JP2020110019A - Electrostatic force application equipment for charging charge carrier in closely contact charge method - Google Patents

Electrostatic force application equipment for charging charge carrier in closely contact charge method Download PDF

Info

Publication number
JP2020110019A
JP2020110019A JP2018248848A JP2018248848A JP2020110019A JP 2020110019 A JP2020110019 A JP 2020110019A JP 2018248848 A JP2018248848 A JP 2018248848A JP 2018248848 A JP2018248848 A JP 2018248848A JP 2020110019 A JP2020110019 A JP 2020110019A
Authority
JP
Japan
Prior art keywords
charge
electrostatic force
conductor
insulator
charge carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018248848A
Other languages
Japanese (ja)
Inventor
酒井 捷夫
Toshio Sakai
捷夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018248848A priority Critical patent/JP2020110019A/en
Publication of JP2020110019A publication Critical patent/JP2020110019A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Abstract

To solve the problem that, in a field drive type electrostatic generator which injects an electric charge into a charge carrier having a longitudinally asymmetric shape in an electric field direction by electrostatic induction and carries the injected charge up to a high potential by a longitudinally asymmetric electrostatic force acting upon the charge carrier, a carried charge amount is less and output thereof is small.SOLUTION: A field drive type electrostatic generator in which an insulator having a fixed charge closely contacts a charge carrier that is a conductor and the charge carrier is grounded and, in that case, the charge carrier is charged by a charge statically induced to the charge carrier.EFFECT: A carried charge amount and output of the generator are substantially increased.SELECTED DRAWING: Figure 8

Description

本発明は、前後非対称静電力を駆動力とする電界駆動型静電発電応用機器の電荷搬送体の充電方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for charging a charge carrier of an electric field drive type electrostatic power generation application device which uses an asymmetric electrostatic force in the front-rear direction as a driving force.

広く知られているように、発電機は、磁界中に置かれたコイルを回転させるタービン構造をしている。つまり、回転することにより、コイルを貫く磁力線の数が変化し、起電力が生ずる。
コイルを回転させる機械力として、19世紀後半以降は、水力(滝)を使用していたが、近年は、石炭や石油や液化ガス、並びに原子力で高圧の水蒸気を発生させ、使用している。これらの近年の発電方法は、二酸化炭素を発生し、地球の温暖化を加速したり人体への危険性があるため、近年は風力発電や太陽光発電に切り替わりつつある。
しかしながら、これら自然エネルギーを利用した発電方法は、自然環境に左右され不安定である。
そこで、二酸化炭素を発生せず、事故の危険性がなく、且つ、安定な発電方法が強く望まれている。
As is widely known, a generator has a turbine structure that rotates a coil placed in a magnetic field. That is, by rotating, the number of magnetic force lines that penetrate the coil changes, and an electromotive force is generated.
As the mechanical force for rotating the coil, hydraulic power (waterfall) has been used since the latter half of the 19th century, but in recent years, high pressure steam is generated and used by coal, oil, liquefied gas, and nuclear power. These recent power generation methods generate carbon dioxide, accelerate global warming, and pose a risk to the human body. Therefore, in recent years, they are being switched to wind power generation or solar power generation.
However, these power generation methods using natural energy are unstable depending on the natural environment.
Therefore, a stable power generation method that does not generate carbon dioxide, has no risk of accidents, and is highly desired.

一方、従来、電界中に置かれた電荷(q)に作用する静電力は、全て図1に示すクーロンの法則(F = qE)を用いて計算されている。
同図において、参照番号1は高圧電極、参照番号2は接地された第一対向電極、参照番号3は点電荷、参照番号4は点電荷に作用する静電力のベクトル、参照番号5は電界(電気力線)、及び参照番号6は、接地された第二対向電極を示している。
つまり、図1の中央左側において、例えば、電界の強さが106 V/mで、点電荷の電荷量が10-7Cの時、点電荷に作用する静電力は0.100Nになる。
一方、図1の中央右側のように、電界の方向が反転した時、当該点電荷に作用する静電力の方向も反転するが、その大きさ(絶対値)は0.100Nであり、変わらない。又、クーロンの法則は、点電荷又は点電荷とみなせる球形の帯電体にしか適用できない。
On the other hand, conventionally, all electrostatic forces acting on charges (q) placed in an electric field have been calculated using Coulomb's law (F = qE) shown in FIG.
In the figure, reference numeral 1 is a high-voltage electrode, reference numeral 2 is a grounded first counter electrode, reference numeral 3 is a point charge, reference numeral 4 is a vector of electrostatic force acting on the point charge, and reference numeral 5 is an electric field ( The lines of electric force) and reference numeral 6 indicate the second counter electrode which is grounded.
That is, on the left side of the center of FIG. 1, for example, when the electric field strength is 10 6 V/m and the point charge amount is 10 −7 C, the electrostatic force acting on the point charge is 0.100N.
On the other hand, when the direction of the electric field is reversed, as in the center right side of FIG. 1, the direction of the electrostatic force acting on the point charge is also reversed, but its magnitude (absolute value) is 0.100 N, which is unchanged. Also, Coulomb's law can be applied only to a point charge or a spherical charged body that can be regarded as a point charge.

これに対して、出願人は、電界中に置かれた非球形の帯電した導体に作用する静電力を求める際、クーロンの法則ではその計算ができないので、二次元差分法を使って、電界の方向が反転する前と後の、当該導体に作用する静電力を求めてみた。
具体的には、図2に示すように、参照番号7で示す帯電した導体の形状を横向きの樋型とし、その帯電量と電界の強さは図1と各同じとした。
その結果、電界が反転すると、非球形の帯電した導体に作用する静電力の絶対値は、0.083Nから0.038Nへと大きく変わった。つまり、前後非対称静電力の存在を発見した。その際、導体に作用する静電力が相対的に大きくなる図2の中央左側部分の電界を「順電界」、当該静電力が小さくなる右側部分の電界を「逆電界」と定義した。尚、この新現象は、上記シミュレーションのみならず、実験でも確認されている(非特許文献[4])。
On the other hand, the applicant cannot calculate the electrostatic force acting on a non-spherical charged conductor placed in an electric field using Coulomb's law. The electrostatic force acting on the conductor before and after the direction was reversed was calculated.
Specifically, as shown in FIG. 2, the shape of the charged conductor indicated by reference numeral 7 was a lateral gutter shape, and the amount of charge and the strength of the electric field were the same as those in FIG.
As a result, when the electric field was reversed, the absolute value of the electrostatic force acting on the non-spherical charged conductor changed greatly from 0.083N to 0.038N. In other words, I discovered the existence of an asymmetric electrostatic force. At that time, the electric field in the central left part of FIG. 2 in which the electrostatic force acting on the conductor is relatively large is defined as “forward electric field”, and the electric field in the right part where the electrostatic force is small is defined as “reverse electric field”. Note that this new phenomenon has been confirmed not only in the above simulations but also in experiments (Non-patent document [4]).

そこで、出願人は、上記要求に応えられる新しい発電方法として、いわゆる非対称静電力を駆動力とする電界駆動型静電発電機を提案した。(特許文献[1][2][3][4])(非特許文献[1][2]) Therefore, the applicant has proposed an electric field drive type electrostatic generator using a so-called asymmetrical electrostatic force as a driving force as a new power generation method that can meet the above requirements. (Patent Documents [1][2][3][4]) (Non-Patent Documents [1][2])

以下、本発明の前提として、非対称静電力が発生する原理を具体的に説明する。
図3において、参照番号7は、横向き樋型導体、即ち非対称形状の導体で、黒丸は、当該導体7に注入された電子である。参照番号5は、電界とその方向を示す。参照番号71は、当該導体における前方垂直板である。参照番号72は、当該導体における後方上下水平板である。
同図において、左側の導体7は左向きの電界に位置しているが、右側の導体7は右向きの電界に位置している。参照番号4の矢印は、これら非対称形状の導体7に作用する静電力の大きさと方向を示している。
同図中央左側において、当該導体7中の電子は、電界5に引かれて、右に移動し、その大多数は、当該導体7の前方垂直板71の表面に集まる。
一方、電界5の向きが逆になると、電子は電界5に引かれて左に移動し、当該導体7の後方上下水平板72に至るが、その後方上下水平板72の各左端面は非常に狭いので、大多数の電子は上下水平板の表面に留まる。
ここで、導体の場合は、これら電子から正孔に向かって発する電気力線も、逆に、正孔から電子に入る電気力線も、その導体の表面に対して垂直になる。その結果、当該電子に作用する静電力の方向も、当該導体の表面に垂直になる。つまり、図の中央左側では、導体7に右向きに大きな静電力が働くが、図の中央右側では、当該導体7に対し、上方向と下方向に大きさの等しい静電力が働いて、互いに相殺し、水平方向には働く静電力はない。
即ち、電界5の方向が図示のように反転すると、当該樋型導体7に作用する水平方向の静電力4は、理論上、100%から概ね0%になる。つまり、当該樋型導体7に非対称静電力が発生している。
但し、実際には、図3に示した典型的な電荷分布にはならないため、電界の方向が反転した場合、当該導体7には左方向にも静電力が働く。しかし、その場合でも、電界反転前の右方向の静電力より弱く、略、その半分程度である。
Hereinafter, as a premise of the present invention, a principle of generating an asymmetric electrostatic force will be specifically described.
In FIG. 3, reference numeral 7 is a lateral gutter-shaped conductor, that is, an asymmetrical conductor, and black circles are electrons injected into the conductor 7. Reference numeral 5 indicates an electric field and its direction. Reference numeral 71 is a front vertical plate in the conductor. Reference numeral 72 is a rear upper and lower horizontal plate of the conductor.
In the figure, the conductor 7 on the left side is located in the electric field directed to the left, while the conductor 7 on the right side is located in the electric field directed to the right. The arrow with reference numeral 4 indicates the magnitude and direction of the electrostatic force acting on these asymmetrical conductors 7.
On the left side of the center of the figure, the electrons in the conductor 7 are attracted to the electric field 5 and move to the right, and most of them gather on the surface of the front vertical plate 71 of the conductor 7.
On the other hand, when the direction of the electric field 5 is reversed, the electrons are attracted by the electric field 5 and move to the left, and reach the rear upper and lower horizontal plates 72 of the conductor 7, but the left end faces of the rear upper and lower horizontal plates 72 are very much. Since it is narrow, the majority of electrons stay on the surface of the upper and lower horizontal plates.
Here, in the case of a conductor, the lines of electric force emitted from these electrons toward the holes and, conversely, the lines of electric force entering from the holes to the electrons are perpendicular to the surface of the conductor. As a result, the direction of the electrostatic force acting on the electron is also perpendicular to the surface of the conductor. That is, on the left side in the center of the figure, a large electrostatic force acts on the conductor 7 in the right direction, but on the right side in the center of the figure, an electrostatic force of equal magnitude acts on the conductor 7 in the upward and downward directions to cancel each other. However, there is no electrostatic force acting in the horizontal direction.
That is, when the direction of the electric field 5 is reversed as shown, the horizontal electrostatic force 4 acting on the gutter-shaped conductor 7 theoretically changes from 100% to about 0%. That is, an asymmetric electrostatic force is generated in the gutter-shaped conductor 7.
However, in reality, the typical charge distribution shown in FIG. 3 is not obtained, and therefore when the direction of the electric field is reversed, an electrostatic force acts on the conductor 7 in the left direction as well. However, even in that case, it is weaker than the electrostatic force in the right direction before the electric field is reversed, which is about half that.

そこで、当該非対称静電力を、電荷搬送体の駆動力とする電界駆動型静電発電機では、電位0Vで、電荷搬送体を静電誘導によって帯電させ、当該電荷搬送体を、先ず、順電界中において強い静電力で十分加速させたのち、逆電界に入れる。当該逆電界では、当該電荷搬送体に働く(進行逆方向の)静電力は弱く、且つ当該逆電界において、当該電荷搬送体の電位が、プラスの電位から0Vに戻ったとき、当該電荷搬送体に余剰の運動エネルギーが残っている。その結果、当該電荷搬送体は更に高い電位迄上ることができる。
即ち、帯電した電荷搬送体に順電界で作用する強い静電力と逆電界で働く弱い静電力の差で生じるエネルギーの約半分は、電荷をより高い電位に持ち上げる電気的エネルギーに、残りの約半分は、電荷搬送体を駆動する機械的エネルギーに消費される。
Therefore, in the electric field drive type electrostatic generator in which the asymmetric electrostatic force is used as the driving force of the charge carrier, the charge carrier is charged by electrostatic induction at a potential of 0 V, and the charge carrier is first transferred to the forward electric field. After accelerating sufficiently with a strong electrostatic force inside, put it in a reverse electric field. In the reverse electric field, the electrostatic force (in the traveling reverse direction) acting on the charge carrier is weak, and when the potential of the charge carrier returns from the positive potential to 0 V in the reverse electric field, the charge carrier Surplus kinetic energy remains. As a result, the charge carrier can reach higher potentials.
That is, about half of the energy generated by the difference between the strong electrostatic force acting on the charged charge carrier in the forward electric field and the weak electrostatic force acting in the reverse electric field is the electric energy for raising the electric charge to a higher potential, and about half the remaining energy. Are dissipated in the mechanical energy that drives the charge carrier.

図4は、かかる電界駆動型静電発電機の基本ユニットの正面図である。
図中、参照番号8は電荷注入電極を、参照番号9は高電位源(高圧電極、エレクトレット、強誘電体)を、参照番号11は電荷搬送体を、参照番号10は電荷回収電極を、参照番号12は電荷回収電極10に接続された回収部コンデンサーを、参照番号13、15は、これら両電極8及び10並びに高電位源(高圧電極、エレクトレット、強誘電体)9を支持する絶縁性支持体(上下一対)を示している。
尚、参照番号4及び5は、図1及び図2と同じく、電荷搬送体11に加わる静電力と電界(電気力線)を示している。
ここで、高電位源(高圧電極、エレクトレット、強誘電体)9は、例えば、0.1mC/m2 の表面電荷密度を有するエレクトレットで、その電位は、例えば、+2000Vである。一方、電荷注入電極8の電位は0Vで、電荷回収電極10の電位は、例えば、-200Vである。
この結果、電荷注入電極8とエレクトレットの高電位源9の間には、負極性に帯電される前記電荷搬送体11に対して、順電界が形成される。一方、エレクトレットの高電位源9と電荷回収電極10の間には、同電荷搬送体11に対して、逆電界が形成される。
FIG. 4 is a front view of a basic unit of such an electric field drive type electrostatic generator.
In the figure, reference numeral 8 is a charge injection electrode, reference numeral 9 is a high potential source (high voltage electrode, electret, ferroelectric), reference numeral 11 is a charge carrier, reference numeral 10 is a charge recovery electrode, Reference numeral 12 is a collecting part condenser connected to the charge collecting electrode 10, and reference numerals 13 and 15 are insulating supports for supporting these electrodes 8 and 10 and a high potential source (high voltage electrode, electret, ferroelectric) 9. The body (upper and lower pair) is shown.
Note that reference numerals 4 and 5 indicate the electrostatic force and electric field (electric force lines) applied to the charge carrier 11 as in FIGS. 1 and 2.
Here, the high potential source (high voltage electrode, electret, ferroelectric) 9 is, for example, an electret having a surface charge density of 0.1 mC/m 2 , and its potential is, for example, +2000V. On the other hand, the potential of the charge injection electrode 8 is 0V, and the potential of the charge recovery electrode 10 is -200V, for example.
As a result, a forward electric field is formed between the charge injection electrode 8 and the high potential source 9 of the electret with respect to the charge carrier 11 that is negatively charged. On the other hand, a reverse electric field is formed between the high potential source 9 of the electret and the charge recovery electrode 10 with respect to the same charge carrier 11.

上記の通り、電荷搬送体11は、横向きにした樋型であるから、その縦断面横方向中央における、電界の方向又は電荷搬送体11の移動方向に直角な垂線に対し、左右非対称形であり、よって、移動方向に前後非対称形状を有する。
当該電荷搬送体11は、軽い導体、例えばアルミで形成されていて、図示しない絶縁性の電荷搬送体保持体に保持されている。その結果、電気的にフロートである。当該電荷搬送体11は、前後非対称な静電力4で駆動されて、図4中、左から右に移動して、電荷注入電極8、エレクトレットの高電位源9、及び電荷回収電極10を順次通り抜ける。
当該電荷搬送体11が、上下一対の電荷注入電極8を抜ける時、即ち、電荷注入電極8に設けられた、図6で示すアルミフォイル又は導電糸等の材料からなる導電性端子(以下、電荷注入端子という)23が、電荷搬送体11に接触した時、静電誘導によって、当該電荷搬送体11に、例えば負極性の電荷が注入される。
又、当該電荷搬送体11が(上下一対の)電荷回収電極10に奥深く入ったとき、当該電荷回収電極10に設けられた、図4、図6で示す搬送電荷回収用の導電性端子(以下、電荷回収端子という)24が当該電荷搬送体11に接触して、当該電荷搬送体11が有する前記注入電荷は回収される。
図5は、上記図4に示す電界駆動型静電発電機において、電荷搬送体11へ静電誘導で電荷を注入する電荷注入システムを示す模式図である。
同図において、参照番号8は接地された電荷注入電極、参照番号9は高電位源で電圧が印加された高圧電極、参照番号11は電荷搬送体、参照番号23は電荷注入端子を示している。
As described above, since the charge carrier 11 is a laterally oriented gutter type, the charge carrier 11 has a left-right asymmetrical shape with respect to a perpendicular line perpendicular to the direction of the electric field or the moving direction of the charge carrier 11 in the lateral center of the vertical section. Therefore, it has a front-back asymmetric shape in the moving direction.
The charge carrier 11 is made of a light conductor, for example, aluminum, and is held by an insulating charge carrier holder (not shown). As a result, it is electrically floated. The charge carrier 11 is driven by the asymmetric electrostatic force 4 in the front-rear direction, moves from left to right in FIG. 4, and sequentially passes through the charge injection electrode 8, the high potential source 9 of the electret, and the charge recovery electrode 10. ..
When the charge carrier 11 passes through the pair of upper and lower charge injection electrodes 8, that is, a conductive terminal (hereinafter, referred to as a charge) provided on the charge injection electrode 8 and made of a material such as aluminum foil or conductive thread shown in FIG. When an injection terminal 23 comes into contact with the charge carrier 11, for example, a negative charge is injected into the charge carrier 11 by electrostatic induction.
Further, when the charge carrier 11 is deeply inserted into the (upper and lower pair) charge recovery electrodes 10, conductive terminals for recovering the carrier charge (hereinafter referred to as “conductive terminals” shown in FIGS. , Which is referred to as a charge recovery terminal) 24 contacts the charge carrier 11, and the injected charge of the charge carrier 11 is recovered.
FIG. 5 is a schematic diagram showing a charge injection system for injecting charges into the charge carrier 11 by electrostatic induction in the electric field drive type electrostatic generator shown in FIG.
In the figure, reference numeral 8 is a grounded charge injection electrode, reference numeral 9 is a high-voltage electrode to which a voltage is applied by a high potential source, reference numeral 11 is a charge carrier, and reference numeral 23 is a charge injection terminal. ..

即ち、順電界中においては、強い静電力によって電荷搬送体11を加速運動させ、電荷搬送体11が逆電界に入り、減速運動になっても、それが受ける逆方向の静電力は弱いので、十分な速度を持って電荷回収電極10に到達する。 That is, in the forward electric field, even if the charge carrier 11 is accelerated by a strong electrostatic force and the charge carrier 11 enters the reverse electric field and decelerates, the reverse electrostatic force received by the charge carrier 11 is weak. The charge recovery electrode 10 arrives at a sufficient speed.

図6及び図7は,図4に示す基本ユニットを利用して作成した実験機であり、前者はその平面図を、後者はその正面図を示している(非特許文献3)。
即ち、実験機は、図4に示す基本ユニットたる各電極8、9、10の2組を電荷搬送体11の進行方向に連結して外直径100mmの二重円筒状とし、且つ、直径85mmの電荷搬送体円板14の下面に、基本ユニットの電荷搬送体11を60度間隔で6個並べて吊架し、各電極8、9、10の内外電極間を各電荷搬送体11が回転して移動できるようにしたものである。
図7において、参照番号16は回転軸(支柱)、参照番号17はボールベアリング、参照番号20は回転軸を支える木製基板、参照番号21は装置全体の樹脂製基板、参照番号22は装置全体の木製基板である。
該実験機において、電荷注入電極8の幅(水平方向。以下同様)は10mm、高圧電極9の幅は10mm、その間の間隔(水平方向)は30mm、電荷搬送体11の縦は50mm、その幅は5mm、その奥行は5mmである。
かかる構成で、電荷注入電極8を接地し、高圧電極9に+7kV以上の高電圧を印加したところ、該電荷搬送体円板14は約100rpmで回転を続け、電荷回収電極10に繋がれた回収部コンデンサー12の表面電位はマイナス側に上がっていた。即ち、発電した。
その出力は、高圧電極9に+8.0kVを印加した場合、1.54μW(100V、15.4nA)であった。又、その時の1回当たりの注入電荷量は、-0.86nCであった(非特許文献[3]参照)。
6 and 7 are experimental machines created by using the basic unit shown in FIG. 4, the former showing its plan view and the latter showing its front view (Non-Patent Document 3).
That is, the experimental machine is a double cylinder with an outer diameter of 100 mm and two sets of electrodes 8, 9, 10 which are the basic units shown in FIG. On the lower surface of the charge carrier disk 14, six charge carrier bodies 11 of the basic unit are lined up and suspended at intervals of 60 degrees, and the charge carrier bodies 11 rotate between the inner and outer electrodes of the electrodes 8, 9 and 10. It was made possible to move.
In FIG. 7, reference numeral 16 is a rotating shaft (support), reference numeral 17 is a ball bearing, reference numeral 20 is a wooden substrate that supports the rotating shaft, reference numeral 21 is a resin substrate of the entire apparatus, and reference numeral 22 is an entire apparatus. It is a wooden board.
In the experimental machine, the width of the charge injection electrode 8 (horizontal direction, the same applies hereinafter) is 10 mm, the width of the high-voltage electrode 9 is 10 mm, the distance between them (horizontal direction) is 30 mm, the length of the charge carrier 11 is 50 mm, and its width is Is 5 mm and its depth is 5 mm.
With this configuration, when the charge injection electrode 8 was grounded and a high voltage of +7 kV or higher was applied to the high voltage electrode 9, the charge carrier disk 14 continued to rotate at about 100 rpm and was connected to the charge recovery electrode 10. The surface potential of the condenser 12 of the recovery part was raised to the negative side. That is, it generated electricity.
The output was 1.54 μW (100 V, 15.4 nA) when +8.0 kV was applied to the high voltage electrode 9. Further, the amount of injected charges per injection at that time was -0.86 nC (see Non-Patent Document [3]).

このように、間接的な静電誘導で、電荷搬送体11に間接的に電荷を注入する従来の電界駆動型静電発電機では、1回に注入されて搬送する電荷量が十分ではなく、得られる電位も高くはないため、その高出力化を可能にする新技術が望まれている。 As described above, in the conventional electric field drive type electrostatic generator in which electric charges are indirectly injected into the charge carrier 11 by indirect electrostatic induction, the amount of charges injected and carried at one time is not sufficient, Since the obtained electric potential is not high, a new technology that enables higher output is desired.

[特許文献1] 特開2009−232667号公報
[特許文献2] 特許第6136050号公報
[特許文献3] 特許第6286767号公報
[特許文献4] 特開2018−029425号公報
[Patent Document 1] Japanese Patent Application Laid-Open No. 2009-232667 [Patent Document 2] Japanese Patent No. 6136050 [Patent Document 3] Japanese Patent No. 6286767 [Patent Document 4] Japanese Patent Application Laid-Open No. 2018-029425

[非特許文献1][Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010
[非特許文献2]2017年米国静電気学会年次大会予稿集 A-3
[非特許文献3] K. Sakai, “The electric field driven generator”, Proceedings of IEEE EECCMC Conference (2018) 01-2018-785
[非特許文献4][Asymmetric Electrostatic Force], K. Sakai, Journal of Electromagnetic Analysis and Applications, Scientific Research
[Non-Patent Document 1] [Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010
[Non-Patent Document 2] Proceedings of 2017 Annual Meeting of the Electrostatic Society of America A-3
[Non-Patent Document 3] K. Sakai, “The electric field driven generator”, Proceedings of IEEE EECCMC Conference (2018) 01-2018-785
[Non-Patent Document 4] [Asymmetric Electrostatic Force], K. Sakai, Journal of Electromagnetic Analysis and Applications, Scientific Research

本発明の目的は、電界駆動型静電発電機において、電荷搬送体が搬送する電荷量を大幅に増やして、その出力を大幅に改善することにある。 An object of the present invention is to significantly increase the amount of electric charge carried by a charge carrier in an electric field drive type electrostatic generator and to significantly improve the output thereof.

課題を解決する為の手段Means for solving the problem

上記本発明の目的は、接地された電荷搬送体を、固定電荷で帯電されている、いわゆるエレクトレットと密着させて、当該電荷搬送体に該エレクトレットと異極性の電荷を静電誘導させて(以下、密着静電誘導と呼ぶ)、当該電荷搬送体に大量の電荷を注入することで達成できる。 An object of the present invention is to bring a grounded charge carrier into close contact with a so-called electret, which is charged with a fixed charge, and electrostatically induces a charge having a different polarity from the electret in the charge carrier (hereinafter , Contact electrostatic induction), and can be achieved by injecting a large amount of charges into the charge carrier.

本発明の各実施例によれば、密着静電誘導で電荷搬送体に注入される電荷量は、間接静電誘導で注入される電荷量より桁違い大きいため、当該電荷搬送体が搬送できる電荷量は格段に増大し、その結果、静電発電機の出力も増大する。 According to each embodiment of the present invention, since the amount of charge injected into the charge carrier by the contact electrostatic induction is orders of magnitude larger than the amount of charge injected by the indirect electrostatic induction, the charge that the charge carrier can carry. The quantity increases significantly, and as a result, the output of the electrostatic generator also increases.

図1は、クーロンの法則を説明する模式図である。FIG. 1 is a schematic diagram illustrating Coulomb's law. 図2は、横向き樋型導体を用いた前後非対称静電力を説明する模式図である。FIG. 2 is a schematic diagram illustrating a front-back asymmetric electrostatic force using a lateral gutter-shaped conductor. 図3は、横向き樋型導体を用いた、前後非対称静電力の発生原理を説明する模式図である。FIG. 3 is a schematic diagram for explaining the principle of generation of an asymmetric electrostatic force in the front-rear direction, which uses a lateral gutter-shaped conductor. 図4は、電界駆動型静電発電機の基本ユニットの縦断面図である。FIG. 4 is a vertical cross-sectional view of a basic unit of an electric field drive type electrostatic generator. 図5は、電荷を誘導注入する従来の電界駆動型静電発電機の電荷注入部分の拡大図である。FIG. 5 is an enlarged view of a charge injection portion of a conventional electric field drive type electrostatic generator that inductively injects charges. 図6は、電荷を間接的な静電誘導で注入する従来の電界駆動型静電発電機の実験機の平面図である。FIG. 6 is a plan view of a conventional electric field drive type electrostatic generator experimentally injecting charges by indirect electrostatic induction. 図7は、電荷を間接的な静電誘導で注入する従来の電界駆動型静電発電機の実験機の正面図である。FIG. 7 is a front view of a conventional electric field drive type electrostatic generator experimental machine that injects charges by indirect electrostatic induction. 図8は、電荷を密着方式の静電誘導で注入する本発明の一実施例に係る電界駆動型静電発電機の基本ユニットの縦断面図である。FIG. 8 is a vertical cross-sectional view of a basic unit of an electric field drive type electrostatic generator according to an embodiment of the present invention in which charges are injected by a contact type electrostatic induction. 図9は、本発明の一実施例に係る電界駆動型静電発電機において、平板状の電荷を固定した絶縁体を使用して、電荷を密着方式の静電誘導で注入する部分の拡大図である。FIG. 9 is an enlarged view of a portion in which electric charges are injected by electrostatic induction of a contact type by using a flat plate-shaped insulator in which electric charges are fixed in an electric field drive type electrostatic generator according to an embodiment of the present invention. Is. 図10は、本発明の一実施例に係る電界駆動型静電発電機において、回転自在な円筒状の電荷を固定した絶縁体を使用して、電荷を密着方式の静電誘導で注入する部分の拡大図である。FIG. 10 shows an electric field drive type electrostatic generator according to an embodiment of the present invention, in which a rotatable cylindrical electric charge is used as an insulator to inject the electric charge by a contact type electrostatic induction. FIG. 図11は、本発明の一実施例に係る電界駆動型静電発電機において、回転自在のエンドレスベルト状であって電荷を固定した絶縁体を使用して、電荷を密着方式の静電誘導で注入する部分の拡大図である。FIG. 11 shows an electric field drive type electrostatic power generator according to an embodiment of the present invention, which uses a rotatable endless belt-shaped insulator with a fixed electric charge to perform electric charge by a contact type electrostatic induction. It is an enlarged view of the part to inject.

発明を実施する為の形態BEST MODE FOR CARRYING OUT THE INVENTION

出願人は、電界駆動型静電発電機において、電荷搬送体が搬送する電荷量を大幅に増やして、当該発電機の出力を大幅に改善するという目的を、固定電荷を有する絶縁体(エレクトレット又は高誘電体)と電荷搬送体を密着させ、電荷搬送体を接地したときに当該電荷搬送体に静電誘導される電荷で、当該電荷搬送体を充電(即ち帯電)することで実現した。 The applicant of the present invention aims to significantly increase the amount of electric charge carried by a charge carrier in an electric field driven electrostatic generator to significantly improve the output of the generator. This is realized by bringing the high dielectric material) into close contact with the charge carrier, and charging (that is, charging) the charge carrier with the charges electrostatically induced in the charge carrier when the charge carrier is grounded.

図8は、密着方式の静電誘導で電荷搬送体11へ電荷を充電注入する本発明の第一実施例に係る電界駆動型静電発電機の基本ユニットを示す。
図中、参照番号18は、絶縁体であり、電界が加わっても電荷を動けない状態に固定しており、接地される電荷搬送体11が密着して移動する。当該絶縁体は、具体的には、所定の電位を有するエレクトレット又は強誘電体である。その他、図4で示した従来の電界駆動型静電発電機の基本ユニットと同一の参照番号を付した部材は当該基本ユニットと同じものである。
FIG. 8 shows a basic unit of the electric field drive type electrostatic power generator according to the first embodiment of the present invention for charging and injecting electric charges into the charge carrier 11 by the electrostatic induction of the contact type.
In the figure, reference numeral 18 is an insulator, which fixes the charges so that they cannot move even when an electric field is applied, and the charge carrier 11 that is grounded moves closely. The insulator is specifically an electret or a ferroelectric having a predetermined potential. Other than that, the members having the same reference numerals as the basic unit of the conventional electric field drive type electrostatic generator shown in FIG. 4 are the same as the basic unit.

ここで、密着静電誘導方式で、エレクトレット18と密着した接地導体たる電荷搬送体11に静電誘導される電荷は、エレクトレット18の電荷(負)と逆極性(正)で、その密度はエレクトレット18の電荷密度に等しい。
現在、市販のエレクトレットで電荷密度の高いものは、-1.0mC/m2であり、当該市販のエレクトレットを利用するとして、上記試作実験機で使用した電荷搬送体11の上下水平板72の合計面積は、0.0005m2(5mm*50mm*2=500mm2)なので、静電誘導される電荷量は-0.5μC、即ち-500nCになる。これは、上記試作実験機で得られた間接静電誘導の1回当たりの注入電荷量である-0.86nCの500倍以上である。
更に、電荷搬送体11に作用する静電力は帯電電荷量に比例するため、電荷搬送体円板14の回転速度も、例えば、100rpmから30000rpm(ボールベアリング17の許容回転数上限)に達し、当該回転速度の増加にも起因して発電機の出力は、150000倍、即ち、0.22Wに達する。
更に、より高電荷密度のエレクトレットを使用することで、又はエレクトレットに替えて強誘電体を使用することで、この10倍や100倍の出力も期待できる。
尚、全面密着し充電した後、水平板がエレクトレットから離れても尚接地していると、注入された電荷がアースされ大地に戻るが、これを防ぐためには、ここに整流子を入れる。即ち、電荷が注入できるが、流出しないようするのである。
Here, in the close-contact electrostatic induction method, the charges electrostatically induced in the charge carrier 11, which is a ground conductor that is in close contact with the electret 18, have the opposite polarity (positive) to the charge (negative) of the electret 18, and the density thereof is the electret. Equal to a charge density of 18.
Currently, the commercially available electret with a high charge density is -1.0 mC/m 2 , and the total area of the upper and lower horizontal plates 72 of the charge carrier 11 used in the prototype experimental machine is assumed to be the use of the commercially available electret. Is 0.0005m 2 (5mm*50mm*2=500mm 2 ), so the amount of electrostatically induced charge is -0.5μC, or -500nC. This is more than 500 times as large as the injected charge amount of -0.86 nC per indirect electrostatic induction obtained by the prototype experimental machine.
Furthermore, since the electrostatic force acting on the charge carrier 11 is proportional to the amount of charge, the rotation speed of the charge carrier disk 14 also reaches, for example, 100 rpm to 30000 rpm (the upper limit of the permissible rotation speed of the ball bearing 17). Due to the increase of the rotation speed, the output of the generator reaches 150,000 times, that is, 0.22W.
Further, by using an electret having a higher charge density, or by using a ferroelectric material instead of the electret, the output of 10 times or 100 times can be expected.
If the horizontal plate is still grounded even after the horizontal plate is separated from the electret after charging by contacting the entire surface, the injected charge is grounded and returns to the ground. To prevent this, a commutator is inserted here. That is, charges can be injected, but they are prevented from flowing out.

図9は、前記した密着静電誘導で電荷搬送体11に電荷を注入する電荷注入部分の拡大図である。なお、電荷注入端子23の図示は省略した。
即ち、図8に示すように、電荷が固定された板状の絶縁体(以下、エレクトレット板と呼ぶ)18に、電荷搬送体11の後方上下水平板72を密着させて充電しつつ移動させるためには、高度な機械的寸法精度が必要になる。
そこで、図9に示すように、上下のスプリング19を介して、上下のエレクトレット板18を上下支持体13、15に夫々固定し、電荷搬送体11が、上下エレクトレット板18の間に入った時、上下エレクトレット板18が上下に移動できるようにすると、高度な機械的寸法精度はいらなくなる。
なお、電荷搬送体11が上下エレクトレット板18の間に入る瞬間の機械的なショックを和らげるために、図示するように、エレクトレット板18及び電荷搬送体11の各角を丸めるのが良い。
更に、固定されたエレクトレット板18に接触させながら電荷搬送体11を移動させるのであるから、その間に生じる摩擦を考慮すれば、両者の間にナノダイヤモンド等の潤滑剤を塗布することも望ましい。
又、エレクトレット板18は、通常その表面にテフロン(登録商標)層を有するので、電荷搬送体11の上下水平板72の各金属表面にテフロン(登録商標)を薄くコートして、テフロン(登録商標)同士が摩擦する態様とすることも効果的である。
尚、この場合、テフロン(登録商標)薄層の厚さが10ミクロン以下であれば、注入電荷量は、ほとんど減少しない。
FIG. 9 is an enlarged view of a charge injection portion for injecting charges into the charge carrier 11 by the above-mentioned close electrostatic induction. The illustration of the charge injection terminal 23 is omitted.
That is, as shown in FIG. 8, in order to move the rear upper and lower horizontal plates 72 of the charge carrier 11 in close contact with a plate-shaped insulator (hereinafter, referred to as an electret plate) 18 in which electric charges are fixed to move while charging. Requires a high degree of mechanical dimensional accuracy.
Therefore, as shown in FIG. 9, when the upper and lower electret plates 18 are fixed to the upper and lower supports 13 and 15 via the upper and lower springs 19, respectively, and the charge carrier 11 enters between the upper and lower electret plates 18. If the upper and lower electret plates 18 can be moved up and down, a high degree of mechanical dimensional accuracy is unnecessary.
In order to reduce the mechanical shock at the moment when the charge carrier 11 enters between the upper and lower electret plates 18, it is preferable to round each corner of the electret plate 18 and the charge carrier 11 as illustrated.
Furthermore, since the charge carrier 11 is moved while being in contact with the fixed electret plate 18, it is also desirable to apply a lubricant such as nanodiamond between them in consideration of the friction generated therebetween.
Further, since the electret plate 18 usually has a Teflon (registered trademark) layer on the surface thereof, each metal surface of the upper and lower horizontal plates 72 of the charge carrier 11 is thinly coated with Teflon (registered trademark) to form a Teflon (registered trademark) layer. It is also effective to adopt a mode in which the members rub each other.
In this case, if the thickness of the Teflon (registered trademark) thin layer is 10 μm or less, the injected charge amount hardly decreases.

図10は、密着静電誘導で電荷搬送体11へ電荷を充電注入する本発明の第二実施例に係る電界駆動型静電発電機の要部を示す模式図である。
固定されたエレクトレット板18に接触させながら、電荷搬送体11を移動させる時に発生する機械的な摩擦を減少させるためには、両者を等速で移動させればよい。具体的には、エレクトレット板18の形状を、自在に回転できる円筒状にすればよい。
ただし、固体にすると、線密着となり、静電誘導される電荷が減少するので、図10に示すような変形可能な軟体にするのがよい。なお、同図において電荷注入端子23の図示は省略した。
この場合、固定電荷を有するエレクトレットでなければ、該軟体円筒は、接触部分が、ただへこむだけであるが、エレクトレット円筒18の負電荷と、電荷搬送体11に静電誘導された正電荷間には強い静電力が働くので、移動する電荷搬送体11に引っ張られて、該エレクトレット円筒18も等速で回転する。
該軟体エレクトレット円筒18は、例えば、円筒状のゴム表面に、塗布や浸漬によりエレクトレット層を形成し、その表面に、コロナ放電や電子銃等で、マイナスイオンや電子を照射することで作製できる。
FIG. 10 is a schematic diagram showing a main part of an electric field drive type electrostatic power generator according to the second embodiment of the present invention in which charges are injected into the charge carrier 11 by the contact electrostatic induction.
In order to reduce the mechanical friction generated when the charge carrier 11 is moved while contacting the fixed electret plate 18, both may be moved at a constant speed. Specifically, the shape of the electret plate 18 may be a cylindrical shape that can freely rotate.
However, if it is made solid, it becomes line-adhered, and the electrostatically induced charges are reduced, so it is preferable to use a deformable soft body as shown in FIG. The charge injection terminal 23 is not shown in the figure.
In this case, unless the electret has a fixed charge, the contact portion of the soft cylinder is only dented, but between the negative charge of the electret cylinder 18 and the positive charge electrostatically induced by the charge carrier 11. Has a strong electrostatic force, so that it is pulled by the moving charge carrier 11 and the electret cylinder 18 also rotates at a constant speed.
The soft electret cylinder 18 can be produced, for example, by forming an electret layer on a cylindrical rubber surface by coating or dipping and irradiating the surface with negative ions or electrons with a corona discharge, an electron gun or the like.

図11は、密着静電誘導で電荷搬送体11へ電荷を充電注入する本発明の第三実施例に係る電界駆動型静電発電機の要部を示す模式図である。
上記第二実施例の軟体エレクトレット円筒18に替えて、エレクトレットベルトを使用することもできる。図11において、参照番号18はエレクトレットベルトを、参照番号25は、該ベルトの回転軸を示す。なお、電荷注入端子23の図示は省略した。
ここで、エレクトレットベルト18の下面と、電荷搬送体11の上水平板72の間隔は、ゼロではなく、図のように少し開けておいてよい。即ち、エレクトレットベルト18は、例えば、裏面導電加工された厚さ25ミクロンのエレクトレット用テフロン(登録商標)フイルムで構成されていて、伸びしろがあるため、静電力で引かれて、電荷搬送体11の上下板72に張り付き、引っ張られていく。
FIG. 11 is a schematic diagram showing a main part of an electric field drive type electrostatic generator according to a third embodiment of the present invention, which charges and injects electric charges into the charge carrier 11 by close electrostatic induction.
An electret belt can be used instead of the soft electret cylinder 18 of the second embodiment. In FIG. 11, reference numeral 18 indicates an electret belt, and reference numeral 25 indicates a rotation axis of the belt. The illustration of the charge injection terminal 23 is omitted.
Here, the space between the lower surface of the electret belt 18 and the upper horizontal plate 72 of the charge carrier 11 is not zero, but may be slightly opened as shown in the figure. That is, the electret belt 18 is composed of, for example, a Teflon (registered trademark) film for electret having a thickness of 25 μm, which has been subjected to back-side conductive processing. It sticks to the upper and lower plates 72 and is pulled.

以上、静電発電機の発明として説明してきたが、電荷回収電極10を回収部コンデンサー12に繋がず接地すると、順電界と逆電界での静電力の差で生じるエネルギーは、搬送電荷の電位を上げるためには消費されず、すべて、電荷搬送体11の加速に向けられるので静電加速器になる。
又、この場合、電荷搬送体円板14を用いて、当該電荷搬送体円板14の回転を低速度に固定すると、それ以上加速しようとする力を、回転軸16通じて外部に取り出すことができ、静電モーターになる。
As described above, the invention of the electrostatic generator has been described, but when the charge recovery electrode 10 is grounded without being connected to the recovery unit capacitor 12, the energy generated by the difference in electrostatic force between the forward electric field and the reverse electric field is the potential of the carrier charge. It is not consumed to raise it, but all becomes an electrostatic accelerator because it is directed to the acceleration of the charge carrier 11.
Further, in this case, when the charge carrier disk 14 is used and the rotation of the charge carrier disk 14 is fixed at a low speed, the force to accelerate further can be extracted to the outside through the rotary shaft 16. Yes, it becomes an electrostatic motor.

1: 高圧電極
2: 第一対向電極
3: 点電荷
4: 点電荷に作用する静電力のベクトルを示す矢印
5: 電界の方向を示す矢印
6: 第二対向電極
7: 電界の方向に前後非対称な形状(樋型)を有する導体
71:樋型導体、又は電界の方向に前後非対称な形状を有する電荷搬送体
の前方垂直板
72:樋型導体、又は電界の方向に前後非対称な形状を有する電荷搬送体
の後方上下水平板
8: 電荷注入電極
9: 高電位源(高圧電極、エレクトレット、強誘電体)
10: 電荷回収電極
11: 電界の方向に前後非対称な形状を有する電荷搬送体
12: 電荷回収電極に接続された回収部コンデンサー
13: 電荷注入電極、高圧電極、及び電荷回収電極を支持する絶縁性支持体
14: 複数の電荷搬送体を保持する電荷搬送体円板
15: 電荷注入電極、高圧電極、及び電荷回収電極を支持する絶縁性支持体
16: 電荷搬送体円板の回転軸(支柱)
17: ボールベアリング
18: 固定電荷を有する絶縁体(エレクトレット、強誘電体)
19: 固定電荷を有する絶縁体の支持スプリング
20: 固定軸(支柱)を支える木製基板
21: 装置全体の樹脂製基板
22: 装置全体の木製基板
23: 電荷注入端子
24: 電荷回収端子
25: エレクトレットベルトの回転軸

1: High-voltage electrode 2: First counter electrode 3: Point charge 4: Arrow indicating the vector of electrostatic force acting on the point charge: Arrow indicating the direction of the electric field 6: Second counter electrode 7: Front-back asymmetrical in the direction of the electric field 71: a gutter-shaped conductor, or a front vertical plate of a charge carrier having a longitudinally asymmetrical shape in the direction of the electric field 72: a gutter-shaped conductor, or a longitudinally asymmetrical shape in the direction of the electric field Rear upper and lower horizontal plates of charge carrier 8: Charge injection electrode 9: High potential source (high voltage electrode, electret, ferroelectric)
10: charge recovery electrode 11: charge carrier having an asymmetrical shape in the direction of the electric field 12: recovery unit capacitor 13 connected to the charge recovery electrode 13: charge injection electrode, high voltage electrode, and insulating property for supporting the charge recovery electrode Support 14: Charge carrier disk 15 that holds a plurality of charge carriers: Insulating support 16 that supports the charge injection electrode, high voltage electrode, and charge recovery electrode 16: Rotation shaft (support) of the charge carrier disk
17: Ball bearing 18: Insulator with fixed charge (electret, ferroelectric)
19: Support spring 20 of an insulator having a fixed charge: Wooden substrate 21 supporting a fixed shaft (support): Resin substrate 22 of the entire device: Wooden substrate 23 of the entire device: Charge injection terminal 24: Charge recovery terminal 25: Electret Belt rotation axis

Claims (11)

固定電荷を保持する絶縁体と、高電位源と、電荷回収電極とを一定間隔で並置し、当該高電位源の電位を絶対値で最高位にすることによって、これらの間に正逆連続電界を形成し、その移動方向前後に非対称な形状を有する導体が、帯電されて電荷を保持することによって、自身に作用する非対称な静電力により駆動され、前記正逆連続電界を移動する静電力応用機器であって、
前記導体の帯電及び電荷の保持は、前記絶縁体の表面と前記導体の表面を一次的に密着させ且つ当該導体を接地して、当該導体表面に前記固定電荷と異極性の電荷を静電誘導させて行われるものである静電力応用機器。
The insulator holding the fixed charge, the high potential source, and the charge recovery electrode are juxtaposed at a constant interval, and the potential of the high potential source is set to the highest absolute value. And a conductor having an asymmetrical shape before and after its moving direction is charged and retains an electric charge, and is driven by an asymmetrical electrostatic force acting on itself to move the positive and negative continuous electric field. A device,
To charge the conductor and retain the charge, the surface of the insulator and the surface of the conductor are temporarily brought into close contact with each other and the conductor is grounded to electrostatically induce a charge having a polarity different from that of the fixed charge on the conductor surface. Electrostatic force applied equipment that is performed by doing.
請求1において、前記非対称な形状を有する導体は、移動方向反対側が開放する略箱型であり、その上下の水平板の少なくとも一が、前記固定電荷を保持する絶縁体と密着する静電力応用機器。 In Claim 1, the conductor having an asymmetrical shape is a substantially box-shaped member whose opposite side in the moving direction is open, and at least one of the upper and lower horizontal plates is in contact with an insulator holding the fixed electric charge. .. 請求項1において、前記固定電荷を保持する絶縁体は、支持体に保持され、且つ平板状である静電力応用機器。 The electrostatic force application device according to claim 1, wherein the insulator holding the fixed charge is held by a support and has a flat plate shape. 請求項3において、前記平版状の絶縁体は、前記支持体にスプリングを介して固定され、当該スプリングは、前記導体の前記移動方向に対し略直角方向に伸縮する静電力応用機器。 4. The electrostatic force application device according to claim 3, wherein the planographic insulator is fixed to the support via a spring, and the spring expands and contracts in a direction substantially perpendicular to the moving direction of the conductor. 請求項1において、前記固定電荷を保持する絶縁体は、回転可能な円筒状であって、前記導体を前記移動方向に案内する静電力応用機器。 The electrostatic force application device according to claim 1, wherein the insulator holding the fixed charge has a rotatable cylindrical shape and guides the conductor in the moving direction. 請求項5において、前記円筒状絶縁体は、容易に変形できる軟体物質で構成されている静電力応用機器。 The electrostatic force application device according to claim 5, wherein the cylindrical insulator is made of a soft material that can be easily deformed. 請求項1において、前記固定電荷を保持する絶縁体は、回転可能なエンドレスベルト状である静電力応用機器。 The electrostatic force application device according to claim 1, wherein the insulator holding the fixed charge has a shape of a rotatable endless belt. 請求項7において、前記エンドレスベルト状の絶縁体は、その進行方向に伸びしろを有する静電力応用機器。 The electrostatic force application device according to claim 7, wherein the endless belt-shaped insulator has a margin in a traveling direction thereof. 請求項1において、前記固定電荷を保持する絶縁体の表面に潤滑剤を塗布した静電力応用機器。 The electrostatic force application device according to claim 1, wherein a lubricant is applied to the surface of the insulator that holds the fixed charge. 請求項1において、前記固定電荷を保持する絶縁体の表面と密着する前記導体の表面に、当該絶縁体と同一材質の薄層を有する静電力応用機器。 The electrostatic force application device according to claim 1, wherein a thin layer made of the same material as the insulator is provided on the surface of the conductor that is in close contact with the surface of the insulator that holds the fixed charge. 請求項1乃至10の静電力応用機器は、前記導体が搬送する電荷を前記電荷回収電極で回収して発電する静電発電機、又は前記電荷回収電極を接地することによって当該電荷を回収しない静電モーター又は静電加速器である静電力応用機器。

The electrostatic force application device according to any one of claims 1 to 10, wherein an electrostatic generator that collects electric charges carried by the conductor by the charge recovery electrode to generate electric power, or static electricity that does not recover the charges by grounding the charge recovery electrode. An electrostatic force application device that is an electric motor or an electrostatic accelerator.

JP2018248848A 2018-12-31 2018-12-31 Electrostatic force application equipment for charging charge carrier in closely contact charge method Pending JP2020110019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018248848A JP2020110019A (en) 2018-12-31 2018-12-31 Electrostatic force application equipment for charging charge carrier in closely contact charge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018248848A JP2020110019A (en) 2018-12-31 2018-12-31 Electrostatic force application equipment for charging charge carrier in closely contact charge method

Publications (1)

Publication Number Publication Date
JP2020110019A true JP2020110019A (en) 2020-07-16

Family

ID=71570213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018248848A Pending JP2020110019A (en) 2018-12-31 2018-12-31 Electrostatic force application equipment for charging charge carrier in closely contact charge method

Country Status (1)

Country Link
JP (1) JP2020110019A (en)

Similar Documents

Publication Publication Date Title
US2004352A (en) Electrostatic generator
US4595852A (en) Electrostatic generator
Yahiaoui et al. Distribution of electric potential at the surface of corona-charged polypropylene nonwoven fabrics after neutralization
US10027257B2 (en) Interacting complex electric fields and static electric fields to effect motion
JP2020110019A (en) Electrostatic force application equipment for charging charge carrier in closely contact charge method
Trump Electrostatic sources of electric power
JP2020150780A (en) Electrostatic application equipment of charging infusion type, driven by image force
US4012666A (en) Method of and device for the removal of electrostatic charges
JP2019004549A (en) Electric field driven electrostatic generator
CN105337528A (en) Method for improving friction generator output intensity
JP2012039842A (en) Electrostatic motor/electrostatic generator using a-type charge carrier body
JP2020065353A (en) Electric-field driven static-electricity applied equipment for charging electric charge carrier
JP2022186550A (en) Optimum structure for electrostatic power generator
JP2020039188A (en) Field driven electrostatic generator for charging charge carrier body by lorentz electromotive force
JP2012039842A6 (en) Electrostatic motor / electrostatic generator using vertical charge carrier
JP2021078190A (en) Charge-carrier charging device in field drive type static electricity applied apparatus
Moesner et al. Contactless manipulation of microparts by electric field traps
WO2008099653A1 (en) Electrostatic applied device using asymmetrical shape effect of mobile body
Sakai The Manufacturing Method of the Field Driven Generator
JP2023138883A (en) Novel electrostatic generator with high output and high life time
JP2021108524A (en) Image force driven electrostatic application apparatus and charging device of charge carrier body
KR20160023026A (en) Cylindrical triboelectric generator based on contact-electrification
JP2024058731A (en) Asymmetric image force driven electrostatic generator
CN109272837B (en) Electrostatic gun teaching demonstration instrument and use method
JPH11282341A (en) Electrostatic high voltage generator