JP2023050839A - 高周波電源装置 - Google Patents

高周波電源装置 Download PDF

Info

Publication number
JP2023050839A
JP2023050839A JP2021161164A JP2021161164A JP2023050839A JP 2023050839 A JP2023050839 A JP 2023050839A JP 2021161164 A JP2021161164 A JP 2021161164A JP 2021161164 A JP2021161164 A JP 2021161164A JP 2023050839 A JP2023050839 A JP 2023050839A
Authority
JP
Japan
Prior art keywords
frequency
power supply
signal
fundamental
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021161164A
Other languages
English (en)
Inventor
雄一 長谷川
Yuichi Hasegawa
龍哉 森井
Tatsuya Morii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2021161164A priority Critical patent/JP2023050839A/ja
Priority to KR1020220109071A priority patent/KR20230046962A/ko
Priority to US17/901,477 priority patent/US20230094385A1/en
Publication of JP2023050839A publication Critical patent/JP2023050839A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32128Radio frequency generated discharge using particular waveforms, e.g. polarised waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits

Abstract

【課題】本開示は、第1の電源において、第2の電源から出力される高周波電圧の周期と同じ周期の波形信号を生成できる高周波電源装置を提供する。【解決手段】本開示に係る高周波電源装置は、第1の基本周波数を有する第1の高周波電力を負荷に供給する第1の電源10と、第2の基本周波数を有する第2の高周波電力を負荷に供給する第2の電源20と、整合部30とを備える。整合部30は、第2の高周波電力の検出情報に基づいて第1の基本周波数より周波数が高いクロック信号CKを生成する。第1の電源10は、クロック信号CKを用いて、第2の電源20から出力される高周波電圧の周期と同じ周期の波形信号を生成し、この波形信号を用いて第1の電源10から出力する第1の高周波電圧を周波数変調制御する。【選択図】図1

Description

本開示は、高周波電源装置に関する。
プラズマ処理装置に用いられる高周波電源装置は、2台の高周波電源(第1の電源と第2の電源)を有しており、それぞれの電源から負荷に向けて基本周波数(基本波の周波数)が異なる高周波電圧を出力している。例えば、第1の電源は、プラズマの生成に適した第1の基本周波数F1を有する第1の高周波電圧を出力することにより第1の高周波電力を負荷に供給する。第2の電源は、イオンの加速に適した第2の基本周波数F2(第1の基本周波数F1>第2の基本周波数F2)を有する第2の高周波電圧を出力することにより第2の高周波電力を負荷に供給する。(特許文献1~3参照)。
特表2018-536295号公報 特開2017-188434号公報 米国特許第10304669号明細書
このような場合、相互変調歪(IMD:InterModulation Distortion)が発生し、第1の電源側において、反射波電力が第2の基本周波数F2の周期に応じて変動する現象が発生する。この相互変調歪に起因する反射波電力を低減させるために、第1の電源に対して周波数変調制御を行う技術が知られている。この際、予め分かっている第2の電源の第2の基本周波数F2の情報(例えば400kHという情報が分かっている)に基づいて、第2の基本周波数F2と同じ周波数の波形信号を生成し、生成した波形信号を用いて第1の電源において周波数変調制御を行うことが考えられる。
しかし、疑似的に生成した波形信号の周期と第2の電源から出力される高周波電圧の周期とは異なる。このように両者の周期が異なると、周波数変調制御によって相互変調歪に起因する反射波電力の低減効果が低下する。
本開示は、第1の電源において、第2の電源から出力される高周波電圧の周期と同じ周期の波形信号を生成できる高周波電源装置を提供する。
本開示に係る高周波電源装置は、第1の基本周波数を有する第1の高周波電圧を出力することにより第1の高周波電力を負荷に供給する第1の電源と、前記第1の基本周波数より低い第2の基本周波数を有する第2の高周波電圧を出力することにより第2の高周波電力を負荷に供給する第2の電源と、前記第1の電源及び前記第2の電源にそれぞれ接続された整合部と、を備える。
前記整合部は、前記第2の高周波電力の検出情報に基づいて前記第1の基本周波数より周波数が高いクロック信号を生成して前記第1の電源へ供給し、
前記第1の電源は、前記クロック信号を用いて、第2の電源から出力される高周波電圧の周期と同じ周期の波形信号を生成し、前記波形信号を用いて前記第1の電源から出力する第1の高周波電圧を周波数変調制御する。
本開示に係る高周波電源装置によれば、第1の電源において、第2の電源から出力される高周波電圧の周期と同じ周期の波形信号を生成できる。
実施形態に係る高周波電源装置の構成を示す図。 実施形態に係る高周波電源装置の動作を示すシーケンスチャート。 実施形態に係る高周波電源装置の動作を示す波形図。 実施形態に係る高周波電源装置の動作を示す波形図。
以下、図面を参照しながら、本開示に係る高周波電源装置の実施形態について説明する。
(実施形態)
実施形態にかかる高周波電源装置は、RF帯(RF:Radio Frequency)の周波数の高周波電圧を出力することにより高周波電力を負荷(例えばプラズマ処理装置)に供給する装置である。このような高周波電源装置は、2台の高周波電源(第1の電源と第2の電源)を有しており、それぞれの電源から負荷に向けて基本周波数(基本波の周波数)(出力周波数ともいう)が異なる高周波電圧を出力している。例えば、第1の電源は、プラズマの生成に適した第1の基本周波数F1を有する第1の高周波電圧を出力することにより第1の高周波電力を負荷に供給する。第2の電源は、イオンの加速に適した第2の基本周波数F2(第1の基本周波数F1>第2の基本周波数F2)を有する第2の高周波電圧を出力することにより第2の高周波電力を負荷に供給する。
このように複数の電源から高低差のある複数の高周波電力を負荷に供給すると、相互変調歪の影響で、第1の電源側において、反射波電力が第2の電源側の基本周期(基本波の周期)に応じて変動する現象が発生する。そのため、第1の電源から負荷に対して効率よく高周波電力を供給することができない。そこで、本実施形態では、以下のようにして周波数変調制御を行い、相互変調歪に起因する反射波電力を低減させる。
なお、第1の電源から出力されて負荷に向かう高周波電圧を第1の進行波電圧、負荷側から反射されて第1の電源に戻ってくる高周波電圧を第1の反射波電圧という。第2の電源から出力されて負荷に向かう高周波電圧を第2の進行波電圧、負荷側から反射されて第2の電源に戻ってくる高周波電圧を第2の反射波電圧という。
図1は、高周波電源装置1の構成を示す図である。高周波電源装置1は、プラズマ処理装置PAに適用される。プラズマ処理装置PAは、例えば平行平板型であり、チャンバーCH内で下部電極EL1及び上部電極EL2が互いに対向する。下部電極EL1上には、処理対象となる基板SBが載置され得る。高周波電源装置1は、下部電極EL1に電気的に接続される。上部電極EL2は、グランド電位に電気的に接続される。チャンバーCHは、給気管を介してガス供給装置(図示せず)に接続され、排気管を介して真空装置(図示せず)に接続される。
高周波電源装置1は、HF電源(第1の電源)10、LF電源(第2の電源)20及び重畳整合器(整合部)30を有する。HF電源10は、第1の基本周波数F1を有する第1の高周波電圧(第1の進行波電圧)を出力することにより第1の高周波電力(第1の進行波電力)を負荷に供給する。第1の高周波電圧は、主として、プラズマの生成に適した比較的高い第1の基本周波数F1を有する。第1の基本周波数F1は、例えば、40.68MHzである。HF電源10は、ソース電源とも呼ばれる。なお、基本周波数F1は、40.68MHzに限定されるものではなく、例えば13.56MHz、27.12MHz等の工業用のRF帯(Radio Frequency)の周波数であってもよい。
LF電源20は、第1の基本周波数F1より低い第2の基本周波数F2を有する第2の高周波電圧(第2の進行波電圧)を出力することにより第2の高周波電力(第2の進行波電力)を負荷に供給する。第2の高周波電圧は、イオンの加速に適した比較的低い第2の基本周波数F2を有する。第2の基本周波数F2は、例えば400kHzである。LF電源20は、バイアス電源とも呼ばれる。なお、第2の基本周波数F2は、400kHzに限定されるものではなく、他の周波数であってもよい。
重畳整合器30は、HF電源10及びLF電源20にそれぞれ電気的に接続される。重畳整合器30は、HF電源10及びLF電源20と下部電極EL1との間に電気的に接続される。重畳整合器30は、HF電源10側及び下部電極EL1側で第1のインピーダンス整合を行うとともに、LF電源20側及び下部電極EL1側で第2のインピーダンス整合を行う。重畳整合器30は、第1のインピーダンス整合及び第2のインピーダンス整合が行われた状態で、第1の高周波電力をHF電源10から受け、第2の高周波電力をLF電源20から受け、第1の高周波電力及び第2の高周波電力を重畳させて下部電極EL1へ供給する。
なお、高周波電源装置1及びプラズマ処理装置PAは、図1の構成に限定されない。例えば、HF電源10から出力される第1の高周波電力が重畳整合器30を介して上部電極EL2に供給され、LF電源20から出力される第2の高周波電力が重畳整合器30を介して下部電極EL1に供給されるような構成等、様々な構成がある。このような他の構成にも高周波電源装置1を用いることが可能である。
重畳整合器30は、第1の整合部31、第2の整合部32及びクロック生成部33を有する。第1の整合部31は、センサ311及び整合回路312を有する。第2の整合部32は、センサ321(検出部321)及び整合回路322を有する。クロック生成部33は、センサ321、パルス変換回路332及び逓倍処理部333を有する。第2の整合部32及びクロック生成部33は、センサ321を共有する。これにより、重畳整合器30の構成をコンパクトに抑えることができる。
第1の整合部31において、センサ311は、HF電源10から出力される第1の進行波電圧の波形信号SG1fを検出するとともに、整合回路312側から反射される第1の反射波電圧の波形信号SG1rを検出する。整合回路312は、可変インピーダンス回路を有し、センサ311で検出される波形信号SG1f及び波形信号SG1rに応じて(例えば波形信号SG1f及び波形信号SG1rから計算される反射係数が小さくなるように)、図略の制御回路によって、可変インピーダンス回路のインピーダンス値を変更する。もちろん、反射係数ではなく、反射波電力が小さくなるように可変インピーダンス回路のインピーダンス値を変更してもよい。なお、可変インピーダンス回路は、例えば、図略の可変コンデンサやインダクタを備えており、可変コンデンサの容量を変化させることによってインピーダンス値を変更できるようになっている(第2の整合部32でも同様)。また、上記では一例として、第1の進行波電圧の波形信号SG1fと第1の反射波電圧の波形信号SG1rを用いて反射係数を算出したが、電圧波形信号と電流波形信号とを検出し、それらに基づいて反射係数を算出することも可能である(第2の整合部32でも同様)。
第2の整合部32において、センサ321は、LF電源20から出力される第2の進行波電圧の波形信号SG2fを検出するとともに、整合回路322側から反射される第2の反射波電圧の波形信号SG2rを検出する。整合回路322は、可変インピーダンス回路を有し、センサ321で検出される波形信号SG2f及び波形信号SG2rに応じて(例えば波形信号SG2f及び波形信号SG2rから計算される反射係数が小さくなるように)、図略の制御回路によって、可変インピーダンス回路のインピーダンス値を変更する。もちろん、反射係数ではなく、反射波電力が小さくなるように可変インピーダンス回路のインピーダンス値を変更してもよい。
クロック生成部33において、パルス変換回路332(変換部332)は、センサ321で検出された第2の進行波電圧の波形信号SG2fをパルス信号へ変換する。パルス信号は、第2の基本周波数F2を有する矩形信号として変換される。パルス変換回路332は、コンパレータを有し、コンパレータを用いて正弦波信号を矩形信号に変換する。逓倍処理部333は、第2の基本周波数F2を有するパルス信号をN逓倍し、周波数F3のクロック信号CKを生成する。Nは、1より大きい整数である。周波数F3は、基本周波数F1の少なくとも2倍以上の周波数である。これはエイリアシングを防止するためである。
F2=400kHz、N=250の場合、F3=F2×N=400kHz×250=100MHzになる。クロック信号CKは、第2の進行波電圧に応じて生成された信号であるため、第2の進行波電圧に同期した信号とされ得る。逓倍処理部333は、周波数F3のクロック信号CKをHF電源10へ供給する。
HF電源10は、クロック生成部33で生成されたクロック信号CKを受ける。HF電源10は、クロック信号CKに応じて、第2の進行波電圧に対応する変調基本波信号を生成する。HF電源10は、変調基本波信号を用いてLF電源20から出力される第2の進行波電圧(第2の高周波電圧)の周期と同じ周期の波形信号を生成する。この波形信号を用いてHF電源10から出力する第1の進行波電圧(第1の高周波電圧)を周波数変調制御する。
HF電源10は、直接デジタル合成部(DDS)11(DDS:Direct Digital Synthesizer)、位相設定部12、乗算器13、基本波生成部14、加算器15、直接デジタル合成部(DDS)16、増幅部(AMP)17を有する。
直接デジタル合成部11は、クロック信号CKを重畳整合器30から受け、振幅情報をHF電源10から受ける。振幅情報は、生成すべき信号(例えば正弦波信号)の周波数に応じてクロックタイミングごとの振幅が順次に格納されたテーブル情報であり、周波数テーブルとも呼ばれる。例えば、クロック信号CKの周波数がF3であり、生成すべき信号の周波数が第2の基本周波数F2である場合、振幅情報は、(F3)/(F2)=N個の振幅が順次に格納されたテーブル情報である。直接デジタル合成部11は、周波数情報と振幅情報とを用いて、周波数が第2の基本周波数F2と同じ変調基本波信号を生成する。この変調基本波信号は、例えば正弦波信号として生成される。直接デジタル合成部11は、変調基本波信号を位相設定部12へ供給する。なお、変調基本波信号は、LF電源20で生成された第2の進行波電圧に相当する信号であり、変調基本波信号の周期と第2の進行波電圧の周期とは同じである。
基本波生成部14は、周波数が第1の基本周波数F1の基本波信号を生成する。基本波信号は、例えば正弦波信号で生成される。基本波生成部14は、加算器15へ供給する。
位相設定部12は、変調基本波信号に応じて変調を開始すべき位相を設定し、設定された位相に応じて規格化された基本変調量を求める。例えば、変調基本波信号の1周期分を複数区間に分割し、各区間におけるIMDの発生度合い等に応じて基本変調量を算出する。位相設定部12は、基本変調量を乗算器13へ供給する。
乗算器13は、基本変調量を位相設定部12から受け、変調量設定をHF電源10から受ける。変調量設定は、基本変調量を周波数変化量に変換するためのゲインを含む。乗算器13は、基本変調量に変調量設定を乗算して周波数変化量ΔFを求める。乗算器13は、周波数変化量ΔFを加算器15へ供給する。
加算器15は、第1の基本周波数F1を有する基本波信号を受けるとともに、周波数変調量ΔFを受ける。加算器15は、基本波信号に周波数変化量を加算し、第1の基本周波数F1+ΔFを示す周波数情報を生成する。加算器15は、周波数情報を直接デジタル合成部16へ供給する。
直接デジタル合成部16は、周波数情報を加算器15から受け、振幅情報をHF電源10から受ける。直接デジタル合成部16は、周波数情報と振幅情報とを用いて、第1の基本周波数F1を有する基本波が周波数変調量ΔFで周波数変調された波形の高周波信号を生成する。直接デジタル合成部16は、生成した高周波信号を増幅部17へ供給する。
増幅部17は、直接デジタル合成部16から出力された高周波信号を増幅する。増幅部17は、増幅後の高周波信号(第1の進行波電圧)を重畳整合器30へ出力する。
次に、高周波電源装置1の動作について図2~図4を用いて説明する。図2は、高周波電源装置1の動作を示すシーケンスチャートである。図3、図4は、高周波電源装置1の動作を示す波形図である。
HF電源10は、予め、振幅情報が入力され設定される(S0)。振幅情報は、生成すべき信号(例えば正弦波信号)の周波数に応じてクロックタイミングごとの振幅が順次に格納されたテーブル情報であり、周波数テーブルとも呼ばれる。
LF電源20は、高周波電源装置1の起動指令に応じて、第2の進行波電圧を発生して重畳整合器30へ出力する(S1)。
重畳整合器30は、LF電源20から出力される第2の進行波電圧の波形信号SG2fを検出するとともに、整合回路322側から反射される第2の反射波電圧の波形信号SG2rを検出する。(S2)。重畳整合器30は、例えば図3(a)に示すように、第2の基本周波数F2を有する正弦波状の波形信号SG2fを検出する。波形信号SG2fは、タイミングt1~t17の期間、タイミングt17~t33の期間が、それぞれ、LF電源20の基本周期に対応する1周期である。
重畳整合器30は、波形信号SG2fをパルス信号に変換する(S3)。重畳整合器30は、例えば正弦波信号の振幅が図3(a)に点線で示す振幅中心を超えたらHレベルとし振幅中心を下回ればLレベルとすることで、図3(b)に示すようなパルス信号を生成してもよい。パルス信号は、タイミングt1~t17の期間、タイミングt17~t33の期間が、それぞれ、LF電源20の基本周期に対応する1周期である。
重畳整合器30は、周波数が第2の基本周波数F2のパルス信号をN逓倍し、周波数F3のクロック信号CKを生成する(S4)。F3=F2×Nの関係にある。重畳整合器30は、例えば図3(b)に示すパルス信号を8逓倍して図3(c)に示すクロック信号CKを生成する。図3(c)では、図示の簡略化のため、N=8の場合を例示しているが、実際には、F3=F2×Nの関係において、周波数F3が第1の基本周波数F1の少なくとも2倍以上の周波数となる条件を満たす値である。重畳整合器30は、クロック信号CKをHF電源10へ出力する。
HF電源10は、クロック信号CKに応じて変調基本波信号を生成する(S5)。HF電源10は、例えば図4(a)に示すクロック信号CKを受ける。HF電源10は、クロック信号CKに同期した各タイミングt1~t36で、図4(b)に示すような振幅情報(周波数テーブル)を参照して、図4(c)に示すような階段状信号を生成する。HF電源10は、タイミングt1~t16で振幅情報(周波数テーブル)における1周期分の振幅を参照し終わると、次のタイミングt17で振幅情報(周波数テーブル)における1周期の先頭の振幅に戻って参照する。これが正弦波の1周期ごとに繰り返される。HF電源10は、図4(c)に示す階段状信号を平滑化して、図4(d)に示すような正弦波状の変調基本波信号を生成する。
HF電源10は、変調基本波信号に応じて変調を開始すべき位相を設定し(S6)、設定された位相に応じて規格化された基本変調量を求める。HF電源10は、基本変調量に変調量設定を乗算して周波数変化量ΔFを求める(S7)。変調量設定は、基本変調量を周波数変化量に変換するためのゲインを含む。HF電源10は、基本波信号に周波数変化量を加算し、第1の基本周波数F1+ΔFを示す周波数情報を生成する。これにより、HF電源10は、第1の基本周波数F1を有する基本波を周波数変調量ΔFで周波数変調する(S8)。HF電源10は、周波数情報と振幅情報とを用いて第1の高周波電圧(第1の進行波電圧)を生成して重畳整合器30へ出力する(S9)。
重畳整合器30は、HF電源10から出力される第1の進行波電圧の波形信号SG1fを検出するとともに、整合回路312側から反射される反射波電圧の波形信号SG1rを検出する(S10)。重畳整合器30は、S2で検出された波形信号SG2f及び波形信号SG2rに応じて、LF電源20側及び下部電極EL1側で第2のインピーダンス整合を行う(S11)。それと並行して、重畳整合器30は、S10で検出された波形信号SG1f及び波形信号SG1rに応じて、HF電源10側及び下部電極EL1側で第1のインピーダンス整合を行う(S12)。重畳整合器30は、第1のインピーダンス整合及び第2のインピーダンス整合が行われた状態で、第1の進行波電圧をHF電源10から受け、第2の進行波電圧をLF電源20から受け、第1の進行波電圧(第1の高周波電力)及び第2の進行波電圧(第2の高周波電力)を重畳させて下部電極EL1へ供給する(S13)。
以上のように、本実施形態では、高周波電源装置1において、重畳整合器30が第2の進行波電圧に応じてクロック信号CKを生成してHF電源10へ供給する。HF電源10は、変調基本波信号を用いてLF電源20から出力される第2の進行波電圧(第2の高周波電圧)の周期と同じ周期の波形信号を生成する。この波形信号を用いてHF電源10から出力する第1の進行波電圧(第1の高周波電圧)を周波数変調制御する。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 高周波電源装置
10 HF電源(第1の電源)
20 LF電源(第2の電源)
30 重畳整合器(整合部)
311 センサ(第2の検出部)
312 整合回路(第1の整合回路)
321 センサ(第1の検出部)
322 整合回路(第2の整合回路)
332 パルス変換回路(変換部)
333 逓倍処理部(逓倍部)

Claims (4)

  1. 第1の基本周波数を有する第1の高周波電圧を出力することにより第1の高周波電力を負荷に供給する第1の電源と、
    前記第1の基本周波数より低い第2の基本周波数を有する第2の高周波電圧を出力することにより第2の高周波電力を負荷に供給する第2の電源と、
    前記第1の電源及び前記第2の電源にそれぞれ接続された整合部と、
    を備え、
    前記整合部は、前記第2の高周波電力の検出情報に基づいて前記第1の基本周波数より周波数が高いクロック信号を生成して前記第1の電源へ供給し、
    前記第1の電源は、前記クロック信号を用いて、前記第2の電源から出力される高周波電圧の周期と同じ周期の波形信号を生成し、前記波形信号を用いて前記第1の電源から出力する第1の高周波電圧を周波数変調制御する高周波電源装置。
  2. 前記整合部は、前記第2の高周波電力の検出情報から前記第2の基本周波数と同じ周期を有するパルス信号を抽出し、前記パルス信号を逓倍することによって前記クロック信号を生成する請求項1に記載の高周波電源装置。
  3. 前記整合部は、
    前記第2の高周波電圧を検出し、その検出波形信号を出力する検出部と、
    前記検出波形信号を前記パルス信号に変換する変換部と、
    前記パルス信号を逓倍して前記クロック信号を生成する逓倍部と、
    を有する請求項2に記載の高周波電源装置。
  4. 前記クロック信号のクロック周波数は、前記第1の基本周波数の少なくとも2倍以上の周波数である請求項1~3のいずれか1項に記載の高周波電源装置。
JP2021161164A 2021-09-30 2021-09-30 高周波電源装置 Pending JP2023050839A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021161164A JP2023050839A (ja) 2021-09-30 2021-09-30 高周波電源装置
KR1020220109071A KR20230046962A (ko) 2021-09-30 2022-08-30 고주파 전원 장치
US17/901,477 US20230094385A1 (en) 2021-09-30 2022-09-01 Radio-frequency power supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021161164A JP2023050839A (ja) 2021-09-30 2021-09-30 高周波電源装置

Publications (1)

Publication Number Publication Date
JP2023050839A true JP2023050839A (ja) 2023-04-11

Family

ID=85706459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021161164A Pending JP2023050839A (ja) 2021-09-30 2021-09-30 高周波電源装置

Country Status (3)

Country Link
US (1) US20230094385A1 (ja)
JP (1) JP2023050839A (ja)
KR (1) KR20230046962A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117478164B (zh) * 2023-12-22 2024-04-09 深圳市瀚强科技股份有限公司 射频保护电路及相关装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9947514B2 (en) 2015-09-01 2018-04-17 Mks Instruments, Inc. Plasma RF bias cancellation system
KR20170103661A (ko) 2016-03-04 2017-09-13 램 리써치 코포레이션 보다 저 주파수 rf 생성기의 기간 동안 보다 고 주파수 rf 생성기를 향하여 반사된 전력을 감소시키고 그리고 반사된 전력을 감소시키도록 관계를 사용하기 위한 시스템들 및 방법들
US10304669B1 (en) 2018-01-21 2019-05-28 Mks Instruments, Inc. Adaptive counter measure control thwarting IMD jamming impairments for RF plasma systems

Also Published As

Publication number Publication date
US20230094385A1 (en) 2023-03-30
KR20230046962A (ko) 2023-04-06

Similar Documents

Publication Publication Date Title
JP4518968B2 (ja) 送信回路
CN109659215B (zh) 等离子体处理装置和检测电路
EP2211460B1 (en) Amplifier circuitry
KR20040064732A (ko) 고주파 전원 및 그 제어 방법 및 플라즈마 처리 장치
KR100372229B1 (ko) 플라즈마처리장치
JP6785936B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2017228558A (ja) プラズマ処理装置、及び波形補正方法
JP2023050839A (ja) 高周波電源装置
JP2007066778A (ja) 高周波電源装置
KR970072640A (ko) Rf 발생 장치 및 이를 이용한 펄스 플라즈마 형성 방법
KR102341913B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
RU2421917C1 (ru) Способ защиты системы обработки информации от побочных электромагнитных излучений, устройство для реализации способа и генератор шумового сигнала для реализации устройства
US20110006687A1 (en) Method and generator circuit for production of plasma by means of radio-frequency excitation
JP2023098298A (ja) 高周波電源装置
JPH10326698A (ja) プラズマ処理装置
JP7209483B2 (ja) プラズマ処理装置および測定回路
JP7423233B2 (ja) 高周波電源装置及び高周波電力の出力方法
JP2024506035A (ja) 周波数逓倍器を使用したデジタル信号のチャープ発生のためのシステムおよび方法
JP3732107B2 (ja) 電子ビーム制御装置、電子ビーム発生装置及び電子ビーム制御方法
JP2005311472A (ja) D級増幅器
JP6864995B2 (ja) マイクロ波プラズマ生成装置及びマイクロ波プラズマ生成方法
US20230207268A1 (en) High-frequency power supply device
US20230118000A1 (en) Rf generating device and semiconductor manufacturing apparatus including the same
JP2014199737A (ja) 高周波電源装置
KR20230119418A (ko) 불요파 제거 필터를 포함하는 센서 신호 처리 장치 및 방법