JP2024058731A - Asymmetric image force driven electrostatic generator - Google Patents

Asymmetric image force driven electrostatic generator Download PDF

Info

Publication number
JP2024058731A
JP2024058731A JP2022166006A JP2022166006A JP2024058731A JP 2024058731 A JP2024058731 A JP 2024058731A JP 2022166006 A JP2022166006 A JP 2022166006A JP 2022166006 A JP2022166006 A JP 2022166006A JP 2024058731 A JP2024058731 A JP 2024058731A
Authority
JP
Japan
Prior art keywords
electrode
charge
charge carrier
charging
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022166006A
Other languages
Japanese (ja)
Inventor
捷夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022166006A priority Critical patent/JP2024058731A/en
Publication of JP2024058731A publication Critical patent/JP2024058731A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Abstract

【課題】電荷搬送体に高電位充電電極と異極性の電荷を帯電させ、該電荷搬送体と充電電極との間に生じる後退鏡像力よりも、該電荷搬送体とその先にある電荷回収電極との間に生じる前進鏡像力の方が大きくなる非対称鏡像力現象を利用して該電荷搬送体を駆動し前進させ、前記電荷搬送体が前記回収電極に到達した時点で保有する余剰エネルギーで、該帯電電荷を電気的により高いポテンシャルまで持ち上げる非対称鏡像力駆動型静電発電機において、現状で利用可能な3.5kV以下のエレクトレットを高電位充電電極として使用可能にすること。【解決手段】充電電極と回収電極との間隔を適正化することで、余剰エネルギーを増大させることで達成した。【効果】余剰エネルギーが増大した結果、より低い電位のエレクトレットが使用可能になった。【選択図】図20[Problem] In an asymmetric image force driven electrostatic generator, a charge carrier is charged with a charge of opposite polarity to a high potential charging electrode, and the charge carrier is driven and advanced by utilizing the asymmetric image force phenomenon in which the forward image force generated between the charge carrier and a charge recovery electrode ahead of it is greater than the backward image force generated between the charge carrier and the charging electrode, and the charge carrier is raised to a higher electrical potential with the surplus energy possessed by the charge carrier when it reaches the recovery electrode, thereby making it possible to use currently available electrets of 3.5 kV or less as a high potential charging electrode. [Solution] This is achieved by optimizing the distance between the charging electrode and the recovery electrode to increase the surplus energy. [Effect] As a result of the increase in surplus energy, it becomes possible to use electrets with a lower potential. [Selected Figure] Figure 20

Description

本発明は、その進行方向に直角な軸に対し前後非対称な形状を有する電荷搬送体に帯電電荷を保持させ、該帯電電荷に作用する鏡像力の強さが、該進行方向の前後で異なる現象(以下非対称鏡像力という)を利用して得た非対称な鏡像力をその駆動力とする静電発電機に関するものである。 This invention relates to an electrostatic generator that uses asymmetric image forces obtained by holding a charged charge on a charge carrier that has an asymmetric shape with respect to an axis perpendicular to the direction of travel and utilizing the phenomenon in which the strength of the image force acting on the charged charge is different before and after the direction of travel (hereinafter referred to as asymmetric image force) as its driving force.

地球の温暖化と、環境問題を解決するために、二酸化炭素を発生しない発電方法がいろいろと実施されている。例えば、原子力発電、太陽光発電、風力発電等である。しかしながら、これらは、安全性、安定性、コスト、及び耐久性、並びに小型化等の観点で難がある。
他方、静電発電機は、製造、使用、及び廃棄を通じて危険性はなく、又、天候、発電時刻に左右されず、発電量は常時安定である。
更に、小型化も容易なため、蓄電器や送電線も不要である。更に、エネルギーの補給やメンテナンスも略不要であり、長い(約100年)寿命を有し、低コストでできる電源である。
In order to solve global warming and environmental problems, various power generation methods that do not generate carbon dioxide have been implemented, such as nuclear power generation, solar power generation, wind power generation, etc. However, these methods have problems in terms of safety, stability, cost, durability, and miniaturization.
On the other hand, electrostatic generators are not dangerous throughout their manufacture, use, and disposal, and the amount of electricity they generate is always stable, regardless of weather or the time of day they are generated.
In addition, it is easy to miniaturize, so no storage batteries or power lines are required. Furthermore, it requires almost no energy supply or maintenance, has a long life (about 100 years), and is a low-cost power source.

かかる静電発電機は、低電位の電荷注入電極(以下注入電極という)で、電荷を電荷搬送体に注入し、電界においてこれに作用する静電力に逆らって、該電荷搬送体を高電位の電荷回収電極(以下回収電極という)まで搬送し持ち上げ、そこで、搬送した電荷を回収するものである。
ただし、バンデグラーフの静電発電機では、電荷搬送体を静電力に逆らって搬送するために機械力(電気モータ)を使用しており、該電気モータで消費される電力が、生成される電力よりも大きいため、高電位(100万ボルト)発生装置ではあるが発電機とは言えない。
In such an electrostatic generator, a charge is injected into a charge carrier by a low-potential charge injection electrode (hereinafter referred to as the injection electrode), and the charge carrier is transported and lifted up against the electrostatic force acting on it in an electric field to a high-potential charge recovery electrode (hereinafter referred to as the recovery electrode), where the transported charge is recovered.
However, Van de Graaff's electrostatic generator uses mechanical power (an electric motor) to move the charge carrier against the electrostatic force, and the power consumed by the electric motor is greater than the power generated, so although it is a high potential (1 million volts) generator, it cannot be called a generator.

これに対して、非対称静電力を利用して電荷搬送体を低電位から高電位まで引き上げる駆動力とする静電発電方法が提案されており(特許文献1~5)、非対称鏡像力を駆動力として使用する物がある。以下これを簡単に説明する。 In response to this, electrostatic power generation methods have been proposed that use asymmetric electrostatic forces to drive the charge carrier from a low potential to a high potential (Patent Documents 1 to 5), and some of these methods use asymmetric image forces as the driving force. These are briefly explained below.

図1に示すように、点電荷1が、接地された導電性の平板2から距離rにあるとき、該点電荷1には、下記(1)式で計算される静電気力(静電力)が働く。これが鏡像力に相当する。

F = q2/4πε0(2r)2 (1)

尚、電荷は、点電荷または球状帯電体として説明されるが、非球状の帯電体でも同様に鏡像力が発生する。
ここで、帯電体の形状が対称形であれば、該帯電体が移動する電界の向きが反転しても、電荷に作用する鏡像力の強度は変わらないが、非対称形状の場合は、該電界が反転したとき、その強度は大きく変わる(非特許文献1、2)。
As shown in Figure 1, when a point charge 1 is at a distance r from a grounded conductive flat plate 2, an electrostatic force calculated by the following formula (1) acts on the point charge 1. This corresponds to the image force.

F = q 2 /4πε 0 (2r) 2 (1)

Although the charges are described as point charges or spherically charged bodies, image forces are also generated in non-spherical charged bodies.
Here, if the shape of a charged object is symmetrical, the strength of the image force acting on the charge does not change even if the direction of the electric field through which the charged object moves is reversed. However, if the shape is asymmetrical, the strength of the image force changes significantly when the electric field is reversed (Non-Patent Documents 1 and 2).

例えば、図2に示した横置き樋型の電荷搬送体4の帯電量が1μCで、接地された導体板2との距離が1.0mmのとき、開口部を接地導体板2に向けたときは、該搬送体4に作用する鏡像力は32.4Nで、逆に底面を接地導体板2に向けたときは69.0Nになることが二次元差分法のシミュレーションで明らかになった。以下、この現象を非対称鏡像力と言う。 For example, a simulation using a two-dimensional finite difference method revealed that when the charge amount of the horizontal gutter-shaped charge carrier 4 shown in Figure 2 is 1 μC and the distance from the grounded conductor plate 2 is 1.0 mm, the image force acting on the carrier 4 is 32.4 N when the opening faces the grounded conductor plate 2, and conversely, it is 69.0 N when the bottom face faces the grounded conductor plate 2. Hereinafter, this phenomenon will be referred to as asymmetric image force.

この非対称鏡像力を電荷搬送体の駆動力とする静電発電機の基本構造を図3に示す。主要部品は、充電電位源3(例えば、充電電極または充電エレクトレット)、横置き樋型の電荷搬送体4と、回収電極5のみである。但し、実際の装置には、そこに、回収電極コンデンサー6、電荷を注入する導電性端子7と、電荷を回収する導電性端子8が加わるが、以下、簡略化のため、主に主要部品のみについて説明する。 The basic structure of an electrostatic generator that uses this asymmetric image force as the driving force for the charge carrier is shown in Figure 3. The main components are only a charging potential source 3 (e.g., a charging electrode or a charging electret), a horizontal gutter-shaped charge carrier 4, and a recovery electrode 5. However, in an actual device, a recovery electrode capacitor 6, a conductive terminal 7 for injecting charge, and a conductive terminal 8 for recovering charge are also added, but for simplicity, only the main components will be described below.

電荷搬送体4が、図3の左から、上下一対の充電電極(例えばエレクトレット)3の間に入り、図3に示される位置に来たとき、電荷搬送体4の上下平板42と、上下一対の充電エレクトレット3間に、夫々空気コンデンサーが形成される。この時、電荷注入端子7により電荷搬送体4が接地されると、該空気コンデンサーへの充電電荷が、大地より電荷搬送体4に注入される。
その後、帯電された電荷搬送体4は、さらに図示右方向に進み、上下一対の回収電極5の中に入るそして、上下一対の回収電極5内に設けられ、電荷搬送体4と当接する電荷回収端子8により、該回収電極5と電荷搬送体4は電気的に連結され、帯電電荷は回収電極5を通って、回収電極コンデンサー6に蓄積される。そして、帯電電荷は、さらに図示しない回路を通じて外部負荷に流れる。
3, when the charge carrier 4 enters between a pair of upper and lower charging electrodes (e.g. electrets) 3 from the left in Fig. 3 and reaches the position shown in Fig. 3, air capacitors are formed between the upper and lower flat plates 42 of the charge carrier 4 and the pair of upper and lower charging electrets 3. At this time, when the charge carrier 4 is grounded by the charge injection terminal 7, the charging charge to the air capacitor is injected into the charge carrier 4 from the ground.
The charged charge carrier 4 then advances further to the right in the figure and enters a pair of upper and lower recovery electrodes 5. The recovery electrodes 5 and the charge carrier 4 are then electrically connected by charge recovery terminals 8 provided in the pair of upper and lower recovery electrodes 5 and in contact with the charge carrier 4, and the charged charge passes through the recovery electrode 5 and is accumulated in the recovery electrode capacitor 6. The charged charge then flows to an external load through a circuit not shown.

充電電極たるエレクトレット3が負帯電の場合、電荷搬送体4は正帯電される。その結果、充電電極たるエレクトレット3と回収電極5の間を、図示右に進む電荷搬送体4には、充電電極たるエレクトレット3と回収電極5間に形成された電界により図示左向きに静電力が働く、以下この力を電界力と言う。
加えて充電電極たるエレクトレット3の背面電極により、やはり図示左向きに鏡像力が働く。以下この力を後退鏡像力と言う。同時に、回収電極5により図示右向きの鏡像力も働く。以下この力を前進鏡像力と言う。
ここで、充電電極たるエレクトレット3を出た直後は、左向きの後退電界力と後退鏡像力の合力が強いが、回収電極5に接近すると、右向きの前進鏡像力と左向きの後退電界力の和の方が強くなる。
When the electret 3 serving as the charging electrode is negatively charged, the charge carrier 4 is positively charged. As a result, an electrostatic force acts on the charge carrier 4 moving to the right in the figure between the electret 3 serving as the charging electrode and the recovery electrode 5, in the leftward direction in the figure, due to the electric field formed between the electret 3 serving as the charging electrode and the recovery electrode 5. Hereinafter, this force will be referred to as the electric field force.
In addition, an image force acts to the left in the figure due to the back electrode of the electret 3, which is the charging electrode. Hereinafter, this force will be referred to as the retreating image force. At the same time, an image force acts to the right in the figure due to the recovery electrode 5. Hereinafter, this force will be referred to as the forward image force.
Here, immediately after leaving the electret 3 serving as the charging electrode, the resultant force of the leftward receding electric field force and the receding image force is strong, but as it approaches the recovery electrode 5, the sum of the rightward forward image force and the leftward receding electric field force becomes stronger.

従い、電荷搬送体4が非対称である場合、電荷搬送体4の上下水平板42のエッジに働く左向きの電界力、および後退鏡像力は弱く、水平板42の表裏に垂直に働く電界力は、上方向と下方向が同じ強さで相殺され、前方垂直板部41に働く右向きの前進鏡像力は強い。
この結果、右向きの前進鏡像力が、左向きの後退電界力と後退鏡像力の和より強くなり、電荷搬送体4は、充電電極たるエレクトレット3から回収電極5に到達することができる。よって、電荷搬送体4により搬送された電荷が回収電極5に回収されれば、この装置は静電発電機になる。回収されなければ、該装置は静電モータになる。
Therefore, when the charge carrier 4 is asymmetric, the leftward electric field force and the backward image force acting on the edges of the upper and lower horizontal plates 42 of the charge carrier 4 are weak, the electric field forces acting vertically on the front and back of the horizontal plate 42 are canceled out with equal strength in the upward and downward directions, and the rightward forward image force acting on the front vertical plate portion 41 is strong.
As a result, the rightward forward image force becomes stronger than the sum of the leftward backward electric field force and the backward image force, and the charge carrier 4 can reach the recovery electrode 5 from the electret 3, which is the charging electrode. Therefore, if the charge carried by the charge carrier 4 is recovered by the recovery electrode 5, this device becomes an electrostatic generator. If the charge is not recovered, the device becomes an electrostatic motor.

そこで、充電電極たるエレクトレット3と回収電極5間で、帯電した電荷搬送体4に働く静電力をシミュレーションで求めた。その一例を図4に示す。図中、充電電極たるエレクトレットの右端と電荷搬送体の左端の間隔(距離)を以て電荷搬送体の位置とする(以下同じ)。
先ず、電荷搬送体4が、充電電極たるエレクトレット3を出た後、約10mmの間は、該電荷搬送体4に働く静電力はマイナス、すなわち左向きであるが、10mmを越えるとプラス、すなわち右向きに転じ、しかもその絶対値がより大きくなることが図4より明らかである。このため、回収電極5に到達した電荷搬送体4には余剰の運動エネルギーが残されている。この余剰エネルギーを使って、低電位(0V)から搬送してきた電子をより高い電位(例えば、-1000V)に引き上げることができる。すなわち、発電できる。
Therefore, the electrostatic force acting on the charged charge carrier 4 between the electret 3, which is the charging electrode, and the recovery electrode 5 was obtained by simulation. An example is shown in Figure 4. In the figure, the distance between the right end of the electret, which is the charging electrode, and the left end of the charge carrier is defined as the position of the charge carrier (the same applies below).
First, after the charge carrier 4 leaves the electret 3, which is the charging electrode, the electrostatic force acting on the charge carrier 4 is negative, i.e., directed to the left, for about 10 mm, but after 10 mm it turns positive, i.e., directed to the right, and the absolute value of the force becomes larger, as is clear from Fig. 4. Therefore, the charge carrier 4 that has reached the recovery electrode 5 has surplus kinetic energy remaining. This surplus energy can be used to raise the electrons transported from a low potential (0V) to a higher potential (e.g., -1000V). In other words, electricity can be generated.

実際に、該原理に基づいて非対称鏡像力駆動型の静電発電実験機(ベンチモデル)を試作し、発電を行った結果は、特許文献5(特開2022-084111号公報)に記載されているが、以下、概略縦断面図5と、概略横断面図(又は平面図)6を参照して簡単に説明する。
該当図中、参照番号4は樋型電荷搬送体、同3は半径方向にみて内外一対の板状充電電極たるエレクトレット、参照番号5は半径方向にみて内外一対の板状回収電極、参照番号9は非対称鏡像力を強める半径方向にみて内外一対の板状加速電極であって、接地されている。参照番号10は、充電電極たるエレクトレット3の高電位が回収電極5に影響することを阻止する半径方向にみて内外一対の板状シールド電極であって接地されている。参照番号11は電荷搬送体を保持する保持円板で、参照番号12はステンレス製の回転軸(支柱)である。注入用端子、及び回収用端子は省略した。参照番号13は、電荷搬送体の保持円板11のセンターに固定され、固定回転軸12の周りを回転する高性能のボールベアリングである。
ここで、加速電極9を1個置いたときのシミュレーションされた静電力を図7に示す。図4と比較するとその効果の違いは明らかである。
In fact, an asymmetric image force-driven electrostatic power generation experimental machine (bench model) was prototyped based on this principle, and the results of power generation are described in Patent Document 5 (JP 2022-084111 A). Below, a brief explanation will be given with reference to a schematic longitudinal sectional view 5 and a schematic transverse sectional view (or plan view) 6.
In the figure, reference number 4 is a gutter-shaped charge carrier, reference number 3 is an electret as a pair of plate-shaped charging electrodes, inner and outer, viewed in the radial direction, reference number 5 is a pair of plate-shaped recovery electrodes, viewed in the radial direction, reference number 9 is a pair of plate-shaped acceleration electrodes, inner and outer, viewed in the radial direction, which strengthen the asymmetric image force, and are grounded. Reference number 10 is a pair of plate-shaped shield electrodes, inner and outer, viewed in the radial direction, which prevent the high potential of the electret 3 as the charging electrode from affecting the recovery electrode 5, and are grounded. Reference number 11 is a holding disk that holds the charge carrier, and reference number 12 is a stainless steel rotating shaft (support). The injection terminal and the recovery terminal are omitted. Reference number 13 is a high-performance ball bearing that is fixed to the center of the holding disk 11 of the charge carrier and rotates around the fixed rotating shaft 12.
Here, the electrostatic force simulated when one acceleration electrode 9 is placed is shown in Fig. 7. The difference in effect is clear when compared with Fig. 4.

図において、電荷搬送体保持円板11の半径は45mmで、各内外一対の充電電極たるエレクトレット3、加速電極9、及び回収電極5の各外側部分は、半径50mmの円周の上に形成し、各内側部分は半径30mmの円周の上に形成した。この結果、充電電極たるエレクトレット3の内外電極間間隔は20mmになる。
充電電極たるエレクトレット3と回収電極5の外側部分の幅は40mmで、加速電極9の同幅は20mmである。
これら充電電極たるエレクトレット3、加速電極9、及び回収電極5の外側部分の高さは共に65mmで、内側部分の高さは55mmである。図中、樋型電荷搬送体4の幅と奥行きと高さは、夫々、5mm、5mm、及び50mmである。
In the figure, the radius of the charge carrier holding disk 11 is 45 mm, and the outer parts of each pair of inner and outer charging electrodes, the electret 3, the acceleration electrode 9, and the recovery electrode 5, are formed on a circumference with a radius of 50 mm, and the inner parts are formed on a circumference with a radius of 30 mm. As a result, the distance between the inner and outer electrodes of the electret 3, which is the charging electrode, is 20 mm.
The width of the outer portion of the electret 3 serving as the charging electrode and the recovery electrode 5 is 40 mm, and the width of the acceleration electrode 9 is 20 mm.
The height of the outer parts of the charging electrodes, the electret 3, the acceleration electrode 9, and the recovery electrode 5, is 65 mm, and the height of the inner parts is 55 mm. In the figure, the width, depth, and height of the trough-shaped charge carrier 4 are 5 mm, 5 mm, and 50 mm, respectively.

該実験装置で、まず、エレクトレットではない充電電極を使用して、非対称鏡像力駆動型の静電発電機の実験を行った。
具体的には、充電電極3に対し図示しない高圧電源から、高電圧を印加して、エアースプレイで電荷搬送体4を3~30秒間強制回転させた。この後、電荷搬送体に加わる静電力(前進鏡像力-(後退電界力+後退鏡像力))が、電荷搬送体に加わる空気抵抗力+機械的摩擦力よりも大きければ、電荷搬送体円板11は回転を続け、充電電極3で充電された電荷は回収電極5で回収され、その結果、回収コンデンサー6の表面電位は勢いよく上昇する。すなわち、発電が継続される。
In this experimental setup, we first conducted experiments on an asymmetric image-force-driven electrostatic generator using a non-electret charged electrode.
Specifically, a high voltage was applied to the charging electrode 3 from a high voltage power supply (not shown), and the charge carrier 4 was forcibly rotated by air spray for 3 to 30 seconds. After this, if the electrostatic force (forward image force - (reverse electric field force + receding image force)) acting on the charge carrier is greater than the air resistance force + mechanical friction force acting on the charge carrier, the charge carrier disk 11 continues to rotate, and the charge stored in the charging electrode 3 is collected by the collection electrode 5, resulting in a vigorous rise in the surface potential of the collection capacitor 6. In other words, power generation continues.

充電電極3に印加する電圧を、-3.0kVから-0.5kVずつ上げたところ、-5.0kVまでは強制回転から連続回転に移らず、数十秒後に止まってしまったが、-5.5kVでは、緩やかに回転続け、回収コンデンサー6の電位も緩やかに上昇した。又、回収コンデンサー6を3回アースしたが、そのたびに、その電位は0Vからプラス方向に上昇した。 When the voltage applied to the charging electrode 3 was increased in increments of -0.5 kV from -3.0 kV, the rotation did not change from forced rotation to continuous rotation up to -5.0 kV, and stopped after several tens of seconds. However, at -5.5 kV, the rotation continued slowly, and the potential of the recovery capacitor 6 also rose slowly. The recovery capacitor 6 was also earthed three times, and each time, its potential rose from 0 V in the positive direction.

しかしながら、充電エレクトレットを充電電極として使用する場合、現状-3.5kVの出力が限界であり、-5.5kV以上を出力する高電位エレクトレットを作製できず、利用できない。なお、発電装置内を真空にして空気抵抗をゼロにすれば、低電位の充電エレクトレットでも使用可能になるが、民生品で長期間真空を維持するのは困難である。 However, when using rechargeable electrets as charging electrodes, the current output limit is -3.5 kV, and it is not possible to create high-potential electrets that output -5.5 kV or more, and they cannot be used. If the inside of the generator is made into a vacuum to reduce air resistance to zero, it becomes possible to use low-potential rechargeable electrets, but it is difficult to maintain a vacuum for long periods of time with consumer products.

[特許文献1] 特開2008-5690号公報
[特許文献2] 特開2020-150780号公報
[特許文献3] 特開2021-108524号公報
[特許文献4] 特開2022-2436号公報
[特許文献5] 特開2022-84111号公報
[Patent Document 1] JP 2008-5690 A
[Patent Document 2] JP 2020-150780 A [Patent Document 3] JP 2021-108524 A [Patent Document 4] JP 2022-2436 A [Patent Document 5] JP 2022-84111 A

[非特許文献1]2006年米国静電気学会年次大会予稿集 P.137
[非特許文献2][Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010
[Non-Patent Document 1] Proceedings of the 2006 American Society of Electrostatic Engineers Annual Conference, p. 137
[Non-Patent Document 2] [Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010

本発明の目的は、非対称鏡像力駆動型の静電発電機において、表面電位が3.5kV以下の充電エレクトレットを使用して、空気抵抗等に打ち勝つに十分な余剰エネルギーが得られる方法及び装置を提供することにある。 The object of the present invention is to provide a method and apparatus for obtaining sufficient surplus energy to overcome air resistance, etc., using a charged electret with a surface potential of 3.5 kV or less in an asymmetric image force-driven electrostatic generator.

上記本発明の目的は、充電エレクトレットと回収電極間との距離を適正化することで達成できる。 The above object of the present invention can be achieved by optimizing the distance between the charging electret and the recovery electrode.

本発明の実施例によれば、表面電位が3.5kV以下の充電エレクトレットで、空気抵抗等に打ち勝つに十分な余剰エネルギーが得られるようになったので、非対称鏡像力駆動型の静電発電機を実現できるようになった。 According to an embodiment of the present invention, a charged electret with a surface potential of 3.5 kV or less can generate sufficient excess energy to overcome air resistance, etc., making it possible to realize an asymmetric image force-driven electrostatic generator.

図1は、従来公知の鏡像力の原理を説明する模式図である。FIG. 1 is a schematic diagram for explaining the conventionally known principle of image force. 図2は、非対称鏡像力の原理を説明する模式図である。FIG. 2 is a schematic diagram illustrating the principle of asymmetric image force. 図3は、非対称鏡像力駆動型の静電発電機の基本構造を示す正面図である。FIG. 3 is a front view showing the basic structure of an asymmetric image force driven electrostatic generator. 図4は、充電電極たるエレクトレットと回収電極間において、帯電した電荷搬送体に働く静電力を示すグラフである。FIG. 4 is a graph showing the electrostatic force acting on the charged charge carrier between the electret, which is the charging electrode, and the recovery electrode. 図5は、試作した非対称鏡像力駆動型の静電発電実験機の概略縦断面図である。FIG. 5 is a schematic vertical cross-sectional view of a prototype electrostatic power generation experimental device driven by asymmetric image forces. 図6は、試作した非対称鏡像力駆動型の静電発電実験機の概略横断面図である。FIG. 6 is a schematic cross-sectional view of a prototype electrostatic power generation experimental device driven by asymmetric image forces. 図7は、加速電極を1個加えた場合における電荷搬送体に働く静電力を示すグラフである。FIG. 7 is a graph showing the electrostatic force acting on the charge carrier when one acceleration electrode is added. 図8は、一定の角度で電荷搬送体を水平に乗せた電荷搬送体円板の構成を示す斜視図である。FIG. 8 is a perspective view showing the configuration of a charge carrier disk in which charge carriers are placed horizontally at a certain angle. 図9は、電荷搬送体円板とそれを上下で挟む電極板で構成される実験機の構成を示す斜視図である。FIG. 9 is a perspective view showing the configuration of an experimental device consisting of a charge carrier disk and electrode plates sandwiching it from above and below. 図10は、電極板上の充電エレクトレットおよび回収電極の配置を示す平面図である。FIG. 10 is a plan view showing the arrangement of the charging electret and the recovery electrode on the electrode plate. 図11は、充電電位に対して充電電荷量をシミュレーションした結果を示すグラフである。FIG. 11 is a graph showing the results of a simulation of the amount of charge versus the charging potential. 図12は、電荷搬送体が、充電エレクトレットを抜けて回収電極に至る工程で受ける静電力をシミュレーションした結果を示すグラフである。FIG. 12 is a graph showing the results of a simulation of the electrostatic force that the charge carrier receives in the process of passing through the charged electret and reaching the recovery electrode. 図13は、各充電電位別に求めた余剰エネルギーを示すグラフである。FIG. 13 is a graph showing the surplus energy obtained for each charging potential. 図14は、電荷密度の二乗と余剰エネルギーとの関係をプロットしたグラフである。FIG. 14 is a graph plotting the relationship between the square of the charge density and the excess energy. 図15は、充電電極と回収電極との距離と、電荷搬送体に作用する鏡像力との関係をシミュレーションで求めたグラフである。FIG. 15 is a graph showing the relationship between the distance between the charging electrode and the recovery electrode and the image force acting on the charge carrier, which is obtained by simulation. 図16は、充電電極と回収電極との距離と、電荷搬送体に作用する鏡像力との関係をシミュレーションで求めた他のグラフである。FIG. 16 is another graph showing the relationship between the distance between the charging electrode and the recovery electrode and the image force acting on the charge carrier, which is obtained by simulation. 図17は、充電電極と回収電極の距離と、余剰エネルギーとの関係を算出したグラフである。FIG. 17 is a graph showing the calculated relationship between the distance between the charging electrode and the recovery electrode and the surplus energy. 図18は、充電電極と回収電極の距離と、余剰エネルギーで搬送電荷が高められる電位との関係を算出したグラフである。FIG. 18 is a graph showing the calculated relationship between the distance between the charging electrode and the recovery electrode and the potential at which the transported charge is increased by the surplus energy. 図19は、充電電極と回収電極の間隔と、1秒間に回収コンデンサーに回収される電荷量、すなわち電流との関係を算出したグラフである。FIG. 19 is a graph showing the relationship between the distance between the charging electrode and the recovery electrode and the amount of charge recovered by the recovery capacitor per second, that is, the current. 図20は、充電電極と回収電極の間隔と、それぞれの電位と電流に基づいて算出された出力との関係を示すグラフである。FIG. 20 is a graph showing the relationship between the distance between the charging electrode and the recovery electrode and the output calculated based on the respective potentials and currents. 図21は、充電エレクトレットと回収電極の間隔が1760μmのとき、電荷搬送体に加わる静電力(鏡像力+後退電界力)をシミュレーションした結果を示すグラフである。FIG. 21 is a graph showing the results of simulating the electrostatic force (image force + receding field force) acting on the charge carrier when the distance between the charging electret and the recovery electrode is 1760 μm. 図22は、充電電極と回収電極との距離が7360μmの場合、2個の電荷搬送体が2280μmの間隔を空けて移動する間に受ける静電力と、電荷搬送体が1個の場合に受ける静電力との関係を比較しつつ示すグラフである。FIG. 22 is a graph showing the relationship between the electrostatic force acting on two charge carriers moving with a gap of 2280 μm between them when the distance between the charging electrode and the recovery electrode is 7360 μm, and the electrostatic force acting on a single charge carrier. 図23は、円筒型の充電エレクトレットと、円筒型の回収電極と、円筒型の電荷搬送体とで構成される加速器の概略横断面図である。FIG. 23 is a schematic cross-sectional view of an accelerator composed of a cylindrical charging electret, a cylindrical recovery electrode, and a cylindrical charge carrier.

出願人は、非対称鏡像力駆動型の静電発電機において、充電エレクトレット3の表面電位が-3.5kV以下であっても、前記余剰エネルギーが、空気抵抗力等を上回って電荷搬送体4が回転を続けられる状態、すなわち連続発電の状態を、充電エレクトレット3と回収電極5との距離を適正化することで実現した。 In an asymmetric image force-driven electrostatic generator, the applicant has achieved a state in which the surplus energy exceeds air resistance and the like, allowing the charge carrier 4 to continue rotating even when the surface potential of the charged electret 3 is -3.5 kV or less, i.e., a state of continuous power generation, by optimizing the distance between the charged electret 3 and the recovery electrode 5.

ここで、充電エレクトレット3の電位を下げるためには、装置全体のダウンサイズが有効である。サイズを1/2にすることで、充電エレクトレット3の電位を、-5.5kVから、約半分の-3.0kVにすることが可能であるからである。
また、充電エレクトレット3の電位が、-3.0kVであっても、電荷搬送体4に充電できる電荷量が、その電位が-5.5kVの場合と同じであれば、同様の余剰エネルギーが得られ、電荷搬送体円板11が回転を続け、発電が継続されることができる。従い、上記試作機では、充電エレクトレット3と電荷搬送体4の間隔7.5mmを、半分の3.75mmにすればよい。
しかしながら、縦方向に吊るした電荷搬送体4を採用した試作機では、電荷搬送体円板11の回転とともに、電荷搬送体4の下端が遠心力で膨らみ、外周の該電極に接触し、上記間隔の維持は困難である。
Here, downsizing the entire device is effective in lowering the potential of the charged electret 3. By halving the size, it is possible to reduce the potential of the charged electret 3 from -5.5 kV to approximately half, that is, -3.0 kV.
In addition, even if the potential of the charged electret 3 is -3.0 kV, if the amount of charge that can be charged to the charge carrier 4 is the same as when the potential is -5.5 kV, the same surplus energy can be obtained, the charge carrier disk 11 continues to rotate, and power generation can continue. Therefore, in the above prototype, the distance between the charged electret 3 and the charge carrier 4 can be reduced from 7.5 mm to half, 3.75 mm.
However, in the prototype in which the charge carrier 4 is hung vertically, as the charge carrier disk 11 rotates, the bottom end of the charge carrier 4 bulges due to centrifugal force and comes into contact with the outer electrode, making it difficult to maintain the above-mentioned distance.

そこで、出願人は、図8に示すように、電荷搬送体4を吊り下げる方式から、電荷搬送体円板11上において、一定の角度間隔で水平に載せる方式に変更した。それに伴って、充電エレクトレット3と、回収電極5も、図9に示すように、電荷搬送体円板11を挟む上下の電極円板15と14の各表裏に向かい合わせに設置した。よって、この方式ならば、電荷搬送体が遠心力で外に広がり、各電極と接触することは無くなる。しかしながら、この方式では、充電電極3と回収電極5の幅を一定とすると、円板14,15の中心付近では、充電電極3と回収電極5の間隔が狭まって、その間に、リークまたは放電が発生してしまう。
そこで、両電極の形状を図9に示すように、中心に近づくにつれて狭くなる台形形状とした。また電荷搬送体4も図8に示すように同様に台形形状とした。
Therefore, the applicant changed the method of hanging the charge carrier 4 to a method of placing it horizontally at a fixed angle on the charge carrier disk 11 as shown in Fig. 8. Accordingly, the charging electret 3 and the recovery electrode 5 are also installed facing each other on the front and back of the upper and lower electrode disks 15 and 14 that sandwich the charge carrier disk 11 as shown in Fig. 9. Therefore, with this method, the charge carrier spreads outward due to centrifugal force and does not come into contact with each electrode. However, with this method, if the width of the charging electrode 3 and the recovery electrode 5 is constant, the gap between the charging electrode 3 and the recovery electrode 5 becomes narrow near the center of the disks 14 and 15, and leakage or discharge occurs between them.
Therefore, the shapes of both electrodes are made trapezoidal, narrowing toward the center, as shown in Fig. 9. Similarly, the charge carrier 4 is made trapezoidal, as shown in Fig. 8.

具体的には、図8に示すように、厚さ0.5mm、半径50mmの絶縁性円板たる電荷搬送体円板11に、外周マージン5mm空けて、長さ25mm、下底1.0mm、上底0.5mm、高さ1.0mm、及び厚さ0.04mmの横置き樋型の電荷搬送体4を82個セットする。
また、図10に示すように、同一形状の絶縁性円板である、上下電極円板14,15夫々に、外周マージン5mm空け、長さ25mm、下底1.5mm、及び上底0.75mmの台形の充電エレクトレット3と、長さ25mm、上底2.0mm、及び下底1.0mmの台形の回収電極5を交互に設け、一組の充電エレクトレット3と回収電極5の配置を、外間隔3.2mm、及び内間隔1.6mmとし、次の組の回収電極5と充電エレクトレット3の外間隔を0.8mm、内間隔0.4mmとして41組セットする。以下、該1組を1ユニットと言う。
従い、ユニットの外幅は7.5mm、内幅は3.75mmになる。上下電極板14,15間隔は1.24mmであり、基板の厚さ0.5mmを加えるとユニットの高さは1.74mmになる。なお、横置き樋型電荷搬送体4の上下水平板42と、上下一対の充電エレクトレット3の各間隔は0.1mm、充電エレクトレットの厚さ(9図で上下)は0.04mm、比誘電率は2.0である。
Specifically, as shown in FIG. 8, 82 horizontal trough-shaped charge carriers 4, each 25 mm long, 1.0 mm long at the bottom, 0.5 mm long at the top, 1.0 mm high at the top, and 0.04 mm thick, are set on a charge carrier disk 11, an insulating disk with a thickness of 0.5 mm and a radius of 50 mm, with a margin of 5 mm on the periphery.
10, the upper and lower electrode disks 14, 15 are insulating disks of the same shape, and the trapezoidal charging electrets 3, each 25 mm long, 1.5 mm long, and 0.75 mm long, and the trapezoidal recovery electrodes 5, each 25 mm long, 2.0 mm long, and 1.0 mm long, are alternately provided on the outer peripheral margin of 5 mm on each of the upper and lower electrode disks 14, 15. The charging electrets 3 and recovery electrodes 5 of one set are arranged with an outer spacing of 3.2 mm and an inner spacing of 1.6 mm, and the next set of recovery electrodes 5 and charging electrets 3 are arranged with an outer spacing of 0.8 mm and an inner spacing of 0.4 mm, for a total of 41 sets. Hereinafter, each set is referred to as one unit.
Therefore, the outer width of the unit is 7.5 mm and the inner width is 3.75 mm. The distance between the upper and lower electrode plates 14, 15 is 1.24 mm, and adding the substrate thickness of 0.5 mm makes the height of the unit 1.74 mm. The distance between the upper and lower horizontal plates 42 of the horizontal trough-shaped charge carrier 4 and the pair of upper and lower charged electrets 3 is 0.1 mm, the thickness of the charged electrets (upper and lower in Figure 9) is 0.04 mm, and the relative dielectric constant is 2.0.

かかる方式において、出願人は、充電エレクトレット3の電位を変えて、電荷搬送体4に充電される電荷量と、該充電により帯電した電荷搬送体4と、充電エレクトレット3と回収電極5間で作用する静電力の関係をシミュレーションで求めてみた。
ここで、台形の電荷搬送体4のシミュレーションは、2次元差分法ではできないので、長方形の電荷搬送体4にして行った。そして、電荷搬送体4の幅は、上底と下底の平均値をとり0.75mmとした。同様に、上底と下底の平均値たる充電エレクトレット3の幅、充電エレクトレット3と回収電極5の間隔、上底と下底の平均値たる回収電極5の幅、及び回収電極5と隣の組の充電エレクトレット3との間隔も、それぞれ、1.12mm、2.4mm、1.6mm、及び0.6mmとした。よって、1ユニットの長さはこの合計で5.72mmになる。
In this method, the applicant changed the potential of the charged electret 3 and performed a simulation to determine the relationship between the amount of charge stored in the charge carrier 4, the charge carrier 4 charged by the charging, and the electrostatic force acting between the charged electret 3 and the recovery electrode 5.
Here, since the trapezoidal charge carrier 4 cannot be simulated by the two-dimensional finite difference method, a rectangular charge carrier 4 was used. The width of the charge carrier 4 was set to 0.75 mm, which is the average value of the upper and lower bases. Similarly, the width of the charged electret 3, which is the average value of the upper and lower bases, the gap between the charged electret 3 and the recovery electrode 5, the width of the recovery electrode 5, which is the average value of the upper and lower bases, and the gap between the recovery electrode 5 and the adjacent pair of charged electrets 3 were also set to 1.12 mm, 2.4 mm, 1.6 mm, and 0.6 mm, respectively. Therefore, the length of one unit is 5.72 mm in total.

更に、充電エレクトレット3の電荷密度を、0.1mC/m2 、0.2mC/m2、0.4mC/m2、及び1.0mC/m2と変えて、電荷搬送体4が上下充電エレクトレット3間にあるときの充電電荷量をシミュレーションした。
このとき、充電エレクトレット3の表面電位は、周囲に電荷搬送体4が存在しないとき、それぞれ、225V、450V、900V、及び2250Vである。充電のために接地された電荷搬送体4が、充電エレクトレット3に対し0.1mmの間隔を空けて置かれた場合は、2250Vあった電位は、1882V~2111Vに下がる。以下、シミュレーション結果を電位で表示する場合は、周囲に電荷搬送体4が存在しないときの電位である。
Furthermore, the charge density of the charged electret 3 was changed to 0.1 mC/m 2 , 0.2 mC/m 2 , 0.4 mC/m 2 , and 1.0 mC/m 2 , and the amount of charge when the charge carrier 4 was between the upper and lower charged electrets 3 was simulated.
At this time, the surface potential of the charged electret 3 is 225 V, 450 V, 900 V, and 2250 V, respectively, when no charge carrier 4 is present in the vicinity. When the charge carrier 4, which is grounded for charging, is placed at a distance of 0.1 mm from the charged electret 3, the potential drops from 2250 V to 1882 V to 2111 V. Hereinafter, when the simulation results are expressed in terms of potential, it is the potential when no charge carrier 4 is present in the vicinity.

充電エレクトレット3の電荷密度が、0.1mC/m2 、0.2mC/m2、0.4mC/m2、及び1.0mC/m2のときの充電電位を公式に基づいて計算すると、それぞれ、225V、450V、900V、2250Vになる。すなわち、充電電位は、エレクトレットの電荷密度に正比例して増加する。
それぞれの充電電位に対して、電荷搬送体4に注入される充電電荷量をシミュレーションした結果を表示すると、図11のようになる。すなわち、充電電荷量は、充電電位に正比例して増加する。
When the charge density of the charged electret 3 is 0.1 mC/ m2 , 0.2 mC/ m2 , 0.4 mC/ m2 , and 1.0 mC/ m2 , the charging potentials are calculated based on the formula to be 225 V, 450 V, 900 V, and 2250 V, respectively. That is, the charging potential increases in direct proportion to the charge density of the electret.
The results of simulating the amount of charge injected into the charge carrier 4 for each charging potential are shown in Figure 11. That is, the amount of charge increases in direct proportion to the charging potential.

次に、充電エレクトレットの電荷密度が、0.1mC/m2 、0.2mC/m2、0.4mC/m2、及び1.0mC/m2(即ち、充電電位が、225v、450V、900V、及び2250V)のときの充電電荷量を有する電荷搬送体4が、充電エレクトレット3を抜けて回収電極5に至る工程で受ける静電力をシミュレーションした。その結果を図12に示す。図11と合わせて考えると、電荷搬送体4の帯電量が増えると、電荷搬送体4が受ける静電力は、充電エレクトレット3を抜けた初期において後方に引かれるとき、及び中盤から後半にかけてその前方に引かれるときにおいても大幅に増加することが解る。 Next, the electrostatic force acting on the charge carrier 4 having the charge amount when the charge density of the charged electret is 0.1 mC/ m2 , 0.2 mC/ m2 , 0.4 mC/ m2 , and 1.0 mC/ m2 (i.e., the charging potential is 225 V, 450 V, 900 V, and 2250 V) in the process of passing through the charged electret 3 and reaching the recovery electrode 5 was simulated. The results are shown in Figure 12. Considering this together with Figure 11, it can be seen that as the charge amount of the charge carrier 4 increases, the electrostatic force acting on the charge carrier 4 increases significantly when it is pulled backward in the early stage after passing through the charged electret 3 and when it is pulled forward from the middle to the latter half.

更に、その関係を定量的にみるために、該静電力と電荷搬送体4の移動距離をもとに、電荷搬送体4が受ける正負の運動エネルギーを各充電電位別に計算し、それを合計して、各充電電位別の余剰エネルギーを求めた。その結果を、図13に示す。図13から、充電電位は、すくなくとも2.0kV以上が望ましいことが解る。 Furthermore, to quantitatively examine this relationship, the positive and negative kinetic energy received by the charge carrier 4 was calculated for each charging potential based on the electrostatic force and the distance traveled by the charge carrier 4, and the surplus energy for each charging potential was calculated by adding them up. The results are shown in Figure 13. From Figure 13, it can be seen that a charging potential of at least 2.0 kV or more is desirable.

なお、同図13から、余剰エネルギーは、充電電位の二乗に略比例している。そこで、充電電位と充電電荷量は、図11に示したように正比例するので、充電電位に替えて、充電電荷量の二乗に対して対応する余剰エネルギーをプロットした。その結果を示すグラフを図14に示す。
同図14から、余剰エネルギーは、略正確に、充電電荷量、すなわち、充電電位の二乗に正比例している。以上より、余剰エネルギーを大きくするためには、充電エレクトレットの帯電電位をより高くすることが効果的である。
As shown in Fig. 13, the surplus energy is approximately proportional to the square of the charging potential. Therefore, since the charging potential and the amount of charging charge are directly proportional to each other as shown in Fig. 11, the corresponding surplus energy was plotted against the square of the amount of charging charge instead of the charging potential. The graph showing the results is shown in Fig. 14.
14, the surplus energy is almost exactly proportional to the amount of charge, i.e., the square of the charging potential. From the above, in order to increase the surplus energy, it is effective to increase the charging potential of the charging electret.

前記した鏡像力の公式(1)から、鏡像力は、帯電体1と接地導体2との距離rの二乗に反比例することがわかっている。
すなわち、距離が短いほど、鏡像力は急激に大きくなり、少し長くなると急激に小さくなる。この点を考慮すると、充電エレクトレット3と回収電極5との間隔を長くするのは、その間の電荷搬送体4の移動の最初と最後を除いて、鏡像力はほとんど効かないのでムダであり、この間隔は短いほどよい。
そこで、この間隔のみを変えて、一定の帯電量を有する電荷搬送体4に作用する静電力をシミュレーションで求めた。なお、帯電後の電荷搬送体4に作用する電界力を除いた鏡像力の効果のみをみるために、充電手段を充電エレクトレット3に替えてエレクトレットでない充電電極3とし、接地した。
From the above-mentioned image force formula (1), it is known that the image force is inversely proportional to the square of the distance r between the charged body 1 and the ground conductor 2.
In other words, the shorter the distance, the greater the image force, and the longer the distance, the smaller the image force. Considering this, making the distance between the charging electret 3 and the recovery electrode 5 longer is a waste because the image force is almost ineffective except at the beginning and end of the movement of the charge carrier 4 between them, and it is better to make this distance shorter.
Therefore, only this distance was changed, and the electrostatic force acting on the charge carrier 4 having a constant charge amount was obtained by simulation. In order to observe only the effect of the image force excluding the electric field force acting on the charge carrier 4 after charging, the charging means was replaced by a non-electret charging electrode 3, which was grounded.

具体的には、充電電極3と回収電極5との間隔を、2380μmから1760μmに縮めて、-1.0nCの電荷を保持する電荷搬送体4に作用する鏡像力をシミュレーションで求めた。その結果を、2380μmの結果と並べて図15に示す。
しかしながら、電荷搬送体4の移動初期における左に引き戻す後退静電力も、中盤から後半にかけて右に引っ張る前進静電力も、同間隔が2380μmの場合の各静電力よりも小さくなった。その結果、余剰エネルギーも、0.247μJから0.168μJとなり、少なくなった。
Specifically, the distance between the charging electrode 3 and the recovery electrode 5 was reduced from 2380 μm to 1760 μm, and the image force acting on the charge carrier 4 holding a charge of −1.0 nC was determined by simulation. The results are shown in FIG. 15 alongside the results for 2380 μm.
However, both the backward electrostatic force pulling the charge carrier 4 back to the left in the early stage of its movement and the forward electrostatic force pulling it to the right from the middle to the latter half of its movement were smaller than the electrostatic forces when the spacing was 2380 μm. As a result, the surplus energy was also reduced from 0.247 μJ to 0.168 μJ.

この結果になったのは、充電電極3と回収電極5の間隔が狭くなると、充電電極3を抜けた電荷搬送体4には、充電電極3との間において左に引く後退鏡像力が働くのみならず、少し離れた回収電極5との間においては、右に引っ張る前進鏡像力が、距離が短い分だけより強く働き、その結果、間隔2380μmよりも、間隔1760μmの方が、作用する鏡像力は少し小さくなったと考えられる。
逆に、回収電極5に近づいた時も、距離が短い分だけ、後退鏡像力が強く、間隔2380μmよりも、間隔1760μmの方が、作用する鏡像力は少し小さくなったと考えられる。よって、前記した鏡像力の公式は当てはまらず、以下を検討した。
The reason for this result is that when the distance between the charging electrode 3 and the recovery electrode 5 becomes narrower, not only is a receding image force acting to the left between the charging electrode 3 and the charge carrier 4 that has left the charging electrode 3, but also a forward image force acting to the right between the charging electrode 3 and the slightly distant recovery electrode 5, which is stronger in proportion to the shorter distance. As a result, it is thought that the image force acting at a distance of 1760 μm is slightly smaller than that at a distance of 2380 μm.
Conversely, when approaching the recovery electrode 5, the receding image force is stronger because the distance is shorter, and it is considered that the image force acting at a distance of 1760 μm is slightly smaller than that at a distance of 2380 μm. Therefore, the above-mentioned formula for image force does not apply, and the following was considered.

充電電極3と回収電極5との間隔が、2380μmから1760μmに短縮された結果、円周上の1ユニットの長さも、5700μmから5130μmに短くなり、その結果、円周上に配置できるユニットの数は、41個から46個に増えた。
そこで、それぞれの場合において、電荷搬送体円板11が1回転したときの出力を比較した。まず、その発生電圧Vは、余剰エネルギーWがすべて搬送された電荷qの電位を上げるのに使用できると仮定すると、下記式(2)で計算される。
(数3)
V = W/q (2)

それぞれの場合、搬送電荷量qはともに1.0nCで、余剰エネルギーWは0.168μJと0.247μJなので、発生電圧Vは168Vと247Vになる。
よって、間隔1760μmの場合、電荷搬送体円板11が1回転するとき、1個の電荷搬送体4は、46個の回収電極に1.0nCの電荷を運ぶので、搬送電荷量は合計46nCになる。46個の電荷搬送体4があるので、電荷搬送体円板11の1回転で、合計2116nCの電荷が、回収電極5のコンデンサー6に蓄えられる。
電荷搬送体円板11の回転数が1000rpmだとすると、1秒間に16.7回転する。その結果、1秒間に回収コンデンサー6に回収される電荷の量、すなわち電流は35.3μAとなり、電圧との掛け算で得る出力は5.94mWとなる。同様の計算を、充電電極3と回収電極5との間隔が2380μmの場合も行うと、得られる電圧は247V、電流は28.0μA、及び出力は6.92mWとなり、間隔1760μmの場合より大きくなる。
As a result of the distance between the charging electrode 3 and the recovery electrode 5 being shortened from 2380 μm to 1760 μm, the length of one unit on the circumference was also shortened from 5700 μm to 5130 μm, and as a result, the number of units that could be arranged on the circumference increased from 41 to 46.
Therefore, we compared the output when the charge carrier disk 11 made one rotation in each case. First, assuming that all of the surplus energy W can be used to increase the potential of the transferred charge q, the generated voltage V can be calculated by the following formula (2).
(Number 3)
V = W / q (2)

In each case, the amount of carried charge q is 1.0 nC, and the excess energy W is 0.168 μJ and 0.247 μJ, so the generated voltage V is 168 V and 247 V.
Therefore, in the case of a spacing of 1760 μm, when the charge carrier disk 11 rotates once, one charge carrier 4 carries a charge of 1.0 nC to 46 recovery electrodes, so the total amount of charge carried is 46 nC. Since there are 46 charge carriers 4, a total of 2116 nC of charge is stored in the capacitor 6 of the recovery electrode 5 during one rotation of the charge carrier disk 11.
If the rotation speed of the charge carrier disk 11 is 1000 rpm, it rotates 16.7 times per second. As a result, the amount of charge collected by the recovery capacitor 6 per second, i.e., the current, is 35.3 μA, and the output obtained by multiplying this by the voltage is 5.94 mW. If a similar calculation is performed when the distance between the charging electrode 3 and the recovery electrode 5 is 2380 μm, the obtained voltage is 247 V, the current is 28.0 μA, and the output is 6.92 mW, which are greater than when the distance is 1760 μm.

以上の通り、充電電極3と回収電極5の間隔が広い方が、出力は大きくなったので、この間隔をさらに広げた。具体的には、該間隔を、3920μm、5360μm、7740μm、9680μm、及び12000μmに広げ、1.0nCを帯電した電荷搬送体4に作用する静電力をシミュレーションした。その結果を図16に示す。
同図から、電荷搬送体4に作用する静電力のピーク値は、充電電極3と回収電極5の間隔が狭いと低くなるが、8000μm以上の間隔の場合では、ピーク値は変わらないことがわかる。この結果は、8000μmくらい離れると、充電電極3との間に働く後退鏡像力はほとんどなくなったことを示唆していると思われる。
As described above, the output increased as the distance between the charging electrode 3 and the recovery electrode 5 became wider, so this distance was further widened. Specifically, the distance was widened to 3920 μm, 5360 μm, 7740 μm, 9680 μm, and 12000 μm, and the electrostatic force acting on the charge carrier 4 charged with 1.0 nC was simulated. The results are shown in FIG. 16.
From the figure, it can be seen that the peak value of the electrostatic force acting on the charge carrier 4 becomes lower when the distance between the charging electrode 3 and the recovery electrode 5 is narrow, but the peak value does not change when the distance is 8000 μm or more. This result seems to suggest that when the distance is about 8000 μm, the receding image force acting between the charging electrode 3 and the recovery electrode 5 almost disappears.

上図から、充電電極3と回収電極5の間隔毎に、電荷搬送体4が回収電極5に到達した時点で保有している余剰エネルギーを算出すると図17のようになる。これらの余剰エネルギーで搬送された1nCの電荷は、前記の式2に基づいて計算される電位に高められる。その結果を、図18に示す。 From the diagram above, if we calculate the surplus energy that the charge carrier 4 possesses when it reaches the recovery electrode 5 for each gap between the charging electrode 3 and the recovery electrode 5, we get the result shown in Figure 17. The 1 nC charge carried by this surplus energy is raised to the potential calculated based on Equation 2 above. The results are shown in Figure 18.

また、電荷搬送体4の回転1000rpmに伴って、1秒間に回収コンデンサー6に回収される電荷量、すなわち電流は、間隔ごとに前記同様に算出される。その結果を図19に示す。
各出力は、上記出力電圧と出力電流の掛け算として求められる。
その結果、上下電極板14、15と電荷搬送体円板11で構成される高さ1.74mmの1セットを、10cm立方体に57段に重ねたときの出力は、電荷搬送体4が1ユニットに1個の場合の出力の57倍となり、さらに、該10cm立方体を1m立方体(1m3)に1000個入れた発電機の出力は、その1000倍になる。該1m3の立方体装置の合計出力を、図20に示す。
以上の結果から、発電機の出力は、充電電極3と回収電極5の間隔がひろいほど大きくなるが、間隔が8000μm付近でピークとなり、それ以上広いと、逆に減少していくことがわかる。すなわち、最高の出力を得るためには、充電電極3と回収電極5の最適な間隔を選択する必要がある。
電荷搬送体の大きさ等によって最適値は異なると思われるが、本実施例の場合は7.5±2mmである。すなわち、電荷搬送体の幅0.76mmの10±2.5倍である。
なお、上記シミュレーションは、鏡像力の影響のみを見るために、充電エレクトレットに代えて、接地した充電電極で行ったが、以下前記後退電界力が加わる充電エレクトレットと比較する。
充電電極及びエレクトレット3夫々と回収電極5の間隔が1760μmのとき、この間を移動する電荷搬送体4に加わる静電力(鏡像力+後退電界力)をシミュレーションした。その結果を図21に示す。この図から、電荷搬送体4に加わる静電力は主に鏡像力であることがわかる。後退電界力が加わると、静電力は小さくなるので、余剰エネルギーも168.4μJから92.5μJに減少し、1立方メートルの装置の出力も、339Wから186Wに減少した。
The amount of charge collected by the recovery capacitor 6 in one second with the charge carrier 4 rotating at 1000 rpm, i.e., the current, is calculated for each interval in the same manner as above. The results are shown in FIG.
Each output is calculated as the product of the output voltage and the output current.
As a result, when one set of 1.74 mm high electrode plates 14, 15 and charge carrier disks 11 is stacked in 57 layers in a 10 cm cube, the output is 57 times the output when there is one charge carrier 4 per unit, and furthermore, the output of a generator with 1000 such 10 cm cubes placed in a 1 m cube (1 m3 ) is 1000 times that of the previous output. The total output of the 1 m3 cube device is shown in Figure 20.
From the above results, it can be seen that the generator output increases as the gap between the charging electrode 3 and the recovery electrode 5 increases, but it peaks at a gap of around 8000 μm and decreases if the gap is wider than that. In other words, to obtain the maximum output, it is necessary to select the optimal gap between the charging electrode 3 and the recovery electrode 5.
The optimum value is thought to vary depending on the size of the charge carrier, but in this embodiment it is 7.5±2 mm, that is, 10±2.5 times the width of the charge carrier, 0.76 mm.
In the above simulation, a grounded charged electrode was used instead of a charged electret in order to observe only the effect of the image force, but below it will be compared with a charged electret to which the receding electric field force is applied.
When the interval between the charging electrode, electret 3, and recovery electrode 5 is 1760 μm, the electrostatic force (image force + receding electric field force) acting on the charge carrier 4 moving between them was simulated. The results are shown in Figure 21. From this figure, it can be seen that the electrostatic force acting on the charge carrier 4 is mainly the image force. When the receding electric field force is applied, the electrostatic force becomes smaller, so the surplus energy also decreased from 168.4 μJ to 92.5 μJ, and the output of the 1 cubic meter device also decreased from 339 W to 186 W.

前記1ユニットに、電荷搬送体4が1個入るように、ユニット数と電荷搬送体4の数を合わせたので、充電電極3と回収電極5の間隔を長くしたとき、該1ユニットの長さも長くなって、電荷搬送体円板11上に配置される電荷搬送体の数も、46個から15個と少なくなる。
充電電極3と回収電極5の間隔が、例えば、7000μmを越えた場合、幅760μmの電荷搬送体4を複数入れることは機械的に問題なく、理論上も、その分だけ出力が増加する。ただし、先行する電荷搬送体4により、後行する電荷搬送体4に作用すべき前進鏡像力がカットされ、得られる剰余エネルギーが逆に少なくなると考えられる。
そこで、充電電極3と回収電極5との間隔が7360μmのとき、幅760μmで、-1.0nCに帯電した電荷搬送体4Aと4Bが、2280μmの間隔を空けて、充電電極3から回収電極5に移動する間に受ける静電力をシミュレーションした。その結果を、電荷搬送体4が1個の場合と並べて図22に示す。
The number of units and the number of charge carriers 4 are adjusted so that one unit contains one charge carrier 4. Therefore, when the distance between the charging electrode 3 and the recovery electrode 5 is increased, the length of one unit also increases, and the number of charge carriers arranged on the charge carrier disk 11 is reduced from 46 to 15.
If the distance between the charging electrode 3 and the recovery electrode 5 exceeds 7000 μm, for example, inserting multiple charge carriers 4 with a width of 760 μm will not cause any mechanical problems and will theoretically increase the output accordingly. However, it is considered that the forward image force acting on the trailing charge carrier 4 is cut by the leading charge carrier 4, and the obtained surplus energy will be reduced.
Therefore, when the distance between the charging electrode 3 and the recovery electrode 5 is 7360 μm, we simulated the electrostatic force that the charge carriers 4A and 4B, which are 760 μm wide and charged to -1.0 nC, experience as they move from the charging electrode 3 to the recovery electrode 5 with a distance of 2280 μm between them. The results are shown in Figure 22 alongside the case where there is one charge carrier 4.

図示するように、充電電極3を出た直後は、後行する電荷搬送体4Bに作用する鏡像力は、先行する電荷搬送体4Aにより、回収電極5との間で働くべき右向き前進鏡像力がカットされ、充電電極3との間に働く左向きの後退鏡像力のみ残ったので、左向き、即ち数値は負に大きくなった。
しかし、電荷搬送体4Bが回収電極5に近づくと、充電電極3との間に発生する左向きの後退鏡像力が、後行の電荷搬送体Bによりカットされたので、右向きの前進鏡像力が大きくなった。
従って、充電電極3を出た直後、後退鏡像力が大きくなったマイナスよりも、回収電極5近傍で、前進鏡像力が大きくなったプラスの方が大きく、余剰エネルギーは、1.67μJから2.55μJと増えた。
As shown in the figure, immediately after the trailing charge carrier 4B leaves the charging electrode 3, the rightward forward image force acting between the trailing charge carrier 4B and the recovery electrode 5 is cut off by the leading charge carrier 4A, and only the leftward retreating image force acting between the trailing charge carrier 4B and the charging electrode 3 remains, so the image force acts to the left, i.e., the numerical value becomes large and negative.
However, when the charge carrier 4B approached the recovery electrode 5, the leftward receding image force generated between the charge carrier 4B and the charging electrode 3 was blocked by the trailing charge carrier B, so the rightward forward image force became larger.
Therefore, immediately after leaving the charging electrode 3, the positive charge whose forward image force became large near the recovery electrode 5 was larger than the negative charge whose backward image force became large, and the surplus energy increased from 1.67 μJ to 2.55 μJ.

この結果、得られる電位は1673Vから2549Vと増加し、1秒間に回収される電荷量、すなわち電流は、電荷搬送体4が22個から44個に増えた効果で、8.07μAから16.1μAとなって2倍になり、出力は、13.5mWから41.1mWとなって約3倍になった。
上下電極板14、15と電荷搬送体円板11で構成される高さ1.74mmの1セットを、10cm立方体に57段に重ねたときの出力は、電荷搬送体4が1ユニットに1個の場合の0.769Wから2.34Wとなり、さらに、該10cm立方体を、1m立方体に1000個入れた発電機の出力は、769Wから、2.34kWになった。一軒の家に必要な電力をほぼ賄える量である。
As a result, the obtained potential increased from 1673 V to 2549 V, the amount of charge collected per second, i.e., the current, doubled from 8.07 μA to 16.1 μA due to the effect of increasing the number of charge carriers 4 from 22 to 44, and the output power increased approximately threefold from 13.5 mW to 41.1 mW.
When a set of 1.74 mm high electrodes 14, 15 and charge carrier disks 11 was stacked in 57 layers in a 10 cm cube, the output increased from 0.769 W (when there was one charge carrier 4 per unit) to 2.34 W. Furthermore, when 1000 of these 10 cm cubes were placed in a 1 m cube, the output of the generator increased from 769 W to 2.34 kW. This is enough to cover the electricity required for a house.

上記各種静電発電機を静電モータにすることもできる。
この場合は、前記回収電極5を接地し、かつ、搬送されてきた電荷搬送体4上の電荷を回収しなければよい。すなわち、回収端子を外せばよい。
従って、充電エレクトレット3と回収電極5に代わる接地加速電極9を、多数円周上に配置して、静電モータとしてよい。
The various electrostatic generators described above can also be used as electrostatic motors.
In this case, the recovery electrode 5 is grounded and the charge on the charge carrier 4 that has been transported is not recovered, that is, the recovery terminal is removed.
Therefore, a large number of charging electrets 3 and grounded acceleration electrodes 9 in place of the recovery electrodes 5 may be arranged on the circumference to form an electrostatic motor.

更に、変形例1では、充電エレクトレット3と回収電極5に代わる接地加速電極9を多数円周上に配置して、静電モータとしたが、これを直列に並べると静電加速器になる。
この場合、図23に示すように、樋型電荷搬送体4に代えて左側開放円筒型の電荷搬送体4を使用し、充電高電位源3と接地した加速電極9も平板状から円筒状に変えることで、より強力な加速器となる。なお、図中16は、これらを保持する固定円筒、例えば銃身である。
円筒型電荷搬送体4を弾丸として使用すれば、静電銃となり、宇宙船に乗せて、適当な重さの円筒型電荷搬送体4を宇宙船外に射出すれば、宇宙船の加速器(エンジン)になる。
Furthermore, in the first modification, a large number of grounded acceleration electrodes 9 in place of the charging electrets 3 and the recovery electrodes 5 are arranged on the circumference to form an electrostatic motor, but if these are arranged in series, an electrostatic accelerator will be formed.
In this case, as shown in Fig. 23, a more powerful accelerator can be obtained by using a cylindrical charge carrier 4 with an open left side instead of the trough-shaped charge carrier 4 and changing the charging high potential source 3 and the grounded accelerating electrode 9 from a flat plate to a cylindrical shape. In the figure, reference numeral 16 denotes a fixed cylinder, such as a gun barrel, that holds these components.
If the cylindrical charge carrier 4 is used as a bullet, it becomes an electrostatic gun, and if a cylindrical charge carrier 4 of an appropriate weight is placed on a spacecraft and ejected outside the spacecraft, it becomes an accelerator (engine) for the spacecraft.

上記したように、該非対称鏡像力駆動型の静電応用機器(静電発電機、静電モーター、静電加速器)は、充電電位源としてエレクトレットを使用するとき、外部からのエネルギーや消耗品の供給は不要なので、特に、停電で止まってはいけない交通信号、無線基地局、病院用電源、及び業務用冷蔵庫に使用することができる。また、エレクトレットの寿命は約100年なので、太陽圏外へ数十年の旅をする宇宙船や、体内密閉型人工心臓にも使用することができる。 As described above, when using electrets as a charging potential source, the asymmetric image force-driven electrostatic application devices (electrostatic generators, electrostatic motors, electrostatic accelerators) do not require external energy or consumable supplies, and therefore can be used in particular in traffic signals, wireless base stations, hospital power sources, and commercial refrigerators that must not stop due to a power outage. In addition, since the lifespan of electrets is about 100 years, they can also be used in spacecraft that travel beyond the solar sphere for several decades, and in internally sealed artificial hearts.

1: 点電荷
2: 対向平板接地電極
3: 充電電位源3(充電電極または充電エレクトレット)
4: 横置き樋型電荷搬送体
41:電荷搬送体の前面垂直板
42:電荷搬送体の上下平板
5: 電荷回収電極
6: 電荷回収電極用コンデンサー
7: 電荷注入導電性端子
8: 電荷回収導電性端子
9: 非対称鏡像力を強める接地加速電極
10: シールド電極
11: 電荷搬送体保持円板
12: 回転軸(支柱)
13: ボールベアリング
14: 充電用高電位源、加速電極及び電荷回収電極を支持する絶縁性支持体
15: 充電用高電位源、加速電極及び電荷回収電極を支持する絶縁性支持体
16: 円筒型充電用高電位源、円筒型加速電極を保持する円筒部材
1: Point charge 2: Opposing flat ground electrode 3: Source of charging potential 3 (charging electrode or charging electret)
4: Horizontal gutter-shaped charge carrier 41: Front vertical plate of the charge carrier 42: Top and bottom flat plates of the charge carrier 5: Charge recovery electrode 6: Capacitor for charge recovery electrode 7: Conductive terminal for charge injection 8: Conductive terminal for charge recovery 9: Grounded acceleration electrode for enhancing asymmetric image force 10: Shield electrode 11: Disk for holding the charge carrier 12: Rotation axis (support)
13: Ball bearing 14: Insulating support for supporting the charging high potential source, acceleration electrode, and charge recovery electrode 15: Insulating support for supporting the charging high potential source, acceleration electrode, and charge recovery electrode 16: Cylindrical member for holding the cylindrical charging high potential source and cylindrical acceleration electrode

Claims (7)

高電位を有する高電位源と、電荷回収電極と、前記高電位源から電荷回収電極へ進行し、その進行方向に直角な軸に対して前後非対称の形状を有する導電性の電荷搬送体とからなり、
高電位を有する前記高電位源に前記電荷搬送体を接近させ、同時にこれを接地することで、前記高電位源と異極性の電荷を該電荷搬送体に充電させて帯電し、前記電荷搬送体と高電位源電極との間に生じる後退鏡像力よりも、前記電荷搬送体と前記電荷回収電極との間に生じる前進鏡像力の方が大きくなる非対称鏡像力を生じさせ、該後退鏡像力と該前進鏡像力との差で該電荷搬送体を駆動し、且つ前記帯電電荷を電気的により高いポテンシャルまで持ち上げ、前記電荷回収電極で回収して発電する非対称鏡像力駆動型の静電発電機において、 高電位源の電位を2kV以上とする静電発電機。
a high potential source having a high potential, a charge recovery electrode, and a conductive charge carrier proceeding from the high potential source to the charge recovery electrode and having a shape asymmetrical with respect to an axis perpendicular to the direction of the proceeding,
In an asymmetric image force driven electrostatic generator, the charge carrier is brought close to the high potential source having a high potential and simultaneously grounded, thereby charging the charge carrier with a charge of a polarity opposite to that of the high potential source, generating an asymmetric image force in which the forward image force generated between the charge carrier and the charge recovery electrode is greater than the receding image force generated between the charge carrier and the high potential source electrode, and the charge carrier is driven by the difference between the receding image force and the forward image force, and the charged charge is raised to an electrically higher potential and recovered by the charge recovery electrode to generate electricity, wherein the potential of the high potential source is 2 kV or more.
請求1において、前記高電位源と前記回収電極の間隔を、出力が最大となる間隔の前後近傍とする静電発電機。 An electrostatic generator according to claim 1, in which the distance between the high potential source and the recovery electrode is set to approximately the distance at which the output is maximum. 請求項1において、前記高電位源と前記回収電極の間隔を、前記電荷搬送体の幅の約10±2.5倍とする静電発電機。 An electrostatic generator according to claim 1, in which the distance between the high potential source and the recovery electrode is approximately 10±2.5 times the width of the charge carrier. 請求項1において、前記高電位源と前記回収電極の間隔を約7.5±2mmとする静電発電機。 An electrostatic generator according to claim 1, in which the distance between the high potential source and the recovery electrode is approximately 7.5±2 mm. 請求項1において、前記高電位源と前記回収電極の間に複数の電荷搬送体が入れる静電発電機。 An electrostatic generator according to claim 1, in which multiple charge carriers are placed between the high potential source and the recovery electrode. 請求項1において、前記回収電極に替えて接地電極を置いた静電モータ。 An electrostatic motor according to claim 1, in which a ground electrode is placed in place of the recovery electrode. 請求項5において、前記高電位源と前記接地電極を直線的に配置した静電加速器。

6. The electrostatic accelerator according to claim 5, wherein the high potential source and the ground electrode are linearly arranged.

JP2022166006A 2022-10-17 2022-10-17 Asymmetric image force driven electrostatic generator Pending JP2024058731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022166006A JP2024058731A (en) 2022-10-17 2022-10-17 Asymmetric image force driven electrostatic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022166006A JP2024058731A (en) 2022-10-17 2022-10-17 Asymmetric image force driven electrostatic generator

Publications (1)

Publication Number Publication Date
JP2024058731A true JP2024058731A (en) 2024-04-30

Family

ID=90826812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022166006A Pending JP2024058731A (en) 2022-10-17 2022-10-17 Asymmetric image force driven electrostatic generator

Country Status (1)

Country Link
JP (1) JP2024058731A (en)

Similar Documents

Publication Publication Date Title
US20160065044A1 (en) Method And Apparatus For Mechanical Energy Harvesting Using Combined Magnetic And Microfluidic Energy Generation
CN113241966B (en) Rotary friction nano power generation device and method based on point discharge
CN111245285B (en) Friction generator, manufacturing method thereof and power generation method
CN107123785A (en) Lithium system is mended to pole piece
CN113489122B (en) Direct-current liquid drop generator and preparation method thereof
JP2024058731A (en) Asymmetric image force driven electrostatic generator
KR20140110261A (en) Energy harvesting device
CN205092792U (en) Friction nanogenerator and intelligent wheeled vehicle that generates electricity certainly
CN115765518A (en) Friction nanometer generator, power generation method and flexible sensor
CN114337352B (en) Intermittent sliding friction self-excited synchronous nano generator
KR101340450B1 (en) Apparatus and method for desalination using a stream of sea water
CN112468012B (en) Flexible vortex-shaped friction nano-generator for 3D printing
JP2020110019A (en) Electrostatic force application equipment for charging charge carrier in closely contact charge method
JP2020150780A (en) Electrostatic application equipment of charging infusion type, driven by image force
JP2015035938A (en) Switch-back electrostatic generator using asymmetrical electrostatic power
RU130162U1 (en) REMOTE ELECTROSTATIC ENGINE
Bhamre et al. Optimization of electric vehicle based on triboelectric nanogenerator
JP2020065353A (en) Electric-field driven static-electricity applied equipment for charging electric charge carrier
JP2022084111A (en) Structure of novel electret and using method thereof
JP2023138883A (en) Novel electrostatic generator with high output and high life time
JP2020039188A (en) Field driven electrostatic generator for charging charge carrier body by lorentz electromotive force
JP2012039842A (en) Electrostatic motor/electrostatic generator using a-type charge carrier body
CN211794728U (en) Travelling basket with from function of charging
JP2022030044A (en) Image force driving-type electrostatic power generator formed of minute component, and manufacturing method for the same
JP2012039842A6 (en) Electrostatic motor / electrostatic generator using vertical charge carrier

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221103