、(C)樹脂炭化物の面積占有比率が、前記(B)炭素繊維の面積に対して20%以上50%以下である、請求項2又は3に記載のポリアミド組成物。
  5. 前記(B)炭素繊維を集束してなる炭素繊維束の大気雰囲気下での450℃2時間の質量減少量が2質量%以上20質量%以下であり、且つ、前記炭素繊維束の大気雰囲気下での450℃2時間の質量減少量中のクロロホルム不溶分の含有量が70質量%以上である、請求項1~4のいずれか一項に記載のポリアミド組成物。
  6. X線光電分光分析による前記(B)炭素繊維を集束してなる炭素繊維束の表面元素中の炭素原子含有率が80atom%以上である、請求項1~5のいずれか一項に記載のポリアミド組成物。
  7. 前記(B)炭素繊維を集束してなる炭素繊維束の含有量が、(A1)ポリアミド及び(A2)ポリアミドの合計100質量部に対して、20質量部以上100質量部以下である、請求項1~6のいずれか一項に記載のポリアミド組成物。
  8. 前記(A1)結晶化エンタルピーが50J/g以上であるポリアミドの含有量がポリアミド組成物中の全ポリアミド樹脂の総質量に対して60質量%以上95質量%以下である、請求項1~7のいずれか一項に記載のポリアミド組成物。
  9. 前記(B)炭素繊維がリサイクル炭素繊維である、請求項1~8のいずれか一項に記載のポリアミド組成物。
  10. 請求項1~9のいずれか一項に記載のポリアミド組成物を成形してなる、成形品。
JP2021212955A 2021-12-01 2021-12-27 ポリアミド組成物及び成形品 Pending JP2023081806A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021195385 2021-12-01
JP2021195385 2021-12-01

Publications (1)

Publication Number Publication Date
JP2023081806A true JP2023081806A (ja) 2023-06-13

Family

ID=86728115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021212955A Pending JP2023081806A (ja) 2021-12-01 2021-12-27 ポリアミド組成物及び成形品

Country Status (1)

Country Link
JP (1) JP2023081806A (ja)

Similar Documents

Publication Publication Date Title
JP3481730B2 (ja) ポリアミド組成物
JP5964964B2 (ja) ポリアミド、ポリアミド組成物及び成形品
EP2662397A1 (en) Copolymer polyamide
JP7195850B2 (ja) ポリアミド組成物、成形品及び半芳香族ポリアミド
EP2687555B1 (en) Polyamide and polyamide composition
JP4452626B2 (ja) ポリアミド成形材料、それから製造可能な成形品およびその用途
TW201525065A (zh) 聚醯胺組成物、成形品、led用反射板,及防止因熱致使反射率降低之方法
JP2020033539A (ja) ポリアミド組成物
JP5620204B2 (ja) ポリアミド及びポリアミド組成物
JP2011042782A (ja) ポリアミド組成物及びポリアミド組成物を成形した成形体
JP2023081804A (ja) ポリアミド組成物及び成形品
JP5523247B2 (ja) ポリアミド組成物及びポリアミド組成物からなる成形体
JP2023081807A (ja) ポリアミド組成物及び成形品
JP7440996B2 (ja) ポリアミド組成物及び成形品
JP2023081805A (ja) ポリアミド組成物、並びに、成形品及びその製造方法
JP2015129243A (ja) ポリアミド組成物及び成形品
JP6843698B2 (ja) ポリアミド組成物及び成形品
JP2019026670A (ja) ポリアミド組成物および成形品
JP2023081806A (ja) ポリアミド組成物及び成形品
JP7023723B2 (ja) ポリアミド組成物及び成形品
JP6034074B2 (ja) 共重合ポリアミド
JP2023081803A (ja) ポリアミド組成物及び成形品
JP5959325B2 (ja) ポリアミド組成物及びポリアミド組成物を成形した成形体
JP2023081801A (ja) ポリアミド組成物及び成形品
JP2023081802A (ja) ポリアミド組成物の製造方法

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220113