JP2021108524A - Image force driven electrostatic application apparatus and charging device of charge carrier body - Google Patents

Image force driven electrostatic application apparatus and charging device of charge carrier body Download PDF

Info

Publication number
JP2021108524A
JP2021108524A JP2019239700A JP2019239700A JP2021108524A JP 2021108524 A JP2021108524 A JP 2021108524A JP 2019239700 A JP2019239700 A JP 2019239700A JP 2019239700 A JP2019239700 A JP 2019239700A JP 2021108524 A JP2021108524 A JP 2021108524A
Authority
JP
Japan
Prior art keywords
charge
electret
charge carrier
charging
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019239700A
Other languages
Japanese (ja)
Inventor
酒井 捷夫
Toshio Sakai
捷夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019239700A priority Critical patent/JP2021108524A/en
Publication of JP2021108524A publication Critical patent/JP2021108524A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Abstract

To solve the problem that an image force driven electrostatic generator driving a charge carrier body with an image force mainly applying between the carrier body and a collection static electrification from a charging electrode charging an electric charge to the charge carrier body to a collection electrode collecting the electric charge transported has a small driving force because an inverse direction image force is also applied between the carrier body and the charging electrode, as a result of which an amount of power generation is also small.SOLUTION: A single layer electret which does not have a back plate electrode is used as a charging potential source instead of a charging electrode.EFFECT: Since an inverse direction image force is eminimated, an electrostatic force for driving a charge carrier body is substantially increased.SELECTED DRAWING: Figure 13

Description

本発明は、主に非対称鏡像力を駆動力とする鏡像力駆動型静電応用機器(発電機、モーター、加速器)の電荷搬送体の充電方法に関するものである。 The present invention relates to a method of charging a charge carrier of a mirror image force driven electrostatic application device (generator, motor, accelerator) mainly using an asymmetric mirror image force as a driving force.

通常、静電発電機、静電モーター、静電加速器等の静電応用機器は、電荷搬送体に電荷を充電し、その周囲の電界によって、該帯電した電荷搬送体に作用する静電力で駆動されている。そのため、電荷搬送体に充電された電荷量が多いほどその出力・性能は大きくなる。さらに、同一帯電量でも、作用する静電力が強いほどその出力・性能は大きくなる。 Normally, an electrostatic application device such as an electrostatic generator, an electrostatic motor, or an electrostatic accelerator charges a charge carrier with an electric charge, and is driven by an electric field around the charge carrier by an electrostatic force acting on the charged charge carrier. Has been done. Therefore, the larger the amount of charge charged in the charge carrier, the greater the output and performance. Furthermore, even with the same amount of charge, the stronger the acting electrostatic force, the greater the output and performance.

そこで、電荷搬送体の充電方法として、いくつかの方法が提案されているが、現状、もっとも多量の充電電荷が得られるのは、特許出願2019−201081及び非特許文献2に記載されている、充電式電荷注入方法である。この方法では、図1に示すように、平板型高電位充電エレクトレット1と、導電性の横置き樋型電荷搬送体2の上下の平板部分22を向かい合わせて、一時的にコンデンサーを形成し、電荷搬送体2を接触端子3で接地することで、電荷搬送体2に注入されるエレクトレット1と異極性の電荷で、電荷搬送体2充電(帯電)する。なお、記号4、5、6は、後述する鏡像力駆動型静電発電機の回収電極とコンデンサーと接触端子である。 Therefore, several methods have been proposed as a method for charging the charge carrier, but at present, the largest amount of charge can be obtained as described in Patent Applications 2019-201081 and Non-Patent Document 2. It is a rechargeable charge injection method. In this method, as shown in FIG. 1, the flat plate type high potential charging electret 1 and the upper and lower flat plate portions 22 of the conductive horizontal trough type charge carrier 2 face each other to temporarily form a capacitor. By grounding the charge carrier 2 at the contact terminal 3, the charge carrier 2 is charged (charged) with a charge having a polarity different from that of the electret 1 injected into the charge carrier 2. Reference numerals 4, 5, and 6 are recovery electrodes, capacitors, and contact terminals of a mirror image force-driven electrostatic generator, which will be described later.

平行平板コンデンサーの充電なので、コンデンサーの電気容量が大きいほど、すなわち、平板エレクトレット1と、電荷搬送体2の上下平板22との間隔が小さいほど、電荷搬送体2に充電される電荷量は増加する。その一例を図2に示す。これは、次の条件で得られたシミュレーション結果である。すなわち、充電エレクトレット1の幅が19.2mm、厚さが0.025mm、表面電荷密度が0.425mC/m2、電荷搬送体2の幅が、10.2mm、高さが10.4mm、奥行が60.0mm、板厚が0.2mmの時である。
エレクトレット1と、搬送体上下平板22の間隔が狭いほど、特に、0.5mm以下になると、充電電荷量が急増することが明らかである。実際のエレクトレットの材質はテフロン(登録商標)(比誘電率2.1)で、厚さは、50μmが多い。そこで、厚さ、52.5μm、比誘電率2.1とし、静電容量が等しくなる、厚さ25μm、比誘電率1.0の空気層と置き換えて計算した。以下、同じである。
Since the parallel flat plate capacitor is charged, the larger the electric capacity of the capacitor, that is, the smaller the distance between the flat plate electret 1 and the upper and lower flat plates 22 of the charge carrier 2, the greater the amount of charge charged to the charge carrier 2. .. An example thereof is shown in FIG. This is the simulation result obtained under the following conditions. That is, the width of the charging electret 1 is 19.2 mm, the thickness is 0.025 mm, the surface charge density is 0.425 mC / m 2 , the width of the charge carrier 2 is 10.2 mm, the height is 10.4 mm, the depth is 60.0 mm, and the plate. When the thickness is 0.2 mm.
It is clear that the narrower the distance between the electret 1 and the upper and lower flat plates 22 of the carrier, the sharply increases the amount of charge charged, especially when the distance between the electret 1 and the upper and lower flat plates 22 is 0.5 mm or less. The actual material of the electret is Teflon (registered trademark) (relative permittivity 2.1), and the thickness is often 50 μm. Therefore, the thickness was 52.5 μm and the relative permittivity was 2.1, and the calculation was performed by replacing the air layer with the same capacitance with a thickness of 25 μm and a relative permittivity of 1.0. The same applies hereinafter.

エレクトレット1と、電荷搬送2が静止していれば、0.5mm以下の微小ギャップでも、機械的に問題ないが、通常静電応用機器において、静止したエレクトレット1に対して、電荷搬送体2は、高速度で移動する。図1の場合は、矢印方向に、回収電極4に向かって移動する。そのため、両者の接触を防ぐためには、このギャップは、できるだけ広い方がよい。 As long as the electret 1 and the charge transfer 2 are stationary, there is no mechanical problem even with a small gap of 0.5 mm or less. Move at high speed. In the case of FIG. 1, it moves toward the recovery electrode 4 in the direction of the arrow. Therefore, in order to prevent contact between the two, this gap should be as wide as possible.

また同特許には、注入(充電)エレクトレット1と、電荷搬送体2の上下平板22の間隔が、0.125mmで、注入(充電)エレクトレットの表面電位が1.2kVの時、エレクトレット1の誘電厚み(エレクトレット層の厚さを、その材質の比誘電率で除したもの)が薄いほど、注入(充電)される電荷量は多くなることが記載されている。そのシミュレーション結果を、図3に示す。 Further, in the same patent, when the distance between the injection (charging) electret 1 and the upper and lower flat plates 22 of the charge carrier 2 is 0.125 mm and the surface potential of the injection (charging) electret is 1.2 kV, the dielectric thickness of the electret 1 ( It is stated that the thinner the electret layer (thickness of the electret layer divided by the relative permittivity of the material), the greater the amount of charge injected (charged). The simulation result is shown in FIG.

現状、同一帯電量で、作用する静電力がもっとも大きいのは、特許出願番号2019−049237に記載されている鏡像力駆動型静電発電機である。鏡像力とは、図4に図示されるように、電荷8が接地導体7に近づくと、外部電界がないのに、これに作用する静電力である。導体7を挟んで、反対側の同一距離に、異極性の電荷が存在した場合に働くクーロン力と同じなので、鏡像力と呼ばれている。 At present, the one with the same amount of charge and the largest acting electrostatic force is the mirror image force driven electrostatic generator described in Patent Application No. 2019-049237. As shown in FIG. 4, the mirror image force is an electrostatic force acting on the electric charge 8 when it approaches the ground conductor 7 even though there is no external electric field. It is called a mirror image force because it is the same as the Coulomb force that acts when charges of different polarities are present at the same distance on the opposite side of the conductor 7.

通常、鏡像力の説明では、電荷は点電荷または球状帯電体として説明されるが、非球状帯電体でも同様に鏡像力が発生する。帯電体の形状が対称形であれば、その向きが反転しても鏡像力の強度は変わらないが、非対称形状の場合は、反転した時、その強度は大きく変わることが、出願人により発見された(非特許文献1)。例えば、図2に示した横置き樋型電荷搬送体2、帯電量が、1μCで、接地された導体板7との距離が、1.0mmの時、開口部を接地導体板7に向けた時は、該搬送体2に作用する鏡像力は、32.4Nで、逆に底面を接地導体板7に向けた時は、倍以上の69.0Nになる(図5参照)。この現象を、以下、非対称鏡像力と呼ぶ。 Usually, in the description of the mirror image force, the electric charge is described as a point charge or a spherically charged body, but a mirror image force is also generated in a non-spherical charged body as well. It was discovered by the applicant that if the shape of the charged body is symmetrical, the intensity of the mirror image force does not change even if the direction is reversed, but if the shape is asymmetrical, the intensity changes significantly when inverted. (Non-Patent Document 1). For example, when the horizontal gutter-shaped charge carrier 2 shown in FIG. 2, the amount of charge is 1 μC, the distance from the grounded conductor plate 7 is 1.0 mm, and the opening is directed toward the grounded conductor plate 7. The mirror image force acting on the carrier 2 is 32.4N, and conversely, when the bottom surface is directed to the ground conductor plate 7, it is more than doubled to 69.0N (see FIG. 5). This phenomenon is hereinafter referred to as asymmetric mirror image force.

非対称鏡像力を電荷搬送体2の駆動力とする新規な静電発電方法が、特許出願番号2019−049237に記載されている。ただし、その実施例は、充電エレクトレットではなく、充電電極が使われている(特許出願番号2019−049237には、注入電極と、異なった表現が使用されているが、同一のものである)。すなわち、図1において、記号1が充電電極で、+8.0kVが印加されている。この時、-30.85nCの電荷が、電荷搬送体2に充電される。なお、充電電極1と回収電極4の幅は、19.2mm、両者の間隔は、31.5mmである。この時、充電電極1を抜けて、回収電極4に到達するまでに、電荷搬送体2が受ける静電力をシミュレーションした結果を、図6に示す。 A novel electrostatic power generation method using an asymmetric mirror image force as a driving force of the charge carrier 2 is described in Patent Application No. 2019-049237. However, in that example, a charging electrode is used instead of a charging electret (Patent Application No. 2019-049237 uses a different expression from the injection electrode, but is the same). That is, in FIG. 1, the symbol 1 is the charging electrode, and + 8.0 kV is applied. At this time, a charge of -30.85 nC is charged to the charge carrier 2. The width of the charging electrode 1 and the recovery electrode 4 is 19.2 mm, and the distance between the two is 31.5 mm. At this time, FIG. 6 shows the result of simulating the electrostatic force received by the charge carrier 2 before passing through the charging electrode 1 and reaching the recovery electrode 4.

図6から、充電電極1を抜けてから、途中までは、該電荷搬送体2には、マイナス符合で示される左向きの、すなわち、狙いの進行方向とは逆向きの静電力が働くが、概略、中間地点から、プラス符合の、右向きの静電力に変わり、トータルとしては、右向きの静電力の方が大きいことが分かる。 From FIG. 6, from the time when the charging electrode 1 is passed through to the middle, the charge carrier 2 is subjected to an electrostatic force in the left direction indicated by a minus sign, that is, in the direction opposite to the target traveling direction. , From the intermediate point, it changes to the positive-signed electrostatic force to the right, and it can be seen that the total electrostatic force to the right is larger.

本発明のシミュレーションによれば、充電エレクトレットと電荷搬送体のギャップを1mm取ったの時、エレクトレットの誘電厚みが、0.125mmでは、充電された電荷搬送体の電荷密度は、エレクトレットの電荷密度の11%にすぎないが、エレクトレットの誘電厚みを10mmとすれば、充電された電荷搬送体の電荷密度は、エレクトレットの電荷密度の90%以上になる。
また、後に記載する鏡像力駆動型静電発電機で、充電エレクトレットの背面電極を外した時、電荷搬送体に作用する静電エネルギーは、外さない場合の8.3倍になる。
According to the simulation of the present invention, when the gap between the charging electret and the charge carrier is 1 mm and the dielectric thickness of the electret is 0.125 mm, the charge density of the charged charge carrier is 11 of the charge density of the electret. However, if the dielectric thickness of the electret is 10 mm, the charge density of the charged charge carrier is 90% or more of the charge density of the electret.
Further, in the mirror image force drive type electrostatic generator described later, when the back electrode of the charging electret is removed, the electrostatic energy acting on the charge carrier is 8.3 times that in the case where the charge carrier is not removed.

[非特許文献1][Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010
[非特許文献2]2019年米国静電気学会年次大会予稿集A-4
[Non-Patent Document 1] [Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010
[Non-Patent Document 2] Proceedings of the 2019 Annual Meeting of the American Society of Electrostatics A-4

本発明の第一の目的は、電荷搬送体を充電して使用する静電応用機器において、静止した充電エレクトレットと、電荷搬送体の間隔が広くとも十分に充電できる新奇な充電方法を確立することである。
また、第二の目的は、電荷搬送体の帯電量が同じでも、より高い出力・性能が得られる静電発電機、静電モーター、静電加速器の新奇な使用方法を確立することである。
A first object of the present invention is to establish a novel charging method capable of sufficiently charging a stationary charging electret and a charge carrier even if the distance between them is wide, in an electrostatic application device that charges and uses the charge carrier. Is.
The second purpose is to establish a novel usage of electrostatic generators, electrostatic motors, and electrostatic accelerators that can obtain higher output and performance even if the charge amount of the charge carrier is the same.

課題を解決する為の手段Means to solve problems

上記本発明の第一の目的は、充電エレクトレットの誘電厚み(層厚を比誘電率で除した値)を、充電エレクトレットと電荷搬送体間のギャップ以上にすることで達成できる。また、第二の目的は、充電エレクトレットの背面電極を外し、単層エレクトレットにすることで達成できる。 The first object of the present invention can be achieved by setting the dielectric thickness (value obtained by dividing the layer thickness by the relative permittivity) of the charging electret to be equal to or larger than the gap between the charging electret and the charge carrier. The second purpose can be achieved by removing the back electrode of the charging electret to make it a single-layer electret.

本発明のシミュレーションによれば、充電エレクトレットと電荷搬送体のギャップを1mm取ったの時、エレクトレットの誘電厚みが、0.125mmでは、充電された電荷搬送体の電荷密度は、エレクトレットの電荷密度の11%にすぎないが、エレクトレットの誘電厚みを10mmとすれば、充電された電荷搬送体の電荷密度は、エレクトレットの電荷密度の90%以上になる。
また、後に記載する鏡像力駆動型静電発電機で、充電エレクトレットの背面電極を外した時、電荷搬送体に作用する静電エネルギーは、外さない場合の15倍になる。
According to the simulation of the present invention, when the gap between the charging electret and the charge carrier is 1 mm and the dielectric thickness of the electret is 0.125 mm, the charge density of the charged charge carrier is 11 of the charge density of the electret. However, if the dielectric thickness of the electret is 10 mm, the charge density of the charged charge carrier is 90% or more of the charge density of the electret.
Further, in the mirror image force drive type electrostatic generator described later, when the back electrode of the charging electret is removed, the electrostatic energy acting on the charge carrier is 15 times that when the charge carrier is not removed.

図1は、充電エレクトレットを有する鏡像力駆動型静電発電機の立面図である。FIG. 1 is an elevational view of a mirror image force driven electrostatic generator having a charging electret. 図2は、電荷搬送体の上下水平板と充電エレクトレット間の間隔にたいする電荷搬送体の充電電荷量を示すグラフである。FIG. 2 is a graph showing the amount of charge charged by the charge carrier with respect to the distance between the upper and lower horizontal plates of the charge carrier and the charging electret. 図3は、充電エレクトレット層の誘電厚みに対する電荷搬送体の充電電荷量を示すグラフである。FIG. 3 is a graph showing the charge charge amount of the charge carrier with respect to the dielectric thickness of the charge electret layer. 図4は、鏡像力の説明図である。FIG. 4 is an explanatory diagram of the mirror image force. 図5は、横置き樋型帯電体と、接地導体間に生じる非対称鏡像力のシミュレーション結果を示す図である。FIG. 5 is a diagram showing a simulation result of an asymmetric mirror image force generated between a horizontal gutter type charged body and a ground conductor. 図6は、充電電極を使用する鏡像力駆動型静電発電装置において、帯電した電荷搬送体が、充電電極と回収電極の間で受ける総合静電力を示すグラフである。FIG. 6 is a graph showing the total electrostatic force received by a charged charge carrier between the charging electrode and the recovery electrode in a mirror image force driven electrostatic generator using a charging electrode. 図7は、帯電体に接近した導体表面に誘導電荷が発生する様子を示す模式図である。FIG. 7 is a schematic view showing how an induced charge is generated on the surface of a conductor close to a charged body. 図8は、帯電体に接近した導体表面の誘導電荷密度を計算するために必要な物理量を示している。FIG. 8 shows the physical quantity required to calculate the induced charge density on the surface of the conductor close to the charged body. 図9は、帯電体に接近した導体表面の誘導電荷密度を計算とシミュレーションで求めた結果を示すグラフである。FIG. 9 is a graph showing the results of calculation and simulation of the induced charge density on the surface of the conductor approaching the charged body. 図10は、充電エレクトレットの誘電厚みと、充電エレクトレットと接地導体板間の間隔を変えた時、導体表面に誘起される電荷の密度を示すグラフである。FIG. 10 is a graph showing the dielectric thickness of the charging electret and the density of charges induced on the conductor surface when the distance between the charging electret and the ground conductor plate is changed. 図11は、背面電極を有する二層エレクトレットと有しない単層エレクトレットで、電荷搬送体に充電される電荷量を示すグラフである。FIG. 11 is a graph showing the amount of charge charged to the charge carrier in a two-layer electret having a back electrode and a single-layer electret not having the back electrode. 図12は、充電エレクトレットの左側に、電荷搬送体が通過した回収電極がある場合の装置の略図である。FIG. 12 is a schematic view of the device when there is a recovery electrode through which the charge carrier has passed on the left side of the charging electret. 図13は、充電電極と、充電単層エレクトレットで、充電電荷量が等しい場合に、電荷搬送体に働く静電力を示すグラフである。FIG. 13 is a graph showing the electrostatic force acting on the charge carrier when the charge charge amount is the same for the charge electrode and the charge single layer electret. 図14は、電荷搬送体の形状を、正四角柱とし、前回収電極の位置を、単層充電エレクトレットの左に遠ざけた装置の略図である。FIG. 14 is a schematic view of a device in which the shape of the charge carrier is a regular quadrangular prism and the position of the front recovery electrode is moved to the left of the single-layer charging electret. 図15は、図14に示す装置で、電荷搬送体に働く静電力をシミュレーションした結果を示すグラフである。FIG. 15 is a graph showing the result of simulating the electrostatic force acting on the charge carrier with the device shown in FIG. 図16は、充電エレクトレットの電荷密度を最高の2.0mC/m2 とした場合に電荷搬送体に働く静電力を示すグラフである。FIG. 16 is a graph showing the electrostatic force acting on the charge carrier when the charge density of the charging electret is set to the maximum of 2.0 mC / m 2. 図17は、電荷搬送体が、充電エレクトレットと回収電極を循環する鏡像力駆動型静電発電機の斜視図である。FIG. 17 is a perspective view of a mirror image force-driven electrostatic generator in which a charge carrier circulates between a charging electret and a recovery electrode. 図18は、電荷搬送体に働く静電力を二次元差分法でシミュレーションするためのメッシュ図である。FIG. 18 is a mesh diagram for simulating the electrostatic force acting on the charge carrier by the two-dimensional difference method.

発明を実施する為の形態Form for carrying out the invention

いわゆる鏡像力駆動型静電発電機等において、電荷搬送体の駆動力及び発電量を大きくするという目的を、充電電位源として、背面電極を有しない単層エレクトレットを使用することで達成した。 In a so-called mirror image force driven electrostatic generator or the like, the purpose of increasing the driving force and the amount of power generation of the charge carrier was achieved by using a single-layer electret having no back electrode as a charging potential source.

通常、エレクトレット1は、図7に示されるように、接地された背面電極層12上に塗布された特殊テフロン(登録商標)層11を帯電して作製される。コロナ帯電の極性は、通常、負極性であるが、ここでは、理解しやすいように正極性とする。テフロン(登録商標)層の厚さは、50μm、または、75μmである。テフロン(登録商標)層表面には白丸で示される正電荷が固定され、背面電極12には、黒丸で示される静電誘導された負電荷(電子)がいる。該正電荷から、該負電荷に向かって、矢印で示される電気力線が走っている。テフロン(登録商標)層が薄いので、エレクトレット外に出る電気力線はほとんどない(図7(A))。 Normally, the electret 1 is manufactured by charging a special Teflon (registered trademark) layer 11 coated on a grounded back electrode layer 12, as shown in FIG. The polarity of corona charging is usually negative, but here it is positive for easy understanding. The thickness of the Teflon® layer is 50 μm or 75 μm. A positive charge indicated by a white circle is fixed on the surface of the Teflon (registered trademark) layer, and an electrostatically induced negative charge (electron) indicated by a black circle is present on the back electrode 12. Lines of electric force indicated by arrows run from the positive charge to the negative charge. Since the Teflon (registered trademark) layer is thin, there are almost no electric lines of force going out of the electret (Fig. 7 (A)).

この状態で、接地された金属板、例えば、電荷搬送体2の、水平板22が、エレクトレット層11に近づくと、エレクトレットの正電荷から発生している電気力線の一部は、向きを変えて、該金属板22に入り、静電誘導で、そこに負電荷(電子)を呼び込む。これが、充電電荷となる。一方、背面電極にいた負電荷(電子)は、大地に流れて消える(図7(B))。 In this state, when the grounded metal plate, for example, the horizontal plate 22 of the charge carrier 2 approaches the electret layer 11, a part of the electric lines of force generated from the positive charge of the electret changes its direction. Then, it enters the metal plate 22 and attracts negative charges (electrons) there by electrostatic induction. This becomes the charging charge. On the other hand, the negative charges (electrons) on the back electrode flow to the ground and disappear (Fig. 7 (B)).

接地された金億板22が、さらに接近すると、エレクトレットの正電荷から発し、該金属板22に入る電気力線の割合も増加し、金属板22の負電荷(電子)がさらに増加する(図7(C))。これが、図2に示された結果、すなわち、充電エレクトレット1と、電荷搬送体2の上下水平板22の間隔が狭まると、電荷搬送体の充電電荷量が増加する理由である。
なお、いかに接近させても、エレクトレットの正電荷密度以上に、該金属板22の負電荷密度が上がることはない(図7(D))。
When the grounded gold plate 22 approaches further, the proportion of electric lines of force emitted from the positive charge of the electret and entering the metal plate 22 also increases, and the negative charge (electrons) of the metal plate 22 further increases (FIG. FIG. 7 (C)). This is the result shown in FIG. 2, that is, when the distance between the charging electret 1 and the upper and lower horizontal plates 22 of the charge carrier 2 is narrowed, the charge charge amount of the charge carrier increases.
No matter how close they are, the negative charge density of the metal plate 22 does not increase above the positive charge density of the electret (FIG. 7 (D)).

以上、定性的に説明したが、物理的に言うと、エレクトレット1の背面電極12に残される負電荷(電子)と、接近した金属板22に発生する負電荷(電子)の割合は、エレクトレット1表面と背面電極11が構成するテフロン(登録商標)コンデンサーの電気容量と、エレクトレット表面と、接近金属板が構成する空気コンデンサーの電気容量の比で決まる。すなわち、金属板が接近し、エレクトレットとの間隔が小さくなって、その電気容量が増加すると、充電電荷量は増加する。 Although described qualitatively above, physically speaking, the ratio of the negative charge (electrons) left on the back electrode 12 of the electret 1 and the negative charge (electrons) generated on the adjacent metal plate 22 is the electret 1. It is determined by the ratio of the electric capacity of the Teflon (registered trademark) capacitor formed by the front and back electrodes 11 to the electric capacity of the air condenser formed by the electret surface and the approaching metal plate. That is, when the metal plates approach each other, the distance from the electret becomes small, and the electric capacity thereof increases, the amount of charge charged increases.

図2は、電荷搬送体2の充電電荷量を示すシミュレーション結果であるが、その時の、電荷搬送体2の上下平行板22の中央の電荷密度で示すと図9の点線になる。このグラフから、充電エレクトレット1と、電荷搬送体2の上下平行板22の間隔を、0.125mmまで近づけても、上下平行版22の中央に誘起される電荷の密度は、0.071mC/m2で、充電エレクトレット1の電荷密度、0.425mC/m2の16.7%にしか達していないことが分かる。ましてや、間隔1.0mmでは、0.012mC/m2 で、わずか、2.8%である。間隔を十分に、例えば、1.0mmとっても、電荷搬送体2に、充電エレクトレット1の電荷密度の50%以上が、充電されるようにするのが、本特許出願の課題である。 FIG. 2 is a simulation result showing the charge charge amount of the charge carrier 2, and the charge density at the center of the upper and lower parallel plates 22 of the charge carrier 2 at that time is a dotted line in FIG. From this graph, even if the distance between the charging electret 1 and the vertical parallel plate 22 of the charge carrier 2 is brought close to 0.125 mm, the charge density induced in the center of the vertical parallel plate 22 is 0.071 mC / m 2 . It can be seen that the charge density of the charging electret 1 reaches only 16.7% of 0.425 mC / m 2. Furthermore, at an interval of 1.0 mm, it is 0.012 mC / m 2 , which is only 2.8%. It is an object of the present patent application that the charge carrier 2 is charged with 50% or more of the charge density of the charging electret 1 even if the interval is sufficiently set, for example, 1.0 mm.

そのためには、充電エレクトレット1と電荷搬送体2の上下平行板22に相当する接地導体板間の距離、および、エレクトレットの層厚をいろいろ変えて、該導体板に誘起される電荷の密度を求める必要がある。その時、時間がかかるシミュレーションを行う代わりに容量計算で、該誘起電荷密度を求められる可能性がある。そこで、コンデンサーの公式を使用して、該電荷密度を求めて、シミュレーション結果と比較してみることとする。 For that purpose, the distance between the charging electret 1 and the grounding conductor plate corresponding to the vertical parallel plate 22 of the charge carrier 2 and the layer thickness of the electret are variously changed to obtain the density of the charge induced in the conductor plate. There is a need. At that time, the induced charge density may be obtained by capacitance calculation instead of performing a time-consuming simulation. Therefore, we will use the capacitor formula to obtain the charge density and compare it with the simulation results.

該計算を行いために必要な物理量を、図8に示す。充電エレクトレット1は、絶縁性の樹脂、テフロン(登録商標)層11と背面電極層12で構成される。エレクトレット層の厚さはtで、電気容量はC1、比誘電率はε1とする。一方、充電エレクトレット1と、電荷搬送体2の上下水平板22に相当する、接地導電板が形成する空気コンデンサーの厚さをd、その電気容量をC2、その比誘電率をε2とする。充電エレクトレットの電位をV、電荷量をQ、電荷密度をσとする。また、接地された背面電極の誘起電荷をQ1、電荷密度をσ1、接地導電板の誘起電荷量をQ2、電荷密度をσ1とする。なお、背面電極、エレクトレット層、接地導電板の面積は共通でSとする。また、真空の誘電率をε0とする。 The physical quantity required to perform the calculation is shown in FIG. The charging electret 1 is composed of an insulating resin, a Teflon (registered trademark) layer 11 and a back electrode layer 12. The thickness of the electret layer is t, the capacitance is C1, and the relative permittivity is ε1. On the other hand, the thickness of the charging electret 1 and the air capacitor formed by the ground conductive plate corresponding to the upper and lower horizontal plates 22 of the charge carrier 2 is d, the electric capacity thereof is C2, and the relative permittivity is ε2. Let V be the potential of the charging electret, Q be the amount of charge, and σ be the charge density. Further, the induced charge of the grounded back electrode is Q1, the charge density is σ1, the induced charge amount of the grounded conductive plate is Q2, and the charge density is σ1. The area of the back electrode, the electret layer, and the ground conductive plate is S in common. Also, let the permittivity of the vacuum be ε0.

実電荷Qと、誘起電荷Q1とQ2の和は、符合は逆だが、次式に示すように絶対値で等しい。

Figure 2021108524
テフロン(登録商標)層の電気容量C1、および、空気層の電気容量C2は、各次式で計算される。式中、ε0は真空の誘電率である。
Figure 2021108524
Figure 2021108524
接地背面電極と接地導電板に誘起される電荷量Q1とQ2は、各次式で計算される。
Figure 2021108524
Figure 2021108524
数式4と5から次式の関係が導かれる。
Figure 2021108524
故に、Q1は次式で求められる。
Figure 2021108524
これを、上記数式1に代入して整理すると次式となる。
Figure 2021108524
ここに、上記C1、C2を代入して整理すると次式となる。
Figure 2021108524
先に述べたように、厚さ52.5μm、比誘電率2.1のテフロン(登録商標)層に変えて、静電容量が同じになる、厚さ25.0μm、比誘電率1.0の空気層を使用しているので、ε1=ε2=1.0である。故に、数式9は、整理すると次式となる。
Figure 2021108524
故に、導電板に誘起される電荷量Q2は、次式で求められる。
Figure 2021108524
電荷密度は、電荷量を面積で割ったものなので、導電板に誘起される電荷の密度は、次式で求められる。
Figure 2021108524
ここで、表面電荷密度σは以下の式で表される。
Figure 2021108524
よって、数式12は、次のようになる。
Figure 2021108524
エレクトレットの表面電荷密度σは、0.000425C/m2で、厚さtは、0.000025mである。これらの値を、数式14に代入すると、次式となる。
Figure 2021108524
The sum of the actual charge Q and the induced charges Q1 and Q2 have opposite signs, but are equal in absolute value as shown in the following equation.
Figure 2021108524
The capacitance C1 of the Teflon (registered trademark) layer and the capacitance C2 of the air layer are calculated by the following equations. In the equation, ε0 is the permittivity of the vacuum.
Figure 2021108524
Figure 2021108524
The amounts of electric charges Q1 and Q2 induced in the grounded back electrode and the grounded conductive plate are calculated by the following equations.
Figure 2021108524
Figure 2021108524
The following equations are derived from equations 4 and 5.
Figure 2021108524
Therefore, Q1 is calculated by the following equation.
Figure 2021108524
Substituting this into the above formula 1 and rearranging it gives the following formula.
Figure 2021108524
Substituting the above C1 and C2 here and rearranging them gives the following equation.
Figure 2021108524
As mentioned earlier, instead of using a Teflon® layer with a thickness of 52.5 μm and a relative permittivity of 2.1, an air layer with a thickness of 25.0 μm and a relative permittivity of 1.0 with the same capacitance was used. Therefore, ε1 = ε2 = 1.0. Therefore, Equation 9 becomes the following equation when rearranged.
Figure 2021108524
Therefore, the amount of charge Q2 induced in the conductive plate can be calculated by the following equation.
Figure 2021108524
Since the charge density is the amount of charge divided by the area, the density of the charge induced in the conductive plate can be calculated by the following equation.
Figure 2021108524
Here, the surface charge density σ is expressed by the following equation.
Figure 2021108524
Therefore, the formula 12 becomes as follows.
Figure 2021108524
The surface charge density σ of the electret is 0.000425 C / m 2 , and the thickness t is 0.000025 m. Substituting these values into Equation 14 yields the following equation.
Figure 2021108524

エレクトレットと対向する接地導体板に誘起される電荷の密度、σ2は、エレクトレットと導体板間の距離dのみの関数になった。数式15に、d=0.125mmから5.6mmの5種類の間隔を入れて、導体板誘起電荷密度σ2を求めた結果を、図9に、点線で示す。シミュレーション結果を示す実線と、よく一致していることが分かる。
すなわち、プログラミングの手間も、シミュレーション計算時間も不要で、接地導体板に誘起される電荷の密度σ2は、数式14で瞬時に計算できる。
The density of charge induced in the ground conductor plate facing the electret, σ2, is a function of only the distance d between the electret and the conductor plate. The results of obtaining the conductor plate-induced charge density σ2 by inserting five types of intervals from d = 0.125 mm to 5.6 mm in Equation 15 are shown by dotted lines in FIG. It can be seen that it matches well with the solid line showing the simulation results.
That is, no programming effort or simulation calculation time is required, and the charge density σ2 induced in the ground conductor plate can be calculated instantly by the mathematical formula 14.

数式14で、充電エレクトレット1の面電荷密度σが、0.000425mC/m2 の時、エレクトレット層の層厚tと、エレクトレットと導体板間の間隔dを幅広くふって、導体板に誘起される電荷の電荷密度σ2を計算した結果を、図10に示す。図10より、例えば、一点鎖線で示される間隔dが1.0mmの時、エレクトレットの誘電厚みが、1.0mmであれば、誘起される電荷密度σ2は、エレクトレットの電荷密度σ=0.425mC/m2 の50%、0.2125mC/m2 であり、それが、10.0mmになると、91%、0.386mC/m2 になり、100mmでは、99.1%の0.421mC/m2 まで上がることが分かる。
なお、以上の説明では、テフロン(登録商標)層の厚さをtとしたが、本質的には、テフロン(登録商標)層表面電荷と、背面電極に誘起された異極性電荷との間の距離である。故に、背面電極がなく、テフロン(登録商標)層裏面に異極性電荷が存在する場合でも、同様の議論が成り立つ。
In Equation 14, when the surface charge density σ of the charging electret 1 is 0.000425 mC / m 2 , the charge induced in the conductor plate is widely divided between the layer thickness t of the electret layer and the distance d between the electret and the conductor plate. The result of calculating the charge density σ2 of is shown in FIG. From FIG. 10, for example, when the interval d indicated by the one-point chain line is 1.0 mm and the dielectric thickness of the electret is 1.0 mm, the induced charge density σ 2 is the charge density σ of the electret = 0.425 mC / m 2. It is 50%, 0.2125 mC / m 2 , and when it reaches 10.0 mm, it becomes 91%, 0.386 mC / m 2 , and at 100 mm, it rises to 0.421 mC / m 2, which is 99.1%.
In the above description, the thickness of the Teflon (registered trademark) layer is t, but essentially, it is between the surface charge of the Teflon (registered trademark) layer and the heteropolar charge induced in the back electrode. The distance. Therefore, the same argument holds even when there is no back electrode and a heteropolar charge is present on the back surface of the Teflon (registered trademark) layer.

また、誘電厚みtが、100mm、1000mmの時は、間隔dの広がりにかかわらず、誘導電荷密度は、ほぼ、エレクトレットの電荷密度に等しくなることが分かる。
誘電厚み100mmということは、実質上、背面電極12が存在しない場合に等しい。この場合、エレクトレットは、32mm離れた回収電極との間で電界を形成し、高電位を持つ。
Further, it can be seen that when the dielectric thickness t is 100 mm or 1000 mm, the induced charge density is almost equal to the charge density of the electret regardless of the spread of the interval d.
A dielectric thickness of 100 mm is substantially equivalent to the absence of the back electrode 12. In this case, the electret forms an electric field with the recovery electrode 32 mm away and has a high potential.

通常、エレクトレットは、背面電極を有する。それは、コロナ放電時に必要になるからであるが、実は、その後も必要である。背面電極があると、図7(A)に示されるように、電気力線は、エレクトレット層内で閉じて、外部には出ないが、背面電極がないと、すべての電気力線は外部に向かう。外部空間には、1立方センチメートル当たり、宇宙線でイオン化されたイオンが、3、4個浮遊している。この結果、エレクトレット電荷が異極性のイオンを静電力で引き寄せるので、エレクトレット電荷は中和される。この結果、エレクトレットの寿命は短くなる。そのため、背面電極を有さないエレクトレットは真空中で使用するのが望ましい。なお、以降、背面電極の無いエレクトレットを単層エレクトレット、背面電極を有するエレクトレットを二層エレクトレットと呼ぶ。 Electrets usually have back electrodes. This is because it is necessary when the corona discharge occurs, but in fact, it is necessary after that. With the back electrode, as shown in FIG. 7 (A), the lines of electric force are closed inside the electret layer and do not go out, but without the back electrode, all the lines of electric force are outside. Head. In the external space, three or four cosmic ray ionized ions are floating per cubic centimeter. As a result, the electret charge attracts ions of different polarities by electrostatic force, so that the electret charge is neutralized. As a result, the life of the electret is shortened. Therefore, it is desirable to use an electret without a back electrode in a vacuum. Hereinafter, an electret without a back electrode will be referred to as a single-layer electret, and an electret having a back electrode will be referred to as a two-layer electret.

以上、コンデンサー公式に基づいて、誘起電荷密度を計算してきたが、念のため、シミュレーションにより、単層エレクトレットの充電電荷量を求め、図2に示す、二層エレクトレットで得られた充電電荷量と比較する。その条件は、図2のシミュレーションと同じである。その結果を、図11に示す。この図から、単層エレクトレットにすると、搬送電極2に充電される電荷量は、1000nC以上で、二層エレクトレットの100nC以下とは大きく異なり、また、二層エレクトレットと異なり、エレクトレットと搬送電極の間隔が変わっても、ほとんど変わらないことが分かる。
故に、エレクトレットと電荷搬送体の間隔を十分とって、且つ、電荷搬送体を大きく帯電させるためには、背面電極のない単層エレクトレットを使用すべきである。
As described above, the induced charge density has been calculated based on the capacitor formula, but just in case, the charge charge amount of the single-layer electret was obtained by simulation, and the charge charge amount obtained by the double-layer electret shown in FIG. 2 was used. compare. The conditions are the same as in the simulation of FIG. The result is shown in FIG. From this figure, when a single-layer electret is used, the amount of charge charged to the transport electrode 2 is 1000 nC or more, which is significantly different from 100 nC or less of the double-layer electret, and unlike the double-layer electret, the distance between the electret and the transport electrode. It can be seen that even if the charge changes, it hardly changes.
Therefore, in order to keep a sufficient distance between the electret and the charge carrier and to charge the charge carrier to a large extent, a single-layer electret without a back electrode should be used.

なお、単層エレクトレットは、従来通り、大気中でコロナ放電により、テフロン(登録商標)薄層を帯電し、真空中に置き換えて、背面電極を剥離し、帯電テフロン(登録商標)薄層を、機械的に適当な厚みの絶縁層に張り付けることで作成できる。ここで、テフロン(登録商標)薄層を使用するのは帯電電荷密度を大きくするためである。厚手のテフロン(登録商標)層ではすぐ表面電位が高くなり、放電が始まるので、高電荷密度は得られない。また、大気中で、帯電したテフロン(登録商標)薄層から、背面電極を剥離すると、その間に、コロナ放電が発生し、帯電電荷と逆極性の電荷が、テフロン(登録商標)層裏面に付着するので、表面電荷と裏面電荷との距離を多く取ることができない。
単層エレクトレットは、厚手のテフロン(登録商標)フイルムに電子銃(電子加速器)で電子を叩き込むことでも作製できる。また、表裏に分極電荷が生じている高誘電体も使用できる。高誘電体は厚さも厚く(400μm)、表面電荷密度も非常に高い(1C/m2)ので、さらなる高出力が期待できる。
In the single-layer electret, the Teflon (registered trademark) thin layer is charged by corona discharge in the atmosphere, replaced in a vacuum, the back electrode is peeled off, and the charged Teflon (registered trademark) thin layer is formed. It can be created by mechanically attaching it to an insulating layer of an appropriate thickness. Here, the reason why the Teflon (registered trademark) thin layer is used is to increase the charge density. With a thick Teflon (registered trademark) layer, the surface potential rises immediately and discharge begins, so a high charge density cannot be obtained. In addition, when the back electrode is peeled off from the charged Teflon (registered trademark) thin layer in the atmosphere, a corona discharge is generated during that time, and a charge having the opposite polarity to the charged charge adheres to the back surface of the Teflon (registered trademark) layer. Therefore, it is not possible to take a large distance between the front surface charge and the back surface charge.
A single-layer electret can also be made by hitting electrons into a thick Teflon (registered trademark) film with an electron gun (electron accelerator). Further, a high dielectric material in which polarization charges are generated on the front and back surfaces can also be used. The high dielectric is thick (400 μm) and has a very high surface charge density (1 C / m 2 ), so even higher output can be expected.

では、充電電極に替えて、単層エレクトレットを、鏡像力駆動型静電発電機の充電源として使用した場合、充電された電荷搬送体に作用する静電力はどのように変わるであろうか。充電電荷量が大幅に増えた分、静電力も強くなり、その結果発電量も強くなるのは当然である。また、充電電荷量が等しい場合は、どうなるであろうか。これらを確認するため、充電電極(8kV)の場合と、同じ充電電荷量、-30.85nCになるように、充電エレクトレットの電荷密度を、0.0125mC/m2 とした場合で、電荷搬送体に働く静電力をシミュレーションした。。また、充電電極の場合は、充電電極と、電荷搬送体間に、左方向、すなわち、ねらいの方向とは反対方向に鏡像力が働くが、単層充電エレクトレットには、電極がないので、この間に働く鏡像力はない。しかしながら、実際の装置では、電荷搬送体が通りすぎてきた前の回収電極との間で、左方向の鏡像力が働く、そこで、今回のシミュレーションでは、図12に示すように、通過してきた回収電極4’を加えてシミュレーションを実施した。なお、回収電極4’の幅は、回収電極4と同じで、32.0mm、回収電極4’と、充電エレクトレット1の間隔は、22.4mmとした。 Then, how will the electrostatic force acting on the charged charge carrier change when a single-layer electret is used as a charging source for a mirror image-driven electrostatic generator instead of the charging electrode? As the amount of charge charged increases significantly, the electrostatic force also increases, and as a result, the amount of power generation also increases. What happens if the charge charges are the same? In order to confirm these, it works on the charge carrier when the charge density of the charging electret is 0.0125mC / m 2 so that the charge amount is the same as that of the charging electrode (8kV) and -30.85nC. The electrostatic force was simulated. .. Further, in the case of the charging electrode, a mirror image force acts between the charging electrode and the charge carrier in the left direction, that is, in the direction opposite to the target direction. There is no mirror image power that works for. However, in the actual device, a mirror image force in the left direction acts between the charge carrier and the recovery electrode before it has passed, so in this simulation, as shown in FIG. 12, the recovery that has passed has been performed. The simulation was carried out by adding the electrode 4'. The width of the recovery electrode 4'was the same as that of the recovery electrode 4, and the distance between the recovery electrode 4'and the charging electret 1 was 22.4 mm.

このシミュレーション結果を、図6に示した、充電電極の場合と並べて、図13に表示する。図13において、充電電極の場合、充電電極を抜けた直後から、約10mm右方向に前進する間、充電電極との間に働く左方向鏡像力が強いので、マイナスの、すなわち、左方向へ引き戻す静電力が働いている。これに対して、単層エレクトレットの場合は、ここを抜けた直後でも、左にある、通過済み回収電極4’との鏡像力は、すでに、距離があるので弱く、電荷搬送体に作用する静電力は、同じマイナスでも、その分弱くなっている。 The simulation result is displayed in FIG. 13 side by side with the case of the charging electrode shown in FIG. In FIG. 13, in the case of the charging electrode, since the left mirror image force acting between the charging electrode and the charging electrode is strong while advancing to the right by about 10 mm immediately after passing through the charging electrode, it is pulled back to the minus, that is, to the left. Electrostatic force is working. On the other hand, in the case of a single-layer electret, the mirror image force with the passed recovery electrode 4'on the left is already weak due to the distance, and it acts on the charge carrier even immediately after passing through the electret. Even if the power is the same minus, it is weaker by that amount.

なお、充電電極の場合でも、右の回収電極4に近づくと、左方向への鏡像力は弱くなるので、単層エレクトレットの場合と、ほぼ同じ強さの、右方向静電力となる。この詳細は、2020年米国静電気学会で発表する。
電荷搬送体2が、充電源1を抜けて、回収電極に達するまでに、加えられた静電力によって与えられたエネルギーを、図13により計算すると、充電電極では、6.2μJなのに対して、単層エレクトレットでは、51.9μJと、8.3倍にもなる。
Even in the case of the charging electrode, the mirror image force in the left direction becomes weaker as it approaches the recovery electrode 4 on the right side, so that the electrostatic force in the right direction has almost the same strength as in the case of the single-layer electret. Details of this will be presented at the American Society of Electrostatics in 2020.
When the energy given by the applied electrostatic force until the charge carrier 2 passes through the charging source 1 and reaches the recovery electrode is calculated according to FIG. 13, it is 6.2 μJ in the charging electrode, whereas it is a single layer. In the electret, it is 51.9 μJ, which is 8.3 times higher.

比較例Comparative example

単層エレクトレットの場合、前回収電極4’をさらに遠ざけて、電荷搬送体2に働く、左方向の鏡像力をさらに弱めれば、電荷搬送体2の形状は、横置き樋型のような、左右非対称形でなくとも、左右対称形でもよいか、と考えられる。
そこで、図14に示すように、電荷搬送体2の形状を、正四角柱とし、前回収電極4’の位置を、単層充電エレクトレlトの左、41.6mmに遠ざけて、その他は同じ条件で、電荷搬送体2に働く静電力をシミュレーションした。その結果を、図15に示す。
In the case of a single-layer electret, if the front recovery electrode 4'is further moved away and the mirror image force in the left direction acting on the charge carrier 2 is further weakened, the shape of the charge carrier 2 will be similar to that of a horizontal gutter. It is considered that the symmetrical shape may be used instead of the asymmetrical shape.
Therefore, as shown in FIG. 14, the shape of the charge carrier 2 is a regular quadrangular prism, the position of the front recovery electrode 4'is moved to the left of the single-layer charging electr, 41.6 mm, and the other conditions are the same. , The electrostatic force acting on the charge carrier 2 was simulated. The result is shown in FIG.

図15から、この条件では、電荷搬送体2に働く静電力は、回収電極4の近傍にたどり着くまで、ほとんどマイナスであることが分かる。この理由は、形状が左右対称なので、非対称静電力効果(非特許文献1)および、非対称鏡像力効果(図5参照)の両方が消えて、搬送体2の左側板に、強い静電力が加わったためである。対称形状の電荷搬送体は、作成が容易なので、魅力的ではあるが、使える可能性はほとんどない。 From FIG. 15, it can be seen that under this condition, the electrostatic force acting on the charge carrier 2 is almost negative until it reaches the vicinity of the recovery electrode 4. The reason for this is that since the shape is symmetrical, both the asymmetric electrostatic force effect (Non-Patent Document 1) and the asymmetric mirror image force effect (see FIG. 5) disappear, and a strong electrostatic force is applied to the left plate of the carrier 2. This is because of the fact. Symmetrical charge carriers are attractive because they are easy to make, but they are unlikely to be usable.

実施例2では、充電電極の充電量、-30.85nCと合わせるために、充電単層エレクトレットの電荷密度を、0.0125mC/m2 とした。しかし、現状、入手可能な電荷密度の最高値は、2.0mC/m2 に達している。この場合、電荷搬送体に働く静電力はどこまで上がるだろうか。そして、その時、どれほどの電力が期待できるだろうか。この点を確認するために、エレクトレットの電荷密度を、、0.0125mC/m2 から、2.0mC/m2 に変えて、電荷搬送体に働く静電力をシミュレーションした。なお、その他の条件は、実施例2のまま変えなかった。 In Example 2, the charge density of the charged single-layer electret was set to 0.0125 mC / m 2 in order to match the charge amount of the charging electrode with -30.85 nC. However, at present, the highest available charge density has reached 2.0 mC / m 2. In this case, how much will the electrostatic force acting on the charge carrier increase? And how much power can we expect at that time? To confirm this point, the charge density of the electret was changed from 0.0125 mC / m 2 to 2.0 mC / m 2 and the electrostatic force acting on the charge carrier was simulated. The other conditions were not changed as in Example 2.

先ず、充電電荷量を求めた。-4911.3nCになった。この帯電量で、電荷搬送体2に働く静電力を、実施例2と同様にシミュレーションした。その結果を、図16に示す。背面電極12のない、単層エレクトレット1が、充電源なので、実施例2と同じく、充電単層エレクトレット1を抜けた直後から、約9mm進む間は、電荷搬送体2に加わる静電力はマイナスであった。 First, the amount of charge charged was determined. It became -4911.3nC. With this amount of charge, the electrostatic force acting on the charge carrier 2 was simulated in the same manner as in Example 2. The result is shown in FIG. Since the single-layer electret 1 without the back electrode 12 is the charging source, the electrostatic force applied to the charge carrier 2 is negative immediately after passing through the charging single-layer electret 1 for about 9 mm, as in the second embodiment. there were.

それでも、回収電極4までの中間点を過ぎると、その間に働く、右向き鏡像力が大きくなって、総合静電力はプラスになる。電荷搬送体2が、充電単層エレクトレット1から、回収電極4に至る間に、電荷搬送体2が得るエネルギーを、図16より計算すると、0.175Jになる。搬送する電荷量は、4.91μCなので、装置内が真空で空気抵抗がなく、電荷搬送体円板14が磁気浮上して、回転し機械的な摩擦もないとすれば、このエネルギーWは、電荷qをより高い電位Vに持ち上げるのに使用できる。この電位は、次式により、35,700Vになる。

Figure 2021108524
Even so, after passing the midpoint to the recovery electrode 4, the right-pointing mirror image force acting during that point becomes large, and the total electrostatic force becomes positive. The energy obtained by the charge carrier 2 from the charging single-layer electret 1 to the recovery electrode 4 is calculated from FIG. 16 to be 0.175J. Since the amount of electric charge to be transferred is 4.91 μC, if the inside of the device is vacuum and there is no air resistance, the electric charge carrier disk 14 is magnetically levitated, and there is no mechanical friction, this energy W is an electric charge. It can be used to raise q to a higher potential V. This potential becomes 35,700V by the following equation.
Figure 2021108524

1個の電荷搬送体2が、1回、充電単層エレクトレット1から、回収電極4に至る簡に得られるエネルギーが分かったので、多数の電荷搬送体2が、多数回、充電エレクトレット1より、回収電極4に至るときに得られるエネルギー、すなわち、電気出力を計算してみよう。そのために、図17に示す、静電発電装置を仮定する。 Since it was found that one charge carrier 2 can easily obtain the energy from the charging single-layer electret 1 to the recovery electrode 4 once, a large number of charge carriers 2 can be used many times from the charging electret 1. Let's calculate the energy obtained when reaching the recovery electrode 4, that is, the electric output. Therefore, the electrostatic power generator shown in FIG. 17 is assumed.

図17において、記号1は、充電エレクトレット、記号2は電荷搬送体、記号4は回収電極、記号14は、電荷搬送体2を載せた回転可能な電荷搬送体円板、記号13と15は、向かい合わせの同じ位置に、充電エレクトレット2と回収電極4が設置されている固定された充電回収円板、記号16は回転軸である。
半径100mmの電荷搬送体円板14に、中心から35mm乃至95mmに、長さ60mmの樋型電荷搬送体2を60度おきに6個配する。電荷搬送体2の、幅と高さは10mm。電荷搬送体2の長さの真ん中は中心から65mm、ゆえにその円周は、408mm。102mm置きに、充電エレクトレット1と回収電極4の組を4個置く。前の回収電極4’と、充電エレクトレット1の間隔は20mm、充電エレクトレット1の幅は20mm、回収電極4までの距離は、30mm、回収電極4の幅は30mm。上下、充電回収円板間の間隔は20mmである。
In FIG. 17, symbol 1 is a charging electret, symbol 2 is a charge carrier, symbol 4 is a recovery electrode, symbol 14 is a rotatable charge carrier disk on which the charge carrier 2 is mounted, and symbols 13 and 15 are. A fixed charge recovery disk in which a charge electret 2 and a recovery electrode 4 are installed at the same positions facing each other, symbol 16 is a rotation axis.
Six gutter-shaped charge carriers 2 having a length of 60 mm are arranged at intervals of 60 degrees on a charge carrier disk 14 having a radius of 100 mm at 35 mm to 95 mm from the center. The width and height of the charge carrier 2 are 10 mm. The center of the length of the charge carrier 2 is 65 mm from the center, and therefore its circumference is 408 mm. Place four pairs of charging electret 1 and recovery electrode 4 every 102 mm. The distance between the front recovery electrode 4'and the charging electret 1 is 20 mm, the width of the charging electret 1 is 20 mm, the distance to the recovery electrode 4 is 30 mm, and the width of the recovery electrode 4 is 30 mm. The distance between the top and bottom and the charge recovery disc is 20 mm.

1個の電荷搬送体2が、1回転するときに、4回充電エレクトレット1と、回収電極4を通過するので、その間に搬送回収される電荷量は、
4.91μC×4=19.64μCである。電荷搬送体円板14上には、6個の電荷搬送体2があるので、電荷搬送体円板14が1回転するときに搬送する電荷量は、19.64μC×6=117.84μCである。
電荷搬送体円板14の回転数が使用するボールベアリングの最大回転数30,000rpm, とすると、1秒間に、500回転になる。ゆえに1秒間に搬送される電荷量は、117.84μC×500=58920μC、すなわち、0.059Aになる。この結果、発電量Pは、電流iと電圧Vの積(次式)で計算されるゆえに、2096.9232W、約2kWになる。

Figure 2021108524
20cm×20cm、厚さ2cmのCDカセットのような装置で、2kWも発電できるので、該単層エレクトレットを充電源とする鏡像力駆動型静電発電機は、あらゆる分野に応用できる可能性がある。 When one charge carrier 2 makes one rotation, it passes through the charging electret 1 and the recovery electrode 4 four times, so that the amount of charge transferred and recovered during that time is
4.91 μC × 4 = 19.64 μC. Since there are six charge carriers 2 on the charge carrier disk 14, the amount of charge carried when the charge carrier disk 14 makes one rotation is 19.64 μC × 6 = 117.84 μC.
Assuming that the maximum rotation speed of the ball bearing used is 30,000 rpm, the rotation speed of the charge carrier disk 14 is 500 rotations per second. Therefore, the amount of charge transferred per second is 117.84 μC × 500 = 58920 μC, that is, 0.059 A. As a result, the amount of power generation P is 2096.9232W, which is about 2kW, because it is calculated by the product of the current i and the voltage V (the following equation).
Figure 2021108524
A 20 cm x 20 cm, 2 cm thick CD cassette-like device can generate as much as 2 kW, so a mirror image-driven electrostatic generator using the single-layer electret as a charging source has the potential to be applied in all fields. ..

以下、本発明に当たり使用した、二次元差分法による計算方法を、電荷搬送体2が電荷を充電されて、充電源(電極、エレクトレット)1より出た場合を例にとって説明する。
図18は、電荷搬送体2の周辺のメッシュ図を示す。図中、記号1は充電電極を、記号2は電荷搬送体を示す。更に、図示していないが、当該電荷搬送体2の右側に、接地された回収電極4が配置されている。なお、注入端子3は省略している。
二次元差分法では、先ず、対称全領域、すなわち、図1に示される全領域を細かいメッシュに分割する。ただし、全領域を細かく分割すると、計算時間が非常に長くなるので、メッシュの幅は、主要部、この場合は電荷搬送体2周辺を細かくし、遠方の、回収電極4の周りは粗くする。具体的には、電荷搬送体2の周辺から遠方にかけて、0.100mm、0.200mm、0.400mm及び1.600mmとし、順次広げる。
Hereinafter, the calculation method by the two-dimensional difference method used in the present invention will be described by taking as an example the case where the charge carrier 2 is charged with an electric charge and exits from the charging source (electrode, electret) 1.
FIG. 18 shows a mesh diagram around the charge carrier 2. In the figure, the symbol 1 represents a charging electrode, and the symbol 2 represents a charge carrier. Further, although not shown, a grounded recovery electrode 4 is arranged on the right side of the charge carrier 2. The injection terminal 3 is omitted.
In the two-dimensional difference method, first, the entire symmetrical region, that is, the entire region shown in FIG. 1 is divided into fine meshes. However, if the entire region is divided into small pieces, the calculation time becomes very long. Therefore, the width of the mesh is made fine in the main part, in this case, around the charge carrier 2, and in the distance, around the recovery electrode 4. Specifically, the charges are set to 0.100 mm, 0.200 mm, 0.400 mm, and 1.600 mm from the periphery of the charge carrier 2 to a distance, and are gradually expanded.

そして、図18に示すように、各格子点(メッシュの交点)に通し番号を付し、各格子点の電位Vを、その左右上下の格子点の電位の平均値として計算する。例えば、格子点105の電位V105は、その上下左右の格子点104、106、88、122の各電位V104、V106、V88、V122に基づいて、次式1で計算される。 Then, as shown in FIG. 18, each grid point (intersection of the mesh) is numbered serially, and the potential V of each grid point is calculated as the average value of the potentials of the left, right, top, and bottom grid points. For example, the potential V105 of the grid point 105 is calculated by the following equation 1 based on the potentials V104, V106, V88, and V122 of the grid points 104, 106, 88, and 122 on the upper, lower, left, and right sides.

Figure 2021108524
通常、2000個程度ある格子点にこの式が適用され、この多元連立一次方程式を解くことで、全格子点の電位が求められる。
ここで、充電電極1の電位は、+8.0kV、とし、回収電極4の電位は、接地されているので0Vとする。電荷搬送体2に含まれる格子点の電位は、電荷搬送体2が導体なので、全て等しいものとする。
Figure 2021108524
Normally, this equation is applied to about 2000 lattice points, and the potentials of all the lattice points can be obtained by solving this multiple simultaneous linear equations.
Here, the potential of the charging electrode 1 is + 8.0 kV, and the potential of the recovery electrode 4 is 0 V because it is grounded. The potentials of the lattice points included in the charge carrier 2 are all equal because the charge carrier 2 is a conductor.

電荷搬送体2の表面には、序数で示す幅0.1mm、奥行60mmの30個の長方形の面(領域)がある。その第5面の表面の電界E5は、次式で計算される。同式において、hはメッシュの高さであり、0.1mmである。

Figure 2021108524
次に、第5面の表面電荷密度σ5は、次式で計算される。同式においてεは真空の誘電率である。 The surface of the charge carrier 2 has 30 rectangular surfaces (regions) having an ordinal number of 0.1 mm in width and 60 mm in depth. The electric field E 5 on the surface of the fifth surface is calculated by the following equation. In the same equation, h is the height of the mesh, which is 0.1 mm.
Figure 2021108524
Next, the surface charge density σ 5 of the fifth surface is calculated by the following equation. In the same equation, ε 0 is the permittivity of vacuum.

Figure 2021108524
次に、第5面の電荷量q5は次式で計算される。同式においてSは第5面の面積である。
Figure 2021108524
電荷搬送体2の電荷の総量は、第1面から第30面迄の電荷量を合算して求められる。
Figure 2021108524
Next, the charge amount q 5 on the fifth surface is calculated by the following equation. In the same equation, S 5 is the area of the fifth surface.
Figure 2021108524
The total amount of charges in the charge carrier 2 is obtained by adding up the amounts of charges from the first surface to the thirtieth surface.

次に、第5面に働く静電力Fは次式で計算される。

Figure 2021108524
電荷搬送体2に右方向に作用する静電力FR は次式で求められる。
Figure 2021108524
一方、電荷搬送体2に対し、左方向に作用する静電力FL は次式で求められる。
Figure 2021108524
尚、電荷搬送体2の上下方向に働く静電力は、電荷搬送体2の形状が上下対称で、且つ当該電荷搬送体2が、充電電極対1と回収電極対4の、各上下真ん中に置かれている為、上下等しく、相殺され、ゼロになる。
よって、電荷搬送体2に作用するトータルの静電力FTは次式で計算される。
Figure 2021108524
尚、充電エレクトレットの場合は、その各格子点に、電位に替えて、電荷が与えられる。充電電極1と回収電極4を固定し、電荷搬送体2の位置を右に順次移動することで、充電電極1と回収電極4間で、該帯電電荷搬送体2に作用する静電力がシミュレーションされる。 Next, the electrostatic force F 5 acting on the fifth surface is calculated by the following equation.
Figure 2021108524
The electrostatic force F R acting on the charge carrier 2 in the right direction is calculated by the following equation.
Figure 2021108524
On the other hand, with respect to the charge carrier 2, the electrostatic force F L acting on the left is given by the following equation.
Figure 2021108524
The electrostatic force acting in the vertical direction of the charge carrier 2 is such that the shape of the charge carrier 2 is vertically symmetrical, and the charge carrier 2 is placed in the center of each of the charge electrode pair 1 and the recovery electrode pair 4. Because it is laid, it is equal up and down, offset, and becomes zero.
Therefore, the total electrostatic force F T acting on the charge carrier 2 is calculated by the following equation.
Figure 2021108524
In the case of a charging electret, an electric charge is given to each lattice point instead of the electric potential. By fixing the charging electrode 1 and the recovery electrode 4 and sequentially moving the position of the charge carrier 2 to the right, the electrostatic force acting on the charged charge carrier 2 is simulated between the charging electrode 1 and the recovery electrode 4. NS.

1: 充電源(電極、エレクトレット)
2: 電荷搬送体
3: 注入端子
4: 回収電極
5: コンデンサー
6: 回収端子
7: 接地された導体板
8: 点電荷
11: エレクトレット樹脂層
12: エレクトレットの背面電極
13: 上充電・回収固定円板
14: 放射状に配置した電荷搬送体を保持する電荷搬送体回転円板
15: 下充電・回収固定円板
16: 電荷搬送体回転円板の中心(回転)軸

1: Charging source (electrode, electret)
2: Charge carrier 3: Injection terminal 4: Recovery electrode 5: Condenser 6: Recovery terminal 7: Grounded conductor plate 8: Point charge 11: Electret resin layer 12: Electret back electrode 13: Top charge / recovery fixed circle Plate 14: Charge carrier rotating disk that holds the charged carriers arranged in a radial pattern 15: Lower charge / recovery fixed disk 16: Center (rotation) axis of the charge carrier rotating disk

Claims (9)

充電用エレクトレットに、導電性であって非対称形状を有する電荷搬送体を近接させ、同時に該電荷搬送体を接地し、該接地によって大地から該電荷搬送体に注入される電荷で該電荷搬送体を帯電させ、該電荷に作用する静電力で該電荷搬送体を駆動する静電発電機、静電モーター又は静電加速器において、前記電荷搬送体を前記充電用エレクトレットに近接させ充電する際、該充電用エレクトレットと該電荷搬送体の間隔より、該充電用エレクトレットの層厚を該充電用エレクトレットの比誘電率で除して得られる誘電厚みを大きくしたことを特徴とする電荷搬送体の充電装置。 A conductive and asymmetrical charge carrier is brought close to the charging electlet, and at the same time, the charge carrier is grounded, and the charge is injected from the ground into the charge carrier by the grounding. In an electrostatic generator, an electrostatic motor, or an electrostatic accelerator that charges and drives the charge carrier with an electrostatic force acting on the charge, the charge is charged when the charge carrier is brought close to the charging electlet and charged. A charging device for a charge carrier, characterized in that the thickness obtained by dividing the layer thickness of the charging electlet by the relative dielectric constant of the charging electlet is increased from the distance between the electric charge carrier and the charge carrier. 請求項1において、該エレクトレットが背面電極を有する単層エレクトレットである電荷搬送体の充電装置。 The charging device for a charge carrier according to claim 1, wherein the electret is a single-layer electret having a back electrode. 請求項1において、該エレクトレットが背面電極を有しない単層エレクトレットである電荷搬送体の充電装置。 The charging device for a charge carrier according to claim 1, wherein the electret is a single-layer electret having no back electrode. 請求項1において、該エレクトレットが強誘電体エレクトレットである電荷搬送体の充電装置。 The charging device for a charge carrier in which the electret is a ferroelectric electret in claim 1. 請求項3において、該単層エレクトレットは、背面電極を有するエレクトレット樹脂薄層を大気中でコロナ放電により帯電し、真空中で背面電極を剥離して作製したものである電荷搬送体の充電装置。 The charging device for a charge carrier according to claim 3, wherein the single-layer electret is produced by charging an electret resin thin layer having a back electrode by corona discharge in the atmosphere and peeling the back electrode in a vacuum. 請求項3において、該単層エレクトレットは、背面電極を有しないエレクトレット樹脂薄層に、電子銃で電子を打ち込んで作製したものである電荷搬送体の充電装置。 In claim 3, the single-layer electret is a charging device for a charge carrier, which is produced by driving electrons into an electret resin thin layer having no back electrode with an electron gun. 請求項3において、該単層エレクトレットは、低融点材料からなる背面電極を有するエレクトレット樹脂薄層を、大気中でコロナ放電により帯電し、加熱し、背面電極を溶融して作製したものである電荷搬送体の充電装置。 In claim 3, the single-layer electret is an electric charge produced by charging an electret resin thin layer having a back electrode made of a low melting point material by corona discharge in the atmosphere, heating the electret, and melting the back electrode. Carrier charging device. 電荷搬送体に電荷を充電する充電源から、該電荷搬送体によって搬送された該電荷を回収する回収電極まで、主に、該電荷搬送体と該回収電極との間に生じる鏡像力で該電荷搬送体を搬送する鏡像力駆動型の静電発電機、静電モーター又は静電加速器において、前記充電源として、単層エレクトレットを使用することを特徴とする静電発電機、静電モーター又は静電加速器。 From the charging source that charges the charge carrier to the recovery electrode that recovers the charge carried by the charge carrier, the charge is mainly generated by the mirror image force generated between the charge carrier and the recovery electrode. In a mirror image force-driven electrostatic generator, an electrostatic motor, or an electrostatic accelerator that conveys a carrier, an electrostatic generator, an electrostatic motor, or a static device, characterized in that a single-layer electric charge is used as the charging source. Electric accelerator. 請求項8において、該単層エレクトレットとして、高電荷密度のエレクトレットを使用し、且つ前記静電発電機、静電モーター又は静電加速器の装置内を真空とすることを特徴とする静電発電機、静電モーター又は静電加速器。

The electrostatic generator according to claim 8, wherein a high charge density electret is used as the single-layer electret, and the inside of the device of the electrostatic generator, the electrostatic motor or the electrostatic accelerator is evacuated. , Electrostatic motor or electrostatic accelerator.

JP2019239700A 2019-12-27 2019-12-27 Image force driven electrostatic application apparatus and charging device of charge carrier body Pending JP2021108524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019239700A JP2021108524A (en) 2019-12-27 2019-12-27 Image force driven electrostatic application apparatus and charging device of charge carrier body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019239700A JP2021108524A (en) 2019-12-27 2019-12-27 Image force driven electrostatic application apparatus and charging device of charge carrier body

Publications (1)

Publication Number Publication Date
JP2021108524A true JP2021108524A (en) 2021-07-29

Family

ID=76968002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019239700A Pending JP2021108524A (en) 2019-12-27 2019-12-27 Image force driven electrostatic application apparatus and charging device of charge carrier body

Country Status (1)

Country Link
JP (1) JP2021108524A (en)

Similar Documents

Publication Publication Date Title
US4259707A (en) System for charging particles entrained in a gas stream
US2004352A (en) Electrostatic generator
Bendaoud et al. Experimental study of corona discharge generated in a modified wire–plate electrode configuration for electrostatic process applications
JP2021108524A (en) Image force driven electrostatic application apparatus and charging device of charge carrier body
US4765803A (en) Method and device for agglomerating electrically nonuniformly charged-up solid or liquid particles suspended in gas streams
TW200948207A (en) Neutralization apparatus for liquid crystal panel substrate
US4012666A (en) Method of and device for the removal of electrostatic charges
Benziada et al. Numerical modelling of electric field distribution in PointBarrier-plane air gaps underAC voltage using finite element method
JPWO2021131519A5 (en)
JP2022084111A (en) Structure of novel electret and using method thereof
JP2020065353A (en) Electric-field driven static-electricity applied equipment for charging electric charge carrier
JP2020039188A (en) Field driven electrostatic generator for charging charge carrier body by lorentz electromotive force
SU849128A1 (en) Device for electrostatic charging of electrographic medium surface
JP2021078190A (en) Charge-carrier charging device in field drive type static electricity applied apparatus
JP2021191130A (en) Electrostatic generator that uses rechargeable charge injection method to convert output to ac
Serdyuk et al. Charging insulating barrier by corona in air in large coaxial system
Moser et al. Precise positioning using electrostatic glass motor
JP2009026716A (en) Method and device for static elimination from electric insulating sheet with conductive layer
JP2023138883A (en) Novel electrostatic generator with high output and high life time
JP2020043744A (en) Electric-field-driven electrostatic device using right-left asymmetrical electrostatic force as driving force
JP2006210159A (en) Apparatus and method for neutralizing electrical insulation sheet and method for manufacturing the same
CN110793892B (en) Unipolar aerosol charger using electrostatic dissipation material to generate gradient electric field
US3873895A (en) Technique for charging dielectric surfaces to high voltage
JP2012039842A (en) Electrostatic motor/electrostatic generator using a-type charge carrier body
Benziada et al. INFLUENCE OF SPACE CHARGE ON ELECTRIC FIELD DISTRIBUTION IN POINT-BARRIER-PLANE Ai r GAPS USING COMSOL MULTIPHYSICS BASED ON FINITE ELEMENT METHOD