JP2022186550A - Optimum structure for electrostatic power generator - Google Patents

Optimum structure for electrostatic power generator Download PDF

Info

Publication number
JP2022186550A
JP2022186550A JP2021094828A JP2021094828A JP2022186550A JP 2022186550 A JP2022186550 A JP 2022186550A JP 2021094828 A JP2021094828 A JP 2021094828A JP 2021094828 A JP2021094828 A JP 2021094828A JP 2022186550 A JP2022186550 A JP 2022186550A
Authority
JP
Japan
Prior art keywords
charge carrier
electret
electrode
electric field
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021094828A
Other languages
Japanese (ja)
Inventor
捷夫 酒井
Toshio Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021094828A priority Critical patent/JP2022186550A/en
Publication of JP2022186550A publication Critical patent/JP2022186550A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

To provide an electrostatic power generator that is manufactured based on a result of two-dimensional simulation and is driven by asymmetrical electrostatic power.SOLUTION: A charging electret that charges a mobile conductive charge carrier 11 with charges, a collecting electrode 10 that collects the charged charges carried by the charge carrier, a driving electret that is disposed between the charging electret and the collecting electrode, and two earth electrodes that form an acceleration electric field and a deceleration electric field between the earth electrodes and the driving electret on the upstream side and the downstream side of the driving electret are provided. By a difference between the acceleration electrostatic power and the deceleration electrostatic power that act on the charge carrier, the charge carrier is driven from the upstream side to the downstream side.SELECTED DRAWING: Figure 17

Description

本発明は、非対称静電力を駆動力とする電界駆動型静電力応用機器(発電機、モーター、加速器等)の最適構成に関するものである。 The present invention relates to an optimum configuration of an electric field-driven electrostatic force application device (generator, motor, accelerator, etc.) using asymmetric electrostatic force as a driving force.

地球の環境問題を解決する有力な手段として太陽光発電が用いられているのは、図1に示すように、太陽はその周辺に絶えることなくエネルギーを放出続けているからである。電子も、同様に、その周囲に常時エネルギーを放出続けており、量子電気力学により説明されている。 The reason why photovoltaic power generation is being used as a powerful means of solving global environmental problems is that the sun continues to emit energy to its surroundings, as shown in Figure 1. Electrons likewise continuously emit energy to their surroundings, which is explained by quantum electrodynamics.

現在、太陽の放出エネルギーは有効に利用されているが、電子の放出エネルギーは、ほとんど利用されていない。又、電子のエネルギーと機械的エネルギーを組み合わせた静電発電機は発明されているが、ほとんど使用されていない。太陽光発電のように、電子の放出エネルギーのみで発電する静電発電機が望まれている。
(静電発電機)
At present, the emitted energy of the sun is effectively used, but the emitted energy of electrons is hardly used. Electrostatic generators that combine electronic energy and mechanical energy have been invented, but are rarely used. Like solar power generation, there is a demand for an electrostatic power generator that generates power only with the energy emitted by electrons.
(electrostatic generator)

静電発電は、通常、電位の低いところで電荷を集めて電荷搬送体に載せ、これを電位の高いところまで搬送して降ろすことで行われる。
そのとき、電位の高いところに向かう電荷搬送体には、これを押し戻す方向に静電力が働く。この静電力に抗して電荷搬送体を高いところまで持ち上げるためには、より強い力が必要であり、バンデグラフ静電発電機では、この力を電気モータで得ている。
しかしながら、このとき、モータで消費される電気エネルギーは、発生する電気エネルギーより大きいので、発電機ではなく高電位発生器である。
(新型静電発電機)
Electrostatic power generation is usually performed by collecting charge at a low potential and placing it on a charge carrier, transporting it to a high potential and dropping it off.
At that time, an electrostatic force acts in the direction of pushing back the charge carrier heading toward the high potential area. In order to resist this electrostatic force and lift the charge carrier to a higher position, a stronger force is required, and in the Van de Graaff electrostatic generator this force is obtained by an electric motor.
However, at this time, the electrical energy consumed by the motor is greater than the electrical energy generated, so it is not a generator but a high potential generator.
(new electrostatic generator)

これに対して、出願人は、図3に示すように、電子が発生するエネルギーのみで継続的に発電できる新型の静電発電機を考案した。電荷搬送体を搬送する力(駆動力ともいう)は、いわゆる非対称静電力である。
ここで、非対称静電力とは、電界の方向が反転する前後において、帯電した非球形の導体に作用する各静電力の差(絶対値)であって、該導体を電界の方向に駆動する力をいう。又、非球形とは、例えば、横置きした箱等、進行方向前後で非対称な縦断面を有する立体形状を言う。
(非対称静電力)
In response to this, the applicant devised a new type of electrostatic power generator that can continuously generate power only with the energy generated by electrons, as shown in FIG. The force that transports the charge carrier (also called driving force) is the so-called asymmetric electrostatic force.
Here, the asymmetric electrostatic force is the difference (absolute value) between the electrostatic forces acting on the charged aspherical conductor before and after the direction of the electric field is reversed, and is the force that drives the conductor in the direction of the electric field. Say. A non-spherical shape refers to a three-dimensional shape having an asymmetric vertical cross-section in the direction of travel, such as a horizontally placed box.
(asymmetric electrostatic force)

従来、電界中に置かれた電荷(q)に作用する静電力は、全て図2に示すクーロンの法則(F = qE)を用いて計算されている。
同図において、参照番号1は高圧電極、参照番号2は接地された第一対向電極、参照番号3は点電荷、参照番号4は点電荷に作用する静電力のベクトル、参照番号5は電界(電気力線)、及び参照番号6は、接地された第二対向電極を示している。
つまり、図2の中央左側において、例えば、電界の強さが106 V/mで、点電荷の電荷量が10-7Cの時、点電荷に作用する静電力は0.100Nになる。
一方、図2の中央右側のように、電界の方向が反転した時、該点電荷に作用する静電力の方向も反転するが、その大きさ(絶対値)は0.100Nであり、変わらない。又、かかるクーロンの法則は、点電荷又は点電荷とみなせる球形の帯電体にしか適用できない。
(二次元差分法)
Conventionally, all electrostatic forces acting on charges (q) placed in an electric field are calculated using Coulomb's law (F = qE) shown in FIG.
In the figure, reference number 1 is a high voltage electrode, reference number 2 is a grounded first counter electrode, reference number 3 is a point charge, reference number 4 is a vector of electrostatic force acting on the point charge, reference number 5 is an electric field ( electric field lines), and reference number 6 indicates a grounded second counter electrode.
That is, on the left side of the center of FIG. 2, for example, when the electric field strength is 10 6 V/m and the charge amount of the point charge is 10 −7 C, the electrostatic force acting on the point charge is 0.100N.
On the other hand, as shown in the center right of FIG. 2, when the direction of the electric field is reversed, the direction of the electrostatic force acting on the point charge is also reversed, but its magnitude (absolute value) remains unchanged at 0.100N. Also, Coulomb's law can only be applied to a point charge or a spherical charged body that can be regarded as a point charge.
(Two-dimensional difference method)

従い、電界中に置かれ、帯電した非球形の導体に作用する静電力は、クーロンの法則ではその計算ができないが、二次元差分法を使えば計算できる。
具体的には、図3に示すように、参照番号7で示す帯電した導体の形状を横向きの樋型とし、その帯電量と電界の強さは図2と各同じとした。
その結果、電界が反転すると、帯電した非球形の導体に作用する静電力の絶対値は、0.083Nから0.038Nへと大きく変わったことを確認した。つまり、非対称静電力の存在を確認した。その際、導体に作用する静電力が相対的に大きくなる図3の中央左側部分の電界を「順電界」、該静電力が小さくなる右側部分の電界を「逆電界」と定義した。
この現象は、実験でも確認され(非特許文献[3])、理論的にも証明された(非特許文献[4])
(電界駆動型静電発電機)
Therefore, the electrostatic force acting on a charged non-spherical conductor placed in an electric field cannot be calculated using Coulomb's law, but can be calculated using the two-dimensional finite difference method.
Specifically, as shown in FIG. 3, the shape of the charged conductor indicated by reference number 7 is a horizontal gutter shape, and the amount of charge and the intensity of the electric field are the same as in FIG.
As a result, it was confirmed that the absolute value of the electrostatic force acting on the charged non-spherical conductor changed greatly from 0.083N to 0.038N when the electric field was reversed. That is, the existence of an asymmetric electrostatic force was confirmed. At that time, the electric field on the left side of the center of FIG. 3, where the electrostatic force acting on the conductor is relatively large, was defined as the "forward electric field", and the electric field on the right side, where the electrostatic force is relatively small, was defined as the "reverse electric field".
This phenomenon was confirmed experimentally (Non-Patent Document [3]) and theoretically proven (Non-Patent Document [4]).
(electric field driven electrostatic generator)

出願人は、かかる非対称静電力を駆動力とする電界駆動型静電発電機を提案した。(特許文献[1]、[2]、[3]、[4])(非特許文献[1]、[2]) The applicant has proposed an electric field-driven electrostatic generator that uses such an asymmetric electrostatic force as a driving force. (Patent Documents [1], [2], [3], [4]) (Non-Patent Documents [1], [2])

非対称静電力を、電荷搬送体の駆動力とする電界駆動型静電発電機では、電位0Vで、電荷搬送体を静電誘導によって帯電させ、該電荷搬送体を、先ず、順電界中において強い静電力で十分加速させたのち、逆電界に入れる。
該逆電界では、該電荷搬送体に働く進行逆方向の静電力は弱く、且つ当該逆電界において、該電荷搬送体の電位が、プラスの電位から0Vに戻ったとき、該電荷搬送体に余剰の運動エネルギーが残っている。
その結果、当該電荷搬送体は更に高い電位迄上ることができる。なお、実際の装置で、この時働く静電力のシミュレーション結果は後述する。
In an electric field-driven electrostatic generator that uses an asymmetric electrostatic force as a driving force for a charge carrier, the charge carrier is charged by electrostatic induction at a potential of 0 V, and the charge carrier is first strongly charged in a forward electric field. After being sufficiently accelerated by electrostatic force, it is put into a reverse electric field.
In the reverse electric field, the electrostatic force acting on the charge carrier in the reverse direction is weak, and when the potential of the charge carrier returns from the positive potential to 0 V in the reverse electric field, the charge carrier has a surplus of kinetic energy remains.
As a result, the charge carrier can be raised to even higher potentials. The simulation result of the electrostatic force acting at this time in an actual device will be described later.

図4は、かかる電界駆動型静電発電機の基本ユニットの正面図である。
図中、参照番号8は電荷注入電極を、参照番号9は電荷搬送体駆動用高電位源(高電圧が印加された電極、高電位のエレクトレット、高電位の強誘電体、以下同様)を、参照番号11は電荷搬送体を、参照番号10は電荷回収電極を、参照番号12は電荷回収電極10に接続された回収部コンデンサーを、参照番号13、15は、これら両電極8及び10並びに高電位源(強誘電体も含むエレクトレット、以下同様)を支持する上下一対の絶縁性支持体を示している。
尚、参照番号4及び5は、図2及び図3と同じく、電荷搬送体11に加わる静電力と電界(電気力線)を示している。
FIG. 4 is a front view of a basic unit of such an electric field driven electrostatic generator.
In the figure, reference number 8 is a charge injection electrode, reference number 9 is a high potential source for driving the charge carrier (electrode to which a high voltage is applied, a high potential electret, a high potential ferroelectric, and so on). Reference numeral 11 is the charge carrier, reference numeral 10 is the charge recovery electrode, reference numeral 12 is the recovery capacitor connected to the charge recovery electrode 10, reference numerals 13 and 15 are the two electrodes 8 and 10 and the capacitor. A pair of upper and lower insulating supports for supporting a potential source (an electret including a ferroelectric, the same shall apply hereinafter) is shown.
2 and 3, reference numerals 4 and 5 indicate the electrostatic force and the electric field (lines of electric force) applied to the charge carrier 11. FIG.

ここで、エレクトレット9は、例えば、0.1mC/m2 の表面電荷密度を有し、その電位は、例えば、+2000Vである。一方、電荷注入電極8の電位は0Vで、電荷回収電極10の電位は、例えば、-200Vである。
この結果、電荷注入電極8とエレクトレット9の間には、負極性に帯電される前記電荷搬送体11に対して、順電界が形成される。
一方、エレクトレット9と回収電界10の間には、同電荷搬送体11に対して、逆電界が形成される。
Here, the electret 9 has, for example, a surface charge density of 0.1 mC/m 2 and its potential is, for example, +2000V. On the other hand, the potential of the charge injection electrode 8 is 0V, and the potential of the charge recovery electrode 10 is -200V, for example.
As a result, a forward electric field is formed between the charge injection electrode 8 and the electret 9 with respect to the charge carrier 11 which is negatively charged.
On the other hand, a reverse electric field is formed between the electret 9 and the recovery electric field 10 with respect to the same charge carrier 11 .

上記の通り、電荷搬送体11は、横向きにした樋型であるから、その縦断面横方向中央における、電界の方向又は電荷搬送体11の移動方向に直角な垂線に対し、左右非対称形であり、よって、移動方向に前後非対称形状を有する。
該電荷搬送体11は、軽い導体、例えばアルミで形成されていて、図示しない絶縁性の電荷搬送体保持体14に保持されている。その結果、電気的にフロートである。
As described above, since the charge carrier 11 is laterally trough-shaped, it is laterally asymmetric with respect to the vertical line perpendicular to the direction of the electric field or the direction of movement of the charge carrier 11 at the center of the longitudinal cross-section. , thus having a front-to-back asymmetrical shape in the direction of movement.
The charge carrier 11 is made of a light conductor such as aluminum, and is held by an insulating charge carrier holder 14 (not shown). As a result, it is electrically floating.

該電荷搬送体11は、非対称な静電力4で駆動されて、図3中、左から右に移動して、上下一対の電荷注入電極8、駆動手段たる高電位源9、及び上下一対の電荷回収電極10を順次通り抜ける。
該電荷搬送体11が、上下一対の電荷注入電極8を抜ける時、即ち、電荷注入電極8に設けられた、図3、4、5で示すアルミフォイル又は導電糸等の材料からなる導電性端子(以下、誘導電荷注入端子という)23’が、電荷搬送体11に接触した時、静電誘導によって、例えば負極性の電荷が該電荷搬送体11に注入される。
又、該電荷搬送体11が上下一対の電荷回収電極10に奥深く入ったとき、図3で示すように、該電荷回収電極10に設けられた搬送電荷回収用の導電性端子(以下、電荷回収端子という)24が接触して、該電荷搬送体11が有する前記注入電荷は回収される。
The charge carrier 11 is driven by an asymmetrical electrostatic force 4, moves from left to right in FIG. It passes through the recovery electrodes 10 in sequence.
When the charge carrier 11 passes through the pair of upper and lower charge injection electrodes 8, a conductive terminal made of a material such as aluminum foil or conductive thread shown in FIGS. When 23 ′ (hereinafter referred to as an induced charge injection terminal) contacts the charge carrier 11 , for example, negative charges are injected into the charge carrier 11 by electrostatic induction.
Also, when the charge carrier 11 enters deeply into the pair of upper and lower charge recovery electrodes 10, as shown in FIG. terminal) 24 is brought into contact with the charge carrier 11 to recover the injected charge.

即ち、順電界中においては、強い静電力によって電荷搬送体11を加速運動させ、電荷搬送体11が逆電界に入り、減速運動になっても、それが受ける逆方向の静電力は弱いので、十分な速度を持って電荷回収電極10に到達する。
(充電式帯電)
That is, in the forward electric field, the charge carrier 11 is accelerated by a strong electrostatic force. It reaches the charge collection electrode 10 with sufficient speed.
(rechargeable charging)

しかしながら、静電誘導によって電荷搬送体11に充電される電荷量は十分でなく、これを大幅に増やすために、出願人は、所定の電位を有する充電電界形成電位源(電位を有する電極又はエレクトレット)18と電荷搬送体11を近接させ、両者間で一時的にコンデンサーを形成し、電荷搬送体11を接地したときに、当該コンデンサーに流れ込む電荷で当該電荷搬送体11を充電する、即ち帯電する新しい充電方法を提案した(非特許文献[5])。以下、該充電方法を、充電式帯電方法という。 However, the amount of charge charged on the charge carrier 11 by electrostatic induction is not sufficient. ) 18 and the charge carrier 11 are brought into close proximity to temporarily form a capacitor between them, and when the charge carrier 11 is grounded, the charge flowing into the capacitor charges the charge carrier 11, i.e., charges the charge carrier 11. We proposed a new charging method (Non-Patent Document [5]). Hereinafter, this charging method is referred to as a rechargeable charging method.

図5は、かかる充電式帯電方法で電荷搬送体へ電荷を注入する電界駆動型静電発電機における電荷注入部分の拡大図である。
同図において、参照番号18は低電圧が印加された充電電界形成電極、参照番号9は高電圧が印加された駆動電極、参照番号11は電荷搬送体、参照番号23’は接地された充電端子を示している。
この充電電界形成電極18は、それ自体に低電圧が印加され、高電圧が印加された駆動電極9とで加速電界を形成する。
即ち、該充電電界形成電極18と駆動電極9間には、順電界を形成し、その方向に作用する非対称静電力で電荷搬送体11を加速する加速電界が形成される.
充電電界形成電極18は、又、接地されつつ通過する電荷搬送体11との間で専用の電界を形成し、該電荷搬送体11に電荷を充電する。
FIG. 5 is an enlarged view of a charge injection portion in an electric field-driven electrostatic generator that injects charges into a charge carrier by such a rechargeable charging method.
In the figure, reference number 18 is a charging field forming electrode to which a low voltage is applied, reference number 9 is a drive electrode to which a high voltage is applied, reference number 11 is a charge carrier, and reference number 23' is a grounded charging terminal. is shown.
A low voltage is applied to the charging electric field forming electrode 18 itself, and an accelerating electric field is formed together with the driving electrode 9 to which a high voltage is applied.
That is, a forward electric field is formed between the charging electric field forming electrode 18 and the driving electrode 9, and an acceleration electric field is formed for accelerating the charge carrier 11 by an asymmetrical electrostatic force acting in that direction.
The charging field forming electrode 18 also forms a dedicated electric field with the grounded charge carrier 11 passing therethrough, charging the charge carrier 11 with charge.

具体的には、図5に示すように、上下一対の充電電界形成電極18と、電荷搬送体11の上下の水平板112は、夫々空気層を挟んで、上下一対のコンデンサーを形成している。そのため、電荷搬送体11が固定された充電端子23を介して接地されると、上記上下の水平板112に電荷が注入される。
(充電式ベンチモデル)
Specifically, as shown in FIG. 5, the pair of upper and lower charging electric field forming electrodes 18 and the upper and lower horizontal plates 112 of the charge carrier 11 form a pair of upper and lower capacitors with an air layer interposed therebetween. . Therefore, when the charge carrier 11 is grounded through the fixed charging terminal 23 , charges are injected into the upper and lower horizontal plates 112 .
(rechargeable bench model)

該充電式帯電方法を使用した電界駆動型静電発電機の概略縦断面を図6に、その概略横断面を図7に示す。尚、図中、図4及び図5と同一の参照番号が付された部材は、図4及び図5と同一の部材を示す。
即ち、参照番号18は注入エレクトレット、参照番号9は駆動高圧エレクトレット、参照番号10は回収電極、参照番号14は電荷搬送体保持円板、参照番号16はステンレス製の回転軸(例えば、柱)、参照番号23は注入用端子、及び参照番号24は回収用端子である。参照番号17は、電荷搬送体保持円板14のセンターに固定され、固定回転軸16の周りを回転するベアリングである。
FIG. 6 shows a schematic longitudinal section of an electric field-driven electrostatic generator using the rechargeable charging method, and FIG. 7 shows a schematic cross section thereof. 4 and 5 designate the same members as in FIGS. 4 and 5. As shown in FIG.
Reference number 18 is an injection electret, reference number 9 is a driving high-voltage electret, reference number 10 is a recovery electrode, reference number 14 is a charge carrier holding disk, reference number 16 is a stainless steel rotating shaft (for example, a column), Reference number 23 is an injection terminal and reference number 24 is a withdrawal terminal. Reference number 17 is a bearing fixed to the center of the charge carrier holding disk 14 and rotating around a fixed axis of rotation 16 .

注入エレクトレット18、駆動高圧エレクトレット9、及び回収電極10、及び電荷搬送体11は、図6及び図7に示されるように、垂直(紙面上下)に形成され、固定されている。そして、注入エレクトレット18、駆動高圧エレクトレット9、及び回収電極10は、各半径方向で内外一対の垂直板部分を有し、その間を、電荷搬送体11が、順次軸周りに回転して通り抜けるように構成されている。即ち、注入エレクトレット18、駆動高圧エレクトレット9、及び回収電極10は、各々2個あり、合計6個が、図7に示されるように、60度間隔で配置されている。
又、電荷搬送体11も6個あり、電荷搬送体保持円板14に60度間隔で吊り下げられている。
The injection electret 18, the drive high-voltage electret 9, the recovery electrode 10, and the charge carrier 11 are formed vertically (up and down on the plane of the paper) and fixed, as shown in FIGS. The injection electret 18, the driving high-voltage electret 9, and the recovery electrode 10 each have a pair of vertical plate portions in each radial direction, through which the charge carrier 11 passes through while sequentially rotating around the axis. It is configured. That is, there are two injection electrets 18, two driving high-voltage electrets 9, and two recovery electrodes 10, and a total of six electrodes are arranged at intervals of 60 degrees, as shown in FIG.
There are also six charge carriers 11, which are suspended from charge carrier holding discs 14 at intervals of 60 degrees.

かかる構成において、電荷搬送体11は、先ず、注入エレクトレット18で帯電し、駆動高圧エレクトレット9を通り抜けて回収電極10に入り、電荷の大部分を回収電極10に放出する。電荷搬送体11は、回収電極10を抜けて更に回転し、次の注入エレクトレット18に入り、帯電と電荷放出を繰り返す。よって、非対称静電気力により電界駆動型の発電を行う。 In such a configuration, the charge carrier 11 first charges on the injection electret 18 , passes through the drive high voltage electret 9 and into the collection electrode 10 where it releases most of its charge. The charge carrier 11 exits the recovery electrode 10, rotates further, enters the next injection electret 18, and repeats charging and discharging. Therefore, electric field-driven power generation is performed by asymmetric electrostatic force.

回収電極10のコンデンサーは、図5に示すように、外部コンデンサー12と接続されていて、その表面電位が、表面電位計(シシド静電気株式会社製の表面電位計:FLATIRON-DZ 3)で測定することができる。
試作機で測定した回収コンデンサーの表面電位の変化は、図8に示すとおりである。
つまり、その電位は、時間とともに、すなわち、帯電した電荷搬送体11が回収電極10を通過するごとに上昇しており、発電が行われていることが分かる。
As shown in FIG. 5, the capacitor of the recovery electrode 10 is connected to an external capacitor 12, and its surface potential is measured with a surface potential meter (Surface potential meter manufactured by Shishido Electrostatic Co., Ltd.: FLATIRON-DZ 3). be able to.
FIG. 8 shows changes in the surface potential of the recovery capacitor measured by the prototype.
In other words, the potential rises with time, that is, each time the charged charge carrier 11 passes the recovery electrode 10, indicating that power is being generated.

ここで、帯電した電荷搬送体が、電荷注入位置から電荷回収位置まで移動する際に、該電荷搬送体に作用する静電力を、二次元差分法でシミュレーションした。その結果を図9に示す。
つまり、この間に、順電界中で電荷搬送体が受けるエネルギーは16.81μJであり、逆電界中で失うエネルギーは6.27μJであり、その差は、10.54μJもある。ゆえに、理論上、電荷搬送体円板は、常に連続回転し、発電を続けるはずである。
Here, a two-dimensional finite difference method was used to simulate the electrostatic force acting on the charged charge carrier when the charged charge carrier moves from the charge injection position to the charge recovery position. The results are shown in FIG.
In other words, during this period, the energy received by the charge carrier in the forward electric field is 16.81 μJ, and the energy lost in the reverse electric field is 6.27 μJ, the difference being 10.54 μJ. Therefore, in theory, the charge carrier disk should always rotate continuously and continue to generate electricity.

しかしながら、試作機においては、電荷搬送体円板14の回転は、1分足らずで止まり、連続回転に至らない場合が多く、再現性が十分ではなかった。 However, in the prototype, the rotation of the charge carrier disk 14 stopped in less than one minute and did not reach continuous rotation in many cases, resulting in insufficient reproducibility.

[特許文献1] 特開2009-232667号公報
[特許文献2] 特許第6136050号公報
[特許文献3] 特許第6286767号公報
[特許文献4] 特開2018-029425号公報
[Patent Document 1] Japanese Patent Application Publication No. 2009-232667 [Patent Document 2] Japanese Patent No. 6136050 [Patent Document 3] Japanese Patent No. 6286767 [Patent Document 4] Japanese Patent Application Publication No. 2018-029425

[非特許文献1][Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010
[非特許文献2]2017年米国静電気学会年次大会予稿集 A-3
[非特許文献3][Asymmetric Electrostatic Force], K. Sakai, Journal of Electromagnetic Analysis and Applications, 2014,6
[非特許文献4][Theory of Asymmetric Electrostatic Force], K. Sakai, Journal of Electromagnetic Analysis and Applications,2017,9
[非特許文献5]2019年米国静電気学会年次大会予稿集 A-4
[Non-Patent Document 1] [Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010
[Non-Patent Document 2] 2017 American Institute of Electrostatics Annual Meeting Proceedings A-3
[Non-Patent Document 3] [Asymmetric Electrostatic Force], K. Sakai, Journal of Electromagnetic Analysis and Applications, 2014, 6
[Non-Patent Document 4] [Theory of Asymmetric Electrostatic Force], K. Sakai, Journal of Electromagnetic Analysis and Applications, 2017, 9
[Non-Patent Document 5] 2019 American Institute of Electrostatics Annual Meeting Proceedings A-4

本発明の目的は、電界駆動型の静電発電機において、電荷搬送体の安定した回転を長時間可能とすることにある。 SUMMARY OF THE INVENTION An object of the present invention is to enable stable rotation of a charge carrier for a long period of time in an electric field-driven electrostatic generator.

上記本発明の目的は、電界駆動型静電発電機の構成、すなわち、充電電位源、駆動高圧電位源、及び回収電極の夫々の幅と、それらの間隔、及びその電位を最適化することで達成した。 The object of the present invention is to optimize the configuration of the electric field-driven electrostatic generator, that is, the width of each of the charging potential source, the driving high voltage potential source, and the recovery electrode, the spacing between them, and the potential thereof. Achieved.

電界駆動型静電発電機の充電電位源、駆動高圧電位源、回収電極の幅とそれらの間隔、及びその電位を特定したことで、電荷搬送体円板の回転再現性は約100%になった。 By specifying the charging potential source, the driving high voltage potential source, the width of the collection electrode, the interval between them, and their potentials, the rotation reproducibility of the charge carrier disk is approximately 100%. rice field.

図1は、太陽と電子のエネルギー放出を示す模式図である。FIG. 1 is a schematic diagram showing the energy release of the sun and electrons. 図2は、クーロンの法則を説明する模式図である。FIG. 2 is a schematic diagram explaining Coulomb's law. 図3は、横向きで樋型の導体を用いた非対称静電力を説明する模式図である。FIG. 3 is a schematic diagram illustrating an asymmetric electrostatic force using a laterally-oriented gutter-shaped conductor. 図4は、電界駆動型静電発電機の基本ユニットの縦断面図である。FIG. 4 is a vertical cross-sectional view of a basic unit of an electric field-driven electrostatic generator. 図5は、電荷を充電方法で注入する本発明の電界駆動型静電発電機における電荷注入部分の拡大図である。FIG. 5 is an enlarged view of the charge injection part in the electric field-driven electrostatic generator of the present invention, in which charge is injected by charging method. 図6は、試作した電界駆動型静電発電機の概略縦断面図である。FIG. 6 is a schematic longitudinal sectional view of a prototype electric field-driven electrostatic generator. 図7は、試作した電界駆動型静電発電機の概略横断面図である。FIG. 7 is a schematic cross-sectional view of a prototype electric field-driven electrostatic generator. 図8は、電荷搬送体である円板の回転に伴って、回収電極コンデンサーの表面電位が上昇する実験結果を示すグラフある。FIG. 8 is a graph showing the results of an experiment in which the surface potential of the recovery electrode capacitor increases as the disc serving as the charge carrier rotates. 図9は、電荷搬送体の位置と作用する静電力をシミュレーションで求めた結果を示すグラフである。FIG. 9 is a graph showing results obtained by simulation of the position of the charge carrier and the acting electrostatic force. 図10は、電荷搬送体である円板の継続回転時間を測定する装置の概略横断面図である。FIG. 10 is a schematic cross-sectional view of an apparatus for measuring the continuous rotation time of a disk as a charge carrier. 図11は、充電電圧を変えつつ、電荷搬送体である円板の継続回転時間を夫々測定した実験結果を示すグラフある。FIG. 11 is a graph showing experimental results of measuring the continuous rotation time of the disk, which is the charge carrier, while changing the charging voltage. 図12は、負および正帯電した充電エレクトレットを使用し、駆動電圧を変化させて、回収電位を測定した結果を示すグラフである。FIG. 12 is a graph showing the results of measuring recovery potentials using negatively and positively charged charged electrets and varying drive voltages. 図13は、駆動電極と先の接地電極間の距離を変化させた時の、持続回転時間を測定した実験結果を示すグラフである。FIG. 13 is a graph showing experimental results of measuring sustained rotation time when the distance between the drive electrode and the ground electrode is changed. 図14は、駆動電極とその上流にある接地電極間の距離を変化させたときの、持続回転時間を測定した実験結果を示すグラフである。FIG. 14 is a graph showing the experimental results of measuring the sustained rotation time when the distance between the drive electrode and the upstream ground electrode is varied. 図15は、駆動電極の幅毎に駆動電圧を変えつつ、電荷搬送体円板の継続回転時間を夫々測定した実験結果を示すグラフである。FIG. 15 is a graph showing experimental results obtained by measuring the continuous rotation time of the charge carrier disk while changing the driving voltage for each width of the driving electrode. 図16は、駆動エレクトレットの幅を変えつつ、電荷搬送体に作用する静電力夫々を、二次元差分法によるシミュレーションで求めた結果を示すグラフである。FIG. 16 is a graph showing results obtained by simulation using a two-dimensional finite difference method for each electrostatic force acting on the charge carrier while changing the width of the drive electret. 図17は、各部品の位置、形状、及び電位を最適化した電界駆動型静電発電機の概略横断面図である。FIG. 17 is a schematic cross-sectional view of an electric field-driven electrostatic generator in which the position, shape, and potential of each component are optimized. 図18は、最適化した電界駆動型静電発電機で得られた電荷搬送体円板の回転に伴う回収電位の時間変化を示すグラフである。FIG. 18 is a graph showing the time variation of the collection potential with rotation of the charge carrier disk obtained in the optimized electric field-driven electrostatic generator.

出願人は、電荷に作用する静電力で電荷搬送体を駆動する静電発電機において、実験の再現性を100%にするという目的を、電界駆動型静電発電機の充電電位源、駆動高圧電位源、回収電極の夫々の幅と、それら間の間隔、及びその電位を特定することで達成した。 The applicant has set the objective of achieving 100% reproducibility of experiments in an electrostatic generator in which the charge carrier is driven by the electrostatic force acting on the electric charge, by using a charging potential source and a high voltage driving voltage source for the electric field-driven electrostatic generator. This was accomplished by specifying the width of each of the potential sources, the collection electrodes, the spacing between them, and their potentials.

電荷に作用する静電力で電荷搬送体11を駆動する静電発電機において、
二次元差分法によるシミュレーションの結果では、電荷搬送体11を加速する順方向の静電力は、これを減速させる逆方向静電力の2倍以上もあり、空気抵抗を考慮しても、電荷搬送体たる円板14を常に継続して回転させられるはずである。にもかかわらず、継続回転に至る確率が低いのは、二次元差分法によるシミュレーションが示す静電力と、実際の静電力が異なっていることに起因している可能性がある。
例えば、上記シミュレーションでは、充電電極18、駆動電極9、及び回収電極10を一直線に並べているが、実際の装置たる電界駆動型静電発電機では、これら3電極を円周上に配置している。
そこで、以下、実験で、電荷搬送体円板14に加わる静電力を実測する。
In an electrostatic generator that drives the charge carrier 11 with an electrostatic force acting on charges,
According to the results of a simulation using the two-dimensional finite difference method, the forward electrostatic force that accelerates the charge carrier 11 is more than twice the reverse electrostatic force that decelerates it. The barrel disc 14 should always be able to rotate continuously. Nevertheless, the low probability of continuous rotation may be due to the difference between the electrostatic force indicated by the two-dimensional finite difference method simulation and the actual electrostatic force.
For example, in the above simulation, the charge electrode 18, the drive electrode 9, and the recovery electrode 10 are arranged in a straight line, but in the electric field-driven electrostatic generator, which is an actual device, these three electrodes are arranged on a circle. .
Therefore, the electrostatic force applied to the charge carrier disk 14 is actually measured in the following experiments.

尚、電荷搬送体円板14を駆動する微小なトルクの測定は、電荷搬送体円板14の回転持続時間の測定で代用する。
先ず、電荷搬送体円板14を10秒間エアーフローで強制回転させたのちの、自由回転時間を測定する。無電界中での継続時間よりも長時間回転続ければ、電荷搬送体円板14には加速する静電力が加わっていることになり、逆に継続回転時間が短くなれば、減速する静電力が加わっていることになる。加速静電力が十分強ければ、電荷搬送体円板14は、止まることなく何時までも回転続ける。
Measurement of the minute torque for driving the charge carrier disc 14 is substituted by measurement of the rotation duration of the charge carrier disc 14 .
First, the free rotation time is measured after the charge carrier disk 14 is forcibly rotated by an air flow for 10 seconds. If the rotation continues for a longer time than the duration in the no electric field, an accelerating electrostatic force is applied to the charge carrier disk 14. Conversely, if the duration of rotation becomes shorter, a decelerating electrostatic force is applied. You are participating. If the accelerating electrostatic force is strong enough, the charge carrier disk 14 will continue to rotate indefinitely without stopping.

電荷搬送体円板14の継続回転時間を測定する装置の横断面を図10に示す。
電荷搬送体円板14に吊り下げられて回転する電荷搬送体11を挟むように、
互いに対向する一対の充電電極18と、その上流で、互いに対向する一対の回収電極10が立設され該回収電極10から約180度回転した位置に、互いに対向する一対の駆動電極9が立設される。
駆動電極9の上流に、新たに、互いに対向する一対の第一接地電極20、又駆動電極9の下流に、互いに対向する一対の第二接地電極21が立設され追加される。
この配置で、充電電極18を通過した時に帯電された電荷搬送体11に対し、接地電極20と駆動電極9間では、順方向故に静電加速力が、駆動電極9と接地電極21の間で、逆方向故に静電減速力が作用する。
A cross section of an apparatus for measuring the continuous rotation time of the charge carrier disk 14 is shown in FIG.
so as to sandwich the charge carrier 11 suspended from the charge carrier disk 14 and rotating.
A pair of charging electrodes 18 facing each other and a pair of recovery electrodes 10 facing each other are erected upstream thereof, and a pair of driving electrodes 9 facing each other are erected at a position rotated by about 180 degrees from the recovery electrodes 10. be done.
A pair of first ground electrodes 20 opposed to each other are newly erected upstream of the drive electrode 9 , and a pair of second ground electrodes 21 opposed to each other are newly erected downstream of the drive electrode 9 .
In this arrangement, the electrostatic acceleration force between the ground electrode 20 and the driving electrode 9 is applied to the charge carrier 11 charged when it passes the charging electrode 18 because of the forward direction between the driving electrode 9 and the ground electrode 21. , the electrostatic deceleration force acts because of the opposite direction.

ここで、第一接地電極20と駆動電極9の半径方向内側の各電極間の間隔d1は15mm、内側の駆動電極9の幅w1は10mm、駆動電極9と接地電極21の半径方向内側の各電極間の間隔d2は15mmを標準とする。内側の充電電極8の幅(w2)は10mm、内側の回収電極の幅(w3)は15mmである。 Here, the distance d1 between the first ground electrode 20 and the drive electrode 9 on the radially inner side is 15 mm, the width w1 of the inner drive electrode 9 is 10 mm, and the radially inner side on the drive electrode 9 and the ground electrode 21 is 10 mm. The standard distance d2 between electrodes is 15 mm. The width (w2) of the inner charge electrode 8 is 10 mm, and the width (w3) of the inner recovery electrode is 15 mm.

かかる構成において、先ず、駆動電極の電圧を0Vとして、すなわち、帯電された電荷搬送体11が、充電電極18を出て、回収電極10に至る区間の電界をゼロにして、この間で電荷搬送体11に静電力が作用しないようにした。そして、充電電圧を変えつつ、電荷搬送体円板14の継続回転時間を測定した。
電荷搬送体11の帯電量は充電電圧に正比例するが、経路上に電界がないので、これに加わる静電力はなく、その結果、充電電圧にかかわらず、エアーフロ―による継続回転時間は一定になるはずである。
In such a configuration, first, the voltage of the drive electrode is set to 0 V, that is, the electric field in the section where the charged charge carrier 11 exits the charge electrode 18 and reaches the recovery electrode 10 is made zero, and the charge carrier 11 was prevented from being subjected to an electrostatic force. Then, the continuous rotation time of the charge carrier disk 14 was measured while changing the charging voltage.
The amount of charge on the charge carrier 11 is directly proportional to the charging voltage, but since there is no electric field on the path, there is no electrostatic force acting on it. should be.

充電電極幅が15mmと5mmで、各充電電圧を変えたときの、平均継続回転時間を図11に示す。
図示のとおり、充電電圧0kVから-2.0kVまでは、ほぼ一定で、19秒前後である。しかし、-2.5kVからは短くなり、-3.0kVでは10秒まで下がった。
Fig. 11 shows the average continuous rotation time when the charging electrode width is 15 mm and 5 mm and the charging voltage is changed.
As shown in the figure, the charging voltage from 0 kV to -2.0 kV is almost constant and takes around 19 seconds. However, it became shorter from -2.5kV and decreased to 10 seconds at -3.0kV.

他方、図9に示すシミュレーションは、充電電圧-3.0kVで行っているが、充電電極内で働く静電力は、プラスであり、加速静電力である。
このとき、帯電された電荷搬送体11には、その上下方向に強い静電引力が働いているが、逆方向で打ち消しあうので、電荷搬送体11には実質作用していない。
On the other hand, the simulation shown in FIG. 9 is performed at a charging voltage of -3.0 kV, but the electrostatic force acting within the charging electrode is positive and accelerating electrostatic force.
At this time, although a strong electrostatic attractive force acts on the charged charge carrier 11 in the vertical direction, it does not actually act on the charge carrier 11 because it cancels out in the opposite direction.

しかしながら、電荷搬送体11がエアーフローで動かされるときは、この垂直方向に働いていた静電引力は、エアーフローの影響で、瞬間的に、少し斜めになって、その水平成分が電荷搬送体11を引き戻そうとすると思われる。
従い、帯電電荷量は多いほど発電量が多くなるが、上記サイズの装置では、減速静電力を減らして連続回転を実現するためには、充電電圧は-2kV以下にとどめるとよい。
However, when the charge carrier 11 is moved by an airflow, this vertical electrostatic attraction momentarily becomes slightly oblique due to the influence of the airflow, and its horizontal component shifts to the charge carrier. It seems to try to pull back 11.
Therefore, the greater the amount of charge, the greater the amount of power generated. However, in a device of the above size, in order to reduce the decelerating electrostatic force and achieve continuous rotation, the charging voltage should be kept below -2 kV.

充電電圧が2kV以下であれば、充電電極として高圧電源を使用しなくとも、摩擦帯電で実現できる。
そこで、テフロン(登録商標)フイルムをナイロン布でこすり、テフロン(登録商標)フイルムを-0.95kVに摩擦帯電させた。その後、該テフロン(登録商標)フイルムを充電電極に張り付けて充電エレクトレット18とし、駆動電圧を0kV乃至-4.5kVに変化させて、エアーフローを10秒適用し、それにより電荷搬送体円板14が回転した時の回収電位(回収電極10に接続したコンデンサー12の表面電位)を測定した。
ここで、回収電位は、電荷搬送体11の搬送電荷量と、電荷搬送体円板14の回転速度で決まるので、駆動電圧にかかわらず一定になるはずである。又エアーフロー強制回転中は、駆動電圧によらず、電荷搬送体円板14の回転数はほぼ一定となる。
If the charging voltage is 2 kV or less, triboelectrification can be used without using a high-voltage power supply as the charging electrode.
Therefore, the Teflon (registered trademark) film was rubbed with a nylon cloth to triboelectrically charge the Teflon (registered trademark) film to -0.95 kV. After that, the Teflon (registered trademark) film was adhered to the charging electrode to form the charging electret 18, the driving voltage was changed from 0 kV to -4.5 kV, and air flow was applied for 10 seconds, whereby the charge carrier disk 14 was The recovery potential (surface potential of the capacitor 12 connected to the recovery electrode 10) during rotation was measured.
Here, since the recovery potential is determined by the amount of charge carried by the charge carrier 11 and the rotational speed of the charge carrier disk 14, it should be constant regardless of the driving voltage. Further, during forced airflow rotation, the rotation speed of the charge carrier disk 14 is substantially constant regardless of the driving voltage.

この結果を、図12に、▲記号で示す。
図示のとおり、充電電極たるエレクトレットの電位が-0.95kVなので、電荷搬送体11には、正電荷が注入され、回収電位は、+0.30kVになった。
しかしながら、駆動電圧が高くなると、回収電位は次第に下がり、やがてマイナスになり、駆動電圧-4.5kVでは、-1.0kVになった。
これは、正帯電した電荷搬送体11が、負電圧の駆動電極9を通過するとき、両者間にコロナ放電が発生して電荷搬送体11が負帯電したためであると考えられる。
そこで、予め、通過時の電荷搬送体11と、駆動電極9の間隔は設計上7.5mmとし、十分広く取ったが、それでも、遠心力で電荷搬送体11の下端が、伸びて駆動電極9に接近し、放電が発生した。
This result is shown in FIG. 12 with the ▴ symbol.
As shown in the figure, since the potential of the electret, which is the charging electrode, is -0.95 kV, a positive charge was injected into the charge carrier 11, and the recovered potential was +0.30 kV.
However, as the drive voltage increased, the recovery potential gradually decreased and eventually became negative, reaching -1.0 kV at a drive voltage of -4.5 kV.
It is considered that this is because when the positively charged charge carrier 11 passes through the drive electrode 9 with a negative voltage, corona discharge occurs between the two and the charge carrier 11 is negatively charged.
Therefore, the distance between the charge carrier 11 and the drive electrode 9 during passage was set to 7.5 mm in advance, which was sufficiently wide. As it approached, an electric discharge occurred.

このように、正帯電した電荷搬送体11と負電位の駆動電極9間で放電が発生したが、電荷搬送体11の帯電極性が、駆動電極9の電位と同じく負であれば、放電は発生しにくいと思われる。
そこで、PET(ポリエチレン・テレフタレート)シートを、テフロン(登録商標)フイルムでこすり、+1.9kVに摩擦帯電して、充電電極に張り付け、充電エレクトレット18とした。
In this way, a discharge occurs between the positively charged charge carrier 11 and the drive electrode 9 with a negative potential. seems to be difficult.
Therefore, a PET (polyethylene terephthalate) sheet was rubbed with a Teflon (registered trademark) film, triboelectrically charged to +1.9 kV, and adhered to a charging electrode to form a charging electret 18 .

かかる構成の下、駆動電圧を変えつつ回収電位を測定した結果を、図12に記号◇で示す。図示のとおり、回収電位は、駆動電圧0乃至-4kVでは、-0.8kV前後でほぼ一定であるが、その後急増し、駆動電圧-5kVでは、-2kVを越える。この結果は、電荷搬送体11の帯電極性と駆動電極9電位極性が負同士でも、これらの電位差が大きくなれば、やはり放電が起きることを示している。 In FIG. 12, symbol ⋄ indicates the result of measuring the recovery potential while changing the driving voltage under such a configuration. As shown in the figure, the recovery potential is almost constant around -0.8 kV with a drive voltage of 0 to -4 kV, but then increases rapidly and exceeds -2 kV with a drive voltage of -5 kV. This result shows that even if the charge polarity of the charge carrier 11 and the potential polarity of the drive electrode 9 are negative, if the potential difference between them becomes large, discharge still occurs.

としても、これらが異極性同士では、駆動電圧3kVから放電が発生したのに対して、これらが同極性同士では、駆動電圧が4.5kVまで放電が発生せず、不放電範囲が1.5kVも広がるので、より高電位を回収できる。
つまり、後述するように、改良された本実施例の装置では、駆動電圧が4.0kVで電荷搬送体円板14は連続回転できるのに対し、駆動電圧が2.5kVでは、まったく連続回転出来ない。故に、充電極性と駆動極性は互いに異ならせるとよい。
, discharge occurred at a drive voltage of 3 kV between them with different polarities, but no discharge occurred up to a drive voltage of 4.5 kV between them with the same polarity, and the non-discharge range expanded by 1.5 kV. Therefore, a higher potential can be recovered.
That is, as will be described later, in the improved apparatus of this embodiment, the charge carrier disk 14 can be continuously rotated at a drive voltage of 4.0 kV, but cannot be rotated at all at a drive voltage of 2.5 kV. Therefore, the charge polarity and drive polarity should be different from each other.

今度は、PETシートをテフロン(登録商標)フイルムでこすり+1.85kVに帯電させ、充電電極に張り付けて充電エレクトレット18とした。この結果、電荷搬送体11は負に帯電する。
そして、駆動電極9に-6.0kV印加した。高電圧ではあるが、外側駆動電極の位置を所定方向へ調整することで、放電はなくなった。具体的には、外側駆動電極を外側へ1mm程度移動した結果、電荷搬送体と外側駆動電極の間隔は7.5mmから8.5mmに広がり、電荷搬送体と内側電極との間隔は、7.5mmから6.5mmに縮まった。その結果、遠心力で電荷搬送体の下端は、外側に広がり、接近による放電の発生を防止できた。
この状態では、上流側の第一接地電極20と駆動電極9間に、負帯電した電荷搬送体11を押し戻す減速電界が形成され、逆に、駆動電極9と先下流側の第二接地電極21間に、負帯電の電荷搬送体11を押す加速電界が形成される。
そこで、第一接地電極20と駆動電極9間の各内側の電極の距離は15mmのままとし、駆動電極9と第二接地電極21間の各内側の電極の距離を変化させ、夫々エアーフローで電荷搬送体11を回転させたときの持続回転時間を、図13に示す。
Next, the PET sheet was rubbed with a Teflon (registered trademark) film, electrified to +1.85 kV, and attached to a charging electrode to form a charging electret 18 . As a result, charge carrier 11 is negatively charged.
A voltage of -6.0 kV was applied to the drive electrode 9 . Although the voltage was high, by adjusting the position of the outer drive electrode in a predetermined direction, the discharge disappeared. Specifically, as a result of moving the outer drive electrode to the outside by about 1 mm, the distance between the charge carrier and the outer drive electrode increased from 7.5 mm to 8.5 mm, and the distance between the charge carrier and the inner electrode increased from 7.5 mm to 6.5 mm. shrunk to mm. As a result, the lower end of the charge carrier spread outward by centrifugal force, preventing the occurrence of discharge due to approaching.
In this state, a decelerating electric field is formed between the first ground electrode 20 on the upstream side and the drive electrode 9 to push back the negatively charged charge carrier 11. In between, an accelerating electric field is formed which pushes the negatively charged charge carrier 11 .
Therefore, the distance between each inner electrode between the first ground electrode 20 and the driving electrode 9 is kept at 15 mm, and the distance between each inner electrode between the driving electrode 9 and the second ground electrode 21 is changed, and each is air flow. FIG. 13 shows the sustained rotation time when the charge carrier 11 is rotated.

図示のとおり、各内側の電極の距離が短い方、すなわち加速電界が強い方が、継続回転時間が大きく伸びることが明らかである。 As shown, it is clear that the shorter the distance between the inner electrodes, ie, the stronger the accelerating electric field, the longer the continuous rotation time.

次に、充電エレクトレット18の電位が、+1.25kVのとき、駆動電極9と、下流の第二接地電極21間の各内側の電極間の距離は15mmのままで、上流側の第一接地電極20と駆動電極9の各内側電極の間隔を変え、夫々エアーフローで電荷搬送体11を回転させたときの持続回転時間を、図14に示す。 Next, when the potential of the charged electret 18 is +1.25 kV, the distance between each inner electrode between the drive electrode 9 and the downstream second ground electrode 21 remains 15 mm, while the upstream first ground electrode FIG. 14 shows the continuous rotation time when the charge carrier 11 is rotated by the airflow while changing the distance between the inner electrodes 20 and the driving electrode 9 .

図示する通り、距離が長い方、すなわち減速電界が弱い方が、継続回転時間が長くなることが明らかである。なお、第一接地電極20を装置から外したので、仮に電極間隔30mmとして表示した。
以上、加速電界が強く、減速電界が弱いほど、電荷搬送体円板14の受ける静電エネルギーは大きくなり、その継続回転時間は長くなる。
従い、加速電界を形成する電極間距離をできるだけ短くし、逆に、減速電界を形成する電極間距離をできるだけ長くするとよい。
As shown in the figure, it is clear that the longer the distance, that is, the weaker the deceleration electric field, the longer the continuous rotation time. Since the first ground electrode 20 was removed from the apparatus, the electrode interval is tentatively displayed as 30 mm.
As described above, the stronger the accelerating electric field and the weaker the decelerating electric field, the greater the electrostatic energy received by the charge carrier disk 14 and the longer the continuous rotation time.
Therefore, it is preferable to shorten the inter-electrode distance that forms the accelerating electric field as much as possible, and to make the inter-electrode distance that forms the decelerating electric field as long as possible.

次に、駆動電極9の幅が5mm、10mmまたは20mmの時、夫々駆動電極9の駆動電圧を変えつつ、夫々エアーフローで電荷搬送体11を回転させたときの、当該電荷搬送体11の継続回転時間を測定した。その結果を図15に示す。 Next, when the width of the driving electrode 9 is 5 mm, 10 mm or 20 mm, the driving voltage of the driving electrode 9 is changed and the charge carrier 11 is rotated by the air flow. Rotation time was measured. The results are shown in FIG.

図示のとおり、駆動電極9の幅が、10mmと20mmの時は、駆動電圧が高くなると、電荷搬送体11の継続回転時間はかなり短くなるが、駆動電極9の幅が5mmのときは、あまり変わらないことが分かる。
しかしながら、駆動電極9が、電圧を印加したエレクトレット電極からなる場合、同じ結果になるとは限らない。つまり、エレクトレット電極の場合は、その幅が狭いと、電位が同じでも電荷搬送体に作用する静電力が弱くなると考えられる。
As shown in the figure, when the width of the drive electrode 9 is 10 mm and 20 mm, the continuous rotation time of the charge carrier 11 becomes considerably shorter as the drive voltage increases. I know it doesn't change.
However, when the drive electrodes 9 consist of electret electrodes to which a voltage is applied, the same result is not always obtained. In other words, in the case of the electret electrode, if the width is narrow, the electrostatic force acting on the charge carrier is considered to be weak even if the potential is the same.

そこで、0.1mC/m2に帯電した駆動エレクトレット9と接地電極間に、2nCに充電された電荷搬送体11を置いて、駆動エレクトレット9の幅を変え、これに作用する静電駆動力を二次元差分法によるシミュレーションで求めた。この結果を図16に示す。 Therefore, a charge carrier 11 charged to 2 nC is placed between the drive electret 9 charged to 0.1 mC/m2 and the ground electrode, the width of the drive electret 9 is changed, and the electrostatic driving force acting on it is measured two-dimensionally. It was obtained by simulation using the finite difference method. The results are shown in FIG.

図示のとおり、図15に示す電極の場合とは逆に、幅が狭いほど駆動静電力は若干弱くなる。よって、二次元シミュレーションの結果は、三次元である実機の結果と全く同じではないが、上記測定及びシミュレーション結果から、駆動エレクトレット9の幅は、電荷搬送体11の横幅の1.0乃至1.5倍、すなわち10乃至15mmが適当である。 As shown, contrary to the electrode shown in FIG. 15, the narrower the width, the weaker the driving electrostatic force. Therefore, although the results of the two-dimensional simulation are not completely the same as the results of the three-dimensional actual device, the width of the drive electret 9 is 1.0 to 1.5 times the width of the charge carrier 11, i.e., from the above measurement and simulation results. 10 to 15 mm is suitable.

なお、図15において、駆動電極幅が5mmや20mmである場合に比較して、同幅が10mmの場合の、電荷搬送体11の継続回転時間が長いが、これは、電荷搬送体11を吊るす電荷搬送体円板14の軸受けを構成するボールベアリング17をクリーニングしたためである。従って、駆動電極9の幅の適正化と共に、ボールベアリング17をクリーニング等滑らかな回転状態にするとよい。 In FIG. 15, the continuous rotation time of the charge carrier 11 is longer when the drive electrode width is 10 mm than when the drive electrode width is 5 mm or 20 mm. This is because the ball bearing 17 constituting the bearing of the charge carrier disk 14 has been cleaned. Therefore, the width of the drive electrode 9 should be optimized and the ball bearing 17 should be brought into a smooth rotating state such as cleaning.

実施例1乃至4の結果を考慮し、図10に示す装置を図17のように改良した。ただし、幅の狭い高電位エレクトレットは現存しないので、駆動電位源としては、電圧が印加された電極を使用した。つまり、充電エレクトレット18として、ナイロン布で+1乃至2kVに摩擦帯電されたPETシートを使用し、駆動電極9には負電圧を印加することで、電荷搬送体11の帯電電荷と駆動電極9の電圧の極性を負に揃えた。
そして、減速電界の強さを最小にするために、第一接地電極20は装置から外した。駆動電極9の通過時に、電荷搬送体11に作用する減速力を小さくするために、駆動電極9の幅は5mmとした。
又、駆動電極9と下流側の第二接地電極21で形成される加速電界をより強めるために、両者の各内側電極の間隔を10mmから7mmに縮めた。
Considering the results of Examples 1 to 4, the apparatus shown in FIG. 10 was improved as shown in FIG. However, since a narrow high-potential electret does not currently exist, an electrode to which a voltage is applied was used as a driving potential source. That is, by using a PET sheet triboelectrically charged with a nylon cloth to +1 to 2 kV as the charging electret 18 and applying a negative voltage to the driving electrode 9, the charged charge of the charge carrier 11 and the voltage of the driving electrode 9 polarities are aligned negatively.
The first ground electrode 20 was then removed from the device to minimize the strength of the decelerating electric field. The width of the drive electrode 9 was set to 5 mm in order to reduce the deceleration force acting on the charge carrier 11 when the drive electrode 9 passes.
Also, in order to strengthen the accelerating electric field formed by the drive electrode 9 and the second ground electrode 21 on the downstream side, the distance between the two inner electrodes was reduced from 10 mm to 7 mm.

この状態で、駆動電極9に-5.0kVを印加し、電荷搬送体円板14をエアースプレイで一吹きしたところ、回転始め、次第に速度を上げて、100rpm前後で定常回転になり、回り続けて、回収電極10のコンデンサー12の表面電位は60秒後に-0.76kVになった。 In this state, a voltage of -5.0 kV was applied to the drive electrode 9, and when the charge carrier disk 14 was blown with an air spray, it started to rotate, gradually increased in speed, reached a steady rotation at around 100 rpm, and continued to rotate. , the surface potential of the capacitor 12 of the collection electrode 10 became -0.76 kV after 60 seconds.

そこで、該コンデンサーをアースしてその電荷を消去し0kVにしたところ、20秒後には-0.36kVになった。アースするごとに、同様の動作が繰り返され、その経時的な電位変化を図18に示す。 Therefore, when the capacitor was grounded to erase its charge to 0 kV, it became -0.36 kV after 20 seconds. A similar operation is repeated each time the terminal is grounded, and FIG. 18 shows the potential change over time.

駆動電極9も駆動エレクトレットに置き換えることが好ましいが、その場合、エレクトレットの電位は、-5.0kVより低いことが望ましい。
そこで、充電電極9と加速電界を形成する接地電極21の組を、2組とした。
この結果、電荷搬送体円板14を連続回転させるために必要な最低駆動電圧を-3.5kVまで下げることができた。
It is preferable to replace the drive electrode 9 with a drive electret, in which case the potential of the electret is preferably lower than -5.0 kV.
Therefore, the number of sets of the charging electrode 9 and the ground electrode 21 forming the accelerating electric field was two.
As a result, the minimum drive voltage required for continuous rotation of the charge carrier disk 14 could be lowered to -3.5 kV.

以上の各実施形態では、横置き樋型の電荷搬送体に作用する非対称静電力をその駆動力として発電等したが、本発明はこれら実施形態に限定されない。
例えば、電荷搬送体の形状は、横置き樋型に限らず、進行方向前後に対称な形状、例えば柱型の電荷搬送体を採用することもできる。
そして、その場合は、加速電界をより強くし、減速電界をより弱くして、該電荷搬送体に作用する加速静電力と減速静電力の差を利用することで該電荷搬送体を駆動する。その結果、電荷搬送体と一体の電荷搬送体円板14は、上記実施形態同様に、連続回転し、発電する。
In each of the embodiments described above, power is generated by using the asymmetric electrostatic force acting on the horizontal gutter-type charge carrier as the driving force, but the present invention is not limited to these embodiments.
For example, the shape of the charge carrier is not limited to a horizontal gutter shape, and a shape symmetrical in the direction of travel, for example, a column-shaped charge carrier may be employed.
In that case, the acceleration electric field is made stronger and the deceleration electric field is made weaker, and the charge carrier is driven by utilizing the difference between the acceleration electrostatic force and the deceleration electrostatic force acting on the charge carrier. As a result, the charge carrier disk 14 integral with the charge carrier continuously rotates and generates electricity, as in the above embodiment.

以上、各実施形態の装置によれば、必要な駆動電圧は、前記ベアリングの汚れ等で多少変動することはあったが、電荷搬送体円板14は連続回転して発電を続けた。すなわち、電荷搬送体円板14の回転の再現性は、略100%になった。 As described above, according to the apparatus of each embodiment, although the necessary drive voltage fluctuated somewhat due to contamination of the bearings, etc., the charge carrier disk 14 continued to rotate and generate power. That is, the reproducibility of the rotation of the charge carrier disk 14 is approximately 100%.

以上すべて静電発電機として説明したが、回収電極を有さない静電モータや、十分に加速された電荷搬送体が、装置外に射出される静電加速器でも同様の効果を得ることができる。 Although the electrostatic generator has been described above, the same effect can be obtained with an electrostatic motor that does not have a recovery electrode or an electrostatic accelerator that ejects a sufficiently accelerated charge carrier to the outside of the device. .

1: 駆動電極
2: 第一対向電極
3: 点電荷
4: 点電荷に作用する静電力のベクトルを示す矢印
5: 電界の方向を示す矢印
6: 第二対向電極
7: 電界の方向に前後非対称な形状(樋型)を有する導体
8: 電荷注入電極
9: 高電位源(電極またはエレクトレット)
10: 電荷回収電極
11: 電界の方向に前後非対称な形状を有する電荷搬送体
111:非対称電荷搬送体の前方垂直板
112:非対称電荷搬送体の後方上下水平板
12: 電荷回収電極に接続されたコンデンサー
13: 電荷注入電極、駆動電極、及び電荷回収電極を支持する絶縁性支持体
14: 放射状に配置した電荷搬送体を保持する電荷搬送体保持円板
15: 電荷注入電極、駆動電極、及び電荷回収電極を支持する絶縁性支持体
16: 電荷搬送体保持円板の中心(回転)軸
17: ベアリング
18: 電荷注入用充電電界形成電位源(電極またはエレクトレット)
19: 充電電界形成電極の電源
20: 駆動電極の上流に置かれた接地電極
21: 駆動電極の下流に置かれた接地電極
23’: 誘導電荷注入端子
23: 充電電荷注入端子
24: 電荷回収端子
1: Drive electrode 2: First counter electrode 3: Point charge 4: Arrow indicating vector of electrostatic force acting on point charge 5: Arrow indicating direction of electric field 6: Second counter electrode 7: Asymmetric front and back in direction of electric field conductor 8 having a similar shape (trough shape): charge injection electrode 9: high potential source (electrode or electret)
10: charge recovery electrode 11: charge carrier having a front-rear asymmetric shape in the direction of the electric field 111: front vertical plate of the asymmetric charge carrier 112: rear upper and lower horizontal plates of the asymmetric charge carrier 12: connected to the charge recovery electrode Capacitor 13: Insulating support supporting charge injection electrode, drive electrode and charge recovery electrode 14: Charge carrier holding disk 15 holding radially arranged charge carriers: Charge injection electrode, drive electrode and charge Insulating support 16 supporting the collection electrode: central (rotating) axis of the charge carrier holding disc 17: bearing 18: charged field-forming potential source for charge injection (electrode or electret)
19: Power supply for charge field forming electrodes 20: Ground electrode placed upstream of drive electrode 21: Ground electrode placed downstream of drive electrode 23': Inductive charge injection terminal 23: Charge charge injection terminal 24: Charge recovery terminal

Claims (7)

移動する導電性の電荷搬送体に電荷を充電する充電エレクトレットと、電荷搬送体により搬送された充電電荷を回収する回収電極と、該充電エレクトレットと該回収電極との間に配置した駆動エレクトレットと、該駆動エレクトレットの上流側及び下流側において、該駆動エレクトレットとの間で加速電界及び減速電界を夫々形成する二つの接地電極を設け、該電荷搬送体に作用する加速静電力と減速静電力の差で、当該該電荷搬送体を上流側から下流側へ駆動する静電応用機器。 a charging electret that charges a moving conductive charge carrier, a recovery electrode that recovers the charged charge carried by the charge carrier, and a drive electret disposed between the charging electret and the recovery electrode; Two ground electrodes are provided on the upstream side and the downstream side of the driving electret to form an accelerating electric field and a decelerating electric field respectively with the driving electret, and the difference between the accelerating electrostatic force and the decelerating electrostatic force acting on the charge carrier. and an electrostatic application device that drives the charge carrier from the upstream side to the downstream side. 請求項1において、前記充電エレクトレットの電位を、前記加速電界を移動する電荷搬送体を減速させない範囲とする静電応用機器。 2. The electrostatic application device according to claim 1, wherein the electric potential of said charging electret is within a range that does not decelerate the charge carrier moving in said accelerating electric field. 請求項1において、前記電荷搬送体の帯電電位の極性と、前記駆動エレクトレットの極性が同じである静電応用機器。 2. The electrostatic application device according to claim 1, wherein the polarity of the charge potential of the charge carrier and the polarity of the drive electret are the same. 請求項1において、減速電界を形成する前記駆動エレクトレットと下流側の前記接地電極の間隔を、加速電界を形成する前記駆動エレクトレットと上流側の前記接地電極との間隔よりも広くした静電応用機器。 2. The electrostatic application apparatus according to claim 1, wherein the distance between the drive electret that forms a deceleration electric field and the ground electrode on the downstream side is wider than the distance between the drive electret that forms an acceleration electric field and the ground electrode on the upstream side. . 請求項4において、前記駆動エレクトレットと前記回収電極の間に減速電界を形成する前記接地電極を省いた静電応用機器。 5. The electrostatic appliance according to claim 4, wherein said ground electrode for forming a decelerating electric field between said drive electret and said recovery electrode is omitted. 請求項1において、加速電界を形成する前記駆動エレクトレットと上流側の前記接地電極の間隔を、両者間で放電が起こらない範囲とした静電応用機器。 2. The apparatus for electrostatic application according to claim 1, wherein the distance between said drive electret that forms an accelerating electric field and said ground electrode on the upstream side is within a range in which no discharge occurs between them. 請求項1において、前記駆動エレクトレットの幅を、前記電荷搬送体の幅より広く、その1.5倍よりも狭くした静電応用機器。



2. The electrostatic application device according to claim 1, wherein the width of said driving electret is wider than the width of said charge carrier and narrower than 1.5 times the width of said charge carrier.



JP2021094828A 2021-06-05 2021-06-05 Optimum structure for electrostatic power generator Pending JP2022186550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021094828A JP2022186550A (en) 2021-06-05 2021-06-05 Optimum structure for electrostatic power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021094828A JP2022186550A (en) 2021-06-05 2021-06-05 Optimum structure for electrostatic power generator

Publications (1)

Publication Number Publication Date
JP2022186550A true JP2022186550A (en) 2022-12-15

Family

ID=84442374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021094828A Pending JP2022186550A (en) 2021-06-05 2021-06-05 Optimum structure for electrostatic power generator

Country Status (1)

Country Link
JP (1) JP2022186550A (en)

Similar Documents

Publication Publication Date Title
Moesner et al. Electrostatic devices for particle microhandling
JP2019004549A (en) Electric field driven electrostatic generator
JP2022186550A (en) Optimum structure for electrostatic power generator
Gu et al. Experimental study on particles directed transport by an alternating travelling-wave electrostatic field
Buehler Exploratory research on the phenomenon of the movement of high voltage capacitors
JP2020150780A (en) Electrostatic application equipment of charging infusion type, driven by image force
JP2020110019A (en) Electrostatic force application equipment for charging charge carrier in closely contact charge method
JP2018157658A (en) Electromechanical converter
CN101581844A (en) Electricity-eliminating device of base plate of liquid crystal panel
KR101885023B1 (en) Energy harvesting apparatus using triboelectrification
JP2023138883A (en) Novel electrostatic generator with high output and high life time
JP2015035938A (en) Switch-back electrostatic generator using asymmetrical electrostatic power
CN105528945A (en) Static acceleration demonstration instrument
Shoyama et al. Particle charging and levitation using UV irradiation and electrostatic field
JP2012039842A (en) Electrostatic motor/electrostatic generator using a-type charge carrier body
JP2012039842A6 (en) Electrostatic motor / electrostatic generator using vertical charge carrier
JP2020043744A (en) Electric-field-driven electrostatic device using right-left asymmetrical electrostatic force as driving force
JP2020065353A (en) Electric-field driven static-electricity applied equipment for charging electric charge carrier
Jung et al. The study of the ionic wind blower with multi-needles/ring type electrodes disposed on inner wall of the cylindrical blower
Mizeraczyk et al. Evolution of electrohydro dynamic flow of suspended particles in a needle-to-plate negative DC corona discharge in air
JPS6041571A (en) Preparation of solid thin film on surface of object to be processed
Messaoudene et al. Influence of high voltage waveform and frequency on the elimination of electric charges at the surface of polypropylene films
JP2022084111A (en) Structure of novel electret and using method thereof
JP2021108524A (en) Image force driven electrostatic application apparatus and charging device of charge carrier body
JP2024058731A (en) Asymmetric image force driven electrostatic generator