JP2023070335A - 鋼の連続鋳造方法 - Google Patents

鋼の連続鋳造方法 Download PDF

Info

Publication number
JP2023070335A
JP2023070335A JP2021182432A JP2021182432A JP2023070335A JP 2023070335 A JP2023070335 A JP 2023070335A JP 2021182432 A JP2021182432 A JP 2021182432A JP 2021182432 A JP2021182432 A JP 2021182432A JP 2023070335 A JP2023070335 A JP 2023070335A
Authority
JP
Japan
Prior art keywords
mold
copper plate
long
casting
side copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021182432A
Other languages
English (en)
Inventor
航也 上田
Koya Ueda
慎 高屋
Makoto Takaya
太朗 廣角
Taro Hirokado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2021182432A priority Critical patent/JP2023070335A/ja
Publication of JP2023070335A publication Critical patent/JP2023070335A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

【課題】鋳造空間の矩形形状の四隅に面取り部を形成する連続鋳造鋳型を用いた場合において、長辺銅板について研削を行った上で連続鋳造に用いた場合であっても、鋳片のコーナー部の横割れ発生を防止することのできる鋼の連続鋳造方法を提供する。【解決手段】連続鋳造鋳型1の鋳型短辺6は鋳造空間3に面取り部7を形成するための張出部2を有し、鋳型長辺5の長辺銅板10は冷却機構11を有し、鋳造中のメニスカス位置の張出部端部16の短辺銅板温度に関し、長辺銅板使用初期と研削後の温度差が15℃以下となるように、長辺銅板10の鋳造空間3に面する側と冷却機構11との間の熱伝達係数について、研削後の熱伝達係数を使用開始時に比較して低減させる。これにより、長辺銅板研削後でも、鋳造中の曲げ部・矯正部における鋳片コーナー温度を脆化温度域より高温側に維持し、鋳片のコーナー部の横割れ発生を防止することができる。【選択図】図1

Description

本発明は、鋼の連続鋳造方法に関するものである。
鋼の連続鋳造において、垂直曲げ型、あるいは湾曲型の連続鋳造装置が一般的に用いられている。垂直曲げ型の連続鋳造装置においては、鋳型内では垂直の鋳片が鋳込まれ、鋳型下の曲げ部で湾曲型に曲げられ、湾曲部を経て、鋳片が水平に向いたところ(矯正部)で矯正され、水平部において鋳造が完了する。湾曲型の連続鋳造装置においては、鋳型内から湾曲形状の鋳片が鋳込まれ、鋳型下の湾曲部を経て、鋳片が水平に向いたところ(矯正部)で矯正され、水平部において鋳造が完了する。ここでは、水平部を通過する時点の鋳片の上面側を「上表面」、下面側を「下表面」と呼ぶ。垂直曲げ型の曲げ部では、鋳片の上表面側に圧縮応力、下表面側に引張応力がかかる。垂直曲げ型と湾曲型の矯正部では、鋳片の上表面側に引張応力、下表面側に圧縮応力がかかる。
連続鋳造中の高温の鋳片表面温度に関し、オーステナイトからフェライトへの相変態領域近傍の温度域において、引張応力を受けたときに割れが発生しやすい温度域(脆化温度域)が存在することが知られている。第3領域の脆化域とも呼ばれる。連続鋳造中の曲げ部の下表面側、矯正部の上表面側については引張応力がかかるので、これら部分で鋳片表面温度が脆化温度域内にあると、鋳片表面に割れが発生しやすい。特に長辺面のコーナー付近において割れが発生する。発生する割れは、旧オーステナイト粒界に沿って発生する横ひび割れである。
従来は、曲げ部・矯正部での鋳片表層の温度を延性が低下する温度域(脆化温度域)を高温側に回避して曲げ・矯正を行い、割れの発生を抑制する方法が取られている。しかしながら、鋳片の角部(コーナー部)周辺は長辺面と短辺面の両方向から冷却されるため、鋳片の他部分に比べて表面温度が低くなり、不可避的に上記脆化温度域で曲げ、矯正がなされることがある。従って、コーナー部付近には割れが容易に発生する。
スラブを鋳造するスラブ連続鋳造装置の鋳型については、図2に示すように、対向する2つの鋳型長辺5と、同じく対面する2つの鋳型短辺6によって形成される。2つの鋳型短辺6は、2つの鋳型長辺5によって挟まれるように拘束されている。これら鋳型長辺5と鋳型短辺6とで囲まれた空間が、溶鋼が注入されて鋳片が形成される空間であり、以下「鋳造空間3」と呼ぶ。通常の連続鋳造鋳型においては、鋳造空間は矩形の形状を有しており、鋳造される鋳片の断面形状は矩形となる。
鋳造空間3を形成する鋳型内面のコーナー部に張出部2を設け、これにより、鋳造空間3の断面形状において、矩形形状の四隅に面取り部7を形成する鋳型が知られている。面取り(チャンファー)鋳型とも呼ばれる。面取り鋳型を用いて鋳造した鋳片の断面形状においても、矩形の四隅が面取りされた形状として鋳造される。
特許文献1には、二つの鋳型長辺と、鋳片の角に面取り面を形成するように両側端部に突出部が形成された二つの鋳型短辺とを含む発明が開示されている。鋳型短辺に突出部(張出部)が形成されることにより、連続鋳造時に鋳片の角に面取り面が形成されて角部の温度が急激に減少することを防止し、鋳片の曲げまたは校正(矯正)作業時に第3領域の脆性区間を回避するようになってコーナークラックの発生を低減させることができるとしている。
非特許文献1には、直角鋳型に替えてチャンファー鋳型を用いることで、鋳型下端での鋳片コーナー温度が上昇すること、矯正部(straightening point)におけるエッジでの最大応力が低減すること、低合金高張力鋼スラブのコーナー横割れが有効に改善すること、が記載されている。
特許文献2においては、上記した面取り(チャンファー)鋳型を使用して鋳片を鋳造した場合、鋳片角部の冷却が緩冷却となり、この鋳片角部に健全な鋳片シェル(凝固シェル)を形成できないおそれがあり、例えば、鋳片角部の鋳片シェルが破れ、未凝固の溶鋼が流出するブレークアウトが発生し、鋳造作業の中断や長時間の休止、更には設備損傷のような事故を招く恐れがあるとしている。そして、鋳片が引き抜かれる方向に鋳片シェルの凝固収縮量に追従して間隔が徐々に狭まる短辺側傾斜部を形成することにより、鋳片角部に健全な鋳片シェルを形成でき、これにより、ブレークアウトの発生を抑制、更には防止できるとしている。
非特許文献2には、チャンファー鋳型でコーナー部冷却不足によるブレークアウトが発生したので、冷却構造を再設計した、と記載されている。
特許文献3には、垂直曲げ型連続鋳造機を用いた連続鋳造において、連続鋳造鋳型の長辺と短辺で区画される矩形空間の四隅を、所定の長さ比で直角三角形状に取り除いた鋳造空間を有する鋳型を用いることで、鋳片のコーナー部での応力負荷を軽減でき、2次冷却条件と相まって、曲げ時の鋳片コーナー部表面割れ発生を防止できるとしている。鋳型の直下から曲げ部に至る前において、前記鋳片の少なくともコーナー部の表面温度を、一旦Ar3点以下まで低下し、次いで、少なくとも該コーナー部の表面温度を800℃以上にしてから曲げ部を800℃以上で通過させることとしている。
特許文献4においては、ブルーム連続鋳造に関し、上記面取り鋳型ではない通常の矩形鋳型を用いる場合において、鋳型長辺のコーナーよりの冷却能を緩和することにより、ブルーム鋳片のコーナーよりに発生する縦割れ欠陥を低減する対策が開示されている。
鋳型銅板において、銅板内に冷却水の水路が形成される。水路は、スリット型または貫通孔型で形成され、水路内を冷却水が流通することによって鋳型銅板が冷却される。鋳型長辺銅板は、矩形鋳型・面取り(チャンファー)鋳型にかかわらず、一般に鋳造に従い表面が摩耗し、摩耗した銅板は表面を数mm研削され再使用される。このような場合、銅板表面と冷却水の水路との距離が近くなり、鋳型銅板の冷却能力が増大する。
特許文献5においては、面取りを有しない通常の矩形鋳型を対象として、長辺銅板が研削された結果冷却能力が増大し、短辺銅板の端部の表面温度が低下する現象が起こるとしている。そして、上記特許文献4(コーナー縦割れ対策)を例示した上で、スラブ連続鋳造でコーナー割れを低減する目的で、長辺銅板の研削回数に応じて短辺銅板端部側の冷却水流路での冷却水の流速を調整する方法が開示されている。
国際公開WO2013/100499号 特開2015-128776号公報 国際公開WO2016/013186号 特開平03-000453号公報 特開2016-112589号公報
特許文献1、非特許文献1の記載からも明らかなように、連続鋳造において、鋳造空間の矩形形状の四隅に面取り部を形成する連続鋳造鋳型、即ち面取り(チャンファー)鋳型を用いることにより、連続鋳造中の曲げ部や矯正部で鋳片コーナー部の鋳片表面温度が脆化温度域を高温側に外れ、割れ(横ひび割れ)の発生を防止することができる。ところが、長辺銅板について研削を行った上で連続鋳造に用いた場合、面取り鋳型を使用しているにもかかわらず、鋳片のコーナー部の割れ発生を防止できない場合があることがわかった。
特許文献5には、上述のように、面取り部を有しない通常の矩形鋳型を対象として、長辺銅板の研削を行った場合について、長辺銅板の研削回数に応じて短辺銅板端部側の冷却水流路での冷却水の流速を調整することにより、スラブ連続鋳造でコーナー割れ(縦割れ)を低減する発明が開示されている。ところが、面取り鋳型を用いる場合においては、長辺銅板の研削を行った場合について、短辺銅板端部側の冷却水流路での冷却水の流速を低減しても、鋳片のコーナー横割れを低減できないことが判明した。
本発明は、鋳造空間の矩形形状の四隅に面取り部を形成する連続鋳造鋳型を用いた場合において、長辺銅板について研削を行った上で連続鋳造に用いた場合であっても、鋳片のコーナー部の横割れ発生を防止することのできる鋼の連続鋳造方法を提供することを目的とする。
即ち、本発明の要旨とするところは以下のとおりである。
[1]対向する2枚の鋳型長辺と、前記鋳型長辺に挟まれた2枚の鋳型短辺とを有する連続鋳造鋳型を用いる鋼の連続鋳造方法であって、
前記連続鋳造鋳型における、鋳片が通過する空間を鋳造空間と呼び、鋳造方向のメニスカス位置における前記鋳造空間の断面を鋳造断面と呼び、当該鋳造断面はその四隅に面取り部を有し、前記鋳型短辺は、前記鋳型長辺に接する両端部の前記鋳造空間に面する面に、前記鋳造断面の前記面取り部に対応する張出部を有し、
前記鋳型短辺の前記鋳造空間に面する面のうち前記鋳型長辺と接する部分を張出部端部と呼び、前記メニスカス位置における前記張出部端部の連続鋳造中における温度を張出部端部温度と呼び、
前記鋳型長辺は、前記鋳造空間に面する側に長辺銅板を有し、前記長辺銅板は冷却機構を有し、前記長辺銅板の使用開始時と、前記長辺銅板の表面を研削した後について、それぞれの前記長辺銅板を組み込んだ前記連続鋳造鋳型を用い、同じ連続鋳造条件で鋳片を鋳造しているときの前記張出部端部温度をそれぞれ初期張出部端部温度、研削後張出部端部温度として、
前記長辺銅板の前記鋳造空間に面する側と前記冷却機構との間の熱伝達係数について、前記初期張出部端部温度と前記研削後張出部端部温度の差が15℃以下となるように、前記長辺銅板の表面を研削した後の前記熱伝達係数を低減させることを特徴とする鋼の連続鋳造方法。
[2]前記冷却機構を流れる冷却水の流速に関して、前記長辺銅板の使用開始時の前記流速に比較して、前記長辺銅板の表面を研削した後の前記流速を低下させることにより、前記熱伝達係数を低減させることを特徴とする[1]に記載の鋼の連続鋳造方法。
本発明の鋼の連続鋳造方法は、鋳造空間の矩形形状の四隅に面取り部を形成する連続鋳造鋳型を用いた場合において、長辺銅板について研削を行った上で連続鋳造に用いた場合であっても、長辺銅板の鋳造空間に面する側と冷却機構との間の熱伝達係数を低減することにより、鋳片のコーナー部の横割れ発生を防止することができる。
連続鋳造鋳型を示す図であり、(A)は平面図、(B)(C)はX部拡大図でそれぞれ長辺銅板研削前と研削後を示す図である。 連続鋳造鋳型を示す図であり、(A)はA-A矢視側面断面図、(B)はB-B矢視平面断面図、(C)は鋳造断面を示す図である。
本発明の鋼の連続鋳造方法において用いる連続鋳造鋳型1について、図1、図2に基づいて説明を行う。図1は連続鋳造鋳型を示す図であり、(A)は平面図、(B)(C)は(A)のX部拡大図である。
連続鋳造鋳型1は、対向する2枚の鋳型長辺5と、鋳型長辺5に挟まれた2枚の鋳型短辺6とを有する。連続鋳造鋳型1における、鋳片が通過する空間を鋳造空間3と呼び、鋳造方向のメニスカス位置9における鋳造空間3の断面を鋳造断面4と呼ぶ。鋳造断面4の四隅に面取り部7を有する。鋳型短辺6は、鋳型長辺5に接する両端部に、鋳造断面4の面取り部7に対応する張出部2を有する。鋳型短辺6の鋳造空間3に面する面(内表面15)のうち鋳型長辺5と接する部分を張出部端部16と呼び、連続鋳造中におけるメニスカス位置9での張出部端部16の温度を張出部端部温度と呼ぶ。
鋳型長辺5、鋳型短辺6はそれぞれ、鋳造空間3に面する側に冷却機構11を有する長辺銅板10、短辺銅板14を有する。長辺銅板10、短辺銅板14はいずれも、熱伝導の良い銅または銅合金で形成する。長辺銅板10、短辺銅板14は、バックフレーム13によって背面から支持されている。冷却機構11については、冷却水流路12に冷却水を流通する機構を有している。冷却水流路12は、長辺銅板10、短辺銅板14に設けられた鋳造方向に向かうスリット12Aあるいは貫通孔12Bによって構成される。冷却水流路12としてスリット12Aを用いる場合は、図1(B)に示すように、長辺銅板10中のスリット12Aとバックフレーム13とによって冷却水流路12が形成される。図1(B)に示す例では、鋳型短辺6については、短辺銅板14に設けた貫通孔12B(鋳造方向に向いている)を冷却水流路12として冷却水を流通する機構を用いている。もちろん、短辺銅板14についても、冷却水流路12としてスリット12Aを用いることができる。
長辺銅板10は、前述のように、熱伝導の良い銅または銅合金で形成する。長辺銅板10の内表面15は鋳造する鋳片との接触面となるため、内表面15の損耗防止のためにニッケルめっきやクロムめっきが施される。ところが、鋳造チャージ数が1500チャージを超えると、長辺銅板10の内表面15は損耗する。内表面15のめっきが損耗した長辺銅板10を使い続けると鋳片の表面品質欠陥の原因となり得るため、連続鋳造鋳型1から取り外した上で長辺銅板10の内表面15の損耗状況に応じて内表面15を研削し、再度めっき処理を施した上で連続鋳造鋳型1に組み込んで再使用が行われる。
長辺銅板10の研削回数に応じて、長辺銅板10の厚み20が減少する(図1参照)。図1(B)は研削前の長辺銅板10を用いており、厚み20は40mmである。図1(C)は研削後の長辺銅板10を用いており、厚み20は35mmである。長辺銅板10には、前述のとおり、冷却水流路12が形成されている。長辺銅板10において、冷却水流路12の内表面15に最も近い位置と内表面15との間の距離(内表面最短距離21)も、長辺銅板10の厚み20が減少するのに対応して減少する。内表面最短距離21が短くなるほど、長辺銅板10の鋳造空間3に面する側(内表面15)と冷却機構11との間の熱伝達係数が増加する。なお、ここでいう熱伝達係数は、長辺銅板10の内表面15から入熱する熱流束を、長辺銅板10の内表面15温度と冷却機構11温度(冷却水温度)の差分で除した値を意味する。
前述のように、連続鋳造において、鋳造断面4の矩形形状の四隅に面取り部7を形成する鋳型、即ち鋳型短辺6の端部に張出部2を有する連続鋳造鋳型1(面取り鋳型)を用いることにより、連続鋳造中の曲げ部や矯正部で鋳片コーナー部の鋳片表面温度が脆化温度域を高温側に外れ、割れ(横割れ)の発生を防止することができる。ところが、長辺銅板10について研削を行った上で連続鋳造に用いた場合、面取り鋳型を使用しているにもかかわらず、鋳片のコーナー部の割れ発生を防止できない場合があることがわかった。
ここで、連続鋳造中における鋳型内の温度分布について、伝熱計算によって算出を試みた。図1に示す構造を有する連続鋳造鋳型1について、鋳型短辺6の鋳造空間3に面する面(内表面15)のうち鋳型長辺5と接する部分が張出部端部16であり、連続鋳造中におけるメニスカス位置9での張出部端部16の温度を張出部端部温度とする。図1(B)(C)に示すように、長辺銅板10の冷却機構11は冷却水流路12がスリット12Aであり、短辺銅板14の冷却機構11は冷却水流路12が貫通孔12Bである。長辺銅板10と短辺銅板14の接触面には接触抵抗があるとしている。
鋼スラブ(幅:2200mm、厚さ:300mm)の鋳型形状について、伝熱計算を行った。表1のNo.1~6は面取り鋳型、No.7は矩形鋳型を用いている。面取り鋳型の面取り形状は、前記長辺側辺長さa=10mm、短辺側辺長さb=20mmとし、張出部基部17と張出部端部16との間を直線で結んだ形状としている。長辺銅板10として、研削を行う前の初期の銅板厚み(40mm)のものと、研削を行った後の銅板厚み(35mm)のものを用いた。
長辺銅板10、短辺銅板14それぞれの内表面15に、メニスカス直下を模擬した熱流束2.0(MW/m)を与えた。表1のNo.1は基準であり、長辺銅板10、短辺銅板14それぞれの冷却水流路12における冷却水の流速をいずれも9(m/s)に設定し、定常状態における鋳型内の温度分布を算出し、張出部端部16の張出部端部温度と内表面中央部18の温度を算出した。
表1のNo.7は矩形鋳型を用いた参考例であり、伝熱計算において、上記面取り鋳型の張出部端部温度に替えて、矩形鋳型のコーナー部温度を算出している。No.7については、表1の「短辺銅板温度/張出部温度」の欄に、矩形鋳型のコーナー部温度をイタリック体にて記入している。
基準である表1のNo.1は、長辺銅板10として、研削を行わない銅板(初期の長辺銅板)(厚み20=40mm)を用いており、張出部端部温度は178℃であった。下記の表1において、No.1の張出部端部温度と、No.1以外の各No.の張出部端部温度との差(初期張出部端部温度-研削後張出部端部温度)ΔTを、各No.の「温度差ΔT」の欄に記載している。No.1に対して、研削を行って厚み20が35mmとなった長辺銅板10(研削後の長辺銅板)を用いた場合、張出部端部温度は158℃まで低下する(ΔT=20℃)ことが判明した(下記表1のNo.2)。
特許文献5には、面取り部を有しない通常の矩形鋳型を対象として、長辺銅板の4mm研削を行った場合について、短辺銅板端部側の冷却水流路での冷却水の流速を減速することにより、短辺銅板コーナー部の温度を研削なしの場合の温度に回復することが開示されている。そこで、面取り鋳型を用いる本発明の場合において、短辺銅板端部側の冷却水流路(図1(C)の貫通孔12Ba)のみの冷却水の流速を9(m/s)から4(m/s)に低減し、その他の貫通孔12B(図1(C)に表示された範囲では貫通孔12Bb~貫通孔12Bc)については冷却水の流速を9(m/s)に据え置いた条件で上記伝熱計算を行った。その結果この条件では、張出部端部温度を161℃(ΔT=17℃)までしか上昇させ得ないことがわかった(下記表1のNo.3)。
本発明者らは、短辺銅板の冷却水の流速を調整するのではなく、長辺銅板の冷却水の流速を調整することによる効果に着目した。そして、研削を行って厚み20が35mmとなった長辺銅板10を用いた場合において、長辺銅板10の冷却水流路12を流れる冷却水の流速を9(m/s)から4(m/s)に低減したところ、張出部端部温度が169℃(ΔT=9℃)まで回復することが認められた(下記表1のNo.4)。
Figure 2023070335000002
長辺銅板の冷却水の流速を調整するに際し、上記のように、長辺銅板に設置された多数の冷却水流路のすべてについて、冷却水の流速を一律に低下させることとしても良い。また本発明において、長辺銅板に設置された冷却水流路の一部のみについて冷却水の流速を低減することとしても良い。表1のNo.5においては、図1に示す冷却水流路12を構成するスリット12Aのうち、スリット12Aa、スリット12Abのみについて冷却水の流速を4(m/s)とし、その他のスリット12A(図1(C)に表示された範囲ではスリット12Ac~スリット12Ae)については冷却水の流速を9(m/s)に据え置いた場合である。この場合でも、張出部端部温度が169℃(ΔT=9℃)まで回復することが認められた(表1のNo.5)。さらに、表1のNo.6は、スリット12Aa、スリット12Abのみについて冷却水の流速を2.5(m/s)とし、その他のスリット12A(図1(C)に表示された範囲ではスリット12Ac~スリット12Ae)については冷却水の流速を9(m/s)に据え置いた場合である。張出部端部温度が175℃(ΔT=3℃)まで回復することが認められた。
次に後述の実施例に記載のとおり、表1のNo.1~7の条件を用いて、実際に鋼の連続鋳造を行い、鋳片のコーナー横割れの発生有無について評価を行った。その結果、表1のNo.2、3、7はコーナー横割れの発生が認められたのに対し、No.1、4~6はコーナー横割れが発生しなかった。この実験結果から、初期張出部端部温度と研削後張出部端部温度の差を小さくすることにより、鋳片のコーナー横割れを防止できることがわかった。そして、長辺銅板の前記鋳造空間に面する側と前記冷却機構との間の熱伝達係数について、長辺銅板の表面を研削した後の前記熱伝達係数を何らかの手段で低減させることにより、初期張出部端部温度と研削後張出部端部温度の差ΔTを小さくすることができる。さらに詳細な調査を行った結果、初期張出部端部温度と研削後張出部端部温度の差(初期張出部端部温度-研削後張出部端部温度)ΔTを15℃以下とすることにより、鋳片のコーナー横割れを防止できることがわかった。初期張出部端部温度と研削後張出部端部温度の差(初期張出部端部温度-研削後張出部端部温度)ΔTを10℃以下とするとより好ましい。
以上のように、長辺銅板10の冷却機構11を流れる冷却水の流速を低減して内表面15の温度を上昇させる手段は、換言すると、長辺銅板10の鋳造空間3に面する側(内表面15)と冷却機構11との間の熱伝達係数について、当該熱伝達係数を低減して内表面15の温度を上昇させる手段であるということができる。また、張出部端部温度については、上記のように伝熱計算の結果として求めることができる。
また逆に、長辺銅板10の鋳造空間3に面する側と冷却機構11との間の熱伝達係数について、長辺銅板10の表面を研削した後の熱伝達係数を低減させる具体的な手段として、冷却機構11を流れる冷却水の流速に関して、長辺銅板10の使用開始時の前記流速に比較して、長辺銅板10の表面を研削した後の流速を低下させる手段を好適に用いることができる、ということができる。
ここで、本発明において、鋳造断面4に形成する面取り部7、面取り部7を形成するための鋳型短辺6の張出部2について、好適条件に関して説明を行う。図2(B)において、鋳型短辺6の内表面15のうちで、内表面15が鋳型長辺5と垂直になる部分と張出部2との接点を「張出部基部17」とする。張出部端部16は前述のとおりである。そして、内表面15が鋳型長辺5と垂直になる部分を延長した直線と張出部端部16との距離を「長辺側辺長さa」、張出部基部17と鋳型長辺5の内表面15との距離を「短辺側辺長さb」とする(図2(B)参照)。
本発明において、長辺側辺長さaと短辺側辺長さbの好適範囲について説明する。長辺側辺長さaを10~30mm、短辺側辺長さbを20~50mmとしたときに、本発明を良好に実施することができる。
鋼スラブ(幅:2200mm、厚さ:300mm)を垂直曲げ型連続鋳造装置で鋳造するに際し、表1のNo.1~6は面取り鋳型、No.7は矩形鋳型を用いて鋳造を行った。面取り鋳型の面取り形状は、前記長辺側辺長さa=10mm、短辺側辺長さb=20mmとし、張出部基部17と張出部端部16との間を直線で結んだ形状としている。長辺銅板10として、研削を行う前の初期の銅板厚み(40mm)のものと、研削を行った後の銅板厚み(35mm)のものを用いた。二次冷却条件については、初期の銅板厚み(40mm)の長辺銅板10を用いて鋳造した場合において、鋳片の上表面と下表面のいずれもコーナー横割れが発生しない条件を採用している。
表1のNo.1~7の条件を用いて連続鋳造を行い、鋳片のコーナー横割れの発生有無について評価を行った。その結果、表1のNo.2、3、7はコーナー横割れの発生が認められたのに対し、No.1、4~6はコーナー横割れが発生しなかった。
1 連続鋳造鋳型
2 張出部
3 鋳造空間
4 鋳造断面
5 鋳型長辺
6 鋳型短辺
7 面取り部
9 メニスカス位置
10 長辺銅板
11 冷却機構
12 冷却水流路
12A スリット
12B 貫通孔
13 バックフレーム
14 短辺銅板
15 内表面
16 張出部端部
17 張出部基部
18 内表面中央部
20 厚み
21 内表面最短距離

Claims (2)

  1. 対向する2枚の鋳型長辺と、前記鋳型長辺に挟まれた2枚の鋳型短辺とを有する連続鋳造鋳型を用いる鋼の連続鋳造方法であって、
    前記連続鋳造鋳型における、鋳片が通過する空間を鋳造空間と呼び、鋳造方向のメニスカス位置における前記鋳造空間の断面を鋳造断面と呼び、当該鋳造断面はその四隅に面取り部を有し、前記鋳型短辺は、前記鋳型長辺に接する両端部の前記鋳造空間に面する面に、前記鋳造断面の前記面取り部に対応する張出部を有し、
    前記鋳型短辺の前記鋳造空間に面する面のうち前記鋳型長辺と接する部分を張出部端部と呼び、前記メニスカス位置における前記張出部端部の連続鋳造中における温度を張出部端部温度と呼び、
    前記鋳型長辺は、前記鋳造空間に面する側に長辺銅板を有し、前記長辺銅板は冷却機構を有し、前記長辺銅板の使用開始時と、前記長辺銅板の表面を研削した後について、それぞれの前記長辺銅板を組み込んだ前記連続鋳造鋳型を用い、同じ連続鋳造条件で鋳片を鋳造しているときの前記張出部端部温度をそれぞれ初期張出部端部温度、研削後張出部端部温度として、
    前記長辺銅板の前記鋳造空間に面する側と前記冷却機構との間の熱伝達係数について、前記初期張出部端部温度と前記研削後張出部端部温度の差が15℃以下となるように、前記長辺銅板の表面を研削した後の前記熱伝達係数を低減させることを特徴とする鋼の連続鋳造方法。
  2. 前記冷却機構を流れる冷却水の流速に関して、前記長辺銅板の使用開始時の前記流速に比較して、前記長辺銅板の表面を研削した後の前記流速を低下させることにより、前記熱伝達係数を低減させることを特徴とする請求項1に記載の鋼の連続鋳造方法。
JP2021182432A 2021-11-09 2021-11-09 鋼の連続鋳造方法 Pending JP2023070335A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021182432A JP2023070335A (ja) 2021-11-09 2021-11-09 鋼の連続鋳造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021182432A JP2023070335A (ja) 2021-11-09 2021-11-09 鋼の連続鋳造方法

Publications (1)

Publication Number Publication Date
JP2023070335A true JP2023070335A (ja) 2023-05-19

Family

ID=86331460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021182432A Pending JP2023070335A (ja) 2021-11-09 2021-11-09 鋼の連続鋳造方法

Country Status (1)

Country Link
JP (1) JP2023070335A (ja)

Similar Documents

Publication Publication Date Title
JP5692451B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
JP4786473B2 (ja) 表内質に優れた鋳片の製造方法
TWI765006B (zh) 沃斯田鐵系不銹鋼塊的製造方法
JP6003850B2 (ja) 連続鋳造用鋳型の製造方法及び鋼の連続鋳造方法
JP5516152B2 (ja) 鋼の連続鋳造方法
JP6003851B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
JP6044614B2 (ja) 鋼の連続鋳造方法
JP5962733B2 (ja) 鋼の連続鋳造方法
JP6365604B2 (ja) 鋼の連続鋳造方法
JPS62158555A (ja) 連続鋳造方法
JP6787359B2 (ja) 鋼の連続鋳造方法
JPWO2018056322A1 (ja) 鋼の連続鋳造方法
JP2023070335A (ja) 鋼の連続鋳造方法
JP7047495B2 (ja) 鋳片の連続鋳造方法
CN109794589A (zh) 一种预防csp连铸坯纵裂缺陷的工艺控制方法
JP6428721B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
JP6402750B2 (ja) 鋼の連続鋳造方法
KR101230117B1 (ko) 오스테나이트계 스테인리스강의 제조방법
JP4992254B2 (ja) 連続鋳造鋳型及び連続鋳造方法
JP5741147B2 (ja) 鋼の連続鋳造方法
KR100685474B1 (ko) 연속주조용 몰드
JP2020075291A (ja) 矩形断面鋼片の圧延方法、連続鋳造圧延設備及び圧延設備
JP2018149602A (ja) 鋼の連続鋳造方法
JPH10193041A (ja) 溶鋼の連続鋳造用鋳型
JPH038863B2 (ja)