JP2020065353A - Electric-field driven static-electricity applied equipment for charging electric charge carrier - Google Patents

Electric-field driven static-electricity applied equipment for charging electric charge carrier Download PDF

Info

Publication number
JP2020065353A
JP2020065353A JP2018195413A JP2018195413A JP2020065353A JP 2020065353 A JP2020065353 A JP 2020065353A JP 2018195413 A JP2018195413 A JP 2018195413A JP 2018195413 A JP2018195413 A JP 2018195413A JP 2020065353 A JP2020065353 A JP 2020065353A
Authority
JP
Japan
Prior art keywords
electric field
charge
conductor
electrostatic force
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018195413A
Other languages
Japanese (ja)
Inventor
酒井 捷夫
Toshio Sakai
捷夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018195413A priority Critical patent/JP2020065353A/en
Publication of JP2020065353A publication Critical patent/JP2020065353A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Abstract

To solve the problem of a conventional electric-field driven electrostatic generator that injects electric charge into an electric charge carrier having a front and back asymmetric shape in an electric field direction by electrostatic induction, and carries the injected electric charge to a high potential by a front and back asymmetric electrostatic force acted upon the electric charge carrier, in which: quantity of electric charge being carried is small and the output is small.SOLUTION: In an electric-field driven electrostatic generator, an electric charge carrier being a conductor is approached to a charging electric-field-formation electrode having a specified potential in an electric field, to temporarily form a capacitor between the two, and the electric charge carrier is grounded. The electric charge carrier is charged with the electric charge that flows into the electric charge carrier at that time.EFFECT: The quantity of electric charge being carried and the output of the generator substantially increase.SELECTED DRAWING: Figure 7

Description

本発明は、前後非対称静電力を駆動力とする電界駆動型静電発電応用機器の電荷搬送体の充電方法に関するものである。 TECHNICAL FIELD The present invention relates to a method of charging a charge carrier of an electric field drive type electrostatic power generation application device that uses a front-back asymmetric electrostatic force as a driving force.

広く知られているように、発電機は、磁界中に置かれたコイルを回転させるタービン構造をしている。つまり、回転することにより、コイルを貫く磁力線の数が変化し、起電力が生ずる。
コイルを回転させる機械力として、19世紀後半以降は、水力(滝)を使用していたが、近年は、石炭や石油や液化ガス、並びに原子力で高圧の水蒸気を発生させ、使用している。これらの近年の発電方法は、二酸化炭素を発生し、地球の温暖化を加速したり、人体への危険性があるため、近年は、風力発電や太陽光発電に切り替わりつつある。
しかしながら、これら自然エネルギーを利用した発電方法は、自然環境に左右され、不安定である。
そこで、二酸化炭素を発生せず、事故の危険性がなく、かつ、安定な発電方法が強く望まれている。
As is widely known, a generator has a turbine structure that rotates a coil placed in a magnetic field. That is, by rotating, the number of magnetic force lines that penetrate the coil changes, and an electromotive force is generated.
As the mechanical force for rotating the coil, hydraulic power (waterfall) has been used since the latter half of the 19th century, but in recent years, high pressure steam is generated and used by coal, oil, liquefied gas, and nuclear power. These recent power generation methods generate carbon dioxide, accelerate global warming, and pose a risk to the human body. Therefore, in recent years, they are being switched to wind power generation or solar power generation.
However, these power generation methods using natural energy are unstable depending on the natural environment.
Therefore, a stable power generation method that does not generate carbon dioxide, has no risk of accidents, and is strongly desired.

一方、従来、電界中に置かれた電荷(q)に作用する静電力は、全て図1に示すクーロンの法則(F = qE)を用いて計算されている。
同図において、参照番号1は高圧電極、参照番号2は接地された第一対向電極、参照番号3は点電荷、参照番号4は点電荷に作用する静電力のベクトル、参照番号5は電界(電気力線)、及び参照番号6は、接地された第二対向電極を示している。
つまり、図1の中央左側において、例えば、電界の強さが106 V/mで、点電荷の電荷量が10-7Cの時、点電荷に作用する静電力は0.100Nになる。一方、図1の中央右側のように、電界の方向が反転した時、当該点電荷に作用する静電力の方向も反転するが、その大きさ(絶対値)は0.100Nであり、変わらない。又、クーロンの法則は、点電荷又は点電荷とみなせる球形の帯電体にしか適用できない。
On the other hand, conventionally, electrostatic forces acting on charges (q) placed in an electric field have all been calculated using Coulomb's law (F = qE) shown in FIG.
In the figure, reference numeral 1 is a high voltage electrode, reference numeral 2 is a grounded first counter electrode, reference numeral 3 is a point charge, reference numeral 4 is a vector of electrostatic force acting on the point charge, and reference numeral 5 is an electric field ( The lines of electric force) and reference numeral 6 indicate the second counter electrode which is grounded.
That is, in the center left side of FIG. 1, for example, when the electric field strength is 10 6 V / m and the point charge amount is 10 −7 C, the electrostatic force acting on the point charge is 0.100N. On the other hand, when the direction of the electric field is reversed, as in the right side of the center of FIG. 1, the direction of the electrostatic force acting on the point charge is also reversed, but the magnitude (absolute value) is 0.100N, which is unchanged. Also, Coulomb's law can be applied only to a point charge or a spherical charged body that can be regarded as a point charge.

これに対して、出願人は、電界中に置かれた非球形の帯電した導体に作用する静電力を求める際、クーロンの法則ではその計算ができないので、(後段で詳述する)二次元差分法を使って、電界の方向が反転する前と後の、当該導体に作用する静電力を求めてみた。
具体的には、図2に示すように、参照番号7で示す帯電した導体の形状を横向きの樋型とし、その帯電量と電界の強さは図1と各同じとした。
その結果、電界が反転すると、非球形の帯電した導体に作用する静電力の絶対値は、0.083Nから0.038Nへと大きく変わった。つまり、前後非対称静電力の存在を発見した。その際、導体に作用する静電力が相対的に大きくなる図2の中央左側部分の電界を「順電界」、当該静電力が小さくなる右側部分の電界を「逆電界」と定義した。尚、この新現象は、上記シミュレーションのみならず、実験でも確認されている(非特許文献[4])。
On the other hand, the applicant cannot calculate the electrostatic force acting on a non-spherical charged conductor placed in an electric field by Coulomb's law, so that the two-dimensional difference (described in detail later) The method was used to find the electrostatic force acting on the conductor before and after the direction of the electric field was reversed.
Specifically, as shown in FIG. 2, the shape of the charged conductor indicated by reference numeral 7 was a lateral gutter shape, and the amount of charge and the strength of the electric field were the same as in FIG.
As a result, when the electric field was reversed, the absolute value of the electrostatic force acting on the non-spherical charged conductor changed greatly from 0.083N to 0.038N. In other words, I discovered the existence of an asymmetric electrostatic force. At that time, the electric field in the left part in the center of FIG. 2 where the electrostatic force acting on the conductor becomes relatively large is defined as “forward electric field”, and the electric field in the right part where the electrostatic force becomes smaller is defined as “reverse electric field”. This new phenomenon has been confirmed not only in the above simulation but also in experiments (Non-patent document [4]).

そこで、出願人は、上記要求に応えられる新しい発電方法として、いわゆる前後非対称静電力を駆動力とする電界駆動型静電発電機を提案した。(特許文献[1]、[2]、[3]、[4])(非特許文献[1]、[2]) Therefore, the applicant proposed an electric field drive type electrostatic generator using a so-called front-back asymmetric electrostatic force as a driving force as a new power generation method that can meet the above-mentioned demand. (Patent Documents [1], [2], [3], [4]) (Non-Patent Documents [1], [2])

以下、本発明の前提として、前後非対称静電力が発生する原理を具体的に説明する。
図3において、参照番号7は、横向き樋型導体、即ち非対称形状の導体で、黒丸は、当該導体7に注入された電子である。参照番号5は、電界とその方向を示す。参照番号71は、当該導体における前方垂直板である。参照番号72は、当該導体における後方上下水平板7である。
同図において、左側の導体7は左向きの電界に位置しているが、右側の導体7は右向きの電界に位置している。参照番号4の矢印は、これら非対称形状の導体7に作用する静電力の大きさと方向を示している。
同図中央左側において、当該導体7中の電子は、電界5に引かれて、右に移動し、その大多数は、当該導体7の前方垂直板71の表面に集まる。
一方、電界5の向きが逆になると、電子は電界5に引かれて左に移動し、当該導体7の後方上下水平板72に至るが、その後方上下水平板72の各左端面は非常に狭いので、大多数の電子は上下水平板の表面に留まる。
ここで、導体の場合は、これら電子から正孔に向かって発する電気力線も、逆に、正孔から電子に入る電気力線も、その導体の表面に対して垂直になる。その結果、当該電子に作用する静電力の方向も、当該導体の表面に垂直になる。つまり、図の中央左側では、導体7に右向きに大きな静電力が働くが、図の中央右側では、当該導体7に対し、上方向と下方向に大きさの等しい静電力が働いて、互いに相殺し、水平方向には働く静電力はない。
即ち、電界5の方向が図示のように反転すると、当該樋型導体7に作用する水平方向の静電力4は、理論上、100%から概ね0%になる。つまり、当該樋型導体7に非対称静電力が発生している。
但し、実際には、図3に示した典型的な電荷分布にはならないため、電界の方向が反転した場合、当該導体7には左方向にも静電力が働く。しかし、その場合でも、電界反転前の右方向の静電力より弱く、略、その半分程度である。
Hereinafter, as a premise of the present invention, the principle of generation of the front-back asymmetric electrostatic force will be specifically described.
In FIG. 3, reference numeral 7 is a lateral gutter-shaped conductor, that is, an asymmetrical conductor, and black circles are electrons injected into the conductor 7. Reference numeral 5 indicates an electric field and its direction. Reference numeral 71 is a front vertical plate in the conductor. Reference numeral 72 is the rear upper and lower horizontal plates 7 of the conductor.
In the figure, the conductor 7 on the left side is located in the electric field directed to the left, while the conductor 7 on the right side is located in the electric field directed to the right. The arrow with reference numeral 4 indicates the magnitude and direction of the electrostatic force acting on these asymmetrical conductors 7.
On the left side of the center of the figure, the electrons in the conductor 7 are attracted to the electric field 5 and move to the right, and most of them gather on the surface of the front vertical plate 71 of the conductor 7.
On the other hand, when the direction of the electric field 5 is reversed, the electrons are attracted by the electric field 5 and move to the left, and reach the rear upper and lower horizontal plates 72 of the conductor 7, and the left end faces of the rear upper and lower horizontal plates 72 are very small. Since it is narrow, most electrons stay on the surface of the upper and lower horizontal plates.
Here, in the case of a conductor, the lines of electric force emitted from these electrons toward the holes and, conversely, the lines of electric force entering from the holes to the electrons are perpendicular to the surface of the conductor. As a result, the direction of the electrostatic force acting on the electron is also perpendicular to the surface of the conductor. That is, on the left side in the center of the figure, a large electrostatic force acts on the conductor 7 in the right direction, but on the right side in the center of the figure, an electrostatic force of the same magnitude acts on the conductor 7 in the upward and downward directions to cancel each other. However, there is no electrostatic force acting in the horizontal direction.
That is, when the direction of the electric field 5 is reversed as shown in the figure, the horizontal electrostatic force 4 acting on the gutter-shaped conductor 7 theoretically becomes 100% to 0%. That is, an asymmetric electrostatic force is generated in the gutter-shaped conductor 7.
However, in reality, since the typical charge distribution shown in FIG. 3 is not obtained, when the direction of the electric field is reversed, an electrostatic force acts on the conductor 7 in the left direction. However, even in that case, it is weaker than the electrostatic force in the right direction before the electric field is reversed, and is about half that.

そこで、当該前後非対称静電力を、電荷搬送体の駆動力とする電界駆動型静電発電機では、電位0Vで、電荷搬送体を静電誘導によって帯電させ、当該電荷搬送体を、先ず、順電界中において強い静電力で十分加速させたのち、逆電界に入れる。当該逆電界では、当該電荷搬送体に働く(進行逆方向の)静電力は弱く、且つ当該逆電界において、当該電荷搬送体の電位が、プラスの電位から0Vに戻ったとき、当該電荷搬送体に余剰の運動エネルギーが残っている。その結果、当該電荷搬送体は更に高い電位迄上ることができる。 Therefore, in an electric field drive type electrostatic generator in which the front-back asymmetric electrostatic force is used as the driving force of the charge carrier, the charge carrier is charged by electrostatic induction at a potential of 0 V, and the charge carrier is first transferred in order. After sufficiently accelerating with a strong electrostatic force in the electric field, it is put into a reverse electric field. In the reverse electric field, the electrostatic force (in the traveling reverse direction) acting on the charge carrier is weak, and when the potential of the charge carrier returns from the positive potential to 0 V in the reverse electric field, the charge carrier Surplus kinetic energy remains. As a result, the charge carrier can reach higher potentials.

図4は、かかる電界駆動型静電発電機の基本ユニットの正面図である。
図中、参照番号8は電荷注入電極を、参照番号9は高圧電極(例えば、エレクトレット、より高電位が必要な場合は、強誘電体及び電極と高圧電極を組み合わせたもの)を、参照番号11は電荷搬送体を、参照番号10は電荷回収電極を、参照番号12は電荷回収電極10に接続された回収部コンデンサーを、参照番号13、15は、これら両電極8及び10並びにエレクトレット9を支持する絶縁性支持体(上下一対)を示している。
尚、参照番号4及び5は、図1及び図2と同じく、電荷搬送体11に加わる静電力と電界(電気力線)を示している。
ここで、エレクトレット9は、例えば、0.1mC/m2 の表面電荷密度を有し、その電位は、例えば、+2000Vである。一方、電荷注入電極8の電位は0Vで、電荷回収電極10の電位は、例えば、-200Vである。
この結果、電荷注入電極8とエレクトレット9の間には、負極性に帯電される前記電荷搬送体11に対して、順電界が形成される。一方、エレクトレット9と回収電界10の間には、同電荷搬送体11に対して、逆電界が形成される。
FIG. 4 is a front view of a basic unit of such an electric field drive type electrostatic generator.
In the figure, reference numeral 8 is a charge injection electrode, reference numeral 9 is a high-voltage electrode (for example, an electret, or a combination of a ferroelectric and an electrode and a high-voltage electrode when a higher potential is required), and a reference numeral 11 Is a charge carrier, reference numeral 10 is a charge recovery electrode, reference numeral 12 is a recovery part capacitor connected to the charge recovery electrode 10, and reference numerals 13 and 15 are the electrodes 8 and 10 and the electret 9. The insulating support (one pair of upper and lower) is shown.
Note that reference numerals 4 and 5 indicate the electrostatic force and electric field (electric force lines) applied to the charge carrier 11 as in FIGS. 1 and 2.
Here, the electret 9 has a surface charge density of, for example, 0.1 mC / m 2 , and its potential is, for example, + 2000V. On the other hand, the potential of the charge injection electrode 8 is 0V, and the potential of the charge recovery electrode 10 is -200V, for example.
As a result, a forward electric field is formed between the charge injection electrode 8 and the electret 9 with respect to the charge carrier 11 that is negatively charged. On the other hand, a reverse electric field is formed between the electret 9 and the recovery electric field 10 with respect to the same charge carrier 11.

上記の通り、電荷搬送体11は、横向きにした樋型であるから、その縦断面横方向中央における、電界の方向又は電荷搬送体11の移動方向に直角な垂線に対し、左右非対称形であり、よって、移動方向に前後非対称形状を有する。
当該電荷搬送体11は、軽い導体、例えばアルミで形成されていて、図示しない絶縁性の電荷搬送体保持体14に保持されている。その結果、電気的にフロートである。当該電荷搬送体11は、前後非対称な静電力4で駆動されて、図4中、左から右に移動して、電荷注入電極8、エレクトレット9、及び電荷回収電極10を順次通り抜ける。
当該電荷搬送体11が、上下一対の電荷注入電極8を抜ける時、即ち、電荷注入電極8に設けられた、図6で示すアルミフォイル又は導電糸等の材料からなる導電性端子(以下、電荷注入静電誘導端子という)23’が、電荷搬送体11に接触した時、静電誘導によって、当該電荷搬送体11に、例えば負極性の電荷が注入される。
又、当該電荷搬送体11が(上下一対の)電荷回収電極10に奥深く入ったとき、当該電荷回収電極10に設けられた、図4、図6で示す搬送電荷回収用の導電性端子(以下、電荷回収端子という)24が当該電荷搬送体11に接触して、当該電荷搬送体11が有する前記注入電荷は回収される。
As described above, since the charge carrier 11 is a horizontally oriented gutter type, the charge carrier 11 has a left-right asymmetrical shape with respect to a vertical line at the center in the horizontal direction of the vertical section, which is perpendicular to the direction of the electric field or the moving direction of the charge carrier 11. Therefore, it has a front-back asymmetric shape in the moving direction.
The charge carrier 11 is made of a light conductor, for example, aluminum, and is held by an insulating charge carrier holder 14 (not shown). As a result, it is electrically floated. The charge carrier 11 is driven by the electrostatic force 4 which is asymmetrical in the front-rear direction, moves from left to right in FIG. 4, and sequentially passes through the charge injection electrode 8, the electret 9, and the charge recovery electrode 10.
When the charge carrier 11 passes through the pair of upper and lower charge injection electrodes 8, that is, a conductive terminal (hereinafter, referred to as a charge) provided on the charge injection electrode 8 and made of a material such as aluminum foil or conductive thread shown in FIG. When the injection electrostatic induction terminal 23 ′ contacts the charge carrier 11, electrostatic charge induces, for example, a negative charge into the charge carrier 11.
In addition, when the charge carrier 11 is deeply inserted into the (upper and lower pair) charge collecting electrodes 10, conductive terminals for collecting carrier charges shown in FIGS. , Which is referred to as a charge recovery terminal) 24 contacts the charge carrier 11, and the injected charge of the charge carrier 11 is recovered.

即ち、順電界中においては、強い静電力によって電荷搬送体11を加速運動させ、電荷搬送体11が逆電界に入り、減速運動になっても、それが受ける逆方向の静電力は弱いので、十分な速度を持って電荷回収電極10に到達する。 That is, in a forward electric field, even if the charge carrier 11 is accelerated by a strong electrostatic force and the charge carrier 11 enters a reverse electric field and decelerates, the reverse electrostatic force received by the charge carrier 11 is weak. It reaches the charge recovery electrode 10 with sufficient speed.

図5は、上記図4に示す電界駆動型静電発電機において、電荷搬送体11へ静電誘導で電荷を注入する電荷注入部分のみを示す模式図である。
同図において、参照番号8は接地された電荷注入電極、参照番号9は高電圧が印加された高圧電極、参照番号11は電荷搬送体、参照番号23’は電荷注入静電誘導端子を示している。
前記電荷注入電極8の幅は9.6mm、高圧電極9の幅は9.6mm、その間の間隔は32.0mm、電荷搬送体11の縦は5.2mm、その横は5.1mm、その奥行は50.0mmである。又、注入電極の電位は0V、そして高圧電極の電位は+7kVである。
ここで、上記電界駆動型静電発電機における注入電荷量を、後段でその詳細を示す二次元差分法でシミュレーションすると、-0.66[nC]であった。
又、この電荷搬送体11が、電荷注入電極8と高圧電極9の中間に来たとき、当該電荷搬送体11に作用する静電力は、+X方向(進行方向)に0.14[mN]であった。以下、この静電力を順電界静電力と呼ぶ。
尚、順電界静電力は、電荷搬送体11の位置により少し変わるが、前記電荷注入電極8と高圧電極9の中間での値で代表した。
FIG. 5 is a schematic diagram showing only the charge injection portion for injecting charges into the charge carrier 11 by electrostatic induction in the electric field drive type electrostatic generator shown in FIG.
In the figure, reference numeral 8 is a grounded charge injection electrode, reference numeral 9 is a high voltage electrode to which a high voltage is applied, reference numeral 11 is a charge carrier, and reference numeral 23 'is a charge injection electrostatic induction terminal. There is.
The width of the charge injection electrode 8 is 9.6 mm, the width of the high voltage electrode 9 is 9.6 mm, the interval between them is 32.0 mm, the length of the charge carrier 11 is 5.2 mm, the width thereof is 5.1 mm, and the depth thereof is 50.0 mm. . The potential of the injection electrode is 0V and the potential of the high voltage electrode is + 7kV.
Here, when the injected charge amount in the electric field driven electrostatic generator was simulated by the two-dimensional difference method which will be described later in detail, it was -0.66 [nC].
When the charge carrier 11 comes between the charge injection electrode 8 and the high voltage electrode 9, the electrostatic force acting on the charge carrier 11 is 0.14 [mN] in the + X direction (traveling direction). . Hereinafter, this electrostatic force is referred to as a forward electric field electrostatic force.
The forward electric field electrostatic force is slightly changed depending on the position of the charge carrier 11, but is represented by a value in the middle between the charge injection electrode 8 and the high voltage electrode 9.

しかしながら、図4と図5に示す従来の電界駆動型静電発電機は、1回に搬送できる電荷量が十分でなく、得られる電位も高くはないため、その高出力化は容易ではない。 However, in the conventional electric field drive type electrostatic generator shown in FIGS. 4 and 5, the amount of charge that can be carried at one time is not sufficient, and the obtained potential is not high, so it is not easy to increase the output.

[特許文献1] 特開2009−232667号公報
[特許文献2] 特許第6136050号公報
[特許文献3] 特許第6286767号公報
[特許文献4] 特開2018−029425号公報
[Patent Document 1] Japanese Patent Application Laid-Open No. 2009-232667 [Patent Document 2] Japanese Patent No. 6136050 [Patent Document 3] Japanese Patent No. 6286767 [Patent Document 4] Japanese Patent Application Laid-Open No. 2018-029425

[非特許文献1][Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010
[非特許文献2]2017年米国静電気学会年次大会予稿集 A-3
[非特許文献3]「物理学の基礎3 電磁気学」、ハリディ、レスニック、ウォーカー共著、野崎光昭監訳、培風館
[非特許文献4][Asymmetric Electrostatic Force], K. Sakai, Journal of Electromagnetic Analysis and Applications, Scientific Research
[Non-Patent Document 1] [Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010
[Non-Patent Document 2] Proceedings of 2017 Annual Meeting of the Electrostatic Society of America A-3
[Non-Patent Document 3] “Basics of Physics 3 Electromagnetics”, co-authored by Haridi, Lesnick, Walker, translated by Mitsuaki Nozaki, Baifukan
[Non-Patent Document 4] [Asymmetric Electrostatic Force], K. Sakai, Journal of Electromagnetic Analysis and Applications, Scientific Research

本発明の目的は、電界駆動型静電発電機において、電荷搬送体が搬送する電荷量を大幅に増やして、その出力を大幅に改善することにある。 An object of the present invention is to significantly increase the amount of charges carried by a charge carrier in an electric field drive type electrostatic power generator and to significantly improve the output thereof.

課題を解決する為の手段Means for solving the problem

上記本発明の目的は、静電誘導で電荷搬送体に電荷を注入する代わりに、接地された電荷注入電極と高圧電極が形成する順電界たる加速電界とは異なる電荷注入の為の専用電界を形成し、当該専用電界にある電荷搬送体に大量の電荷を充電注入することで達成できる。   The object of the present invention is to provide a dedicated electric field for charge injection different from the accelerating electric field, which is a forward electric field formed by the grounded charge injection electrode and the high voltage electrode, instead of injecting charges into the charge carrier by electrostatic induction. This can be achieved by forming and charging and injecting a large amount of charges into the charge carrier in the dedicated electric field.

本発明の実施例によれば、電荷搬送体に注入(充電)される電荷量は、静電誘導で注入される電荷量より桁違い大きいため、搬送電荷量は格段に増大する。その結果、静電発電機の出力が増大する。 According to the embodiment of the present invention, the amount of charge injected (charged) into the charge carrier is orders of magnitude larger than the amount of charge injected by electrostatic induction, so that the amount of carrier charge is significantly increased. As a result, the output of the electrostatic generator increases.

図1は、クーロンの法則を説明する模式図である。FIG. 1 is a schematic diagram illustrating Coulomb's law. 図2は、横向き樋型導体を用いた前後非対称静電力を説明する模式図である。FIG. 2 is a schematic diagram illustrating a front-back asymmetric electrostatic force using a lateral gutter-shaped conductor. 図3は、横向き樋型導体を用いた、前後非対称静電力の発生原理を説明する模式図である。FIG. 3 is a schematic diagram for explaining the generation principle of the front-back asymmetric electrostatic force using the lateral gutter-shaped conductor. 図4は、電界駆動型静電発電機の基本ユニットの縦断面図である。FIG. 4 is a vertical cross-sectional view of a basic unit of an electric field drive type electrostatic generator. 図5は、電荷を誘導注入する従来の電界駆動型静電発電機の電荷注入部分の拡大図である。FIG. 5 is an enlarged view of a charge injection portion of a conventional electric field drive type electrostatic generator that inductively injects charges. 図6は、電荷を充電注入する本発明の一実施例に係る電界駆動型静電発電機の基本ユニットの縦断面図である。FIG. 6 is a vertical cross-sectional view of a basic unit of an electric field drive type electrostatic power generator according to an embodiment of the present invention for charging and injecting charges. 図7は、本発明の一実施例に係る電界駆動型静電発電機における、電荷を充電注入する部分の拡大図である。FIG. 7 is an enlarged view of a portion for charging and injecting charges in the electric field drive type electrostatic power generator according to the embodiment of the present invention. 図8は、誘導注入と充電注入、夫々の結果生じた注入電荷量と、順電界における静電力を比較するグラフである。FIG. 8 is a graph comparing the amount of injected charges generated as a result of induction injection and charge injection with the electrostatic force in the forward electric field. 図9は、回転式の電界駆動型静電発電機において、電荷搬送体と充電電界形成電極の間隔を異ならせた各場合における、充電電界形成電極の電圧と充電電荷量の関係を示すグラフである。FIG. 9 is a graph showing the relationship between the voltage of the charging electric field forming electrode and the amount of charged electric charge when the distance between the charge carrier and the charging electric field forming electrode is different in the rotary electric field driven electrostatic generator. is there. 図10は、回転式の電界駆動型静電発電機において、電荷搬送体と充電電界形成電極の間隔を異ならせた各場合における、充電電界形成電極の電圧と順電界で生じる静電力の関係を示すグラフである。FIG. 10 shows the relationship between the voltage of the charging electric field forming electrode and the electrostatic force generated by the forward electric field when the distance between the charge carrier and the charging electric field forming electrode is different in the rotary electric field driven electrostatic generator. It is a graph shown. 図11は、電荷を充電注入する電界駆動型静電発電機の基本ユニットを円形とし、充電注入基本ユニットを、円周上に放射状に複数連結した電界駆動型発電機の1セットの斜視図である。FIG. 11 is a perspective view of one set of an electric field drive type generator in which a basic unit of an electric field drive type electrostatic power generator for charging and injecting electric charges is circular and a plurality of charge injection base units are radially connected on a circumference. is there. 図12は、電界駆動型発電機1セットの正面図である。FIG. 12 is a front view of one electric field drive type generator. 図13は、1セットを多段に重ねた電界駆動型発電機の正面図である。FIG. 13 is a front view of an electric field drive type generator in which one set is stacked in multiple stages. 図14は、充電電荷量と、逆電界で対応して生じる静電力を示すグラフである。FIG. 14 is a graph showing the amount of charge and the electrostatic force correspondingly generated by the reverse electric field. 図15は、図14において、充電電荷量が少ない部分の、その充電電荷量とそれによって逆電界で生じる静電力の関係を示す部分拡大図である。FIG. 15 is a partially enlarged view showing the relationship between the charged electric charge amount and the electrostatic force generated by the reverse electric field due to the charged electric charge amount in the portion in FIG. 図16は、逆電界下で、前方垂直板に残された電荷の、全充電電荷量に対する割合を示すグラフである。FIG. 16 is a graph showing the ratio of the charges left on the front vertical plate to the total amount of charged charges under a reverse electric field. 図17は、逆電界下で、電荷搬送体の前方垂直板に電荷が残らない場合と残った場合の夫々に於いて、電荷搬送体に作用する電気力線を示す模式図である。FIG. 17 is a schematic diagram showing the lines of electric force acting on the charge carrier under the reverse electric field when the charge is not left on the front vertical plate of the charge carrier and when the charge remains. 図18は、二次元差分法によるシミュレーションで、誘導注入により電荷搬送体に注入される電荷量を求める際に使用するメッシュ図である。FIG. 18 is a mesh diagram used for obtaining the amount of charges injected into the charge carrier by induction injection in a simulation by the two-dimensional difference method.

発明を実施する為の形態MODE FOR CARRYING OUT THE INVENTION

電界駆動型静電発電機において、電荷搬送体が搬送する電荷量を大幅に増やして、当該発電機の出力を大幅に改善するという目的を、所定の電位を有する充電電界形成電極(電極、エレクトレット、又は高誘電体)と電荷搬送体を近接させ、両者間で一時的にコンデンサーを形成し、その後電荷搬送体を接地したときに当該コンデンサーに流れ込む電荷で、当該電荷搬送体を充電(帯電)することで実現した。 In an electric field drive type electrostatic generator, a charge electric field forming electrode (electrode, electret) having a predetermined potential is used for the purpose of significantly increasing the amount of charge carried by a charge carrier to significantly improve the output of the generator. , Or a high dielectric material) and the charge carrier are brought close to each other, a capacitor is temporarily formed between them, and then the charge carrier is charged (charged) by the electric charge flowing into the capacitor when the charge carrier is grounded. It was realized by doing.

以下、本発明の第1実施例を従来例と比較しつつ説明する。
図5は、静電誘導で電荷搬送体へ電荷を注入する従来の電界駆動型静電発電機の電荷注入部分の拡大図である。
同図において、参照番号8は接地された電荷注入電極、参照番号9は高電圧が印加された高圧電極、参照番号11は電荷搬送体、参照番号23’は電荷注入静電誘導端子を示している。
注入電極8の幅(紙面左右方向)は9.6mm、高圧電極9の幅は9.6mm、その間の間隔(紙面左右方向)は32.0mm、一辺が開放した箱型形状を有する電荷搬送体11の縦(高さ方向)は5.2mm、同横(左右方向)は5.1mm、同奥行(紙面垂直方向)は50.0mmである。又、これら注入電極には0V、高圧電極には+7kVが印加されている。
以上の構成に於いて、後段でその詳細を説明する二次元差分法で、注入電荷量をシミュレーションしたところ、注入電荷量は、-0.66[nC]であった。
また、この電荷搬送体11が、前記注入電極8と高圧電極9の中間に来たとき、電荷搬送体11に作用する静電力は、+X(電荷搬送体11の進行方向)方向に、0.14[mN]であった。以下、この静電力を順電界静電力と呼ぶ。
なお、順電界静電力は、電荷搬送体11の位置により、少し変化するが、前記中間地点の値で代表することとする。
Hereinafter, the first embodiment of the present invention will be described in comparison with a conventional example.
FIG. 5 is an enlarged view of a charge injection portion of a conventional electric field drive type electrostatic generator in which charges are injected into a charge carrier by electrostatic induction.
In the figure, reference numeral 8 is a grounded charge injection electrode, reference numeral 9 is a high voltage electrode to which a high voltage is applied, reference numeral 11 is a charge carrier, and reference numeral 23 'is a charge injection electrostatic induction terminal. There is.
The width of the injection electrode 8 (horizontal direction on the paper surface) is 9.6 mm, the width of the high-voltage electrode 9 is 9.6 mm, the distance between them (horizontal direction on the paper surface) is 32.0 mm, and the length of the charge carrier 11 having a box shape with one side open. The height is 5.2 mm, the width is 5.1 mm in the horizontal direction, and the depth is 50.0 mm in the vertical direction. Further, 0 V is applied to these injection electrodes and +7 kV is applied to the high voltage electrodes.
In the above configuration, when the injected charge amount was simulated by the two-dimensional difference method which will be described later in detail, the injected charge amount was -0.66 [nC].
Further, when the charge carrier 11 comes between the injection electrode 8 and the high voltage electrode 9, the electrostatic force acting on the charge carrier 11 is 0.14 [in the + X (direction in which the charge carrier 11 travels)] direction. mN]. Hereinafter, this electrostatic force is referred to as a forward electric field electrostatic force.
Note that the forward electric field electrostatic force varies slightly depending on the position of the charge carrier 11, but is represented by the value of the intermediate point.

図6は、電荷搬送体11へ電荷を充電注入する本発明の電界駆動型静電発電機の基本ユニットを示す。
図中、参照番号18は、接地される電荷搬送体11とで充電電界を形成する充電電界形成源であり、具体的には所定の電圧が印加された電極、所定の電位を有するエレクトレット、又はそのような強誘電体である。以下、代表的に電極として説明するが、エレクトレットでも強誘電体でも同様に適用される。参照番号19は、充電電界形成源18の電源である。
その他、同一の参照番号を付した部材は、図4で示した従来の電界駆動型静電発電機の基本ユニットと同じものである。
FIG. 6 shows a basic unit of the electric field drive type electrostatic generator of the present invention for charging and injecting charges into the charge carrier 11.
In the figure, reference numeral 18 is a charging electric field forming source that forms a charging electric field with the grounded charge carrier 11, and specifically, an electrode to which a predetermined voltage is applied, an electret having a predetermined potential, or It is such a ferroelectric. Hereinafter, the electrode will be representatively described, but the same applies to the electret and the ferroelectric. Reference numeral 19 is a power source of the charging electric field forming source 18.
Other than that, the members with the same reference numerals are the same as the basic unit of the conventional electric field drive type electrostatic generator shown in FIG.

図7は、本発明の電界駆動型静電発電機の一実施例であって、電荷搬送体11へ、新しい方法で電荷を注入するシステムの要部模式図である。
同図において、参照番号18は接地され、低電圧が印加された充電電界形成電極、参照番号9は高電圧が印加された高圧電極、参照番号11は電荷搬送体、参照番号23は接地された電荷注入充電端子を示している。
当該充電電界形成電極18と高圧電極9間には、順電界たる加速電界が形成され、作用する非対称静電力によって、その電界方向に電荷搬送体11を加速する。
この充電電界形成電極18は、又、前記加速電界とは別に、接地され通過する電荷搬送体11に対し電荷を充電する為の専用の電界を、当該電荷搬送体11との間で形成する。
具体的には、図示するように、上下一対の充電電界形成電極18、18と、電荷搬送体11の上下の水平板72、72は、夫々、その間で、5.7mmの空気層の夫々を挟んで、上下一対のコンデンサーを形成している。
そのため、電荷搬送体11が電荷注入充電端子23を介して接地されると、上記一対のコンデンサー、即ち上下の水平板72、72に充電電流が流れ、当該上下の水平板72、72に電荷が注入される(以下、この電荷注入方法を、従来の静電誘導による電荷注入と区別して、充電注入という)。
ここで、充電電界形成電極18の電位が+1.0kVで、高圧電極9の電位が+7.0kVの時の注入電荷量と順電界静電力を、シミュレーションで求め、その結果を、誘導注入で得られる各値と共に図8に示す。
同図縦軸で示すように、充電注入による注入電荷量は、誘導注入で得た-0.66[nC]から-2.38[nC]へと増加し、3.6倍になり、充電注入による順電界静電力は、誘導注入で得た0.14[mN]から0.39[mN]へと増加し、2.9倍になっている。
又、当該順電界静電力の増加によって、電荷搬送体保持円板14の回転速度も増加するので、出力電力は、誘導注入により得られる出力電力の10.5倍である16.2[μW]になる。
尚、以上のシミュレーションでは、充電電界形成電極18及び高圧電極9として、電圧を印加した電極を夫々使用したが、実製品では、どちらもエレクトレットを使用できる。
FIG. 7 is a schematic view of an essential part of a system for injecting charges into the charge carrier 11 by a new method, which is one example of the electric field drive type electrostatic generator of the present invention.
In the figure, reference numeral 18 is grounded, a charging electric field forming electrode to which a low voltage is applied, reference numeral 9 is a high voltage electrode to which a high voltage is applied, reference numeral 11 is a charge carrier, and reference numeral 23 is grounded. The charge injection charging terminal is shown.
An acceleration electric field, which is a forward electric field, is formed between the charging electric field forming electrode 18 and the high voltage electrode 9, and the charge carrier 11 is accelerated in the electric field direction by the acting asymmetric electrostatic force.
In addition to the accelerating electric field, the charging electric field forming electrode 18 forms an electric field dedicated to charging the electric charge carrier 11 which is grounded and passes therethrough with the charge carrier 11 concerned.
Specifically, as shown in the figure, the pair of upper and lower charging electric field forming electrodes 18, 18 and the upper and lower horizontal plates 72, 72 of the charge carrier 11 respectively sandwich an air layer of 5.7 mm therebetween. Thus, a pair of upper and lower capacitors are formed.
Therefore, when the charge carrier 11 is grounded via the charge injection charging terminal 23, a charging current flows through the pair of capacitors, that is, the upper and lower horizontal plates 72, 72, and the upper and lower horizontal plates 72, 72 are charged. (Hereinafter, this charge injection method is referred to as charge injection in distinction from the conventional charge injection by electrostatic induction).
Here, the injection charge amount and the forward electric field electrostatic force when the potential of the charging electric field forming electrode 18 is +1.0 kV and the potential of the high voltage electrode 9 is +7.0 kV are obtained by simulation, and the results are obtained by induction injection. It is shown in FIG. 8 together with each value.
As shown by the vertical axis in the figure, the injected charge amount by charge injection increased from -0.66 [nC] obtained by induction injection to -2.38 [nC], which was 3.6 times, and the forward electric field electrostatic force by charge injection was increased. Is increased from 0.14 [mN] obtained by induction injection to 0.39 [mN], which is 2.9 times.
Further, since the rotation speed of the charge carrier holding disk 14 also increases due to the increase in the forward electric field electrostatic force, the output power becomes 16.2 [μW], which is 10.5 times the output power obtained by induction injection. .
In addition, in the above simulation, the electrodes to which the voltage is applied are used as the charging electric field forming electrode 18 and the high voltage electrode 9, respectively, but in the actual product, both can use an electret.

更に、ベンチモデルは手作りした物であるため、回転する電荷搬送体11と充電電界形成電極18の間隔は、上記の通り5.0mm以上必要であったが、機械生産される実製品では、その間隔は、1.0mmで十分である。そこで、この間隔を0.9mmとし、同時に、充電電界形成電極18の電圧を3.0kV、+5.0kVに上げ、同様にシミュレーションを行い、その結果を、図9と図10に示す。
図9に示すように、電荷搬送体11と充電電界形成電極18の間隔が0.9mmであって、横軸で示す充電電界形成電極18の電位が+5.0kVの時、縦軸で示す充電電荷量は-35.68[nC]に達し、ベンチモデルにおける誘導注入で得た注入電荷量たる0.66[nC]の55倍になった。
又、図10に示すように、縦軸で示す順電界静電力は、電荷搬送体11と充電電界形成電極18の間隔が0.9mmであって、横軸で示す充電電界形成電極18の電位が+5.0kVの時、18.95[mN]となり、ベンチモデルにおける誘導注入で得た0.14[mN]の140倍になった。この結果、出力電力は、ベンチモデルにおける誘導注入で得た1.54[μW]の7600倍である11.7[mW」になった。よって、自動車を駆動できる出力電力ではないものの、小型電気機器を駆動することは可能である。
尚、図11に示すように、更に出力電力を上げるべく、図6に示す電荷搬送体11を、回転可能な所定サイズの円板の中心軸回りに、一定角度間隔で、放射状に複数配置した電荷搬送体保持円板14と、同図に示す充電注入基本ユニットの一組を、同様に、固定される夫々の円板の中心軸回りに、一定角度間隔で、放射状に複数組配置してなる上下2枚の電極板13、15を設け、各電極板13、15の各電極対が上下対向するように、当該電荷搬送体保持部材14を挟んで配置してなる円板型電荷充電注入セットを形成する。
この場合、図12で示すように、1つの円板型電荷充電注入セットにおいて、電荷注入充電端子23の一端を当該セットの外壁に固定し、その自由端を電荷搬送体11に接触させて、当該電荷搬送体11を接地させることができる。参照記号16は、中心軸たる固定軸を示す。
かかる構成によって、その出力は組数に応じて倍増する。
さらに、図13に示すように、前記1セットを、上下多段に積み重ねることにより、出力電力は、さらに、段数に応じて倍増できる。
なお、図中、参照番号17は、電荷搬送体保持円板14のセンターに固定され、固定軸16の周りを回転するベアリングである。
以上、本発明の一の実施形態を、静電発電機として説明したが、図6、図11、図13等の各装置から、コンデンサー12を省き、回収電荷を直接大地に流して電荷回収電極10の電位を0Vに保つか、又は電荷回収電極10を接地しつつ電荷回収端子24を省けば、静電モーター又は静電加速器になる。
Further, since the bench model is a handmade product, the distance between the rotating charge carrier 11 and the charging electric field forming electrode 18 needs to be 5.0 mm or more as described above. Is 1.0 mm is sufficient. Therefore, this interval is set to 0.9 mm, and at the same time, the voltage of the charging electric field forming electrode 18 is increased to 3.0 kV and +5.0 kV, and a similar simulation is performed. The results are shown in FIGS. 9 and 10.
As shown in FIG. 9, when the distance between the charge carrier 11 and the charging electric field forming electrode 18 is 0.9 mm and the potential of the charging electric field forming electrode 18 shown on the horizontal axis is +5.0 kV, the charging electric charge shown on the vertical axis is shown. The amount reached -35.68 [nC], which was 55 times as large as the injected charge amount of 0.66 [nC] obtained by induction injection in the bench model.
Further, as shown in FIG. 10, the forward electric field electrostatic force shown on the vertical axis has a gap of 0.9 mm between the charge carrier 11 and the charging electric field forming electrode 18, and the electric potential of the charging electric field forming electrode 18 shown on the horizontal axis is At +5.0 kV, it was 18.95 [mN], which was 140 times that of 0.14 [mN] obtained by induction injection in the bench model. As a result, the output power was 11.7 [mW], which was 7600 times that of 1.54 [μW] obtained by induction injection in the bench model. Therefore, it is possible to drive a small electric device although the output power is not enough to drive a car.
Incidentally, as shown in FIG. 11, in order to further increase the output power, a plurality of charge carriers 11 shown in FIG. 6 are radially arranged around the central axis of a rotatable disc of a predetermined size at a constant angular interval. Similarly, a plurality of sets of the charge carrier holding disk 14 and the charge injection basic unit shown in the figure are radially arranged around the central axis of each of the fixed disks at a constant angular interval. Disc type charge charging injection in which two upper and lower electrode plates 13 and 15 are provided, and the charge carrier holding member 14 is sandwiched so that the electrode pairs of the electrode plates 13 and 15 face each other vertically. Form a set.
In this case, as shown in FIG. 12, in one disk-type charge charging and injecting set, one end of the charge injecting and charging terminal 23 is fixed to the outer wall of the set, and its free end is brought into contact with the charge carrier 11, The charge carrier 11 can be grounded. Reference numeral 16 indicates a fixed shaft which is a central shaft.
With such a configuration, the output is doubled according to the number of sets.
Further, as shown in FIG. 13, the output power can be further doubled according to the number of stages by stacking the one set in upper and lower stages.
In the figure, reference numeral 17 is a bearing which is fixed to the center of the charge carrier holding disk 14 and rotates around a fixed shaft 16.
Although one embodiment of the present invention has been described above as an electrostatic generator, the capacitor 12 is omitted from each of the devices shown in FIGS. 6, 11, 13 and the like, and the recovered charge is directly flown to the ground to recover the charge. If the potential of 10 is kept at 0V, or if the charge recovery terminal 24 is omitted while the charge recovery electrode 10 is grounded, it becomes an electrostatic motor or an electrostatic accelerator.

此処で、充電電界形成電極18の電位を上記のように+5.0kVとしたとき、上記順電界静電力18.95[mN]を落とさないためには、高圧電極9の電位を約+12.0kVに上げる必要がある。
この時、回収電極10(図4、図6、図11)の電位は0V以下なので、当当該高圧電極9と当該回収電極10間の電位差は12.0kV以上になる。一方、順電界と逆電界の距離は、共に3.2mmであり、等しいので、結局、逆電界の強さは、順電界の強さの1.7培以上になる。
その結果、仮に、順電界と逆電界の強さが同じであれば、前記した前後非対称静電力で、電荷搬送体11は、回収電極10の内部まで到達可能であるが、逆電界の強さが順電界の強さの1.7倍ならば、通常、電荷搬送体11は、回収電極10の内部にまで到達できない筈である。
Here, when the electric potential of the charging electric field forming electrode 18 is set to +5.0 kV as described above, in order not to drop the forward electric field electrostatic force of 18.95 [mN], the electric potential of the high voltage electrode 9 is raised to about +12.0 kV. There is a need.
At this time, the potential of the recovery electrode 10 (FIGS. 4, 6, and 11) is 0 V or less, so the potential difference between the high-voltage electrode 9 and the recovery electrode 10 is 12.0 kV or more. On the other hand, the distances of the forward electric field and the reverse electric field are both 3.2 mm, which are equal to each other. Therefore, the strength of the reverse electric field is 1.7 times or more the strength of the forward electric field.
As a result, if the strength of the forward electric field and the strength of the reverse electric field are the same, the charge carrier 11 can reach the inside of the recovery electrode 10 by the aforementioned asymmetric electrostatic force, but the strength of the reverse electric field is strong. Is 1.7 times the strength of the forward electric field, the charge carrier 11 normally cannot reach the inside of the recovery electrode 10.

そこで、このことを確認すべく、逆電界静電力をシミュレーションで求め、その結果を図14に示す。尚、充電電荷量が少ない範囲は別途拡大し、図15に示す。
通常、逆電界で、電荷搬送体11に作用する静電力(以下、逆電界静電力という)の方向は、順電界静電力の方向の逆で、−X(進行方向の逆)であり、その符合は、マイナスになる筈である。
しかしながら、図14では、特に、横軸で示す充電電荷量が多い範囲では、縦軸で示すように、逆電界静電力の符合はプラスになった。
又、充電電荷量が少ない範囲を拡大して示す図15より明らかな通り、横軸に示す充電電荷量が-6[nC]より少ない範囲では、縦軸に示す逆電界静電力は略充電電荷量に比例して、−X方向に強くなることが分かる。
しかしながら、充電電荷量が-6[nC]より更に増えると、逆に逆電界静電力は弱くなり、充電電荷量が-10[nC]になると、逆電界静電力の符合が反転する。即ち、+X方向に働くことが分かる。
Therefore, in order to confirm this, the reverse electric field electrostatic force was obtained by simulation, and the result is shown in FIG. The range in which the amount of charge is small is enlarged and shown in FIG.
Usually, the direction of the electrostatic force acting on the charge carrier 11 in the reverse electric field (hereinafter referred to as the reverse electric field electrostatic force) is the reverse of the direction of the forward electric field electrostatic force and is −X (the reverse of the traveling direction). The sign should be negative.
However, in FIG. 14, the sign of the reverse electric field electrostatic force is positive, as shown on the vertical axis, particularly in the range where the amount of charged charges is large on the horizontal axis.
In addition, as is clear from FIG. 15 which shows an enlarged range of a small amount of charged electric charge, in a range where the amount of charged electric charge shown on the horizontal axis is less than -6 [nC], the reverse electric field electrostatic force shown on the vertical axis is substantially equal to the charged electric charge. It can be seen that the intensity increases in the -X direction in proportion to the amount.
However, when the charge amount further exceeds -6 [nC], the reverse electric field electrostatic force is weakened, and when the charge amount becomes -10 [nC], the sign of the reverse electric field electrostatic force is reversed. That is, it can be seen that it works in the + X direction.

ここで、先に、図3を参照して、前後非対称静電力の発生原因を説明したように、順電界で注入された自由電子が、電荷搬送体11の前方垂直板71に集まり、電界の方向が逆転し逆電界に入った時、全ての自由電子が後方上下水平板72に移動すれば、逆電界静電力の作用方向が+X方向になることはあり得ない。
そこで、この仮説を確認すべく、充電電荷量ごとに、前方垂直板71に残る電荷の、充電電荷量に対する割合をシミュレーションで求め、その結果を図16に示す。
同図に於いて、縦軸に示す縦板の電荷量を参照すれば、横軸で示す充電電荷量が少ないときは、殆どの電荷が、前方垂直板71に残らず、後方上下水平板72に移動していることが分かる。
しかしながら、充電電荷量が増えると、かなりの電荷が、当該前方垂直板71に残り、その割合は、当該充電電荷量の増加に従い、順次増えていくことが分かる。
この原因は、自由電子同士の、静電反発力の影響であると考えられる。
詰り、その量が少なければ、各自由電子は電界に引かれて、左に移動し、後方上下水平板72に入るが、その量が多くなると、前方垂直板71の自由電子は、先に、後方上下水平板72に移動した自由電子から静電反発力を受け、左に移動できなくなるのである。
Here, as described above with reference to FIG. 3, the free electrons injected in the forward electric field gather in the front vertical plate 71 of the charge carrier 11 and the electric field of the electric field is generated. When all the free electrons move to the rear upper and lower horizontal plates 72 when the directions are reversed and enter the reverse electric field, the acting direction of the reverse electric field electrostatic force cannot be the + X direction.
Therefore, in order to confirm this hypothesis, the ratio of the electric charge remaining in the front vertical plate 71 to the charged electric charge amount was obtained by simulation for each charged electric charge amount, and the result is shown in FIG.
In the figure, referring to the charge amount of the vertical plate on the vertical axis, when the charge amount of charge on the horizontal axis is small, most of the charge does not remain on the front vertical plate 71 and the rear upper and lower horizontal plates 72. You can see that you are moving to.
However, it can be seen that as the charged charge amount increases, a considerable amount of charge remains in the front vertical plate 71, and the ratio thereof gradually increases as the charged charge amount increases.
The cause is considered to be the influence of electrostatic repulsion between free electrons.
If the amount of clogging is small, each free electron is attracted by the electric field and moves to the left, and enters the rear upper and lower horizontal plates 72, but when the amount is large, the free electrons of the front vertical plate 71 are The electrostatic repulsive force is received from the free electrons that have moved to the rear upper and lower horizontal plates 72, so that they cannot move to the left.

つまり、この時、図17で模式的に示すように、電荷搬送体11には、前方垂直板71に残った自由電子に働く静電力で、+X方向(方向図示!)にも力が働くのである。
ここで、同図において、記号5は電界の方向を示す矢印を、記号71は電荷搬送体11の前方垂直板を、記号72は後方上下水平板を、黒丸は自由電子を示している。同図の中央左の(A)は、充電電荷量Qが、前方垂直板71に残り始める限界電荷量Q0未満の場合、同右の(B)は、充電電荷量Qが、当該限界電荷量Q0以上の場合を示している。
図示するように、同図(A)の場合は、前方垂直板71に電荷がないので、当該前方垂直板71に入る電気力線5はなく、電荷搬送体11に作用する静電力もないが、同図(B)の場合は、前方垂直板71に自由電子が残存し、そこに、図示しない左側の正極性高電圧が印加された高圧電極9より、図のように、電気力線が当該前方垂直板71に曲がって入り、従って、+X方向の静電力が発生する。
つまり、充電電荷量が、十分あれば、逆電界に入っても、引き続き+X方向に加速されることを意味している。
尚、この現象は、電荷搬送体11の帯電方法の種類によらないので、別の帯電方法でも、十分な電荷を電荷搬送体11に注入できれば、同様な結果となる。
That is, at this time, as schematically shown in FIG. 17, the electrostatic force acting on the free electrons remaining on the front vertical plate 71 acts on the charge carrier 11 also in the + X direction (direction shown!). is there.
In this figure, symbol 5 indicates an arrow indicating the direction of the electric field, symbol 71 indicates a front vertical plate of the charge carrier 11, symbol 72 indicates a rear upper and lower horizontal plates, and black circles indicate free electrons. In the center left (A) of the figure, when the charged charge amount Q is less than the limit charge amount Q 0 that starts to remain on the front vertical plate 71, in the right side (B), the charged charge amount Q is the limit charge amount. The case of Q 0 or more is shown.
As shown in the figure, in the case of FIG. 3A, since there is no charge in the front vertical plate 71, there is no electric force line 5 that enters the front vertical plate 71, and there is no electrostatic force that acts on the charge carrier 11. In the case of FIG. 7B, free electrons remain in the front vertical plate 71, and from the high voltage electrode 9 to which a positive high voltage on the left side (not shown) is applied, electric lines of force are generated as shown in the figure. The front vertical plate 71 is bent and enters, and thus an electrostatic force in the + X direction is generated.
In other words, if the charge amount is sufficient, it means that even if it enters the reverse electric field, it is accelerated in the + X direction.
Since this phenomenon does not depend on the type of charging method of the charge carrier 11, the same result will be obtained if a sufficient charge can be injected into the charge carrier 11 by another charging method.

実施例1の場合、例えば、充電電界形成電極18の電圧を+5kVとした場合、順電界静電力18.95[mN]を落とさないためには、+7kVである高圧電極9の電位を約+12.0kVに上げ、十分な加速電界及び順電界静電力を得る必要があったが、通常、エレクトレットで、この電位を得ることは困難である。
そこで、電荷搬送体11が、上下一対の充電電界形成電極18間において、電荷注入充電端子23によって接地され、充電電界形成電極18の電位と異極性の電荷が当該電荷搬送11に注入(充電)され、当該電荷注入充電端子23が外れて、当該充電電界形成電極18間を抜けるとき、図7に示す切替スイッチ20を電源側から切り替えて接地し、充電電界形成電極18の電位を、+5kVから0kVに戻すよう充電電界形成電極18の電位を制御する。当該制御は、図示しない電位コントローラで行う。
これにより、高圧電極9の電圧は7kVを維持したままで、十分な加速電界及び順電界静電力が形成され生成される。
In the case of Example 1, for example, when the voltage of the charging electric field forming electrode 18 is +5 kV, in order not to drop the forward electric field electrostatic force of 18.95 [mN], the potential of the high voltage electrode 9 which is +7 kV is set to about +12.0 kV. It was necessary to obtain a sufficient acceleration electric field and a sufficient forward electric field electrostatic force, but it is usually difficult to obtain this potential with an electret.
Therefore, the charge carrier 11 is grounded by the charge injection charging terminal 23 between the pair of upper and lower charging electric field forming electrodes 18, and electric charges having a polarity different from the electric potential of the charging electric field forming electrode 18 are injected (charged) into the electric charge carrier 11. Then, when the charge injection charging terminal 23 is detached and passes through the charging electric field forming electrodes 18, the changeover switch 20 shown in FIG. 7 is switched from the power source side to ground and the electric potential of the charging electric field forming electrode 18 is changed from +5 kV. The potential of the charging electric field forming electrode 18 is controlled so as to return to 0 kV. The control is performed by a potential controller (not shown).
As a result, a sufficient acceleration electric field and forward electric field electrostatic force are formed and generated while the voltage of the high voltage electrode 9 is maintained at 7 kV.

以下、本発明に当たり使用した、二次元差分法による計算方法を、誘導注入の場合を例にとって説明する。
図18において、電荷搬送体11の周辺のメッシュ図を示す。図中、記号8は注入電極を、記号11は電荷搬送体を示す。更に、図示していないが、当該電荷搬送体の右側に、高圧電極9と接地された回収電極10が配置されている。
二次元差分法では、先ず、図6に示す全領域を細かいメッシュに分割する。メッシュの幅は、電荷搬送体11から遠ざかるに従い、0.1mm、0.4mm、1.6mmとした。
The calculation method by the two-dimensional difference method used in the present invention will be described below by taking the case of induction injection as an example.
In FIG. 18, a mesh diagram around the charge carrier 11 is shown. In the figure, symbol 8 indicates an injection electrode and symbol 11 indicates a charge carrier. Further, although not shown, a high voltage electrode 9 and a recovery electrode 10 grounded are arranged on the right side of the charge carrier.
In the two-dimensional difference method, first, the entire area shown in FIG. 6 is divided into fine meshes. The width of the mesh was set to 0.1 mm, 0.4 mm, and 1.6 mm as the distance from the charge carrier 11 was increased.

そして、図18に示すように、各格子点(メッシュの交点)に通し番号を付し、各格子点の電位Vを、その左右上下の格子点の電位の平均値として計算する。例えば、格子点105の電位V105は、その上下左右の格子点104、106、88、122の各電位V104、V106、V88、V122に基づいて、次式1で計算される。

Figure 2020065353
通常、2000個程度ある格子点にこの式が適用され、この多元連立一次方程式を解くことで、全格子点の電位が求められる。
ここで、注入電極8と回収電極10の電位は、夫々接地されているので0Vとする。電荷搬送体11に含まれる格子点の電位は、電荷搬送体11が導体なので、全て等しいものとする。又、高電圧電極9の電位は+7.0kVとする。 Then, as shown in FIG. 18, each grid point (intersection point of mesh) is given a serial number, and the potential V of each grid point is calculated as the average value of the potentials of the left, right, upper, and lower grid points. For example, the potential V105 of the grid point 105 is calculated by the following equation 1 based on the potentials V104, V106, V88, and V122 of the grid points 104, 106, 88, and 122 on the upper, lower, left, and right sides.
Figure 2020065353
Usually, this formula is applied to about 2000 grid points, and the potentials of all grid points can be obtained by solving this multidimensional simultaneous linear equation.
Here, the potentials of the injection electrode 8 and the recovery electrode 10 are set to 0 V because they are grounded. The potentials of the lattice points included in the charge carrier 11 are all equal because the charge carrier 11 is a conductor. The potential of the high voltage electrode 9 is +7.0 kV.

電荷搬送体11の表面には、序数で示す幅0.1mm、奥行50mmの30個の長方形の面(領域)がある。その第5面の表面の電界Eは、次式で計算される。同式において、hはメッシュの高さであり、0.1mmである。

Figure 2020065353
次に、第5面の表面電荷密度σ5は、次式で計算される。同式においてεは真空の誘電率である。
Figure 2020065353
次に、第5面の電荷量q5は次式で計算される。同式においてSは第5面の面積である。
Figure 2020065353
電荷搬送体11の電荷の総量は、第1面から第30面迄の電荷量を合算して求められ、-0.66[nC]となった。 The surface of the charge carrier 11 has 30 rectangular surfaces (regions) each having an ordinal width of 0.1 mm and a depth of 50 mm. The electric field E on the surface of the fifth surface is calculated by the following equation. In the equation, h is the height of the mesh, which is 0.1 mm.
Figure 2020065353
Next, the surface charge density σ 5 of the fifth surface is calculated by the following equation. In the equation, ε 0 is the dielectric constant of vacuum.
Figure 2020065353
Next, the charge amount q 5 on the fifth surface is calculated by the following equation. In the equation, S 5 is the area of the fifth surface.
Figure 2020065353
The total amount of charges of the charge carrier 11 was calculated by adding the amounts of charges from the first surface to the thirtieth surface, and was -0.66 [nC].

次に、第5面に働く静電力Fは次式で計算される。

Figure 2020065353
電荷搬送体11に右方向に作用する静電力FR は次式で求められる。
Figure 2020065353
一方、電荷搬送体11に対し、左方向に作用する静電力FL は次式で求められる。
Figure 2020065353
尚、電荷搬送体11の上下方向に働く静電力は、電荷搬送体11の形状が上下対称で、且つ当該電荷搬送体11が、注入電極対8と高電圧電極対9と回収電極対10の、各上下真ん中に置かれている為、上下等しく、相殺され、ゼロになる。
よって、電荷搬送体11に作用するトータルの静電力FTは次式で計算される。
Figure 2020065353
尚、充電注入の場合も、略同様に計算され、予め求められた注入電荷量を、電荷搬送体に与え、順電界と逆電界での静電力がシミュレーションされる。 Next, the electrostatic force F 5 acting on the fifth surface is calculated by the following equation.
Figure 2020065353
The electrostatic force F R acting on the charge carrier 11 in the right direction is calculated by the following equation.
Figure 2020065353
On the other hand, with respect to charge carrier 11, the electrostatic force F L acting on the left is given by the following equation.
Figure 2020065353
The electrostatic force acting in the vertical direction of the charge carrier 11 is such that the shape of the charge carrier 11 is vertically symmetrical, and the charge carrier 11 is composed of the injection electrode pair 8, the high voltage electrode pair 9, and the recovery electrode pair 10. , Since they are placed in the middle of each top and bottom, they are equal to each other and are offset, and become zero.
Therefore, the total electrostatic force F T acting on the charge carrier 11 is calculated by the following equation.
Figure 2020065353
In the case of charge injection, the amount of injected charge that is calculated in a similar manner and obtained in advance is given to the charge carrier to simulate the electrostatic force in the forward electric field and the reverse electric field.

1: 高圧電極
2: 第一対向電極
3: 点電荷
4: 点電荷に作用する静電力のベクトルを示す矢印
5: 電界の方向を示す矢印
6: 第二対向電極
7: 電界の方向に前後非対称な形状(樋型)を有する導体
71:樋型導体の前方垂直板
72:樋型導体の後方上下水平板
8: 電荷注入電極
9: 高圧電極
10: 電荷回収電極
11: 電界の方向に前後非対称な形状を有する電荷搬送体
12: 電荷回収電極に接続されたコンデンサー
13: 電荷注入電極、高圧電極、及び電荷回収電極を支持する絶縁性支持体
14: 放射状に配置した電荷搬送体を保持する電荷搬送体保持円板
17: ベアリング
18: 充電電界形成電極
23’: 電荷注入静電誘導端子
23: 電荷注入充電端子
24: 電荷回収端子

1: High-voltage electrode 2: First counter electrode 3: Point charge 4: Arrow indicating the vector of electrostatic force acting on the point charge: Arrow indicating the direction of the electric field 6: Second counter electrode 7: Front-back asymmetrical in the direction of the electric field 71: a gutter-shaped conductor front vertical plate 72: a gutter-shaped conductor rear upper and lower horizontal plates 8: charge injection electrode 9: high-voltage electrode 10: charge recovery electrode 11: front-back asymmetrical in the direction of the electric field Charge carrier 12 having a uniform shape: a capacitor 13 connected to a charge recovery electrode: an insulating support 14 that supports the charge injection electrode, the high voltage electrode, and the charge recovery electrode: a charge that holds the charge carrier radially arranged Carrier holding disc 17: Bearing 18: Charge electric field forming electrode 23 ': Charge injection static induction terminal 23: Charge injection charge terminal 24: Charge recovery terminal

Claims (5)

その移動方向前後に非対称な形状を有する導体が、帯電されて電荷を保持することによって自身に作用する非対称な静電力により駆動され、連続的に形成された正逆連続電界を移動する静電力応用機器であって、
所定の充電電界形成電位が印加され、前記導体が自らを通過中、当該導体とで一時的にコンデンサーを形成する充電電界形成源と、
前記コンデンサーが一時的に形成されたとき、前記導体を接地する接地手段とを有し、
前記導体が接地され、当該導体と前記充電電界形成源とで充電電界が形成されたとき、前記コンデンサーに流れ込む充電電流で、当該導体の前記帯電が行われ、当該導体が前記電荷を保持するものである静電力応用機器。
An electrostatic force application in which a conductor having an asymmetric shape before and after its moving direction is driven by an asymmetric electrostatic force that acts on itself by being charged and holding an electric charge, and moving a continuously formed forward and reverse continuous electric field. A device,
A charging electric field forming source that forms a capacitor with the conductor while a predetermined charging electric field forming potential is applied and the conductor is passing through itself;
Grounding means for grounding the conductor when the capacitor is temporarily formed,
When the conductor is grounded and a charging electric field is formed between the conductor and the charging electric field forming source, the charging of the conductor is performed by the charging current flowing into the capacitor, and the conductor holds the electric charge. Is an electrostatic force application device.
請求項1において、
前記静電力応用機器は更に高圧電極を有し、
前記正電界は、前記充電電界形成源と当該高圧電極の間で形成され、
前記導体が、0kVを超える充電電界形成電位で充電され且つその接地が解除されたとき、当該充電電界形成電位を0kVに変更する静電力応用機器。
In claim 1,
The electrostatic force application device further has a high voltage electrode,
The positive electric field is formed between the charging electric field forming source and the high voltage electrode,
An electrostatic force application device that changes the charging electric field forming potential to 0 kV when the conductor is charged with the charging electric field forming potential exceeding 0 kV and the ground is released.
請求項1又は2の静電力応用機器において、前記非対称な形状を有する導体は移動方向反対側が開放する略箱型であり、
前記充電電界形成源は板状のエレクトレットであり、
且つ前記コンデンサーは当該箱型導体の一面と当該エレクトレット間で形成されるものである静電力応用機器。
The electrostatic force application device according to claim 1 or 2, wherein the conductor having the asymmetrical shape is a substantially box-shaped member whose opposite side in the moving direction is open.
The charging electric field forming source is a plate-shaped electret,
Moreover, the electrostatic force applied device in which the capacitor is formed between one surface of the box-shaped conductor and the electret.
帯電手段を有し、自身の移動方向前後に非対称な形状を有する導体が、当該帯電手段により帯電され電荷を保持することによって、自身に作用する非対称な静電力により駆動され、連続的に形成された正逆連続電界を移動する静電力応用機器であって、
前記導体は、前記正逆連続電界の方向と垂直な前面部分と、当該電界に平行な上下平行な部分とからなる、移動方向反対側が開放する略箱型であり、
当該正電界においては、前記垂直な前面部分に前記帯電された電荷を集積させ保持し、当該逆電界においては、前記垂直な前面部分から前記上下平行な部分に前記帯電された電荷を移動させうるものであり、且つ、
前記帯電手段は、前記逆電界にある前記導体において、前記上下平行部分へ移動した電荷による反発力によって移動を妨げられ、前記垂直な前面部分に所定量の電荷が残ることになる程度に、前記導体を帯電する静電力応用機器。
A conductor having a charging unit and having an asymmetrical shape before and after the moving direction of the charging unit is continuously charged by being charged by the charging unit and holding an electric charge, driven by an asymmetrical electrostatic force acting on the charging unit. An electrostatic force application device that moves a positive and reverse continuous electric field,
The conductor is a substantially box-shaped body having a front surface portion perpendicular to the direction of the forward and reverse continuous electric fields and a vertically parallel portion parallel to the electric field, the opposite side of which is open in the moving direction,
In the positive electric field, the charged electric charge can be accumulated and retained in the vertical front surface portion, and in the reverse electric field, the charged electric charge can be moved from the vertical front surface portion to the vertically parallel portions. That is, and
In the conductor, which is in the reverse electric field, the charging unit is prevented from moving by the repulsive force due to the charges that have moved to the upper and lower parallel portions, and a predetermined amount of charges remains on the vertical front surface portion. An electrostatic force application device that charges a conductor.
請求項1乃至4の静電力応用機器は、前記導体が搬送する電荷を回収して発電する静電発電機又は当該電荷を回収しない静電モーター又は静電加速器である静電力応用機器。

The electrostatic force application device according to any one of claims 1 to 4, wherein the electrostatic force application device is an electrostatic generator that collects electric charges carried by the conductor to generate electric power, or an electrostatic motor or an electrostatic accelerator that does not collect the electric charges.

JP2018195413A 2018-10-16 2018-10-16 Electric-field driven static-electricity applied equipment for charging electric charge carrier Pending JP2020065353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018195413A JP2020065353A (en) 2018-10-16 2018-10-16 Electric-field driven static-electricity applied equipment for charging electric charge carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195413A JP2020065353A (en) 2018-10-16 2018-10-16 Electric-field driven static-electricity applied equipment for charging electric charge carrier

Publications (1)

Publication Number Publication Date
JP2020065353A true JP2020065353A (en) 2020-04-23

Family

ID=70387668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195413A Pending JP2020065353A (en) 2018-10-16 2018-10-16 Electric-field driven static-electricity applied equipment for charging electric charge carrier

Country Status (1)

Country Link
JP (1) JP2020065353A (en)

Similar Documents

Publication Publication Date Title
US2004352A (en) Electrostatic generator
JP6210159B2 (en) Particle charging device
KR20180029629A (en) Triboelectric device using ferroelectric material
CN103954789B (en) Ion velocity distribution transient measurement device and method
KR20140110261A (en) Energy harvesting device
Bendaoud et al. Experimental study of corona discharge generated in a modified wire–plate electrode configuration for electrostatic process applications
JP2009232667A (en) Electrostatic motor power generator which tub-shaped electrode in perpendicular and level electric field
JP2020065353A (en) Electric-field driven static-electricity applied equipment for charging electric charge carrier
Belgacem et al. Experimental analysis of the transport and the separation of plastic and metal micronized particles using travelling waves conveyor
JP2019004549A (en) Electric field driven electrostatic generator
JP2020110019A (en) Electrostatic force application equipment for charging charge carrier in closely contact charge method
JP2020043744A (en) Electric-field-driven electrostatic device using right-left asymmetrical electrostatic force as driving force
JP2015035938A (en) Switch-back electrostatic generator using asymmetrical electrostatic power
Benziada et al. Numerical modelling of electric field distribution in PointBarrier-plane air gaps underAC voltage using finite element method
JP2012039842A6 (en) Electrostatic motor / electrostatic generator using vertical charge carrier
JP2012039842A (en) Electrostatic motor/electrostatic generator using a-type charge carrier body
JP2020039188A (en) Field driven electrostatic generator for charging charge carrier body by lorentz electromotive force
JP2021078190A (en) Charge-carrier charging device in field drive type static electricity applied apparatus
JP2022030044A (en) Image force driving-type electrostatic power generator formed of minute component, and manufacturing method for the same
JP2021108524A (en) Image force driven electrostatic application apparatus and charging device of charge carrier body
Moesner et al. Contactless manipulation of microparts by electric field traps
JP2020150780A (en) Electrostatic application equipment of charging infusion type, driven by image force
JP2021191130A (en) Electrostatic generator that uses rechargeable charge injection method to convert output to ac
JP2022186550A (en) Optimum structure for electrostatic power generator
JP2023165578A (en) Structure of charge carrier of electric field-driven electrostatic generator and manufacturing method thereof