JP2023039208A - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
JP2023039208A
JP2023039208A JP2021146254A JP2021146254A JP2023039208A JP 2023039208 A JP2023039208 A JP 2023039208A JP 2021146254 A JP2021146254 A JP 2021146254A JP 2021146254 A JP2021146254 A JP 2021146254A JP 2023039208 A JP2023039208 A JP 2023039208A
Authority
JP
Japan
Prior art keywords
motor
friction coefficient
vehicle
torque
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021146254A
Other languages
English (en)
Inventor
就斗 水野
Shuto Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2021146254A priority Critical patent/JP2023039208A/ja
Priority to US17/887,080 priority patent/US11801826B2/en
Publication of JP2023039208A publication Critical patent/JP2023039208A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/175Brake regulation specially adapted to prevent excessive wheel spin during vehicle acceleration, e.g. for traction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • B60W10/14Central differentials for dividing torque between front and rear axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/12Friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/20ASR control systems
    • B60T2270/208ASR control systems adapted to friction condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1763Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to the coefficient of friction between the wheels and the ground surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • B60W2520/263Slip values between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/30Wheel torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】車両発進時における車輪のスリップを抑制する。【解決手段】第1車輪に連結される第1走行用モータと、第2車輪に連結される第2走行用モータと、前記第1走行用モータおよび前記第2走行用モータを制御する制御システムと、を有する。前記制御システムは、前記第1車輪と路面との第1摩擦係数と、前記第2車輪と路面との第2摩擦係数と、を推定する。前記制御システムは、前記第1摩擦係数と前記第2摩擦係数との少なくとも何れか一方が第1閾値を下回り、かつ前記第1摩擦係数と前記第2摩擦係数との差分が第2閾値を上回る車両発進時において、前記第1摩擦係数が前記第2摩擦係数よりも小さい場合には、前記第2走行用モータの力行トルクを上昇させてから、前記第1摩擦係数に基づき設定される第1ディレイ時間を経過した後に、前記第1走行用モータの力行トルクを上昇させる。【選択図】図9

Description

本発明は、車両に設けられる車両用制御装置に関する。
動力源として複数の走行用モータを備えた車両が開発されている(特許文献1~3参照)。このような車両として、前輪用に連結される走行用モータと後輪に連結される走行用モータとを備えた車両や、車輪毎に1つの走行用モータを連結するようにした車両が開発されている。
特開2011-229286号公報 特開2011-230543号公報 特開2018-93645号公報
ところで、走行用モータのトルクは素早く立ち上がることから、圧雪路面や凍結路面等の低μ路における車両発進時には、モータ駆動される車輪のスリップ量が増加してしまう虞がある。このように、車両発進時に車輪を大きくスリップさせることは、車両挙動を不安定にしてしまう要因であるため、車両発進時における車輪のスリップを抑制することが求められている。
本発明の目的は、車両発進時における車輪のスリップを抑制することにある。
一実施形態の車両用制御装置は、車両に設けられる車両用制御装置であって、第1車輪に連結される第1走行用モータと、第2車輪に連結される第2走行用モータと、互いに通信可能に接続されるプロセッサおよびメモリを備え、前記第1走行用モータおよび前記第2走行用モータを制御する制御システムと、を有し、前記制御システムは、前記第1車輪と路面との第1摩擦係数と、前記第2車輪と路面との第2摩擦係数と、を推定し、前記制御システムは、前記第1摩擦係数と前記第2摩擦係数との少なくとも何れか一方が第1閾値を下回り、かつ前記第1摩擦係数と前記第2摩擦係数との差分が第2閾値を上回る車両発進時において、前記第1摩擦係数が前記第2摩擦係数よりも小さい場合には、前記第2走行用モータの力行トルクを上昇させてから、前記第1摩擦係数に基づき設定される第1ディレイ時間を経過した後に、前記第1走行用モータの力行トルクを上昇させる一方、前記第2摩擦係数が前記第1摩擦係数よりも小さい場合には、前記第1走行用モータの力行トルクを上昇させてから、前記第2摩擦係数に基づき設定される第2ディレイ時間を経過した後に、前記第2走行用モータの力行トルクを上昇させる。
一実施形態の車両用制御装置は、第1摩擦係数と第2摩擦係数との少なくとも何れか一方が第1閾値を下回り、かつ第1摩擦係数と第2摩擦係数との差分が第2閾値を上回る車両発進時において、第1摩擦係数が第2摩擦係数よりも小さい場合には、第2走行用モータの力行トルクを上昇させてから、前記第1摩擦係数に基づき設定される第1ディレイ時間を経過した後に、第1走行用モータの力行トルクを上昇させる。これにより、車両発進時における車輪のスリップを抑制することができる。
本発明の一実施の形態である車両用制御装置が設けられた車両の構成例を示す図である。 フロント駆動ユニット、リア駆動ユニットおよび制御システムの一例を示す図である。 各制御ユニットの基本構造を簡単に示した図である。 要求駆動力を示した駆動力マップの一例を示す図である。 抑制条件設定制御の実行手順の一例を示すフローチャートである。 発進トルク抑制制御の実行手順の一例を示すフローチャートである。 なまし係数の一例およびモータトルクの制御例を示す図である。 ディレイ時間の一例およびモータトルクの制御例を示す図である。 発進トルク抑制制御の実行状況の一例を示すタイミングチャートである。 発進トルク抑制制御によって発進する車両を示す図である。 発進トルク抑制制御の実行状況の一例を示すタイミングチャートである。 本発明の他の実施形態である車両用制御装置が設けられた車両の構成例を示す図である。 抑制条件設定制御の実行手順の一例を示すフローチャートである。 抑制条件設定制御の実行手順の一例を示すフローチャートである。 抑制条件設定制御の実行手順の一例を示すフローチャートである。 発進トルク抑制制御によって発進する車両を示す図である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、以下の説明において、同一または実質的に同一の構成や要素については、同一の符号を付して繰り返しの説明を省略する。
[車両構成]
図1は本発明の一実施の形態である車両用制御装置10が設けられた車両11の構成例を示す図である。図1に示すように、車両11には、前輪12L,12Rを駆動するフロント駆動ユニット13が設けられており、後輪14L,14Rを駆動するリア駆動ユニット15が設けられている。フロント駆動ユニット13には、フロントモータ16およびフロントデファレンシャル17が組み込まれている。また、リア駆動ユニット15には、リアモータ18およびリアデファレンシャル19が組み込まれている。後述するように、前輪(第1車輪)12L,12Rにはフロントモータ(第1走行用モータ)16が連結されており、後輪(第2車輪)14L,14Rにはリアモータ(第2走行用モータ)18が連結されている。
図2は、フロント駆動ユニット13、リア駆動ユニット15および制御システム20の一例を示す図である。図2に示すように、フロント駆動ユニット13は、フロントモータ16およびフロントデファレンシャル17を有している。フロントモータ16のロータ16rには駆動ギア21が連結されており、駆動ギア21にはフロントデファレンシャル17に固定される従動ギア22が噛み合っている。また、フロントデファレンシャル17から延びる車軸23には前輪12L,12Rが連結されている。同様に、リア駆動ユニット15は、リアモータ18およびリアデファレンシャル19を有している。リアモータ18のロータ18rには駆動ギア24が連結されており、駆動ギア24にはリアデファレンシャル19に固定される従動ギア25が噛み合っている。また、リアデファレンシャル19から延びる車軸26には後輪14L,14Rが連結されている。
フロントモータ16のステータ16sにはインバータ30が接続されており、インバータ30にはバッテリパック31が接続されている。同様に、リアモータ18のステータ18sにはインバータ32が接続されており、インバータ32にはバッテリパック31が接続されている。バッテリパック31には、複数のバッテリセルからなるバッテリモジュール33が設けられるとともに、バッテリモジュール33の充放電を監視するバッテリ制御ユニット34が設けられている。さらに、バッテリパック31には、充放電電流や端子電圧等を検出するバッテリセンサ35が設けられている。バッテリ制御ユニット34は、バッテリセンサ35によって検出される充放電電流や端子電圧等に基づき、バッテリモジュール33の充電状態であるSOC(State of Charge)を算出する機能を有している。なお、バッテリモジュール33のSOCとは、バッテリモジュール33に蓄えられる電気残量を示す比率であり、バッテリモジュール33の満充電容量に対する蓄電量の比率である。
インバータ30を介してフロントモータ16を制御するため、インバータ30にはフロントモータ制御ユニット40が接続されている。フロントモータ制御ユニット40は、複数のスイッチング素子等からなるインバータ30を制御することにより、ステータ16sの通電状態を制御してフロントモータ16のモータトルク(力行トルク,回生トルク)を制御する。フロントモータ16を力行状態に制御する際には、バッテリモジュール33からインバータ30を介してステータ16sに電力が供給される。一方、フロントモータ16を発電状態に制御する際には、ステータ16sからインバータ30を介してバッテリモジュール33に電力が供給される。
同様に、インバータ32を介してリアモータ18を制御するため、インバータ32にはリアモータ制御ユニット41が接続されている。リアモータ制御ユニット41は、複数のスイッチング素子等からなるインバータ32を制御することにより、ステータ18sの通電状態を制御してリアモータ18のモータトルク(力行トルク,回生トルク)を制御する。リアモータ18を力行状態に制御する際には、バッテリモジュール33からインバータ32を介してステータ18sに電力が供給される。一方、リアモータ18を発電状態に制御する際には、ステータ18sからインバータ32を介してバッテリモジュール33に電力が供給される。
また、車両11のサイドミラー42L,42Rには、前後輪12L,12R,14L,14Rが接触する路面を撮像する左右のカメラモジュール43L,43Rが設けられている。また、カメラモジュール43L,43Rには、カメラ制御ユニット44が接続されている。カメラ制御ユニット44は、停車時に前後輪12L,12R,14L,14Rが接触する路面を撮像するとともに、撮像データの画像解析を実行して路面状況を判定する機能を有している。さらに、カメラ制御ユニット44は、各路面の路面状況(ドライ路面、ウェット路面、圧雪路面、凍結路面等)に基づいて、前輪12L,12Rとこれに接触する路面との摩擦係数を推定するとともに、後輪14L,14Rとこれに接触する路面との摩擦係数を推定する機能を有している。
車両11には、前輪12L,12Rおよび後輪14L,14Rを制動するブレーキ装置45が設けられている。このブレーキ装置45は、ブレーキペダル46に連動してブレーキ液圧を出力するマスターシリンダ47と、前後輪12L,12R,14L,14Rのディスクロータ48を制動するキャリパ49と、を備えている。また、マスターシリンダ47とキャリパ49との間には、各キャリパ49に供給されるブレーキ液圧を制御するブレーキアクチュエータ50が設けられている。このブレーキアクチュエータ50は、図示しない電動ポンプ、アキュムレータおよび電磁バルブ等によって構成されている。
また、ブレーキアクチュエータ50には、ブレーキ制御ユニット51が接続されている。ブレーキ制御ユニット51は、制動時における前後輪12L,12R,14L,14Rのロック傾向や加速時における前後輪12L,12R,14L,14Rのスリップ傾向を判定する。そして、ブレーキ制御ユニット51は、前後輪12L,12R,14L,14Rにロック傾向があると判定した場合に、前後輪12L,12R,14L,14Rの制動力を減少させてロック傾向を解消する一方、前後輪12L,12R,14L,14Rにスリップ傾向があると判定した場合に、前後輪12L,12R,14L,14Rの制動力を増加させてスリップ傾向を解消する。つまり、ブレーキ制御ユニット51は、ブレーキアクチュエータ50を制御してブレーキ液圧を調整することにより、前後輪12L,12R,14L,14Rの制動力を調整して前後輪12L,12R,14L,14Rのロック傾向やスリップ傾向を解消する。
[制御システム]
車両用制御装置10には、フロント駆動ユニット13やリア駆動ユニット15等を制御するため、複数の電子制御ユニットからなる制御システム20が設けられている。制御システム20を構成する電子制御ユニットとして、前述したバッテリ制御ユニット34、フロントモータ制御ユニット40、リアモータ制御ユニット41、カメラ制御ユニット44およびブレーキ制御ユニット51が設けられるとともに、これらの制御ユニット34,40,41,44,51に制御信号を出力する車両制御ユニット52が設けられている。これらの制御ユニット34,40,41,44,51,52は、CANやLIN等の車載ネットワーク53を介して互いに通信可能に接続されている。車両制御ユニット52は、各種制御ユニット34,40,41,44,51や後述する各種センサからの入力情報に基づき、フロントモータ16やリアモータ18等の作動目標を設定する。そして、フロントモータ16やリアモータ18等の作動目標に応じた制御信号を生成し、これらの制御信号を各種制御ユニット34,40,41,44,51に出力する。
車両制御ユニット52に接続されるセンサとして、アクセルペダルの操作状況を検出するアクセルセンサ60、ブレーキペダル46の操作状況を検出するブレーキセンサ61、左前輪12Lの回転速度を検出する車輪速センサ62、右前輪12Rの回転速度を検出する車輪速センサ63、左後輪14Lの回転速度を検出する車輪速センサ64、右後輪14Rの回転速度を検出する車輪速センサ65がある。また、フロントモータ制御ユニット40に接続されるセンサとして、フロントモータ16の回転速度を検出するレゾルバ等のモータ回転センサ66があり、リアモータ制御ユニット41に接続されるセンサとして、リアモータ18の回転速度を検出するレゾルバ等のモータ回転センサ67がある。さらに、車両制御ユニット52には、制御システム20を起動する際に運転者によって操作されるスタートスイッチ68が接続されている。
図3は各制御ユニット34,40,41,44,51,52の基本構造を簡単に示した図である。図3に示すように、各制御ユニット34,40,41,44,51,52は、プロセッサ70およびメモリ71等が組み込まれたマイクロコントローラ72を有している。メモリ71には所定のプログラムが格納されており、プロセッサ70によってプログラムの命令セットが実行される。プロセッサ70とメモリ71とは、互いに通信可能に接続されている。なお、図示する例では、マイクロコントローラ72に1つのプロセッサ70と1つのメモリ71が組み込まれているが、これに限られることはなく、マイクロコントローラ72に複数のプロセッサ70を組み込んでも良く、マイクロコントローラ72に複数のメモリ71を組み込んでも良い。
また、各制御ユニット34,40,41,44,51,52には、入力変換回路73、駆動回路74、通信回路75、外部メモリ76および電源回路77等が設けられている。入力変換回路73は、各種センサから入力される信号を、マイクロコントローラ72に入力可能な信号に変換する。駆動回路74は、マイクロコントローラ72から出力される信号に基づき、前述したフロントモータ16やリアモータ18等のアクチュエータに対する駆動信号を生成する。通信回路75は、マイクロコントローラ72から出力される信号を、他の制御ユニットに向けた通信信号に変換する。また、通信回路75は、他の制御ユニットから受信した通信信号を、マイクロコントローラ72に入力可能な信号に変換する。さらに、電源回路77は、マイクロコントローラ72、入力変換回路73、駆動回路74、通信回路75および外部メモリ76等に対し、安定した電源電圧を供給する。また、不揮発性メモリ等の外部メモリ76には、非通電時にも保持すべきデータ等が記憶される。
[要求駆動力]
図4は要求駆動力を示した駆動力マップの一例を示す図である。図4に示すように、駆動力マップには、アクセル開度Acp毎に要求駆動力を示す特性線L1~L4が設定されている。つまり、車両制御ユニット52は、アクセル開度Acpが0%である場合に、特性線L1に沿って車両11に対する要求駆動力を設定し、アクセル開度Acpが25%である場合に、特性線L2に沿って車両11に対する要求駆動力を設定する。また、車両制御ユニット52は、アクセル開度Acpが50%である場合に、特性線L3に沿って車両11に対する要求駆動力を設定し、アクセル開度Acpが100%である場合に、特性線L4に沿って車両11に対する要求駆動力を設定する。
例えば、車速が「0」である停車時において、アクセル開度Acpが「25%」となるように、アクセルペダルが踏み込まれた場合に、車両制御ユニット52は、要求駆動力として「Fa」を設定する。また、停車時において、アクセル開度Acpが「50%」となるように、アクセルペダルが踏み込まれた場合に、車両制御ユニット52は、要求駆動力として「Fb」を設定する。そして、車両制御ユニット52は、要求駆動力として「Fa」や「Fb」が得られるように、フロントモータ16およびリアモータ18の目標モータトルクT1を設定する。なお、図4に示される駆動力マップには、説明を容易にする観点から4本の特性線L1~L4を設定しているが、これに限られることはなく、5本以上の特性線が設定された駆動力マップであっても良いことはいうまでもない。
[低μ路における車両発進]
ところで、凍結路面等の低摩擦係数路面(以下、低μ路と記載する。)における車両発進時に、フロントモータ16やリアモータ18のモータトルクを急速に立ち上げた場合には、前後輪12L,12R,14L,14Rを大きくスリップさせて車両挙動を不安定にしてしまう虞がある。そこで、車両用制御装置10を構成する制御システム20は、前後輪12L,12R,14L,14Rのスリップを抑制して車両挙動を安定させるため、路面状況に応じてモータトルクの立ち上げを調整する発進トルク抑制制御を実行する。
以下、発進トルク抑制制御およびこれに先行する抑制条件設定制御について説明する。図5は抑制条件設定制御の実行手順の一例を示すフローチャートであり、図6は発進トルク抑制制御の実行手順の一例を示すフローチャートである。図5および図6においては、フロントモータ16およびリアモータ18を走行用モータとして記載し、前輪12L,12Rおよび後輪14L,14Rを車輪として記載し、高摩擦係数側を高μ側と記載し、低摩擦係数側を低μ側と記載している。なお、高摩擦係数側や低摩擦係数側とは、相対的な高摩擦係数側や低摩擦係数側を意味している。なお、図5および図6のフローチャートに示される各ステップには、制御システム20を構成する1つまたは複数のプロセッサ70によって実行される処理が示されている。また、図5に示される抑制条件設定制御や、図6に示される発進トルク抑制制御は、運転者によってスタートスイッチ68が操作され、車両制御ユニット52等からなる制御システム20が起動された後に、制御システム20によって所定周期毎に実行される制御である。
<抑制条件設定制御(フローチャート)>
まず、発進トルク抑制制御に先行する抑制条件設定制御について説明する。図5に示すように、ステップS10では、車両11が停止しているか否かを判定するため、車速が所定の閾値V1を下回るか否かが判定される。ステップS10において、車速が閾値V1を下回ると判定された場合、つまり車両11が停止していると判定された場合には、ステップS11に進み、車輪と路面との摩擦係数Fμ,Rμが推定される。つまり、ステップS11においては、カメラモジュール43L,43Rによって得られた撮像データの画像解析を実行して路面状況を判定し、判定された路面状況(ドライ路面、ウェット路面、圧雪路面、凍結路面等)から車輪と路面との摩擦係数Fμ,Rμを推定する。なお、摩擦係数(第1摩擦係数)Fμは、左右の前輪12L,12Rとこれに接触する路面Sf(図1参照)との摩擦係数の平均値であり、摩擦係数(第2摩擦係数)Rμは、左右の後輪14L,14Rとこれに接触する路面Sr(図1参照)との摩擦係数の平均値である。
続いて、ステップS12では、摩擦係数Fμが所定の閾値(第1閾値)μ1を下回るか否かが判定される。ステップS12において、摩擦係数Fμが閾値μ1以上であると判定された場合、つまり前輪12L,12Rがドライ路面等の滑り難い路面に接していると判定された場合には、ステップS13に進む。ステップS13では、摩擦係数Rμが閾値μ1を下回るか否かが判定される。ステップS13において、摩擦係数Rμが閾値μ1以上であると判定された場合、つまり後輪14L,14Rがドライ路面等の滑り難い路面に接していると判定された場合には、ステップS14に進む。つまり、前輪12L,12Rと後輪14L,14Rとの双方が滑り難い路面に接していると判定された場合には、後述する発進トルク抑制制御を実行する必要がないことから、ステップS14に進み、低μ路発進フラグが解除される(Fs=0)。
一方、ステップS12において、摩擦係数Fμが閾値μ1を下回ると判定された場合や、ステップS13において、摩擦係数Rμが閾値μ1を下回ると判定された場合には、ステップS15に進む。つまり、前輪12L,12Rと後輪14L,14Rとの少なくとも何れか一方が滑り易い路面に接していると判定された場合には、ステップS15に進み、摩擦係数Fμと摩擦係数Rμとの差分の絶対値が所定の閾値(第2閾値)Xμを上回るか否かが判定される。ステップS15において、摩擦係数Fμと摩擦係数Rμとの差分の絶対値が閾値Xμを上回ると判定された場合には、ステップS16に進む。ステップS16では、高摩擦係数側(以下、高μ側と記載する。)の走行用モータに対するなまし係数ksが設定され、続くステップS17では、低摩擦係数側(以下、低μ側と記載する。)の走行用モータに対するディレイ時間Tdが設定される。
前述したように、摩擦係数Fμ,Rμの少なくとも何れか一方が閾値μ1を下回り、かつ摩擦係数Fμ,Rμの差分が閾値Xμを上回る場合には、ステップS16に進み、高μ側の走行用モータに対するなまし係数ksが設定され、ステップS17に進み、低μ側の走行用モータに対するディレイ時間Tdが設定される。つまり、摩擦係数Fμが摩擦係数Rμよりも小さく前輪12L,12Rが滑り易い場合には、高μ側のリアモータ18に対するなまし係数ksが設定され、低μ側のフロントモータ16に対するディレイ時間Tdが設定される。一方、摩擦係数Rμが摩擦係数Fμよりも小さく後輪14L,14Rが滑り易い場合には、高μ側のフロントモータ16に対するなまし係数ksが設定され、低μ側のリアモータ18に対するディレイ時間Tdが設定される。このように、ステップS16,S17において、なまし係数ksおよびディレイ時間Tdが設定されると、ステップS18に進み、低μ路発進フラグFsが設定される(Fs=1)。
また、ステップS15において、摩擦係数Fμと摩擦係数Rμとの差分の絶対値が閾値Xμ以下であると判定された場合には、ステップS19に進む。ステップS19では、双方の走行用モータに対するなまし係数ksが設定される。つまり、フロントモータ16に対するなまし係数ksが設定されるとともに、リアモータ18に対するなまし係数ksが設定される。このように、ステップS19において、なまし係数ksが設定されると、ステップS18に進み、低μ路発進フラグFsが設定される(Fs=1)。
ここで、図7はなまし係数ksの一例およびモータトルクの制御例を示す図である。図7に示すように、なまし係数ksは、摩擦係数が小さくなるにつれて小さく設定されている。また、フロントモータ16やリアモータ18等の走行用モータから出力されるモータトルクについては、なまし係数ksが小さく設定されるにつれて小さく制御される。例えば、アクセルペダルが実線Acp1に沿って操作され、前述した目標モータトルクT1が目標モータトルクとして設定されると、走行用モータのモータトルクは目標モータトルクT1に向けて制御される。このとき、なまし係数ksとして「α」が設定されていた場合には、目標モータトルクT1になまし係数αを乗じてモータトルクTaが設定され、なまし処理が施されたモータトルクTaに向けて走行用モータが制御される。また、なまし係数ksとして「β」が設定されていた場合には、目標モータトルクT1になまし係数βを乗じてモータトルクTbが設定され、なまし処理が施されたモータトルクTbに向けて走行用モータが制御される。
このように、走行用モータのモータトルクになまし処理を実施することにより、要求駆動力に基づく目標モータトルク(目標トルク)T1よりも、走行用モータの力行トルクが小さく制御される。また、前述したように、なまし係数ksは、摩擦係数が小さくなるにつれて小さく設定されている。これにより、走行用モータの力行トルクは、摩擦係数が小さくなるにつれて小さく制御されることになる。なお、走行用モータの力行トルクを目標モータトルクT1よりも小さく制御する方法としては、なまし係数を用いた制御方法に限られることはない。例えば、摩擦係数に基づき走行用モータの上限トルクを設定しても良く、摩擦係数に基づき走行用モータのトルク上昇速度を制限しても良い。
図8はディレイ時間Tdの一例およびモータトルクの制御例を示す図である。図8に示すように、ディレイ時間Tdは、摩擦係数が小さくなるにつれて長く設定されている。そして、フロントモータ16やリアモータ18等の走行用モータから出力されるモータトルクについては、アクセルペダルの踏み込みからディレイ時間Tdの経過を待って上昇が開始される。例えば、アクセルペダルが実線Acp1に沿って操作され、前述した目標モータトルクT1が目標モータトルクとして設定されると、走行用モータのモータトルクは目標モータトルクT1に向けて制御される。ここで、ディレイ時間Tdが設定されている場合には、破線Tcで示すように、アクセルペダルの操作開始からディレイ時間Tdが経過するまではモータトルクが「0」に保持され、ディレイ時間Tdが経過した後にモータトルクが引き上げられる。
<発進トルク抑制制御(フローチャート)>
続いて、発進トルク抑制制御について説明する。図6に示すように、ステップS20では、車両11が停止しているか否かを判定するため、車速が所定の閾値V1を下回るか否かが判定される。ステップS20において、車速が閾値V1を下回ると判定された場合、つまり車両11が停止していると判定された場合には、ステップS21に進み、低μ路発進フラグFsが「1」に設定されているか否かが判定される。ステップS21において、低μ路発進フラグFsが「1」に設定されていると判定された場合には、ステップS23に進み、車両11の発進条件が成立するか否かが判定される。ここで、車両11の発進条件として、アクセルペダルが踏み込まれることや、ブレーキペダル46の踏み込みが解除されることがある。
ステップS23において、車両11の発進条件が成立したと判定された場合には、ステップS24に進み、前述した要求駆動力に基づいて目標モータトルクT1が設定される。この目標モータトルクT1とは、図4の駆動力マップを用いて設定された要求駆動力が得られるように、フロントモータ16およびリアモータ18に設定される目標モータトルクである。そして、走行用モータ毎に目標モータトルクT1が設定されると、ステップS25に進み、前述したディレイ時間Tdおよびなまし係数ksに基づき、補正モータトルクT2が設定される。この補正モータトルクT2とは、図7および図8に示したように、なまし係数ksに基づき抑制されて出力されるモータトルクであり、ディレイ時間Tdに基づき遅れて出力されるモータトルクである。また、走行用モータ毎に補正モータトルクT2が設定されると、ステップS26に進み、ブレーキ制御に基づき最終モータトルクT3が設定される。この最終モータトルクT3は、前述したブレーキ装置45によって車輪スリップ等を抑制するための制動力制御を実行する際に、この制動力制御に対して影響を与えないように修正されるモータトルクである。
このように、走行用モータ毎に最終モータトルクT3が設定されると、ステップS27に進み、フロントモータ用の最終モータトルクT3に基づきフロントモータ16が制御され、リアモータ用の最終モータトルクT3に基づきリアモータ18が制御される。すなわち、凍結路面等の低μ路において車両11を発進させる際には、摩擦係数Fμ,Rμに基づきディレイ時間Tdやなまし係数ksが設定され、このディレイ時間Tdやなまし係数ksによってフロントモータ16やリアモータ18のモータトルクが抑制される。これにより、前後輪12L,12R,14L,14Rの過度なスリップを抑制することができ、低μ路で発進する車両11の挙動を安定させることができる。
続いて、ステップS28では、発進後の車速が所定の閾値V2を上回るか否かが判定される。ステップS28において、車速が閾値V2以下であると判定された場合には、ステップS29に進み、発進後の経過時間が所定のトルク抑制時間を上回るか否かが判定される。ステップS29において、発進後の経過時間がトルク抑制時間以下であると判定された場合には、ステップS24に戻り、各走行用モータのトルク抑制制御が継続される。つまり、発進後の車速が閾値V2以下であり、かつ発進後の経過時間がトルク抑制時間以下である場合には、ステップS24に戻り、各走行用モータのトルク抑制制御が継続される。
一方、ステップS28において、発進後の車速が閾値V2を上回ると判定された場合や、ステップS29において、発進後の経過時間がトルク抑制時間を上回ると判定された場合には、ステップS30に進み、低μ路発進フラグが解除され(Fs=0)、ステップS31に進み、走行用モータの通常制御が実行される。なお、走行用モータの通常制御とは、前述したディレイ時間Tdやなまし係数ksを用いることなく、アクセル開度および車速に基づき目標モータトルクを設定する制御である。
[発進トルク抑制制御(タイミングチャート1)]
前述した発進トルク抑制制御の実行状況をタイミングチャートに沿って説明する。図9は発進トルク抑制制御の実行状況の一例を示すタイミングチャートであり、図10は発進トルク抑制制御によって発進する車両11を示す図である。なお、図9に示す時刻t3,t4と図10に示す時刻t3,t4とは互いに対応している。また、図9および図10に示される状況とは、凍結路面等に前輪12L,12Rが停止して圧雪路面等に後輪14L,14Rが停止する停車状態から、アクセルペダルが踏み込まれて車両11を発進させる状況である。
図9に時刻t1で示すように、停車に向けて車速が閾値V1を下回ると(符号a1)、前輪12L,12Rとこれに接触する路面との摩擦係数Fμが推定され,後輪14L,14Rとこれに接触する路面との摩擦係数Rμが推定される。そして、時刻t2で示すように、摩擦係数Fμ,Rμが閾値μ1を下回り、かつ摩擦係数Fμ,Rμの差分(|Fμ-Rμ|)が閾値Xμを上回る状況が、所定時間に亘って継続されると(符号b1,c1,d1)、前述したディレイ時間Tdおよびなまし係数ksが設定され、トルク抑制制御の実行条件である低μ路発進フラグFsが設定される(符号e1)。図示する例では、摩擦係数Fμが摩擦係数Rμよりも小さいことから、低μ側のフロントモータ16に対するディレイ時間Tdが設定され、高μ側のリアモータ18に対するなまし係数ksが設定される。
時刻t3で示すように、運転者によってアクセルペダルが踏み込まれると(符号f1)、フロントモータ16およびリアモータ18の目標モータトルクT1はアクセル開度に応じて増加する(符号g1,h1)。ここで、フロントモータ16にはディレイ時間Tdが設定されることから、フロントモータ16のモータトルクTfは、目標モータトルクT1に追従することなく、ディレイ時間Tdに亘って「0」に制御される(符号i1)。また、リアモータ18には摩擦係数Rμに基づきなまし係数ksが設定されており、なまし処理が実施されるリアモータ18のモータトルクTrは、目標モータトルクT1よりも小さくかつ緩やかに制御される(符号j1)。
また、時刻t4で示すように、アクセルペダルの踏み込みからディレイ時間Tdが経過すると、フロントモータ16のモータトルクTfは、目標モータトルクT1に向けて制御される(符号i2)。次いで、時刻t5で示すように、車速が所定の閾値V2に到達すると(符号a2)、ディレイ時間Tdおよびなまし係数ksを用いたトルク抑制制御を終了させるため、低μ路発進フラグが解除される(符号e2)。そして、リアモータ18のモータトルクTrは、目標モータトルクT1に向けて制御される(符号j2)。
前述したように、摩擦係数Fμ,Rμが閾値μ1を下回り、かつ摩擦係数Fμ,Rμの差分(|Fμ-Rμ|)が閾値Xμを上回る車両発進時において、摩擦係数Fμが摩擦係数Rμよりも小さい場合には、リアモータ18の力行トルクを上昇させてから、摩擦係数(第1摩擦係数)Fμに基づくディレイ時間(第1ディレイ時間)Tdを経過した後に、フロントモータ16の力行トルクを上昇させている。つまり、リアモータ18の力行トルクを上昇させ始めてから、ディレイ時間Tdを経過した後にフロントモータ16の力行トルクを上昇させ始めている。すなわち、図10に時刻t3として示すように、摩擦係数Fμが摩擦係数Rμよりも小さい場合、つまり前輪12L,12Rが後輪14L,14Rよりも滑り易い路面に停止している場合には、フロントモータ16よりもリアモータ18の力行トルクを先行して上昇させている。
このように、凍結路面よりも滑り難い圧雪路面に接する後輪14L,14Rに対して駆動力Frを与える一方、圧雪路面よりも滑り易い凍結路面に接する前輪12L,12Rに対する駆動力をゼロに制御している。これにより、高μ側の後輪14L,14Rに駆動力Frを与えて車両11を発進させつつ、低μ側の前輪12L,12Rをスリップさせないように車速に連動して回転させることができる。このように車両11を発進させると、図10に時刻t4として示すように、ディレイ時間Tdに亘って前輪12L,12Rが回転してから、フロントモータ16の力行トルクを上昇させることにより、回転中の前輪12L,12Rに対して駆動力Ffが与えられる。これにより、凍結路面等に接する前輪12L,12Rのスリップを抑制することができ、発進時の車両挙動を安定させることができる。
これまで説明したように、前後輪12L,12R,14L,14Rが凍結路面等の低μ路に接触する車両発進時において、前後の摩擦係数Fμ,Rμの差分が大きい場合には、高μ側の後輪14L,14Rに対して駆動力Frを与える一方、低μ側の前輪12L,12Rに対する駆動力をディレイ時間Tdに亘ってゼロに制御する。そして、前輪12L,12Rがディレイ時間Tdに亘って回転した後に、フロントモータ16の力行トルクを上昇させることにより、回転中の前輪12L,12Rに対して駆動力Ffを与えている。このように、前輪12L,12Rをディレイ時間Tdに亘って回転させることにより、前輪12L,12Rのスリップを抑制することが可能であるが、このディレイ時間Tdについては摩擦係数等に基づき演算することが可能である。
まず、走行用モータによって駆動される車輪に許容されるスリップ量が、目標スリップ量SL[km/h]として設定される。この目標スリップ量SLについては、駆動系のギア比等を用いることにより、走行用モータのトルクオーバーシュート量Tos[Nm]に換算することが可能である。このトルクオーバーシュート量Tosとは、車輪のスリップ量を目標スリップ量SL以下に制限する観点から、走行用モータに許容されるモータトルクTma[Nm]である。つまり、以下の式(1)に示すように、トルクオーバーシュート量Tosから車輪に作用する動摩擦力Ffri[Nm]を減算し、この減算値を超えないように走行用モータのモータトルクTmaを制御することにより、車輪のスリップ量を目標スリップ量SL以下に制限することが可能である。なお、動摩擦力Ffriについては、該当する車輪と路面との摩擦係数を用いて算出することが可能である。前述したように、制限すべき走行用モータのモータトルクTmaが求められると、以下の式(2)に示すように、モータトルクTmaを走行用モータのトルク上昇レートRm[Nm/msec]で除算することにより、ディレイ時間Td[msec]が算出される。このように算出されたディレイ時間Tdに亘ってゼロトルク制御を実行することにより、目標スリップ量SLを超えないように該当する車輪の回転速度を高めることができる。
Tma[Nm]≦Tos[Nm]-Ffri[Nm] ・・式(1)
Td[msec]=Tma[Nm]/Rm[Nm/msec] ・・式(2)
なお、図9および図10に示した例では、摩擦係数Fμが摩擦係数Rμよりも小さい場合を示しているが、これに限られることはない。すなわち、図9および図10に示した例において、摩擦係数Rμが摩擦係数Fμよりも小さい場合、つまり後輪14L,14Rが前輪12L,12Rよりも滑り易い路面に停止している場合には、低μ側のリアモータ18に対して、摩擦係数(第2摩擦係数)Rμに基づくディレイ時間(第2ディレイ時間)Tdが設定される。そして、車両発進時には、フロントモータ16の力行トルクを上昇させてから、摩擦係数Rμに基づくディレイ時間Tdを経過した後に、リアモータ18の力行トルクを上昇させることになる。つまり、フロントモータ16の力行トルクを上昇させ始めてから、ディレイ時間Tdを経過した後にリアモータ18の力行トルクを上昇させ始めている。また、前述の説明では、高μ側の走行用モータに対してなまし処理を施しているが、これに限られることはなく、高μ側の走行用モータに対してなまし処理を施すことなく車両11を発進させても良い。
[発進トルク抑制制御(タイミングチャート2)]
前述の図9に示したタイミングチャートには、摩擦係数Fμ,Rμの差分(|Fμ-Rμ|)が閾値Xμを上回る状況が示されているが、以下の説明では、摩擦係数Fμ,Rμが閾値μ1を下回り、かつ摩擦係数Fμ,Rμの差分(|Fμ-Rμ|)が閾値Xμを下回る状況について説明する。ここで、図11は発進トルク抑制制御の実行状況の一例を示すタイミングチャートである。
図11に時刻t1で示すように、停車に向けて車速が閾値V1を下回ると(符号a1)、前輪12L,12Rとこれに接触する路面との摩擦係数Fμが推定され,後輪14L,14Rとこれに接触する路面との摩擦係数Rμが推定される。そして、時刻t2で示すように、摩擦係数Fμ,Rμが閾値μ1を下回り、かつ摩擦係数Fμ,Rμの差分(|Fμ-Rμ|)が閾値Xμを下回る状況が、所定時間に亘って継続されると(符号b1,c1,d1)、双方の走行用モータに対してなまし係数ksが設定され、トルク抑制制御の実行条件である低μ路発進フラグFsが設定される(符号e1)。つまり、フロントモータ16に対するなまし係数ksが設定されるとともに、リアモータ18に対するなまし係数ksが設定される。
時刻t3で示すように、運転者によってアクセルペダルが踏み込まれると(符号f1)、フロントモータ16およびリアモータ18の目標モータトルクT1はアクセル開度に応じて増加する(符号g1,h1)。ここで、フロントモータ16には摩擦係数Fμに基づきなまし係数ksが設定されており、なまし処理が実施されるフロントモータ16のモータトルクTfは、目標モータトルクT1よりも小さくかつ緩やかに制御される(符号i1)。同様に、リアモータ18には摩擦係数Rμに基づきなまし係数ksが設定されており、なまし処理が実施されるリアモータ18のモータトルクTrは、目標モータトルクT1よりも小さくかつ緩やかに制御される(符号j1)。
次いで、時刻t4で示すように、車速が所定の閾値V2に到達すると(符号a2)、なまし係数ksを用いたトルク抑制制御を終了させるため、低μ路発進フラグが解除される(符号e2)。そして、フロントモータ16のモータトルクTfは、目標モータトルクT1に向けて制御され(符号i2)、リアモータ18のモータトルクTrは、目標モータトルクT1に向けて制御される(符号j2)。
前述したように、摩擦係数Fμ,Rμが閾値μ1を下回り、かつ摩擦係数Fμ,Rμの差分(|Fμ-Rμ|)が閾値Xμを下回る車両発進時においては、摩擦係数Fμと摩擦係数Rμとが互いに接近していることから、双方のモータトルクTf,Trになまし処理が施されている。これにより、前後輪12L,12R,14L,14Rに適切な駆動力を与えることができるため、車両11の発進性能を高めることができる。しかも、フロントモータ16のモータトルクTfは、摩擦係数Fμに基づくなまし係数ksを用いて制御されており、リアモータ18のモータトルクTrは、摩擦係数Rμに基づくなまし係数ksを用いて制御されている。これにより、路面状況に合わせてモータトルクTf,Trを適切に制御することができるため、車両11の発進性能を高めるととも車両挙動を安定させることができる。
[他の実施形態]
<車両構成>
前述の説明では、左右の前輪12L,12Rに対して1つのフロントモータ16を連結し、左右の後輪14L,14Rに対して1つのリアモータ18を連結しているが、これに限られることはなく、車輪12L,12R,14L,14R毎に1つの走行用モータを連結しても良い。ここで、図12は本発明の他の実施形態である車両用制御装置80が設けられた車両81の構成例を示す図である。図12において、図2に示した構成と同様の構成については、同一の符号を付してその説明を省略する。
図12に示すように、車両81は、左前輪82Lに連結される左フロントモータ84と、右前輪82Rに連結される右フロントモータ85と、左後輪83Lに連結される左リアモータ86と、右後輪83Rに連結される右リアモータ87と、を有している。左フロントモータ84のステータ84sにはインバータ90が接続され、右フロントモータ85のステータ85sにはインバータ91が接続され、左リアモータ86のステータ86sにはインバータ92が接続され、右リアモータ87のステータ87sにはインバータ93が接続されている。また、各インバータ90~93には、バッテリパック31が接続されている。
インバータ90を介して左フロントモータ84を制御するため、インバータ90には左フロントモータ制御ユニット94が接続されており、インバータ91を介して右フロントモータ85を制御するため、インバータ91には右フロントモータ制御ユニット95が接続されている。また、インバータ92を介して左リアモータ86を制御するため、インバータ92には左リアモータ制御ユニット96が接続されており、インバータ93を介して右リアモータ87を制御するため、インバータ93には右リアモータ制御ユニット97が接続されている。これらのモータ制御ユニット94~97および前述した各制御ユニット34,44,51,52によって制御システム98が構成されている。
<抑制条件設定制御(フローチャート)>
続いて、車両用制御装置80を構成する制御システム98によって実行される抑制条件設定制御について説明する。ここで、図13~図15は抑制条件設定制御の実行手順の一例を示すフローチャートである。図13~図15のフローチャートにおいては、符号A,Bの箇所で互いに接続されている。また、図14および図15においては、左右のフロントモータ84,85や左右のリアモータ86,87を走行用モータとして記載し、左前輪82L、右前輪82R、左後輪83Lおよび右後輪83Rを車輪として記載している。なお、車両用制御装置80においても、発進トルク抑制制御については、前述の図6のフローチャートに示した手順に沿って実行される。
図13に示すように、ステップS40では、車両81が停止しているか否かを判定するため、車速が所定の閾値V1を下回るか否かが判定される。ステップS40において、車速が閾値V1を下回ると判定された場合、つまり車両81が停止していると判定された場合には、ステップS41に進み、車輪と路面との摩擦係数FLμ,FRμ,RLμ,RRμが推定される。つまり、ステップS41においては、カメラモジュール43L,43Rによって得られた撮像データの画像解析を実行して路面状況を判定し、判定された路面状況(ドライ路面、ウェット路面、圧雪路面、凍結路面等)から車輪と路面との摩擦係数FLμ,FRμ,RLμ,RRμを推定する。
なお、摩擦係数FLμは、左前輪82Lとこれに接触する路面との摩擦係数であり、摩擦係数FRμは、右前輪82Rとこれに接触する路面との摩擦係数である。また、摩擦係数RLμは、左後輪83Lとこれに接触する路面との摩擦係数であり、摩擦係数RRμは、右後輪83Rとこれに接触する路面との摩擦係数である。
続いて、ステップS42では、摩擦係数FLμが所定の閾値(第1閾値)μ1を下回るか否かが判定される。ステップS42において、摩擦係数FLμが閾値μ1以上であると判定された場合、つまり左前輪82Lがドライ路面等の滑り難い路面に接していると判定された場合には、ステップS43に進む。ステップS43では、摩擦係数FRμが閾値μ1を下回るか否かが判定される。ステップS43において、摩擦係数FRμが閾値μ1以上であると判定された場合、つまり右前輪82Rが滑り難い路面に接していると判定された場合には、ステップS44に進む。
また、ステップS44では、摩擦係数RLμが閾値μ1を下回るか否かが判定される。ステップS44において、摩擦係数RLμが閾値μ1以上であると判定された場合、つまり左後輪83Lが滑り難い路面に接していると判定された場合には、ステップS45に進む。ステップS45では、摩擦係数RRμが閾値μ1を下回るか否かが判定される。ステップS45において、摩擦係数RRμが閾値μ1以上であると判定された場合、つまり右後輪83Rが滑り難い路面に接していると判定された場合には、ステップS46に進む。すなわち、左前輪82L、右前輪82R、左後輪83Lおよび右後輪83Rの全てが、滑り難い路面に接していると判定された場合には、発進トルク抑制制御を実行する必要がないことから、ステップS46に進み、低μ路発進フラグが解除される(Fs=0)。
一方、ステップS42~S44において、摩擦係数FLμ,FRμ,RLμ,RRμの何れかが閾値μ1を下回ると判定された場合には、ステップS47に進む。図14に示すように、ステップS47では、摩擦係数FLμ,FRμ,RLμ,RRμのうち、最も高い摩擦係数が基準摩擦係数XHμとして設定される。また、各車輪のうち、基準摩擦係数XHμに該当する車輪が基準車輪WHとして設定される。続くステップS48では、摩擦係数FLμ,FRμ,RLμ,RRμのうち、基準摩擦係数XHμ以外の摩擦係数が、摩擦係数XLμ1,XLμ2,XLμ3として設定される。また、各車輪のうち、摩擦係数XLμ1,XLμ2,XLμ3に該当する車輪が、車輪WL1,WL2,WL3として設定される。次いで、ステップS49では、以下の式(3)~(5)に示すように、基準摩擦係数XHμと摩擦係数XLμ1,XLμ2,XLμ3との差分Δμ1,Δμ2,Δμ3が算出される。
Δμ1=XHμ-XLμ1 ・・式(3)
Δμ2=XHμ-XLμ2 ・・式(4)
Δμ3=XHμ-XLμ3 ・・式(5)
続いて、図15に示すように、ステップS50に進み、基準車輪WHを駆動する走行用モータのなまし係数kshが設定される。続くステップS51では、摩擦係数XHμ,XLμ1の差分Δμ1が所定の閾値(第2閾値)Xμを上回るか否かが判定される。ステップS51において、差分Δμ1が閾値Xμを上回ると判定された場合には、ステップS52に進み、車輪WL1を駆動する走行用モータのディレイ時間Td1が設定される。一方、ステップS51において、差分Δμ1が閾値Xμ以下であると判定された場合には、ステップS53に進み、車輪WL1を駆動する走行用モータのなまし係数ks1が設定される。
続くステップS54では、摩擦係数XHμ,XLμ2の差分Δμ2が閾値Xμを上回るか否かが判定される。ステップS54において、差分Δμ2が閾値Xμを上回ると判定された場合には、ステップS55に進み、車輪WL2を駆動する走行用モータのディレイ時間Td2が設定される。一方、ステップS54において、差分Δμ2が閾値Xμ以下であると判定された場合には、ステップS56に進み、車輪WL2を駆動する走行用モータのなまし係数ks2が設定される。
続くステップS57では、摩擦係数XHμ,XLμ3の差分Δμ3が閾値Xμを上回るか否かが判定される。ステップS57において、差分Δμ3が閾値Xμを上回ると判定された場合には、ステップS58に進み、車輪WL3を駆動する走行用モータのディレイ時間Td3が設定される。一方、ステップS57において、差分Δμ3が閾値Xμ以下であると判定された場合には、ステップS59に進み、車輪WL3を駆動する走行用モータのなまし係数ks3が設定される。
このように、各ステップS50~S59を経て、ディレイ時間Td1~Td3やなまし係数ksh,ks1~ks3が設定されると、ステップS60に進み、低μ路発進フラグFsが設定される(Fs=1)。なお、ディレイ時間Td1~Td3については、前述の図7等に示した設定手順に従って設定され、なまし係数ksh,ks1~ks3については、前述の図8等に示した設定手順に従って設定される。
これまで説明したように、停車時に推定される摩擦係数FLμ,FRμ,RLμ,RRμに基づいて、各車輪を駆動する走行用モータのディレイ時間Td1~Td3やなまし係数ksh,ks1~ks3が設定される。これにより、前述した車両用制御装置10と同様に、凍結路面等に接する車輪のスリップを抑制することができ、発進時の車両挙動を安定させることができる。しかも、本実施形態においては、車輪毎に1つの走行用モータが連結されることから、路面状況に応じてより適切に各車輪の駆動力を制御することができる。
ここで、図16は発進トルク抑制制御によって発進する車両81を示す図である。図16に示される状況とは、凍結路面等に右前輪82R、左後輪83Lおよび右後輪83Rが停止し、圧雪路面等に左前輪82Lが停止する停車状態から、アクセルペダルが踏み込まれて車両81を発進させる状況である。つまり、図16に示した例では、最も摩擦係数の大きな左前輪82Lが基準車輪WHとして設定され、他の右前輪82R、左後輪83Lおよび右後輪83Rが車輪WL1~WL3として設定される。また、左前輪82Lを駆動する左フロントモータ84にはなまし係数kshが設定され、他の車輪を駆動する左フロントモータ84、左リアモータ86および右リアモータ87にはディレイ時間Td1~Td3が設定されている。
図16に発進直後として示すように、凍結路面等に右前輪82R、左後輪83Lおよび右後輪83Rが停止し、圧雪路面等に左前輪82Lが停止することから、左フロントモータ84の力行トルクTflを他の走行用モータの力行トルクに先行して上昇させている。このように、凍結路面よりも滑り難い圧雪路面に接する左前輪82Lに対して駆動力Fflを与える一方、圧雪路面よりも滑り易い凍結路面に接する他の車輪82R,83L,83Rに対する駆動力をゼロに制御している。これにより、高μ側の左前輪82Lに駆動力Fflを与えて車両81を発進させつつ、低μ側の車輪82R,83L,83Rをスリップさせないように車速に連動して回転させることができる。このように車両81を発進させると、図16に所定時間経過後として示すように、ディレイ時間Td1~Td3に亘って車輪82R,83L,83Rが回転してから、他の走行用モータ85~87の力行トルクTfr,Trl,Trrを上昇させることにより、回転中の車輪82R,83L,83Rに対して駆動力Ffr,Frl,Frrが与えられる。これにより、凍結路面等に接する車輪82R,83L,83Rのスリップを抑制することができ、発進時の車両挙動を安定させることができる。
なお、車両用制御装置80においては、各車輪82L,82R,83L,83Rのうち、何れか1つが第1車輪として機能し、他の何れか1つが第2車輪として機能する。また、各モータ84~87のうち、何れか1つが第1走行用モータとして機能し、他の何れか1つが第2走行用モータとして機能する。また、各ディレイ時間Td1~Td3のうち、何れか1つが第1ディレイ時間として機能し、他の何れか1つが第2ディレイ時間として機能する。また、各摩擦係数FLμ,FRμ,RLμ,RRμのうち、何れか1つが第1摩擦係数として機能し、他の何れか1つが第2摩擦係数として機能する。
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。前述の説明では、複数の制御ユニット34,40,41,44,51,52によって制御システム20を構成し、複数の制御ユニット34,44,51,52,94~97によって制御システム98を構成しているが、これに限られることはない。例えば、1つの制御ユニットによって制御システム20,98を構成しても良い。なお、車両11,81としては、図示する電気自動車に限られることはなく、燃料電池車であっても良く、シリーズ方式のハイブリッド車両であっても良い。
前述の説明では、全輪駆動の車両11,81に本発明を適用しているが、これに限られることはなく、前輪駆動や後輪駆動の車両11に本発明を適用しても良い。つまり、前輪駆動の車両においては、左前輪(第1車輪)に第1走行用モータが連結され、右前輪(第2車輪)に第2走行用モータが連結されていれば良い。この場合には、左右の前輪が接する各路面の摩擦係数に応じて、なまし係数ksやディレイ時間Tdが設定され、前述した発進トルク抑制制御が実行される。同様に、後輪駆動の車両においては、左後輪(第1車輪)に第1走行用モータが連結され、右後輪(第2車輪)に第2走行用モータが連結されていれば良い。この場合には、左右の後輪が接する各路面の摩擦係数に応じて、なまし係数ksやディレイ時間Tdが設定され、前述した発進トルク抑制制御が実行される。
前述の説明では、カメラモジュール43L,43Rによって得られた撮像データの画像解析を実行して路面状況を判定し、判定された路面状況(ドライ路面、ウェット路面、圧雪路面、凍結路面等)に基づいて車輪と路面との摩擦係数を推定しているが、これに限られることはない。例えば、停車直前における走行用モータの回生トルクと、走行用モータに連結される車輪の角加速度と、に基づいて車輪と路面との摩擦係数を推定しても良い。つまり、走行用モータの回生トルクによって車輪がロックし始めるタイミングでは、車輪の角加速度が減速側に急増することになる。このため、車輪の角加速度が減速側に急増するタイミングでの回生トルクに基づいて、車輪と路面との摩擦係数を推定することが可能である。例えば、凍結路面等の摩擦係数が小さい路面においては、車輪の角加速度が減速側に急増する際の回生トルクが小さい現れる一方、ドライ路面等の摩擦係数が大きな路面においては、車輪の角加速度が減速側に急増する際の回生トルクが大きく現れることになる。
10 車両用制御装置
11 車両
12L,12R 前輪(第1車輪)
14L,14R 後輪(第2車輪)
16 フロントモータ(第1走行用モータ)
18 リアモータ(第2走行用モータ)
20 制御システム
70 プロセッサ
71 メモリ
80 車両用制御装置
81 車両
82L 左前輪(第1車輪,第2車輪)
82R 右前輪(第1車輪,第2車輪)
83L 左後輪(第1車輪,第2車輪)
83R 右後輪(第1車輪,第2車輪)
84 左フロントモータ(第1走行用モータ,第2走行用モータ)
85 右フロントモータ(第1走行用モータ,第2走行用モータ)
86 左リアモータ(第1走行用モータ,第2走行用モータ)
87 右リアモータ(第1走行用モータ,第2走行用モータ)
98 制御システム
Fμ 摩擦係数(第1摩擦係数)
Rμ 摩擦係数(第2摩擦係数)
FLμ 摩擦係数(第1摩擦係数,第2摩擦係数)
FRμ 摩擦係数(第1摩擦係数,第2摩擦係数)
RLμ 摩擦係数(第1摩擦係数,第2摩擦係数)
RRμ 摩擦係数(第1摩擦係数,第2摩擦係数)
Δμ1~Δμ3 差分
μ1 閾値(第1閾値)
Xμ 閾値(第2閾値)
Sf,Sr 路面
Td,Td1~Td3 ディレイ時間(第1ディレイ時間,第2ディレイ時間)
T1 目標モータトルク(目標トルク)
一方、ステップS42~S4において、摩擦係数FLμ,FRμ,RLμ,RRμの何れかが閾値μ1を下回ると判定された場合には、ステップS47に進む。図14に示すように、ステップS47では、摩擦係数FLμ,FRμ,RLμ,RRμのうち、最も高い摩擦係数が基準摩擦係数XHμとして設定される。また、各車輪のうち、基準摩擦係数XHμに該当する車輪が基準車輪WHとして設定される。続くステップS48では、摩擦係数FLμ,FRμ,RLμ,RRμのうち、基準摩擦係数XHμ以外の摩擦係数が、摩擦係数XLμ1,XLμ2,XLμ3として設定される。また、各車輪のうち、摩擦係数XLμ1,XLμ2,XLμ3に該当する車輪が、車輪WL1,WL2,WL3として設定される。次いで、ステップS49では、以下の式(3)~(5)に示すように、基準摩擦係数XHμと摩擦係数XLμ1,XLμ2,XLμ3との差分Δμ1,Δμ2,Δμ3が算出される。
Δμ1=XHμ-XLμ1 ・・式(3)
Δμ2=XHμ-XLμ2 ・・式(4)
Δμ3=XHμ-XLμ3 ・・式(5)
このように、各ステップS50~S59を経て、ディレイ時間Td1~Td3やなまし係数ksh,ks1~ks3が設定されると、ステップS60に進み、低μ路発進フラグFsが設定される(Fs=1)。なお、ディレイ時間Td1~Td3については、前述の図等に示した設定手順に従って設定され、なまし係数ksh,ks1~ks3については、前述の図等に示した設定手順に従って設定される。
ここで、図16は発進トルク抑制制御によって発進する車両81を示す図である。図16に示される状況とは、凍結路面等に右前輪82R、左後輪83Lおよび右後輪83Rが停止し、圧雪路面等に左前輪82Lが停止する停車状態から、アクセルペダルが踏み込まれて車両81を発進させる状況である。つまり、図16に示した例では、最も摩擦係数の大きな左前輪82Lが基準車輪WHとして設定され、他の右前輪82R、左後輪83Lおよび右後輪83Rが車輪WL1~WL3として設定される。また、左前輪82Lを駆動する左フロントモータ84にはなまし係数kshが設定され、他の車輪を駆動するフロントモータ8、左リアモータ86および右リアモータ87にはディレイ時間Td1~Td3が設定されている。

Claims (5)

  1. 車両に設けられる車両用制御装置であって、
    第1車輪に連結される第1走行用モータと、
    第2車輪に連結される第2走行用モータと、
    互いに通信可能に接続されるプロセッサおよびメモリを備え、前記第1走行用モータおよび前記第2走行用モータを制御する制御システムと、
    を有し、
    前記制御システムは、前記第1車輪と路面との第1摩擦係数と、前記第2車輪と路面との第2摩擦係数と、を推定し、
    前記制御システムは、
    前記第1摩擦係数と前記第2摩擦係数との少なくとも何れか一方が第1閾値を下回り、かつ前記第1摩擦係数と前記第2摩擦係数との差分が第2閾値を上回る車両発進時において、
    前記第1摩擦係数が前記第2摩擦係数よりも小さい場合には、前記第2走行用モータの力行トルクを上昇させてから、前記第1摩擦係数に基づき設定される第1ディレイ時間を経過した後に、前記第1走行用モータの力行トルクを上昇させる一方、
    前記第2摩擦係数が前記第1摩擦係数よりも小さい場合には、前記第1走行用モータの力行トルクを上昇させてから、前記第2摩擦係数に基づき設定される第2ディレイ時間を経過した後に、前記第2走行用モータの力行トルクを上昇させる、
    車両用制御装置。
  2. 請求項1に記載の車両用制御装置において、
    前記第1ディレイ時間は、前記第1摩擦係数が小さくなるにつれて長く設定されており、
    前記第2ディレイ時間は、前記第2摩擦係数が小さくなるにつれて長く設定されている、
    車両用制御装置。
  3. 請求項1または2に記載の車両用制御装置において、
    前記制御システムは、
    前記第1摩擦係数と前記第2摩擦係数との少なくとも何れか一方が前記第1閾値を下回り、かつ前記第1摩擦係数と前記第2摩擦係数との差分が前記第2閾値を上回る車両発進時において、
    前記第1摩擦係数が前記第2摩擦係数よりも小さい場合には、要求駆動力に基づく目標トルクよりも前記第2走行用モータの力行トルクを小さく制御し、
    前記第2摩擦係数が前記第1摩擦係数よりも小さい場合には、要求駆動力に基づく目標トルクよりも前記第1走行用モータの力行トルクを小さく制御する、
    車両用制御装置。
  4. 請求項1~3の何れか1項に記載の車両用制御装置において、
    前記制御システムは、
    前記第1摩擦係数と前記第2摩擦係数との少なくとも何れか一方が前記第1閾値を下回り、かつ前記第1摩擦係数と前記第2摩擦係数との差分が前記第2閾値を下回る車両発進時において、
    要求駆動力に基づく目標トルクよりも前記第1走行用モータの力行トルクを小さく制御し、要求駆動力に基づく目標トルクよりも前記第2走行用モータの力行トルクを小さく制御する、
    車両用制御装置。
  5. 請求項3または4に記載の車両用制御装置において、
    前記第1走行用モータの力行トルクは、前記第1摩擦係数が小さくなるにつれて小さくなり、
    前記第2走行用モータの力行トルクは、前記第2摩擦係数が小さくなるにつれて小さくなる、
    車両用制御装置。
JP2021146254A 2021-09-08 2021-09-08 車両用制御装置 Pending JP2023039208A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021146254A JP2023039208A (ja) 2021-09-08 2021-09-08 車両用制御装置
US17/887,080 US11801826B2 (en) 2021-09-08 2022-08-12 Vehicle control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021146254A JP2023039208A (ja) 2021-09-08 2021-09-08 車両用制御装置

Publications (1)

Publication Number Publication Date
JP2023039208A true JP2023039208A (ja) 2023-03-20

Family

ID=85386530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021146254A Pending JP2023039208A (ja) 2021-09-08 2021-09-08 車両用制御装置

Country Status (2)

Country Link
US (1) US11801826B2 (ja)
JP (1) JP2023039208A (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539722B2 (ja) * 2000-11-16 2004-07-07 富士重工業株式会社 車両の路面摩擦係数推定装置
DE102010015425A1 (de) * 2010-04-19 2011-10-20 Audi Ag Vorrichtung zum Betreiben einer Antriebseinheit eines Kraftfahrzeugs
JP2011229286A (ja) 2010-04-20 2011-11-10 Nobuyoshi Muto 電気自動車およびプログラム
JP2011230543A (ja) 2010-04-23 2011-11-17 Honda Motor Co Ltd 車両
US8965609B2 (en) * 2011-12-29 2015-02-24 Kawasaki Jukogyo Kabushiki Kaisha Electric vehicle
JP5904185B2 (ja) * 2013-10-07 2016-04-13 トヨタ自動車株式会社 四輪駆動車両の制御装置
US9463697B1 (en) * 2015-05-28 2016-10-11 Atieva, Inc. Dual data rate traction control system for a two wheel drive electric vehicle
JP6716831B2 (ja) 2016-12-05 2020-07-01 日立オートモティブシステムズ株式会社 電動車両の制御装置、電動車両の制御システム及び電動車両の制御方法
US10814846B2 (en) * 2017-08-11 2020-10-27 Ford Global Technologies, Llc Traction control based on friction coefficient estimation
US10370005B2 (en) * 2017-12-05 2019-08-06 Ford Global Technologies, Llc Method and apparatus for vehicle valet control devices
DE102018220576A1 (de) * 2018-11-29 2020-06-04 Robert Bosch Gmbh Verfahren und Steuergerät zum Bestimmen eines Reibwertpotentials eines Fahrbahnbelags
US20230140485A1 (en) * 2021-11-03 2023-05-04 GM Global Technology Operations LLC Architecture and model predictive control-based methodology to manage chassis and driveline actuators

Also Published As

Publication number Publication date
US11801826B2 (en) 2023-10-31
US20230071073A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
KR102417515B1 (ko) 전기자동차의 제동 제어 장치 및 방법
JP4039146B2 (ja) 制動制御装置
US10279812B2 (en) Driving force control system for vehicle
CN109955727B (zh) 用于施加车辆的滑行再生扭矩的系统和方法
JP3863838B2 (ja) ハイブリッド車両
US8616660B2 (en) Regenerative brake control method
JP2004017963A (ja) ヨー・スタビリティ制御中の回生制動制御方法、そのためのシステム及び装置
JP2004099029A (ja) 回生制動を持つ車両の制動及び操縦性制御方法及びシステム
JP2004104991A (ja) 回生制動を持つ車両の独立制動及び操縦性の制御方法及びシステム
JP3966894B2 (ja) ハイブリッド車両
CN114248770A (zh) 单踏板驾驶模式下的上坡车辆起步
US11634138B2 (en) Electric vehicle
JP2018043656A (ja) 車両の制動力制御装置
CN110799397B (zh) 车辆控制装置、车辆控制系统和车辆控制方法
JP2011193702A (ja) 電気自動車および制動プログラム
JP2023039208A (ja) 車両用制御装置
JPH06171489A (ja) 電気自動車のアンチロック制御装置
JP3661545B2 (ja) ハイブリッド車両
JP3494027B2 (ja) 制動力制御装置
JP2021030929A (ja) 車両の制動制御装置
JP4135700B2 (ja) 車両のモータトラクション制御装置
JP6504066B2 (ja) 車両の制動制御装置
JP2005153790A (ja) 4輪駆動車両
JP2021130361A (ja) 制御装置
JP3523726B2 (ja) 電気自動車の制動方法及び装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220520