JP2022508791A - ジヒドロピリジン系カルシウム拮抗薬共結晶、その製造方法及び使用 - Google Patents

ジヒドロピリジン系カルシウム拮抗薬共結晶、その製造方法及び使用 Download PDF

Info

Publication number
JP2022508791A
JP2022508791A JP2021546042A JP2021546042A JP2022508791A JP 2022508791 A JP2022508791 A JP 2022508791A JP 2021546042 A JP2021546042 A JP 2021546042A JP 2021546042 A JP2021546042 A JP 2021546042A JP 2022508791 A JP2022508791 A JP 2022508791A
Authority
JP
Japan
Prior art keywords
crystal
calcium channel
channel blocker
dihydropyridine calcium
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021546042A
Other languages
English (en)
Inventor
云 凌
亜明 周
名莉 ▲とう▼
永泰 楊
小鋒 劉
瑜 賈
嘉星 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Fudan Innovation Research Institute
Fundan University
Original Assignee
Zhuhai Fudan Innovation Research Institute
Fundan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Fudan Innovation Research Institute, Fundan University filed Critical Zhuhai Fudan Innovation Research Institute
Publication of JP2022508791A publication Critical patent/JP2022508791A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/80Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D211/84Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen directly attached to ring carbon atoms
    • C07D211/90Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

本発明は、ジヒドロピリジン系カルシウム拮抗薬共結晶、その製造方法及び使用に関する。共結晶の分子式は(C20H25ClN2O5)・(C6H5COOH)・(Y)nであり、式中、Yは水分子、エタノール分子及びイソプロパノール分子のうちのいずれか1種であり、0≦n≦3であり、共結晶は三斜晶系に結晶化し、P1キラルな空間群に属し、単位胞サイズはa=7.4~7.8Å、b=7.5~8.1Å、c=25.3~26.2Å、α=97.1~97.5°、β=92.2~92.6°、γ=111.5~112.1°、V=1408~1428Å3である。本発明によれば、従来のL-アムロジピン共結晶の結晶形の溶解性及び安定性が改善され、潜在的には、錠剤の大規模生産において降圧薬錠剤の安定性の向上及びバイオアベイラビリティの改善に有利である。【選択図】図1

Description

本発明は、結晶性医薬品の技術分野に属し、具体的には、ジヒドロピリジン系カルシウム拮抗薬共結晶、その製造方法及び使用に関する。
結晶性医薬品は、安定性、再現性、バイオアベイラビリティ及び操作性などの優位性により、医薬品製剤に好適に使用されている。結晶性医薬品は、医薬品分子の多結晶形、水和物、溶媒和物及び塩類などを含む。医薬品の結晶形が異なると、その物理的および化学的性質の違いが顕著であり、生理学的条件下での溶出および吸収効率に影響し、ひいては医薬品のバイオアベイラビリティ及び臨床効果などに影響する。
L-アムロジピンは、高血圧を治療する第4世代ジヒドロピリジン系カルシウム拮抗薬降圧薬として、治療効果が高く、副作用が小さいため、深く医師と患者に信頼されており、高血圧を治療するための一般的な薬である。L-アムロジピンは遊離塩基化合物であり、塩に形成して結晶化する必要がある。現在、中国で市販されているL-アムロジピン塩医薬品は主にベンゼンスルホン酸L-アムロジピン及びマレイン酸L-アムロジピン(構造式は以下に示される)である。
Figure 2022508791000002
ベンゼンスルホン酸L-アムロジピンは、治療効果が高く、副作が少ないが、ベンゼンスルホン酸L-アムロジピンの共結晶の結晶形、特に水和共結晶の結晶形は、安定性が十分ではない。ベンゼンスルホン酸の代わりにマレイン酸を使用して開発したマレイン酸L-アムロジピンは、共結晶の結晶形の安定性がある程度改善されたが、マレイン酸L-アムロジピンの治療効果は理想的ではない。L-アムロジピン遊離塩基を用いて新しい共結晶の結晶形を開発し、上記問題を改善することは、ジヒドロピリジン系カルシウム拮抗薬の開発において重要な課題となっている。
本発明は、上記問題を解決するために、ジヒドロピリジン系カルシウム拮抗薬共結晶、その製造方法及び使用を提供することを目的とする。
本発明の目的は、以下の技術案により実現される。
分子式が(C2025ClN)・(CCOOH)・(Y)であるジヒドロピリジン系カルシウム拮抗薬共結晶。
(式中、Yは水分子、エタノール分子及びイソプロパノール分子のうちのいずれか1種であり、0≦n≦3であり、C2025ClNはL-アムロジピンであり、CCOOHは安息香酸である。)
なお、nの具体的な数値は、塩形成反応の溶媒の種類、温度、及びその後の生成物の乾燥条件に制限されるため、一定の範囲内で変化可能であり、このような変化は共結晶の結晶形に影響を与えない。
上記共結晶は、三斜晶系に結晶化し、P1キラルな空間群に属し、単位胞のサイズがa=7.4~7.8Å、b=7.5~8.1Å、c=25.3~26.2Å、α=97.1~97.5°、β=92.2~92.6°、γ=111.5~112.1°、V=1408~1428Åである。
なお、単位胞の数値、キラリティーのFlack値の括弧内の数値は、溶媒分子及び数、試験機器及び分析方法による数値誤差に制限される。
上記結晶学的測定パラメータは、X線単結晶回折試験の方法により得られる。基本的な手順は以下の通りである。
試験に必要なサイズを満たす結晶を選択し、この結晶をガラスフィラメントの頂端に「リベット止め」し、試験機器に固定する。X線結晶データは、ドイツのBruker社のApex Duo機器を用いて収集し、MoKα放射線(λ=0.71073Å)を用いてω走査により回折データを収集し、Lp補正を行う。吸収補正はSADABSプログラムを行う。直接法により構造を分析し、差分フーリエ法により全ての非水素原子を探し、全ての炭素及び窒素上の水素原子は理論的水素化により得られる。結晶水分子の水素原子を差分フーリエ図から直接探し、最小二乗法により構造を修正する。分析過程全体はSHELXTLプログラムパッケージにより実行される。
上記共結晶の特性X線粉末回折データのうち、使用されるX線波長と関係がない面間隔d[Å]によって再現される主な回折データは、
Figure 2022508791000003
である。
なお、上記数値に基づいて、ブラッグ関連理論式により本発明が提供するジヒドロピリジン系カルシウム拮抗薬の共結晶の結晶形の結晶系、単位胞数値を算出することができる。なお、この共結晶の結晶形のX線粉末回折ピークの数は表に列挙される数に限定されない。
上記ジヒドロピリジン系カルシウム拮抗薬の共結晶の結晶形は、上記安息香酸L-アムロジピン共結晶の結晶形である。上記安息香酸のL-アムロジピン共結晶の結晶形の製造方法は、
L-アムロジピンの遊離塩基を溶媒に完全に溶解させ、反応液を得るステップ(1)と、
室温で撹拌しながら、反応液に塩形成試薬を添加し、塩形成反応溶液を得るステップ(2)と、
反応溶液を撹拌しながら目標温度まで昇温させた後、一定期間保温し、その後、静置冷却して晶析させ、濾過して分離し、前記共結晶を得るステップ(3)と、
を含む。
本発明が提供する製造方法は、遊離塩基の塩形成結晶化方法であり、即ち、まず遊離塩基溶液を調製し、次いで塩形成試薬を添加し、結晶化して得られる。
なお、ここで使用されるL-アムロジピンは全て市販の化学原料である。製薬に使用される場合、GMP要求を満たす原薬を使用し、最も好ましくは、P2に結晶化するL-アムロジピン遊離塩基を原料として使用する。ここで使用される溶媒はイソプロパノール、エタノール、水のうちのいずれか1種の市販の化学原料である。製薬に使用される場合、製薬要求を満たす溶媒を使用することが好ましい。
ステップ(1)において、上記L-アムロジピン遊離塩基と上記溶媒との比率は生産ニーズに応じて決定することができる。L-アムロジピン遊離塩基を完全に溶解させることを目的とする場合、上記ステップ(1)において上記L-アムロジピン遊離塩基と上記溶媒とのモル比は1:50~200であることが好ましい。
ステップ(2)において、上記塩形成試薬は指安息香酸である。添加される安息香酸の量については、L-アムロジピン遊離塩基を完全に塩に形成することを目的とする場合、上記ステップ(2)において上記L-アムロジピン遊離塩基と上記安息香酸とのモル比は1:1~2であることが好ましい。
ステップ(2)において、安息香酸の具体的な添加方式は、生産ニーズに応じて決定することができる。固体粉末として添加してもよく、安息香酸の溶液として添加してもよい。好ましくは、安息香酸を濃度が0.5~2Mの溶液に調製して添加する。
ステップ(3)において、上記反応液の目標温度は50~120℃の温度範囲であり、好ましくは80~100℃である。上記一定期間保温とは、2時間以上保温することをいう。2時間未満であると、結晶相が形成されにくく、収率の経済的利益が低すぎる。好ましくは5~24時間保温する。
ステップ(3)において、上記保温過程は、生産中の具体的な機器条件に応じて決定することができ、恒温加熱装置を使用して密閉保温してもよく、加熱還流装置を使用しても良い。密閉反応機器を使用して保温することが好ましい。
上記L-アムロジピン共結晶生成物のステップ(3)において、静置冷却をさらに含む。冷却温度は、一般的に保温反応温度よりも低ければよい。好ましくは、上記ステップ(3)において温度を5-25℃まで冷却して結晶化する。
結晶生成物を得るために、好ましくは、上記ステップ(3)において濾過、母液(元の結晶溶液)洗浄、室温乾燥をさらに含む。
上記濾過は、いずれかの適切な方法により行うことができる。好ましくは、上記ステップ(3)において、上記濾過は減圧濾過である。
上記方法により製造された上記ジヒドロピリジン系カルシウム拮抗薬の共結晶の結晶形は、外観が針状又は棒状の無色透明結晶である。
本発明によれば、従来のL-アムロジピン共結晶の結晶形の溶解性及び安定性が改善され、潜在的には、錠剤の大規模生産において降圧薬錠剤の安定性の向上及びバイオアベイラビリティの改善に有利であり、ベンゼンスルホン酸L-アムロジピン及びマレイン酸L-アムロジピンの分子構造式を有し、明確な結晶形及び原子空間位置、明確な結晶学の主なパラメータを有し、大規模生産の品質制御に適用される。
本発明は、従来技術に比べ、以下の有益な効果を有する。
(1)本発明に係るジヒドロピリジン系カルシウム拮抗薬の共結晶の結晶形は、三斜晶系に結晶化し、P1キラルな空間群の結晶に属し、明確な結晶形、結晶学の主なパラメータ、適切な原子空間位置を有し、数値がいずれかの臨床又は市販のジヒドロピリジン系カルシウム拮抗薬の共結晶の結晶形と異なる。
(2)本発明に係るジヒドロピリジン系カルシウム拮抗薬の共結晶の結晶形は、具体的には、安息香酸L-アムロジピンの結晶であり、臨床又は市販のベンゼンスルホン酸L-アムロジピン、マレイン酸L-アムロジピンと異なる。
(3)本発明に係るジヒドロピリジン系カルシウム拮抗薬の共結晶の結晶形の製造方法では、原料の供給源が広く、操作が簡単で、結晶形が規則的であり、粒子サイズは均一であり、明確なX線粉末回折データを有し、大規模の普及及び応用に適している。
(4)上記特性パラメータを有する本発明のジヒドロピリジン系カルシウム拮抗薬の共結晶の結晶形により、従来のL-アムロジピン塩の溶解性及び安定性が改善され、L-アムロジピン錠剤の安定性の向上及びバイオアベイラビリティの改善に有利である。
本発明に係るジヒドロピリジン系カルシウム拮抗薬共結晶の具体的な実施例の結晶構造模式図である。 本発明に係るジヒドロピリジン系カルシウム拮抗薬共結晶の具体的な実施例の分子パッキングの構造模式図である。 本発明に係るジヒドロピリジン系カルシウム拮抗薬共結晶の具体的な実施例のX線粉末回折スペクトルである。 本発明に係るジヒドロピリジン系カルシウム拮抗薬共結晶の結晶形の具体的な実施例の熱分析スペクトルである。
以下、図面及び具体的な実施例により本発明を詳しく説明する。
本発明に係るジヒドロピリジン系カルシウム拮抗薬共結晶の結晶形を明確にするために、本発明は、医薬品結晶に対して大量の研究実験を行ったところ、この結晶生成物を成功に製造し、明確な結晶学パラメータ、L-アムロジピン分子中の官能基の空間構成を提供した。本発明の技術内容をより分かりやすくするために、以下、実施例により詳しく説明する。
<実施例1>
安息香酸L-アムロジピン結晶の製造
1)L-アムロジピン遊離塩基を2.04g秤量し、4.5mLの水溶液に加え、室温で完全に溶解するまで撹拌した。
2)室温で濃度が1Mの安息香酸水溶液を調製し、室温で撹拌しながら5mL安息香酸水溶液を30秒内で1)の溶液に一滴ずつ滴下した。
3)上記塩形成反応溶液を反応釜に移し、反応液の温度を50℃に昇温し、5時間保温した後、5℃まで静置冷却し、大量の針状又は棒状の無色透明で、形態が均一な結晶生成物を得た。
4)得られた結晶生成物を減圧濾過し、母液で洗浄し、5℃の水溶媒で洗浄し、結晶を得た。図1は結晶構造の模式図であり、図2は分子パッキング構造の模式図である。
<実施例2-8>
製造方法は実施例1と同様であった。具体的なプロセスパラメータを表1に示す。
Figure 2022508791000004
<実施例9>
X線単結晶回折試験
実施例1で製造された安息香酸L-アムロジピン共結晶を例とした。結晶の質量及びサイズが試験機器の要求を満たす結晶を選び、ドイツのBruker社のX線単結晶回折計(型番Apex Duo)を用いて試験を行った。試験パラメータは、機器によって確立された計画に従って設定した。試験温度は296Kであり、Mo-Kα放射線(λ=0.71073Å)を用いてω走査により回折データを収集し、Lp補正を行った。吸収補正はSADABSプログラムを行った。直接法により構造を分析し、差分フーリエ法により全ての非水素原子を探し、全ての炭素及び窒素上の水素原子は理論的水素化により得られ、最小二乗法により構造を修正した。分析過程全体はSHELXTLプログラムパッケージにより実行された。
上記試験では、結晶測定は、ドイツのBruker社のX線単結晶回折計(型番Apex Duo)に限定されず、任意のX線単結晶回折計で行うことができる。光源はMoターゲットに限定されない。試験で得られた結晶学データは解析方法に依存されない。
試験及び解析で得られた結晶学データを表2に示す。
Figure 2022508791000005
<実施例10>
X線粉末多結晶回折試験
実施例1で得られた安息香酸L-アムロジピン多結晶生成物を取り、ドイツのBruker社のAdvance D8 X線多結晶回折計を用いて測定した。試験パラメータはデフォルトの標準設定であり、室温で打錠試験を行った。試験結果が良好な再現性を有し、粒子結晶面の配向の違いによる強度のばらつきを回避するために、サンプルを打錠し、研磨し、300メッシュで篩分し、再顆粒化工程で処理した。銅ターゲットKα1放射線(λ=1.54056Å)を用い、走査角度が1~50°であった。試験のスペクトルを図3に示す。実施例2-8の多結晶生成物のサンプルは類似のX線粉末多結晶回折スペクトルを有する。
<実施例11>
安息香酸L-アムロジピン結晶の熱重量安定性
実施例1で製造された安息香酸L-アムロジピン多結晶を取り、再顆粒化工程で処理した後、熱安定性を研究した。TAQ600アナライザにより(TG-DSC)試験を行った。試験条件はN雰囲気、温度範囲25-500℃、昇温速度10℃/minであった。結果として、化合物が熱により分解し始めた温度は150℃以上であり、本発明の結晶形は高い熱安定性を有することを示している。熱分析スペクトルを図4に示す。実施例2-8のサンプルは、類似の熱安定性を有する。
<実施例12>
安息香酸L-アムロジピン結晶の溶解度試験
溶解度試験は、薬物溶解度試験の特性評価プロセスに従う。具体的には、200mgの篩分サンプルを正確に秤量し、造粒後、ガラスバイアルに置き、温度37℃、pH7.4のPBS緩衝液に分散させた後、密閉し、温度37℃のシェーカーに置き、回転速度を100rpmに設定した。t=5時間の時点で瓶子を取り出し、200nm濾過膜により固体と濾液を分離させ、濾液中の含有量は238nm波長の紫外-可視光分析方法により分析した。サンプルを並行して3回測定した結果、溶解度は0.134±0.014mg/mLであり、本発明の結晶形はベンゼンスルホン酸L-アムロジピンに比べて溶解度が向上したことを示している。実施例1-8のサンプルは類似の溶解度を有する。
以上より、本発明では、遊離塩基の共結晶化による塩形成方法により製造された安息香酸L-アムロジピンは、市販又は臨床で使用されるベンゼンスルホン酸L-アムロジピン及びマレイン酸L-アムロジピンと異なり、ジヒドロピリジン系カルシウム拮抗薬の新しい共結晶の結晶形であり、明確な結晶学関連パラメータ、単位胞のサイズ、並びに共結晶構造の空間構成及び配列を有する。本発明に係るジヒドロピリジン系カルシウム拮抗薬共結晶の結晶形は、原料の供給源が広く、製造方法が簡単で操作しやすく、得られた結晶の結晶形が規則的で、粒子のサイズが均一であり、X線回折試験の要求を満たすことができ、関連品質が制御されやすく、大規模の普及及び応用に適している。
当業者に理解され得るように、以上の説明及び図面に示される本発明の実施例は例示的なものに過ぎず、本発明を制限するものではない。上記の実施例の説明は、当業者の理解および使用を容易にするためのものである。当業者であればこれらの実施例を容易に修正し、本明細書で説明された一般的な原理を創造的な努力なしで他の実施例に適用することができる。従って、本発明は上記実施例に限定されず、当業者が本発明の示唆に基づいて本発明から逸脱しない範囲で行った改良及び修正はいずれも本発明の保護範囲内に含まれるべきである。

Claims (10)

  1. 分子式が(C2025ClN)・(CCOOH)・(Y)であることを特徴とする、ジヒドロピリジン系カルシウム拮抗薬共結晶。
    (式中、Yは水分子、エタノール分子及びイソプロパノール分子のうちのいずれか1種であり、0≦n≦3であり、C2025ClNはL-アムロジピンであり、CCOOHは安息香酸である。)
  2. 前記共結晶は、三斜晶系に結晶化し、P1キラルな空間群に属し、単位胞のサイズはa=7.4~7.8Å、b=7.5~8.1Å、c=25.3~26.2Å、α=97.1~97.5°、β=92.2~92.6°、γ=111.5~112.1°、V=1408~1428Åであることを特徴とする、請求項1に記載のジヒドロピリジン系カルシウム拮抗薬共結晶。
  3. 前記共結晶の特性X線粉末回折データのうち、使用されるX線波長と関係がない面間隔d[Å]によって再現される主な回折データは、
    Figure 2022508791000006
    であることを特徴とする、請求項2に記載のジヒドロピリジン系カルシウム拮抗薬共結晶。
  4. 請求項1に記載のジヒドロピリジン系カルシウム拮抗薬共結晶の製造方法であって、
    L-アムロジピンの遊離塩基を溶媒に完全に溶解させ、反応液を得るステップと、
    室温で撹拌しながら、反応液に塩形成試薬を添加し、塩形成反応溶液を得るステップと、
    反応溶液を撹拌しながら目標温度まで昇温させた後、一定期間保温し、その後、静置冷却して晶析させ、濾過して分離し、前記共結晶を得るステップと、
    を含むことを特徴とする、製造方法。
  5. 前記溶媒はイソプロパノール、エタノール及び水のうちのいずれか1種であり、前記L-アムロジピンの遊離塩基と前記溶媒とのモル比は1:50~200であることを特徴とする、請求項4に記載の製造方法。
  6. 前記塩形成試薬は安息香酸であり、前記L-アムロジピンと前記安息香酸とのモル比は1:1~2であることを特徴とする、請求項4に記載の製造方法。
  7. 前記目標温度は50~120℃であり、保温時間は2~24時間であることを特徴とする、請求項4に記載の製造方法。
  8. 前記静置冷却して晶析させることは、温度を5-25℃まで降温させて結晶化させることであることを特徴とする、請求項4に記載の製造方法。
  9. 得られた共結晶は、外観が針状又は棒状の無色透明結晶であることを特徴とする、請求項4に記載の製造方法。
  10. 高血圧治療薬の製造における請求項1に記載のジヒドロピリジン系カルシウム拮抗薬共結晶の使用。
JP2021546042A 2019-07-10 2020-06-05 ジヒドロピリジン系カルシウム拮抗薬共結晶、その製造方法及び使用 Pending JP2022508791A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910620005.7A CN110372575A (zh) 2019-07-10 2019-07-10 一种二氢吡啶钙拮抗剂共晶体及其制备方法和应用
CN201910620005.7 2019-07-10
PCT/CN2020/094643 WO2021004209A1 (zh) 2019-07-10 2020-06-05 一种二氢吡啶钙拮抗剂共晶体及其制备方法和应用

Publications (1)

Publication Number Publication Date
JP2022508791A true JP2022508791A (ja) 2022-01-19

Family

ID=68250894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021546042A Pending JP2022508791A (ja) 2019-07-10 2020-06-05 ジヒドロピリジン系カルシウム拮抗薬共結晶、その製造方法及び使用

Country Status (3)

Country Link
JP (1) JP2022508791A (ja)
CN (1) CN110372575A (ja)
WO (1) WO2021004209A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372575A (zh) * 2019-07-10 2019-10-25 复旦大学 一种二氢吡啶钙拮抗剂共晶体及其制备方法和应用
CN111671750A (zh) * 2020-05-17 2020-09-18 复旦大学 结晶于三斜晶系的马来酸左旋氨氯地平共晶药物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521751A (ja) * 2002-04-13 2005-07-21 ハンリム ファーマシューティカル カンパニー リミテッド アムロジピンニコチネート及びその製造方法
WO2005089353A2 (en) * 2004-03-16 2005-09-29 Sepracor Inc. (s)-amlodipine malate
JP2007513997A (ja) * 2003-12-16 2007-05-31 エスケー ケミカルズ カンパニー リミテッド アムロジピンのゲンチシン酸塩及びその製造方法
CN101780079A (zh) * 2010-03-03 2010-07-21 施慧达药业集团(吉林)有限公司 左旋氨氯地平复方药物组合物
CN103058914A (zh) * 2012-12-17 2013-04-24 石药集团欧意药业有限公司 马来酸左旋氨氯地平晶型及其制备方法
CN105111137A (zh) * 2015-08-21 2015-12-02 薛传校 苯磺酸左旋氨氯地平晶体、其制备方法和应用
WO2018067959A1 (en) * 2016-10-07 2018-04-12 Silvergate Pharmaceuticals, Inc. Amlodipine formulations

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0813709D0 (en) * 2008-07-26 2008-09-03 Univ Dundee Method and product
CN101780077A (zh) * 2010-01-13 2010-07-21 施慧达药业集团(吉林)有限公司 氨氯地平在制备治疗庆大霉素引起的肾毒性药物中的用途
CN103070863A (zh) * 2011-10-25 2013-05-01 河南省健康伟业生物医药研究股份有限公司 阿利吉仑和氨氯地平/左旋氨氯地平的口服固体制剂的制备新工艺
AU2016324482A1 (en) * 2015-09-18 2018-03-29 Thar Pharma, Llc Crystallization method and bioavailability
CN110372575A (zh) * 2019-07-10 2019-10-25 复旦大学 一种二氢吡啶钙拮抗剂共晶体及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005521751A (ja) * 2002-04-13 2005-07-21 ハンリム ファーマシューティカル カンパニー リミテッド アムロジピンニコチネート及びその製造方法
JP2007513997A (ja) * 2003-12-16 2007-05-31 エスケー ケミカルズ カンパニー リミテッド アムロジピンのゲンチシン酸塩及びその製造方法
WO2005089353A2 (en) * 2004-03-16 2005-09-29 Sepracor Inc. (s)-amlodipine malate
CN101780079A (zh) * 2010-03-03 2010-07-21 施慧达药业集团(吉林)有限公司 左旋氨氯地平复方药物组合物
CN103058914A (zh) * 2012-12-17 2013-04-24 石药集团欧意药业有限公司 马来酸左旋氨氯地平晶型及其制备方法
CN105111137A (zh) * 2015-08-21 2015-12-02 薛传校 苯磺酸左旋氨氯地平晶体、其制备方法和应用
WO2018067959A1 (en) * 2016-10-07 2018-04-12 Silvergate Pharmaceuticals, Inc. Amlodipine formulations

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
大島寛: "結晶多形・擬多形の析出挙動と制御", PHARM STAGE, vol. 6, no. 10, JPN6011001457, 15 January 2007 (2007-01-15), pages 48 - 53, ISSN: 0004939325 *
実験化学講座(続)2 分離と精製, JPN6012022299, 25 January 1967 (1967-01-25), JP, pages 159 - 178, ISSN: 0004939329 *
山野光久: "医薬品のプロセス研究における結晶多形現象への取り組み", 有機合成化学協会誌, vol. 65, no. 9, JPN6010003277, 1 September 2007 (2007-09-01), pages 907 - 69, ISSN: 0004939327 *
新・薬剤学総論(改訂第3版), vol. 株式会社南江堂, JPN6012025458, 10 April 1987 (1987-04-10), pages 111, ISSN: 0004939324 *
新製剤学, JPN6012022297, 25 April 1984 (1984-04-25), pages 102 - 103, ISSN: 0004939323 *
芦澤一英 他, 医薬品の多形現象と晶析の科学, JPN6018037400, 20 September 2002 (2002-09-20), JP, pages 3 - 16, ISSN: 0004939328 *
高田則幸: "創薬段階における原薬Formスクリーニングと選択", PHARM STAGE, vol. 6, no. 10, JPN6009053755, 15 January 2007 (2007-01-15), pages 20 - 25, ISSN: 0004939326 *

Also Published As

Publication number Publication date
CN110372575A (zh) 2019-10-25
WO2021004209A1 (zh) 2021-01-14

Similar Documents

Publication Publication Date Title
JP6720280B2 (ja) 新規アベキシノスタット塩、関連結晶形態、それらの調製方法およびそれらを含有する医薬組成物
EP2517700B1 (en) Pharmaceutically acceptable cocrystals of N-[2-(7-methoxy-1-naphthyl]acetamide and methods of their preparation
KR20140075703A (ko) 프리도피딘 하이드로클로라이드의 다형 형태
JP2022508791A (ja) ジヒドロピリジン系カルシウム拮抗薬共結晶、その製造方法及び使用
WO2019228485A1 (zh) 一种甲磺酸乐伐替尼新晶型及其制备方法
JPWO2018117267A1 (ja) 置換ピペリジン化合物の塩
CN112142679A (zh) 一种吉非替尼与香草酸共晶甲醇溶剂合物及其制备方法
JP2021505595A (ja) 結晶形およびその製造方法
KR20130136544A (ko) 아고멜라틴의 신규한 결정성 형태 vii, 및 이의 제조 방법 및 용도 및 이를 함유하는 약학적 조성물
TW202039511A (zh) Mcl-1抑制劑之新結晶型, 其製備方法及包含其之醫藥組合物
WO2023186834A1 (en) Crystalline hydrobromide salt of 5-meo-dmt
CN110372576A (zh) 一种钙通道阻滞药物分子共晶体及其制备方法
BRPI0922736B1 (pt) Sal de citrato de 11-(2-pirrolidin-1-il-etóxi)-14,19-dioxa5,7,26-triaza-tetraciclo [19.3.1.1(2,6).1 (8,12)]heptacosa1(25),2(26),3,5,8,10,12(27),16,21,23-decaeno, composição farmacêutica compreendendo este e uso deste
Yang et al. Thermodynamic stability analysis of m-nisoldipine polymorphs
CN112022849A (zh) 富马酸左旋氨氯地平共晶药物及其制备方法和应用
CN111671750A (zh) 结晶于三斜晶系的马来酸左旋氨氯地平共晶药物及其制备方法和应用
WO2021000687A1 (zh) Pac-1晶型的制备方法
CN109897009B (zh) 一种Apabetalone水合物晶型及其制备方法
JP2022521568A (ja) 抗うつ薬sage‐217の結晶型及びその調製方法
CN113135912A (zh) 一种阿哌沙班共晶体
TW202408494A (zh) 異噁唑衍生物及其鹽的新晶型以及包括其之醫藥組合物
TW201932453A (zh) 法索西坦(fasoracetam)之固體型態
CN110183340B (zh) 一种托灭酸-哌嗪盐型及其制备方法
WO2024051771A1 (zh) 一种五元并六元杂环化合物的晶型及其制备方法和应用
CN115611838A (zh) 一种前列环素衍生物的晶型

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221206