JP2020150780A - Electrostatic application equipment of charging infusion type, driven by image force - Google Patents

Electrostatic application equipment of charging infusion type, driven by image force Download PDF

Info

Publication number
JP2020150780A
JP2020150780A JP2019049237A JP2019049237A JP2020150780A JP 2020150780 A JP2020150780 A JP 2020150780A JP 2019049237 A JP2019049237 A JP 2019049237A JP 2019049237 A JP2019049237 A JP 2019049237A JP 2020150780 A JP2020150780 A JP 2020150780A
Authority
JP
Japan
Prior art keywords
charge
charge carrier
high potential
potential source
mirror image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019049237A
Other languages
Japanese (ja)
Inventor
酒井 捷夫
Toshio Sakai
捷夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019049237A priority Critical patent/JP2020150780A/en
Publication of JP2020150780A publication Critical patent/JP2020150780A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

To solve the problem in a longitudinally asymmetric image force acted on an electric charge conveying body by implanting an electric charge by an electrostatic induction to the electric charge conveying body having a longitudinally asymmetric shape in a progression direction that an image fore driving type electrostatic generator for conveying an implantation electric charge to a high potential has less an implanted electric charge and an image force acted on them, and thus a sufficient output cannot be obtained.SOLUTION: An electric charge conveying body is grounded to a high potential source having a high potential while approaching and adhering the electric charge conveying body to be conducted, and the electric charge conveying body is charged with an electric charge charged at the time.EFFECT: An output of a conveying electric charge amount and a power generator are severely increased.SELECTED DRAWING: Figure 11

Description

本発明は、前後非対称形状の電荷搬送体の帯電電荷に作用する鏡像力の強さが進行方向の前後で異なる現象を利用し、その鏡像力を駆動力とする充電注入型の静電発電応用機器に関するものである。 The present invention utilizes a phenomenon in which the strength of the mirror image force acting on the charged charge of a charge carrier having an asymmetric shape in the front-rear direction differs between the front and back in the traveling direction, and the charge injection type electrostatic power generation application using the mirror image force as the driving force. It is about equipment.

現在、我々が抱える最大の課題は、地球の温暖化、即ち環境問題である。
それを解決するために、二酸化炭素を発生しない発電方法が種々採用されている。原子力発電、太陽光発電、及び風力発電等である。
しかしながら、安全性、安定性、コスト、耐久性、及び小型化等に問題があり、完璧な解決案はいまだ得られていない。これを解決できる可能性があるのが、静電発電機である。
しかし、従来型の静電発電機では、この要求にこたえられず、依然として改良が必要である。
At present, the biggest issue we face is global warming, that is, environmental problems.
In order to solve this problem, various power generation methods that do not generate carbon dioxide have been adopted. Nuclear power generation, solar power generation, wind power generation, etc.
However, there are problems in safety, stability, cost, durability, miniaturization, etc., and a perfect solution has not yet been obtained. An electrostatic generator has the potential to solve this problem.
However, conventional electrostatic generators cannot meet this demand and still need improvement.

静電発電機の原理は、電荷注入電極(低電位にあり、以下、注入電極という)で、電荷を電荷搬送体に注入し、これに作用する静電力に逆らって、これを電荷回収電極(高電位にあり、以下、回収電極という)まで電気的に持ち上げ、そこで当該電荷を回収するというものである。
但し、現在の代表的な静電発電機であるバンデグラーフ発電機では、電荷搬送体を静電力に逆らって搬送するために、機械的手段(電気モータ)を使用している。当該モータで消費される電力が生成される電力よりも大きいため、高電位(約100万ボルト)発生装置ではあるが、発電機とは言えない。
The principle of the electrostatic generator is that the charge injection electrode (which is at a low potential and is hereinafter referred to as the injection electrode) injects charge into the charge carrier and counteracts the electrostatic force acting on the charge recovery electrode (charge recovery electrode). It is at a high potential and is electrically lifted to a recovery electrode) where the charge is recovered.
However, in the Van de Graaff generator, which is a typical current electrostatic generator, a mechanical means (electric motor) is used to transport the charge carrier against the electrostatic force. Since the power consumed by the motor is larger than the generated power, it is a high potential (about 1 million volts) generator, but it cannot be said to be a generator.

一方、鏡像力を、電荷搬送体の搬送力として使用する方式がある。鏡像力とは、電荷が金属の近くにある時、金属内に鏡像電荷が生じ、引力が発生することにより、この電荷に作用する静電気力のことである。鏡像力の強さは、電荷の二乗に比例し、金属までの距離の二乗に反比例する。
そこで、注入電極より離れた位置で、注入電極のコロナ放電により、電荷を電荷搬送体に載せることで、これらの間に作用しており、電荷搬送体を引き戻そうとする逆方向鏡像力(以下、逆鏡像力という)を弱める。そして、回収電極に接近した時に、当該電荷搬送体を回収電極に引き寄せる順方向鏡像力(以下、順鏡像力という)を相対的に強くすることができる(参考特許文献1)。この場合、電荷搬送体の形状は球形を仮定していた。
On the other hand, there is a method in which the mirror image force is used as the transfer force of the charge carrier. The mirror image force is an electrostatic force that acts on the electric charge when the electric charge is near the metal, because the mirror image charge is generated in the metal and an attractive force is generated. The strength of the mirror image force is proportional to the square of the electric charge and inversely proportional to the square of the distance to the metal.
Therefore, at a position away from the injection electrode, the electric charge is placed on the charge carrier by the corona discharge of the injection electrode, and the charge acts between them, and the reverse mirror image force (hereinafter, hereinafter, the charge carrier) tries to pull back the charge carrier. (Reverse mirror image power) is weakened. Then, when approaching the recovery electrode, the forward mirror image force (hereinafter referred to as the forward mirror image force) that attracts the charge carrier to the recovery electrode can be relatively strengthened (Reference Patent Document 1). In this case, the shape of the charge carrier was assumed to be spherical.

しかしながら、コロナ放電で電荷を与えるのは、実際には困難であり、当該静電発電機は実現しなかった。そこで、コロナ放電に代えて、静電誘導で、電荷搬送体に電荷を注入することにした。
その場合、電荷搬送体の形状は、球形よりも平板状の方が注入電荷量が多くなるので、平板状に変えた。但し、平板状では、帯電した電荷搬送体が注入電極より抜けた後に、これを引き戻そうと働く逆鏡像力と、回収電極に接近した時に、これを引き寄せようとする順鏡像力の強さが等しく、電荷搬送体を駆動するエネルギーは得られないので、平板状電荷搬送体の先端を直角に折って、横置きL字形状とした。この結果、回収電極に接近した時の順鏡像力の方が、電荷搬送体が注入電極を抜けた時の逆鏡像力より強くなり、その差で、電荷搬送体を駆動できた。
However, it is actually difficult to give an electric charge by corona discharge, and the electrostatic generator has not been realized. Therefore, instead of corona discharge, we decided to inject charge into the charge carrier by electrostatic induction.
In that case, the shape of the charge carrier was changed to a flat plate shape because the amount of injected charge was larger in the flat plate shape than in the spherical shape. However, in the flat plate shape, the strength of the reverse mirror image force that works to pull back the charged charge carrier after it comes out of the injection electrode is equal to the strength of the forward mirror image force that tries to pull it back when it approaches the recovery electrode. Since the energy to drive the charge carrier cannot be obtained, the tip of the flat plate-shaped charge carrier is folded at a right angle to form a horizontal L-shape. As a result, the forward mirror image force when approaching the recovery electrode became stronger than the reverse mirror image force when the charge carrier passed through the injection electrode, and the difference was enough to drive the charge carrier.

この静電誘導による電荷注入型の鏡像力を利用した静電発電機の構成を、参考特許文献2および非特許文献1で説明する。
図1は原理説明図で、図2は、電荷搬送体に作用する静電力をシミュレーションするための装置の正面図である。
図1、図2において、参照番号1は、接地された対抗電極2に電荷を誘導させるために設けられたの高電位の静電誘導電位源(以下、高電位源という)であり、エレクトレットにより形成され、平均値で+3165Vの電位を有する。
尚、エレクトレットに代えて、強誘電体を使用することもできる。また、エレクトレットに代えて、電極を設け、図示しない電源より当該電極に電圧を加えてもよい。
Reference Patent Document 2 and Non-Patent Document 1 describe the configuration of an electrostatic generator utilizing the charge injection type mirror image force by electrostatic induction.
FIG. 1 is a principle explanatory view, and FIG. 2 is a front view of a device for simulating an electrostatic force acting on a charge carrier.
In FIGS. 1 and 2, reference numeral 1 denotes a high-potential electrostatic induction potential source (hereinafter referred to as a high-potential source) provided for inducing an electric charge to the grounded counter electrode 2, and is referred to by an electret. It is formed and has an average potential of +3165V.
In addition, a ferroelectric substance can be used instead of the electret. Further, instead of the electret, an electrode may be provided and a voltage may be applied to the electrode from a power source (not shown).

高電位源1の幅は1.0mmで、奥行きは1.2mm、厚さは0.05mmである。高電位源1の1.4mm真下の位置に、高電位源1と同一面積の対抗電極2が置かれる。
高電位源1及び、対抗電極2の右側面から2.0mm離れた位置に、電荷回収電極3として一対の平行平板電極が置かれる。電荷回収電極3の幅と奥行きは、高電位源や対向電極と同じである。電荷回収電極3となる平行平板電極間の間隔は、後述するL形状の電荷搬送体4が通り抜けられるように0.3mmに設定されている。電荷回収電極3の電位は-100Vである。
The high potential source 1 has a width of 1.0 mm, a depth of 1.2 mm, and a thickness of 0.05 mm. A counter electrode 2 having the same area as the high potential source 1 is placed at a position 1.4 mm directly below the high potential source 1.
A pair of parallel plate electrodes are placed as charge recovery electrodes 3 at positions 2.0 mm away from the right side surfaces of the high potential source 1 and the counter electrode 2. The width and depth of the charge recovery electrode 3 are the same as those of the high potential source and the counter electrode. The distance between the parallel plate electrodes serving as the charge recovery electrodes 3 is set to 0.3 mm so that the L-shaped charge carrier 4, which will be described later, can pass through. The potential of the charge recovery electrode 3 is -100V.

参照番号4は、L字形状の電荷搬送体を示している。その左右方向の幅は0.8mm、奥行きは1.0mm、厚さは0.05mm、右端の垂直壁の高さは0.2mmである。
参照番号5は、高電位源1と対向電極2の各右端の間に置かれたシールド電極である。シールド電極5は高電位源1の下0.35mmに置かれ、その長さは0.6mm、幅は0.05mmであり、接地されている。
なお、このシールド電極5を置かないと、高電位源1の正電荷が、電荷搬送体4で搬送される負電荷に強い静電引力を及ぼして、その運動エネルギーを減少させてしまう。
参照番号6は、回収電極3で電荷搬送体4から回収した電荷を蓄積するコンデンサーである。参照番号7は、電荷搬送体4に対してこれを引き戻す方向に働く逆鏡像力の、参照番号8は、電荷搬送体4に対してこれを引き寄せる方向に働く順鏡像力の各方向である。
Reference numeral 4 indicates an L-shaped charge carrier. The width in the left-right direction is 0.8 mm, the depth is 1.0 mm, the thickness is 0.05 mm, and the height of the vertical wall at the right end is 0.2 mm.
Reference numeral 5 is a shield electrode placed between each right end of the high potential source 1 and the counter electrode 2. The shield electrode 5 is placed 0.35 mm below the high potential source 1, has a length of 0.6 mm and a width of 0.05 mm, and is grounded.
If the shield electrode 5 is not provided, the positive charge of the high potential source 1 exerts a strong electrostatic attraction on the negative charge carried by the charge carrier 4, and the kinetic energy thereof is reduced.
Reference numeral 6 is a capacitor that stores the charge recovered from the charge carrier 4 by the recovery electrode 3. Reference number 7 is a reverse mirror image force acting in a direction of pulling back the charge carrier 4, and reference number 8 is a forward mirror image force acting in a direction of pulling the charge carrier 4.

無帯電の電荷搬送体4が、図高電位源1の左側から進入し、図示する高電位源1の下方位置に来た時、その電位は+59.8Vになる。対向電極2には、図示されない導電性細線が取り付けられており、この時、電荷搬送体4が当該導電性細線に接し、接地されている対向電極2と導通されると、高電位源1の正電荷によって対向電極2に静電誘導されていた負電荷が、電荷搬送体4に注入されて電荷搬送体4は負帯電する。この結果、電荷搬送体4の電位は0Vになり、注入電荷量は-9.55pCになる。
この時、注入される電荷の量は、電荷搬送体4と対向電極2の向き合う面積に比例するので、電荷搬送体4の形状は平板状が最適である。
電荷搬送体4はさらに図中右に進み、回収電極3の中に入り、搬送した電荷は回収電極3に回収される。
この行程において、電荷搬送体4の形状が、図2のように、進行方向を垂直に折り曲げた横向きL字形であると、対向電極2との間に発生する逆鏡像力は小さく、回収電極3との間に発生する順鏡像力は大きくなる。この力の差を利用して、電荷搬送体4を機械的に駆動し、且つ、電荷を電気的により高い位置に引き上げることができる。
When the uncharged charge carrier 4 enters from the left side of the high potential source 1 in the figure and comes to a position below the high potential source 1 shown in the figure, its potential becomes + 59.8V. A conductive thin wire (not shown) is attached to the counter electrode 2. At this time, when the charge carrier 4 is in contact with the conductive thin wire and is conducted with the counter electrode 2 which is grounded, the high potential source 1 The negative charge electrostatically induced in the counter electrode 2 by the positive charge is injected into the charge carrier 4, and the charge carrier 4 is negatively charged. As a result, the potential of the charge carrier 4 becomes 0V, and the injected charge amount becomes −9.55pC.
At this time, since the amount of charged charge is proportional to the area where the charge carrier 4 and the counter electrode 2 face each other, the shape of the charge carrier 4 is optimally flat.
The charge carrier 4 further advances to the right in the figure, enters the recovery electrode 3, and the transferred charge is recovered by the recovery electrode 3.
In this process, when the shape of the charge carrier 4 is a lateral L-shape with the traveling direction bent vertically as shown in FIG. 2, the reverse mirror image force generated between the charge carrier 4 and the counter electrode 2 is small, and the recovery electrode 3 The forward mirror image force generated between and is increased. This difference in force can be used to mechanically drive the charge carrier 4 and electrically raise the charge to a higher position.

ここで、図2に示す装置の構成で、二次元差分法により求めた当該電荷搬送体に作用する鏡像力を、図3と図4に示す。
図3は、電荷搬送体4が、対向電極2より出る前後の鏡像力(逆鏡像力)で、特に出た直後、すなわち、対向電極2の右端と、電荷搬送体4の左端の間隔が、0.05mmの時に最大となり、4.5μNになる。
一方、図4は、当該電荷搬送体4が回収電極3に入る前後の鏡像力(順鏡像力)を示している。特に、電荷搬送体4と回収電極3の距離が、0.1mmになった時、7.0μNとなる。なお、対向電極2と回収電極3の中間地点では、各鏡像力は作用しない。
Here, in the configuration of the device shown in FIG. 2, the mirror image force acting on the charge carrier obtained by the two-dimensional difference method is shown in FIGS. 3 and 4.
FIG. 3 shows the mirror image force (reverse mirror image force) before and after the charge carrier 4 comes out of the counter electrode 2, and the distance between the right end of the counter electrode 2 and the left end of the charge carrier 4 is particularly shortly after the charge carrier 4. It reaches a maximum at 0.05 mm and reaches 4.5 μN.
On the other hand, FIG. 4 shows the mirror image force (forward mirror image force) before and after the charge carrier 4 enters the recovery electrode 3. In particular, when the distance between the charge carrier 4 and the recovery electrode 3 is 0.1 mm, it becomes 7.0 μN. It should be noted that each mirror image force does not act at the intermediate point between the counter electrode 2 and the recovery electrode 3.

図5は、逆鏡像力によって失われたエネルギーと、順鏡像力により得られたエネルギーを計算した結果を示している。
図示するように、両者の差は、約1nJあり、これを利用して、当該電荷搬送体4を機械的に駆動し、且つその帯電電荷を電気的に高電位まで持ち上げることができる。
そして、電荷搬送体4が一対の回収電極3間に入り、夫々の中心点が一致したとき、電荷搬送体4は、回収電極3と電気的に短絡されて、その電位は-100Vとなり、搬送された電荷は回収電極3に移動する。
但し、回収電極3が、完全に電荷搬送体4を外部の電界よりシールドしていないので、99.2%の電荷は回収電極3に回収されるが、0.8%の電荷は電荷搬送体4に残される。
よって、-9.55pC * 0.992 = -9.47pCの電荷が、0Vから-100Vの電位まで運ばれたので、0.947nJの静電エネルギーが創出されたことになる。
FIG. 5 shows the results of calculating the energy lost by the reverse mirror image force and the energy obtained by the forward mirror image force.
As shown in the figure, the difference between the two is about 1 nJ, which can be used to mechanically drive the charge carrier 4 and electrically raise the charged charge to a high potential.
Then, when the charge carrier 4 enters between the pair of recovery electrodes 3 and their center points coincide with each other, the charge carrier 4 is electrically short-circuited with the recovery electrode 3, and its potential becomes -100V, and the charge carrier 4 is transported. The charged charge is transferred to the recovery electrode 3.
However, since the recovery electrode 3 does not completely shield the charge carrier 4 from the external electric field, 99.2% of the charge is recovered by the recovery electrode 3, but 0.8% of the charge is left in the charge carrier 4. ..
Therefore, the charge of -9.55pC * 0.992 = -9.47pC was carried from the potential of 0V to -100V, and the electrostatic energy of 0.947nJ was created.

上記シミュレーションで確認した当該静電誘導型の静電発電機を実際に試作して実験することができるが、上記寸法の少なくとも10倍乃至30倍の大きさが必要になる。これが機械的に可能であっても、エレクトレット高電位源の電位を10倍にすることは不可能である。この場合、電位を上げず、サイズのみ10倍にすると、単位面積当たりの注入電荷量は、1/10に下がってしまう。
しかしながら、近時、電荷搬送体に、静電誘導方式とは異なり、格段に多い電荷を注入できる新しい電荷注入方式が発明されており、この新しい電荷注入方式を、鏡像力を利用する静電誘導型の静電発電機で採用すると、その注入電荷量が大幅に増加して、実使用できる可能性がある。
The electrostatic induction type electrostatic generator confirmed in the above simulation can be actually prototyped and tested, but the size must be at least 10 to 30 times the above dimensions. Even if this is possible mechanically, it is not possible to multiply the potential of the electret high potential source by a factor of 10. In this case, if only the size is increased by 10 times without increasing the potential, the amount of injected charge per unit area will be reduced to 1/10.
However, recently, a new charge injection method has been invented that can inject a significantly larger amount of charge into a charge carrier, unlike the electrostatic induction method. This new charge injection method is used for electrostatic induction using mirror image force. If it is used in a type electrostatic generator, the amount of injected charge will increase significantly, and there is a possibility that it can be used in practice.

本発明の電荷注入方式では、高電位の高電位源1を対向電極2の位置に置き、電荷搬送体4と高電位源1を非常に狭い間隔で向き合わせて、電荷搬送体4を接地するものである。
詰り、高電位源1と電荷搬送体4は、その間の空気層を挟んでコンデンサーを形成するため、電荷搬送体4が接地されると、電荷搬送体4にコンデンサー充電電流が流れ込む。すなわち、コンデンサー充電型電荷注入方式であり、以下、充電型注入方式という。尚、当該電荷搬送体4と高電位源1の間隔が0.05mmの時、充電電荷量は、-448pCとなり、上記静電誘導型注入方式の約50倍となった。
In the charge injection method of the present invention, the high-potential high-potential source 1 is placed at the position of the counter electrode 2, the charge carrier 4 and the high-potential source 1 face each other at a very narrow interval, and the charge carrier 4 is grounded. It is a thing.
Since the high potential source 1 and the charge carrier 4 form a capacitor with an air layer between them, when the charge carrier 4 is grounded, a capacitor charging current flows into the charge carrier 4. That is, it is a capacitor rechargeable charge injection method, and is hereinafter referred to as a rechargeable charge injection method. When the distance between the charge carrier 4 and the high potential source 1 was 0.05 mm, the charge charge amount was -448 pC, which was about 50 times that of the electrostatic induction injection method.

[特許文献1]特開2002−135468号公報
[特許文献2]特開2006−325394号公報
[特許文献3]特開2008−005690号公報
[Patent Document 1] Japanese Unexamined Patent Publication No. 2002-135468
[Patent Document 2] Japanese Unexamined Patent Publication No. 2006-325394
[Patent Document 3] Japanese Unexamined Patent Publication No. 2008-005690

[非特許文献1]2006年米国静電気学会年次大会予稿集P.137
[非特許文献2][Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010
[Non-Patent Document 1] Proceedings of the 2006 Annual Meeting of the American Society of Electrostatics P.137
[Non-Patent Document 2] [Asymmetric Electrostatic Forces and a New Electrostatic Generator], Nova Science Publishers, New York, 2010

本発明の目的は、鏡像力駆動型静電発電機の注入電荷量を大幅に増加させて、実際に使用できるようにすることである。 An object of the present invention is to significantly increase the injected charge amount of the mirror image force driven electrostatic generator so that it can be actually used.

課題を解決する為の手段Means to solve problems

上記本発明の目的は、電荷搬送体に対する電荷の注入方式を、従来の静電誘導型から充電型に変えて、当該電荷搬送体に大量の電荷を注入することで達成できる。 The above object of the present invention can be achieved by changing the method of injecting electric charge into the charge carrier from the conventional electrostatic induction type to the rechargeable type and injecting a large amount of charge into the charge carrier.

本発明の各実施例によれば、充電型注入方式で電荷搬送体に注入される電荷量は、静電誘導方式で注入される電荷量より格段に大きいため、当該電荷搬送体が搬送できる電荷量は格段に増大し、また電荷搬送体に作用する鏡像力も格段に強くなって鏡像力駆動型静電発電機は実用(試験機及び製品)化できるようになる。 According to each embodiment of the present invention, the amount of charge injected into the charge carrier by the rechargeable injection method is much larger than the amount of charge injected by the electrostatic induction method, so that the charge that can be carried by the charge carrier is much larger. The amount will increase remarkably, and the mirror image force acting on the charge carrier will also become remarkably strong, so that the mirror image force drive type electrostatic generator can be put into practical use (testing machine and product).

図1は、従来の鏡像力駆動型発電機の原理を説明する模式図である。FIG. 1 is a schematic diagram illustrating the principle of a conventional mirror image power drive type generator. 図2は、従来の鏡像力駆動型静電発電機において、シミュレーションにより電荷搬送体に作用する静電力を求めるための装置正面図である。FIG. 2 is a front view of a device for obtaining an electrostatic force acting on a charge carrier by simulation in a conventional mirror image force drive type electrostatic generator. 図3は、電荷搬送体が、注入電極より出る時間前後の鏡像力(逆鏡像力)を示すグラフである。FIG. 3 is a graph showing the mirror image force (reverse mirror image force) before and after the time when the charge carrier exits the injection electrode. 図4は、電荷搬送体が、回収電極に入る時間前後の鏡像力(順鏡像力)を示すグラフである。FIG. 4 is a graph showing the mirror image force (forward mirror image force) before and after the time when the charge carrier enters the recovery electrode. 図5は、逆鏡像力によって失われたエネルギーと、順静電力により得られたエネルギーを示すグラフである。FIG. 5 is a graph showing the energy lost by the reverse mirror image force and the energy obtained by the forward electrostatic force. 図6は、充電型注入方式の鏡像力駆動型静電発電機の正面図である。FIG. 6 is a front view of a rechargeable injection type mirror image force driven electrostatic generator. 図7は、高電位源の電圧に対して、電荷搬送体に充電注入される電荷量を示すグラフである。FIG. 7 is a graph showing the amount of charge charged and injected into the charge carrier with respect to the voltage of the high potential source. 図8は、電荷搬送体に作用する順鏡像力と逆鏡像力を別々に求めた結果を示すグラフである。FIG. 8 is a graph showing the results of separately obtaining the forward mirror image force and the reverse mirror image force acting on the charge carrier. 図9は、順鏡像力と逆鏡像力の差と、実質の鏡像力を示すグラフである。FIG. 9 is a graph showing the difference between the forward mirror image force and the reverse mirror image force and the actual mirror image force. 図10は、電荷搬送体が高電位源から回収電極に至る間に受ける合計静電力を示すグラフである。FIG. 10 is a graph showing the total electrostatic force received by the charge carrier from the high potential source to the recovery electrode. 図11は、本発明の第一実施例を実施するための装置の構成を示す斜視図である。FIG. 11 is a perspective view showing a configuration of an apparatus for carrying out the first embodiment of the present invention. 図12は、電荷搬送体が、支持体が接地された高電位源から接地された回収電極に至る間に受けた実質鏡像力を示すグラフであるFIG. 12 is a graph showing the substantial mirror image force received by the charge carrier from the grounded high potential source to the grounded recovery electrode. 図13は、合計静電力と、実質鏡像力、およびその差を示すグラフである。FIG. 13 is a graph showing the total electrostatic force, the substantial mirror image force, and the difference between them. 図14は、第二実施例において、電荷搬送体が、高電位源からシールド電極を抜けて回収電極に至る間に受ける合計静電力を示すグラフである。FIG. 14 is a graph showing the total electrostatic force received by the charge carrier from the high potential source through the shield electrode to the recovery electrode in the second embodiment. 図15は、本発明の第二実施例を実施するための装置の構成を示す斜視図である。FIG. 15 is a perspective view showing a configuration of an apparatus for carrying out the second embodiment of the present invention. 図16は、本発明の第三実施例を実施するための装置の構成を示す斜視図である。FIG. 16 is a perspective view showing a configuration of an apparatus for carrying out the third embodiment of the present invention. 図17は、第三実施例において、電荷搬送体に作用する合計静電力を示すグラフである。FIG. 17 is a graph showing the total electrostatic force acting on the charge carrier in the third embodiment. 図18は、本発明の第四実施例を実施するための装置の構成を示す斜視図である。FIG. 18 is a perspective view showing a configuration of an apparatus for carrying out the fourth embodiment of the present invention.

発明を実施する為の形態Form for carrying out the invention

出願人は、鏡像力駆動型静電発電機において、電荷搬送体が搬送する電荷量を大幅に増やして、当該発電機を実用化するという目的を、高電位を有する高電位源と電荷搬送体を接近させて両者間に空気層コンデンサーを形成し、電荷搬送体を接地して当該電荷搬送体に充電注入される電荷で当該電荷搬送体を大量に帯電することで実現した。 The applicant has set a high potential source and a charge carrier having a high potential for the purpose of significantly increasing the amount of charge carried by the charge carrier in the mirror image force driven electrostatic generator and putting the generator into practical use. Was brought close to each other to form an air layer condenser, the charge carrier was grounded, and the charge carrier was charged in large quantities with the charge injected into the charge carrier.

充電型電荷注入方式を使用する鏡像力駆動型の静電発電機の実使用性を確認するために、先ず、シミュレーションで、電荷搬送体に作用する静電力を求める。その際、試作機を作成して、実験でも実使用性を確認するために、試作機のサイズは大きくした。その正面図を図6に示す。
図6において、参照番号1は、高電位源で、エレクトレット、強誘電体または高電圧が印加された電極で形成される。なお、当該高電位源1は、前記従来の鏡像力駆動型静電発電機では、静電誘導を起こさせるための誘導子1に対応する。
参照番号3は回収電極で、参照番号4は電荷搬送体である。電荷搬送体4の形状は、横置きL字形に代えて、それ2つ重ねた樋型とした。上下に、高電位源と向き合う水平板があるので、L字形の2倍の電荷が充電される。
In order to confirm the actual usability of the mirror image force drive type electrostatic generator using the rechargeable charge injection method, first, the electrostatic force acting on the charge carrier is obtained by simulation. At that time, the size of the prototype was increased in order to create a prototype and confirm the actual usability in the experiment. The front view is shown in FIG.
In FIG. 6, reference numeral 1 is a high potential source, formed of an electret, a ferroelectric substance, or an electrode to which a high voltage is applied. The high potential source 1 corresponds to an inductor 1 for causing electrostatic induction in the conventional mirror image force drive type electrostatic generator.
Reference numeral 3 is a recovery electrode, and reference numeral 4 is a charge carrier. The shape of the charge carrier 4 was a gutter shape in which two of them were stacked instead of the horizontally placed L shape. Since there are horizontal plates on the top and bottom facing the high potential source, it is charged twice as much as the L-shape.

高電位源1の幅は19.2mm、回収電極3の幅は32.0mm、両者間の間隔は33.0mmとした。上下高電位源1および上下回収電極3の間隔は20.4mm、上下高電位源1および上下回収電極3と、電荷搬送体4の上下水平板の間隔は5.0mmとした。電荷搬送体4は厚さ0.2mmの金属板で形成され、その横幅は10.2mm、縦は10.4mm、奥行は60.0mmである。
先ず、この構成で、高電位源1を電極とし、1乃至10kVの電圧を加えた時、電荷搬送体4に充電注入される電荷量をシミュレーションで求めた。その結果を図7に示す。図示より、高電位源1の電圧に正比例して注入電荷量が増加することが分かる。
The width of the high potential source 1 was 19.2 mm, the width of the recovery electrode 3 was 32.0 mm, and the distance between the two was 33.0 mm. The distance between the upper and lower high potential sources 1 and the upper and lower recovery electrodes 3 was 20.4 mm, and the distance between the upper and lower high potential sources 1 and the upper and lower recovery electrodes 3 and the upper and lower horizontal plates of the charge carrier 4 was 5.0 mm. The charge carrier 4 is formed of a metal plate having a thickness of 0.2 mm, and has a width of 10.2 mm, a length of 10.4 mm, and a depth of 60.0 mm.
First, in this configuration, when the high potential source 1 was used as an electrode and a voltage of 1 to 10 kV was applied, the amount of charge charged and injected into the charge carrier 4 was determined by simulation. The result is shown in FIG. From the illustration, it can be seen that the injected charge amount increases in direct proportion to the voltage of the high potential source 1.

次に、帯電した電荷搬送体4に、高電位源1との間に働く逆鏡像力と、回収電極3との間に働く順鏡像力を、別々にシミュレーションで求めた。
具体的には、高電位源1と回収電極3の中間点に帯電した電荷搬送体4を置き、そして回収電極3を外し、高電位源1を接地して電荷搬送体4に作用する静電力、すなわち、逆鏡像力を求めた。また、逆に、高電位源1を外し、そして回収電極3を接地して順静電力を求めた。そして、電荷搬送体4の帯電量を変えて順逆鏡像力を求めた結果を図8に示す。
図8から、順静電力は逆静電力の3倍も大きいことが分かる。また、鏡像力は、帯電電荷量の二乗に比例して強くなることも明らかである。尚、この順逆鏡像力の差が、実際の鏡像力になると思われる。
Next, the reverse mirror image force acting on the charged charge carrier 4 with the high potential source 1 and the forward mirror image force acting on the recovery electrode 3 were separately obtained by simulation.
Specifically, a charged charge carrier 4 is placed at an intermediate point between the high potential source 1 and the recovery electrode 3, the recovery electrode 3 is removed, and the high potential source 1 is grounded to act on the charge carrier 4. That is, the reverse mirror image power was obtained. On the contrary, the high potential source 1 was removed, and the recovery electrode 3 was grounded to obtain the forward electrostatic force. Then, the result of obtaining the forward / reverse mirror image force by changing the charge amount of the charge carrier 4 is shown in FIG.
From FIG. 8, it can be seen that the forward electrostatic force is three times as large as the reverse electrostatic force. It is also clear that the mirror image force becomes stronger in proportion to the square of the charge amount. It is considered that this difference in forward / reverse mirror image power becomes the actual mirror image power.

そこで、接地された高電位源1と接地された回収電極3の両方が存在する状態で、当該帯電した電荷搬送体4に働く静電力、すなわち、実質鏡像力を求めた。その結果を、先に求めた順逆鏡像力差と並べて図9に示す。
図9から、実質鏡像力は、別々に求めた順鏡像力と逆鏡像力の差の半分以下であることが分かる。
この理由は、接地電極が片側に一つあるときは、電荷搬送4上の帯電電荷は、ほとんど接地電極側に偏るのに対して、接地電極が両側にある場合は、帯電電荷も両側に分かれるからである。
Therefore, in the presence of both the grounded high potential source 1 and the grounded recovery electrode 3, the electrostatic force acting on the charged charge carrier 4, that is, the substantial mirror image force was obtained. The results are shown in FIG. 9 side by side with the previously obtained forward / reverse mirror image force difference.
From FIG. 9, it can be seen that the substantial mirror image force is less than half the difference between the separately obtained forward mirror image force and the reverse mirror image force.
The reason for this is that when there is one ground electrode on one side, the charged charge on the charge carrier 4 is mostly biased toward the ground electrode side, whereas when the ground electrode is on both sides, the charged charge is also divided on both sides. Because.

当該実質鏡像力でも、その強さは、帯電量の二乗に比例して大きくなっている。ゆえに、鏡像力を利用する方式では、帯電量はできるだけ多い方がよい。
そのためには、高電位源1の電位は高いほど有利であるが、この装置の構成での試作実験機では、9kV以上では、高電位源1と接地された電荷搬送体4のあいだに、試作実験機では、時々放電が発生した。その間隔が、設計通りに5mmに保たれていれば放電は発生しないはずであるが、試作機の精度が悪く、電荷搬送体の軌道がずれて間隔が3mm以下になってしまったと考えられる。
Even in the actual mirror image force, its strength increases in proportion to the square of the amount of charge. Therefore, in the method using the mirror image force, the amount of charge should be as large as possible.
For that purpose, the higher the potential of the high potential source 1, the more advantageous it is, but in the prototype experimental machine with the configuration of this device, at 9 kV or higher, the prototype is made between the high potential source 1 and the grounded charge carrier 4. In the experimental machine, discharge sometimes occurred. If the interval is kept at 5 mm as designed, no discharge should occur, but it is probable that the accuracy of the prototype was poor and the orbit of the charge carrier deviated and the interval became 3 mm or less.

そこで、ここでは、高電位電極1の電圧を+8.0kVとする。
その時、電荷搬送体4に充電注入する電荷量は−30.8nCである。この電荷を有する電荷搬送体4の左端が高電位源1の右端に並んだ地点から、電荷搬送体4の右端が回収電極3の左端に到達するまでの各地点で、当該電荷搬送体4が受ける静電力をシミュレーションで求めた。その結果を図10に示す。
図10から、電荷搬送体4の左端と高電位源1の右端の間隔が0mmから10mmの間では、左方向、すなわち、これを引き戻す方向に-2mNから-4mNの逆静電力が働くが、その後、10mmから22.8mmの間では、逆に、右方向、すなわちこれを引っ張る方向に+3mNから+5mNの順静電力が作用していることが分かる。
なお、間隔22.8mmで、電荷搬送体4の右端は、回収電極3の左端に到達する。
Therefore, here, the voltage of the high potential electrode 1 is set to + 8.0 kV.
At that time, the amount of charge to be charged and injected into the charge carrier 4 is −30.8 nC. At each point from the point where the left end of the charge carrier 4 having this charge is lined up at the right end of the high potential source 1 to the point where the right end of the charge carrier 4 reaches the left end of the recovery electrode 3, the charge carrier 4 The electrostatic force received was calculated by simulation. The result is shown in FIG.
From FIG. 10, when the distance between the left end of the charge carrier 4 and the right end of the high potential source 1 is between 0 mm and 10 mm, a reverse electrostatic force of -2 mN to -4 mN acts in the left direction, that is, in the pull-back direction. After that, between 10 mm and 22.8 mm, on the contrary, it can be seen that a forward electrostatic force of + 3 mN to + 5 mN acts in the right direction, that is, in the direction of pulling it.
At an interval of 22.8 mm, the right end of the charge carrier 4 reaches the left end of the recovery electrode 3.

この結果、この間を、左から右に移動する電荷搬送体4は、0mmから10mm間で減速されて運動エネルギーを失い、10mmから22.8mm間で加速されて運動エネルギーを得る。この時、失うエネルギーは、-24μJで、獲得するエネルギーは+45μJである。すなわち、当該電荷搬送体4が、この間に得る正味のエネルギーは、+21μJである。
そこで、本発明の第一実施例として、長さ60mmの該電荷搬送体4を、図11に示すように、60度間隔で6個、半径100mmの、中心軸16の周りを回転する電荷搬送体円板14に放射状に配置する。この時、長さ60mmの電荷搬送体4の中心の回転半径は70mmとなる。
さらに、当該電荷搬送体円板14の上下に、固定電極板13、15を配置し、上電極板13の裏面と下電極板15の表面に、夫々高電位源1と回収電極3を3組、対向して配置する。
電荷搬送体円板14上の6個の電荷搬送体4は、各高電位源1通過時に電荷を供給され、高電位源1と回収電極3の間で、静電力で弱く減速され、続いて強く加速され、回収電極3の中で、搬送した電荷を放出する。
As a result, the charge carrier 4 moving from left to right during this period is decelerated between 0 mm and 10 mm to lose kinetic energy, and is accelerated between 10 mm and 22.8 mm to obtain kinetic energy. At this time, the energy lost is -24 μJ, and the energy gained is + 45 μJ. That is, the net energy obtained by the charge carrier 4 during this period is +21 μJ.
Therefore, as a first embodiment of the present invention, as shown in FIG. 11, six charge carriers 4 having a length of 60 mm are rotated around a central axis 16 having a radius of 100 mm at intervals of 60 degrees. Arranged radially on the body disk 14. At this time, the turning radius of the center of the charge carrier 4 having a length of 60 mm is 70 mm.
Further, the fixed electrode plates 13 and 15 are arranged above and below the charge carrier disk 14, and three sets of the high potential source 1 and the recovery electrode 3 are respectively arranged on the back surface of the upper electrode plate 13 and the front surface of the lower electrode plate 15. , Place facing each other.
The six charge carriers 4 on the charge carrier disk 14 are supplied with electric charge when passing through each high potential source 1, and are weakly decelerated by electrostatic force between the high potential source 1 and the recovery electrode 3, followed by a weak deceleration by electrostatic force. It is strongly accelerated and releases the transferred charge in the recovery electrode 3.

個々の電荷搬送体4は、高電位源1から回収電極3に至る間に、正味、21μJのエネルギーを得る。電荷搬送体円板14が1回転する間に、高電位源1と回収電極3の間を3回通るので、1回転中に得るエネルギーは、63μJである。電荷搬送体円板14には6個の電荷搬送体4があるので、1回転中に、電荷搬送体円板14が得るエネルギーは、378μJになる。
当該電荷搬送体円板14は上記したように静電力で加速されるが、一方、その回転に伴い、空気抵抗と動摩擦力を受ける。注入および回収用の導電性端子(不図示)との接触により機械的な抵抗も受けるが、導電性端子が小さくまた柔軟であるため、この力は非常に小さい。
The individual charge carriers 4 obtain a net energy of 21 μJ between the high potential source 1 and the recovery electrode 3. Since the charge carrier disk 14 passes between the high potential source 1 and the recovery electrode 3 three times during one rotation, the energy obtained during one rotation is 63 μJ. Since the charge carrier disk 14 has six charge carriers 4, the energy obtained by the charge carrier disk 14 during one rotation is 378 μJ.
The charge carrier disk 14 is accelerated by electrostatic force as described above, but on the other hand, it receives air resistance and dynamic friction force as it rotates. Contact with conductive terminals for injection and recovery (not shown) also causes mechanical resistance, but this force is very small due to the small and flexible conductive terminals.

尚、空気抵抗力Faは次式で求められる。

Figure 2020150780
上式において、Cdは空気抵抗係数、pは空気密度、Sは6個の電荷搬送体の前面面積、及びvは電荷搬送体電極の速度である。
空気密度は1.3kg/m3、電荷搬送体4の前面面積は0.0036m2である。従って、空気抵抗係数を1.5、電荷搬送体4の回転速度を0.44m/秒(60rpm)とすると、空気抵抗力faは0.68mNとなる。 The air resistance Fa is calculated by the following equation.
Figure 2020150780
In the above equation, Cd is the air resistance coefficient, p is the air density, S is the front area of the six charge carriers, and v is the velocity of the charge carrier electrodes.
The air density is 1.3 kg / m 3 , and the front area of the charge carrier 4 is 0.0036 m 2 . Therefore, if the air resistance coefficient is 1.5 and the rotation speed of the charge carrier 4 is 0.44 m / sec (60 rpm), the air resistance fa is 0.68 mN.

一方、動摩擦力fkは次式で求められる。

Figure 2020150780
ここで、μは動摩擦係数、mは電荷搬送体保持円板14と電荷搬送体4の合計質量、及びgは重力加速度である
動摩擦係数を最小にするために、電荷搬送体円板14の回転部分と、中心軸16をともにテフロンにした場合、動摩擦係数は0.10である。電荷搬送体円板14の質量は0.01kgで、重力加速度は、9.81m/s2なので、動摩擦力fkは9.81mNになる。この値は、電荷搬送体4が回収電極3の近傍にあるときに受ける最大静電力5.6mNより大きく、電荷搬送体円板14は回転できない。
しかしながら、近年発明されたADB(自律分散式)ベアリング(空スペース社製)によれば、動摩擦係数が0.0015であり、その場合動摩擦力は、0.015mNになる。
なお、当該ADBベアリングは、従来のボールベアリングが、レオナルドダビンチの発明以来、全てボール同士が接触しないように、ボールホルダーを使用しているのに対して、その機構を工夫することで、ボールホルダーを不要にして動摩擦係数を驚異的に小さくしたものである。 On the other hand, the dynamic friction force fk is calculated by the following equation.
Figure 2020150780
Here, μ is the dynamic friction coefficient, m is the total mass of the charge carrier holding disk 14 and the charge carrier 4, and g is the rotation of the charge carrier disk 14 in order to minimize the dynamic friction coefficient which is the gravitational acceleration. When both the portion and the central axis 16 are set to Teflon, the coefficient of kinetic friction is 0.10. Since the mass of the charge carrier disk 14 is 0.01 kg and the gravitational acceleration is 9.81 m / s 2 , the dynamic friction force fk is 9.81 mN. This value is larger than the maximum electrostatic force of 5.6 mN received when the charge carrier 4 is in the vicinity of the recovery electrode 3, and the charge carrier disk 14 cannot rotate.
However, according to the recently invented ADB (autonomous distributed) bearing (manufactured by Empty Space Co., Ltd.), the coefficient of dynamic friction is 0.0015, in which case the dynamic friction force is 0.015 mN.
In addition, the ADB bearing uses a ball holder so that all the balls do not come into contact with each other since the invention of Leonardo da Vinci, whereas the conventional ball bearing uses a ball holder by devising the mechanism. The dynamic friction coefficient is remarkably reduced by eliminating the need for.

そこで、電荷搬送体円板14の中心に、ADBベアリングを固定し、ベアリングの中心の孔にステンレス製の固定支柱16の先端にはめ込んだ。この結果、空気抵抗と動摩擦力の合計は0.695mNとなった。
これに、不図示の導電性端子との接触時に受ける機械的な抵抗分として0.035mNを加えると、当該電荷搬送体円板14が回転を続けるのに必要な力は0.730mNとなる。この力を加えて、電荷搬送体円板14を1回転させるのに必要なエネルギーは321μJと見積もられる。
Therefore, the ADB bearing was fixed to the center of the charge carrier disk 14, and fitted into the hole in the center of the bearing at the tip of the stainless steel fixing column 16. As a result, the total of air resistance and dynamic friction force was 0.695 mN.
When 0.035 mN is added as the mechanical resistance received at the time of contact with the conductive terminal (not shown), the force required for the charge carrier disk 14 to continue rotating becomes 0.730 mN. The energy required to rotate the charge carrier disk 14 once by applying this force is estimated to be 321 μJ.

この結果、電荷搬送体円板14の1回転中に受け取るエネルギー378μJのうち57μJが、電荷をより高いポテンシャルに持ち上げるためのエネルギーとして残される。
電荷搬送体4は6個あるので、個々の電荷搬送体4には、9.5μJのエネルギーが残され、1回転中に3回、高電位源1から回収電極3に動くので、その1回ごとに残されるエネルギーは、3.17μJになる。すなわち、電荷q(-30.8nC)をより高いポテンシャルに持ち上げるために残されたエネルギーWは3.17μJである。この時、回収可能なポテンシャルVは、次式で求められ、103Vになる。

Figure 2020150780
As a result, 57 μJ of the 378 μJ of energy received during one rotation of the charge carrier disk 14 is left as energy for raising the charge to a higher potential.
Since there are six charge carriers 4, each charge carrier 4 has 9.5 μJ of energy left, and moves from the high potential source 1 to the recovery electrode 3 three times in one rotation, so that each time. The energy left in is 3.17 μJ. That is, the energy W left to raise the charge q (-30.8 nC) to a higher potential is 3.17 μJ. At this time, the recoverable potential V is calculated by the following equation and becomes 103V.
Figure 2020150780

一方、この装置で得られる電流Aは次式で計算される。

Figure 2020150780
尚、式中、Qは電荷搬送体に注入された電荷量、Rは 搬送された電荷の内の回収電極3に回収された電荷の割合、Nは回収電極の数、Mは電荷搬送体の数、及びRは電荷搬送体円板の1秒当たりの回転数である。
ここで、q=-30.8nC、r=0.90、n=3、m=6、R=1.00(60rpm)を代入すると、電流Aは、0.50μAになる。 On the other hand, the current A obtained by this device is calculated by the following equation.
Figure 2020150780
In the formula, Q is the amount of charge injected into the charge carrier, R is the ratio of the charge recovered to the recovery electrode 3 among the transferred charges, N is the number of recovery electrodes, and M is the charge carrier. The number and R are the number of revolutions per second of the charge carrier disk.
Substituting q = -30.8nC, r = 0.90, n = 3, m = 6, R = 1.00 (60rpm), the current A becomes 0.50μA.

この結果、当該装置の発生する電気出力Pは次式で求められ、51μWとなる。

Figure 2020150780
大きな出力ではないが、装置内を真空にすれば、放電が発生しないので、高電位源1と電荷搬送体4の間隔を、5.0mmより、機械的に製造可能な、例えば、0.2mmにして注入電荷量を25倍とし、また、電荷搬送体円板14の回転数を、ADBボールベアリングの許容値30,000rpmまで、500倍に上げることができる。その結果、出力は、12500倍の、0.64Wになると期待できる。
なお、機械的に問題なければ、電荷搬送体4を高電位源1に接触させて、注入電荷量をさらに上げることもできる。 As a result, the electric output P generated by the device is calculated by the following equation and becomes 51 μW.
Figure 2020150780
Although it is not a large output, if the inside of the device is evacuated, no discharge will occur. Therefore, the distance between the high potential source 1 and the charge carrier 4 is set to 0.2 mm, which can be mechanically manufactured from 5.0 mm. The amount of injected charge can be increased 25 times, and the number of revolutions of the charge carrier disk 14 can be increased 500 times up to the allowable value of 30,000 rpm for ADB ball bearings. As a result, the output can be expected to increase 12500 times to 0.64W.
If there is no mechanical problem, the charge carrier 4 can be brought into contact with the high potential source 1 to further increase the injected charge amount.

図10に示す実施例1の高電位源(+8kV)1から回収電極(0V)3まで移動する、-30.8nCに帯電した電荷搬送体1に作用している静電力(以下、合計静電力という)は、両電極が形成する電界が、当該帯電電荷に働く静電力(以下、電界静電力という)と、当該電荷と高電位源電極1、および回収電極3との間に働く鏡像力の和である。
そこで、当該鏡像力を求めてみた。具体的には、回収電極3のみならず高電位電極1も接地して、この間を-30.8nCに帯電された電荷搬送体4が移動するときに、これに作用する静電力を、実施例1と同様に、二次元差分法でシミュレーションした。その結果を図12に示す。
当該図から、高電位源電極1を抜けた直後には、当該電荷搬送体4を左に引き戻す弱い逆鏡像力が働くが、その後は、右に引き寄せる強い順鏡像力が働くことが分かる。
The electrostatic force acting on the charge carrier 1 charged at -30.8 nC (hereinafter, total electrostatic force) moving from the high potential source (+ 8 kV) 1 of Example 1 shown in FIG. 10 to the recovery electrode (0 V) 3. The electric field formed by both electrodes is the mirror image force acting between the electrostatic force acting on the charged charge (hereinafter referred to as electric field electrostatic force) and the electric charge, the high potential source electrode 1, and the recovery electrode 3. It is a sum.
Therefore, I tried to find the mirror image power. Specifically, not only the recovery electrode 3 but also the high potential electrode 1 is grounded, and when the charge carrier 4 charged to -30.8 nC moves between them, the electrostatic force acting on the electrostatic force is applied to the first embodiment. Similar to the above, the simulation was performed by the two-dimensional difference method. The result is shown in FIG.
From the figure, it can be seen that immediately after passing through the high potential source electrode 1, a weak reverse mirror image force that pulls the charge carrier 4 to the left acts, but after that, a strong forward mirror image force that pulls the charge carrier 4 to the right acts.

この鏡像力と、図10示した合計静電力、および、その差を図13に示す。
図13から、鏡像力と合計静電力の差は、ほぼ一定であることが分かる。この力は、高電位源1の電位が形成している電界が、電荷搬送体4の帯電電荷に作用する電界静電力で、左方向、即ち引き戻し方向に作用する。クーロン力の公式で計算した値より小さいが、それは、電荷搬送体4の形状が球形ではなく、横置き樋型のためである(非特許文献2)。よって、もし、この電界静電力が無ければ、電荷搬送体4は、より強く右方向に引き寄せられて、発電量が増加する。
しかしながら、電荷搬送体4に多量の電荷を注入するためには、高電位源1の高電位化は必須である。
The mirror image force, the total electrostatic force shown in FIG. 10, and the difference thereof are shown in FIG.
From FIG. 13, it can be seen that the difference between the mirror image force and the total electrostatic force is almost constant. This force is an electric field electrostatic force in which the electric field formed by the potential of the high potential source 1 acts on the charged charge of the charge carrier 4, and acts in the left direction, that is, in the pullback direction. Although it is smaller than the value calculated by the Coulomb force formula, it is because the shape of the charge carrier 4 is not a sphere but a horizontal gutter shape (Non-Patent Document 2). Therefore, if this electric field electrostatic force is not present, the charge carrier 4 is more strongly attracted to the right, and the amount of power generation increases.
However, in order to inject a large amount of electric charge into the charge carrier 4, it is essential to raise the potential of the high potential source 1.

そこで、多量の電荷を注入でき、且つ、右方向に強い鏡像力を働かせるために、装置の構成を、高電位源1の右33mmに、幅19.2mmのシールド電極5を置き、接地し、その右33mmに、幅32mmの回収電極3を置くように変えた。
この構成で、-30.8nCに帯電した電荷搬送体4が、高電位源1(+8kV)から、シールド電極5(0V)を抜けて、回収電極3(0V)に至る間に受ける静電力をシミュレーションで求めた。この結果を図14に示す。なお、シールド電極5内で受ける静電力は大きくはないため省略した(図3、図4参照)。
Therefore, in order to be able to inject a large amount of electric charge and exert a strong mirror image force to the right, the device is configured by placing a shield electrode 5 with a width of 19.2 mm on the right 33 mm of the high potential source 1 and grounding it. The recovery electrode 3 having a width of 32 mm was placed on the right side 33 mm.
In this configuration, the charge carrier 4 charged at -30.8 nC receives the electrostatic force received from the high potential source 1 (+ 8 kV) through the shield electrode 5 (0 V) to the recovery electrode 3 (0 V). Obtained by simulation. The result is shown in FIG. Since the electrostatic force received in the shield electrode 5 is not large, it is omitted (see FIGS. 3 and 4).

シールド電極5を抜けた直後、左方向の弱い逆鏡像力で、電荷搬送体5は1.6μJのエネルギーを失う。しかし、その後は、右方向の強い順鏡像力で、105.3μJのエネルギーが与えられる。すなわち、この間で、103.7μJのエネルギーを得る。
実施例1で述べたように、高電位電極1と接地された回収電極3間で得られたエネルギーは21μJであった。故に、当該電荷搬送体4が、高電位電極1から、シールド電極を抜けて、回収電極3に至る間に得るエネルギーは、124.7μJとなる。
Immediately after passing through the shield electrode 5, the charge carrier 5 loses 1.6 μJ of energy due to a weak reverse mirror image force in the left direction. However, after that, an energy of 105.3 μJ is given by a strong forward mirror image force in the right direction. That is, during this period, energy of 103.7 μJ is obtained.
As described in Example 1, the energy obtained between the high potential electrode 1 and the grounded recovery electrode 3 was 21 μJ. Therefore, the energy obtained by the charge carrier 4 from the high potential electrode 1 through the shield electrode to the recovery electrode 3 is 124.7 μJ.

図11に示す実施例1の発電装置では、上下電極板13、15に、高電位源1と回収電極3を3組配置したが、本実施例では、図15に示すように、高電位源1、シールド電極5、及び回収電極3を2組配置した。
この構成において、電荷搬送体円板14が1回転する間に、個々の電荷搬送体4が受け取るエネルギーは、249.6μJとなり、6個の合計では1498μJとなる。
一方、この間に失うエネルギーは、電荷搬送体円板14の回転数が、60rpmであれば、321Jであるが、作用する静電力が強くなり回転数が上がるので、空気抵抗力が大きくなる。
そして、120rpmになった時、空気抵抗力は4倍の2.71mNとなり、電荷搬送体円板14回転させるのに必要なエネルギーは、1213μJとなる。この結果、搬送電荷のポテンシャルを上げるために残されたエネルギーは、285μJとなる。電荷搬送体4が6個あるので、個々の電荷搬送体4には、47.5μJになる。そして、1回転中に2回、高電位電極1とからシールド電極5を通過して回収電極3に至るので、その1回目では23.8μJが残され、-30.8nCの電荷は、0Vから-771Vに引き上げられる。
この時の電流は、数3式から求められて、0.67μAとなり、出力は、数4式から、0.52mWになる。
実施例1で述べたように、高電位源1と電荷搬送体4の間隔を0.2mmまで縮め、電荷搬送体円板14の回転室を真空にすれば、出力は、6250倍の3.25Wまで上がる。
In the power generation device of the first embodiment shown in FIG. 11, three sets of the high potential source 1 and the recovery electrode 3 are arranged on the upper and lower electrode plates 13 and 15, but in this embodiment, the high potential source is as shown in FIG. 1. Two sets of shield electrodes 5 and recovery electrodes 3 were arranged.
In this configuration, the energy received by each charge carrier 4 during one rotation of the charge carrier disk 14 is 249.6 μJ, and the total of the six is 1498 μJ.
On the other hand, the energy lost during this period is 321J when the rotation speed of the charge carrier disk 14 is 60 rpm, but the acting electrostatic force becomes stronger and the rotation speed increases, so that the air resistance becomes larger.
Then, at 120 rpm, the air resistance is quadrupled to 2.71 mN, and the energy required to rotate the charge carrier disk 14 times is 1213 μJ. As a result, the energy left to increase the potential of the carrier charge is 285 μJ. Since there are six charge carriers 4, each charge carrier 4 has a value of 47.5 μJ. Then, twice in one rotation, the high potential electrode 1 and the shield electrode 5 pass through to the recovery electrode 3, so that 23.8 μJ is left in the first time, and the charge of -30.8 nC is from 0 V to -771 V. Is pulled up to.
The current at this time is calculated from the formula 3 and becomes 0.67 μA, and the output becomes 0.52 mW from the formula 4.
As described in the first embodiment, if the distance between the high potential source 1 and the charge carrier 4 is shortened to 0.2 mm and the rotating chamber of the charge carrier disk 14 is evacuated, the output is 6250 times as high as 3.25 W. Go up.

以上静電発電機の説明をしたが、静電モータにすることもできる。
即ち、この場合は、図16に示すように、上下電極板に、電荷注入のための、高電位源1を置いたあと、複数のシールド電極5を配置し、接地する。このようにすると、高電位源1通過時に、多量の電荷が注入された電荷搬送体1に、接地された各シールド電極5で、反時計回りに強い鏡像力が次々に働き、電荷搬送体円板14は強い回転力を受ける。
この時、電荷搬送体円板14と中心軸16を一体化しておくと、当該中心軸16と連結された外部回転体を回転させることができる。
この時、電荷搬送体円板上の1個の電荷搬送体4に作用する静電力を図17に示す。
Although the electrostatic generator has been described above, it can also be an electrostatic motor.
That is, in this case, as shown in FIG. 16, after placing the high potential source 1 for charge injection on the upper and lower electrode plates, a plurality of shield electrodes 5 are placed and grounded. In this way, when passing through the high potential source 1, a strong mirror image force acts counterclockwise one after another on each of the grounded shield electrodes 5 on the charge carrier 1 into which a large amount of charge is injected, and the charge carrier circle. The plate 14 receives a strong rotational force.
At this time, if the charge carrier disk 14 and the central shaft 16 are integrated, the external rotating body connected to the central shaft 16 can be rotated.
At this time, FIG. 17 shows the electrostatic force acting on one charge carrier 4 on the charge carrier disk.

実施例3では、1個の高電位源1と多数のシールド電極5を円周上に配置して静電モータとしたが、これを直列に並べると、静電加速器になる。即ち、この場合、図18に示すように、樋型電荷搬送体に代えて、左側開放円筒型の電荷搬送体4を使用し、高電位源1と接地されたシールド電極5も平板状から円筒状に変えることで、より強力な加速器となる。
なお図中200は、これらを保持する固定円筒、例えば銃身である。
円筒型電荷搬送体4を弾丸として使用すれば、静電銃となり、宇宙船に乗せて、適当な重さの円筒型電荷搬送体4を宇宙船外に射出すれば、宇宙船の加速器(即ち、エンジン)になる。
In the third embodiment, one high potential source 1 and a large number of shield electrodes 5 are arranged on the circumference to form an electrostatic motor, but when these are arranged in series, an electrostatic accelerator is obtained. That is, in this case, as shown in FIG. 18, a left-side open cylindrical charge carrier 4 is used instead of the gutter-shaped charge carrier, and the shield electrode 5 grounded with the high potential source 1 is also flat to cylindrical. By changing the shape, it becomes a more powerful accelerator.
In the figure, reference numeral 200 denotes a fixed cylinder, for example, a barrel that holds them.
If the cylindrical charge carrier 4 is used as a bullet, it becomes an electrostatic gun, and if it is placed on a spacecraft and a cylindrical charge carrier 4 of an appropriate weight is ejected out of the spacecraft, it becomes a spacecraft accelerator (that is, , Engine).

上記したように、充電型電荷注入方式を使う鏡像力駆動型静電応用機器(静電発電機、静電モーター、及び静電加速器)は、高電位源としてエレクトレットを使用するとき、外部からのエネルギーや消耗品の供給は不要なので、特に、停電で止まってはいけない交通信号、無線基地局、病院用電源、及び業務用冷蔵庫に使用した場合に効果がある。
また、エレクトレットの寿命は100年と言われているので、太陽圏外へ数十年の旅をする宇宙船や体内密閉型人工心臓に使われると効果的である。
As described above, mirror image force-driven electrostatic application devices (electrostatic generators, electrostatic motors, and electrostatic accelerators) that use the rechargeable charge injection method are external when using an electlet as a high potential source. Since it does not require the supply of energy or consumables, it is particularly effective when used for traffic signals, wireless base stations, hospital power supplies, and commercial refrigerators that must not be stopped due to a power outage.
In addition, the life of the electret is said to be 100 years, so it is effective when used for spacecraft and artificial hearts that are sealed inside the body and travel for decades outside the solar sphere.

1:高電位源(高圧電極、高電位エレクトレット、強誘電体)
2:対向電極
3:電荷回収電極
4:電荷搬送体
5:シールド電極
6:電荷回収電極用コンデンサー
7:逆鏡像力を示す矢印
8:順鏡像力を示す矢印
13:高電位源、シールド電極及び電荷回収電極を支持する絶縁性支持体
14:複数の電荷搬送体を保持する電荷搬送体円板
15:高電位源、シールド電極及び電荷回収電極を支持する絶縁性支持体
16:電荷搬送体円板の中心軸
20:円筒型高電位源、円筒型シールド電極を保持する円筒部材
1: High potential source (high voltage electrode, high potential electret, ferroelectric)
2: Counter electrode 3: Charge recovery electrode 4: Charge carrier 5: Shield electrode 6: Charge recovery electrode condenser 7: Reverse mirror image power arrow 8: Forward mirror image power arrow 13: High potential source, shield electrode and Insulating support 14 that supports the charge recovery electrode 14: Charge carrier disk that holds a plurality of charge carriers 15: High potential source, shield electrode, and insulating support that supports the charge recovery electrode 16: Charge carrier circle Plate central axis 20: Cylindrical high potential source, cylindrical member holding cylindrical shield electrode

Claims (5)

帯電され、移動方向前後に非対称な形状を有しする導電性の電荷搬送体を、電極であり高電位を有する高電位源から、電気的に、帯電された電荷搬送体の電荷より高いポテンシャルにある電荷回収電極に向かって順方向に搬送して発電する静電発電機であって、
前記高電位源に、前記電荷搬送体を接近または接触させつつ当該電荷搬送体を接地することで、当該電荷搬送体に前記高電位源と異極性の電荷を充電させて帯電し、且つ前記非対称な形状に基づいて当該電荷搬送体と前記高電位源の電極との間に生じる逆鏡像力よりも、前記非対称な形状に基づいて当該電荷搬送体と前記電荷回収電極との間に生じる順鏡像力の方を大きくして当該電荷搬送体を順方向に駆動し、当該帯電電荷を電気的により高いポテンシャルまで持ち上げる鏡像力駆動型の静電発電機。
A conductive charge carrier that is charged and has an asymmetric shape in the front-back direction of movement is electrically changed from a high-potential source that is an electrode and has a high potential to a higher potential than the charge of the charged charge carrier. An electrostatic generator that forwards and generates electricity toward a certain charge recovery electrode.
By grounding the charge carrier while bringing the charge carrier close to or in contact with the high potential source, the charge carrier is charged with a charge having a polarity different from that of the high potential source to be charged, and the asymmetrical state. A forward mirror image generated between the charge carrier and the charge recovery electrode based on the asymmetrical shape, rather than an inverse mirror image force generated between the charge carrier and the electrode of the high potential source based on the shape. A mirror image force-driven electrostatic generator that drives the charge carrier in the forward direction by increasing the force and lifts the charged charge to a higher potential electrically.
請求項1において、前記非対称な形状を有する導電性電荷搬送体は、移動方向反対側が開放する略箱型であり、その上下の水平板の少なくとも一が、前記高電位源と接近または接触する鏡像力駆動型の静電発電機。 In claim 1, the conductive charge carrier having an asymmetrical shape has a substantially box shape in which the opposite side in the moving direction is open, and at least one of the upper and lower horizontal plates thereof is a mirror image that approaches or contacts the high potential source. Power-driven electrostatic generator. 請求項1において、高電位源と回収電極間に、当該高電位源が形成する電界において前記電荷搬送体の帯電電荷に作用する静電力を遮る、接地されたシールド電極を有する鏡像力駆動型の静電発電機。 In claim 1, a mirror image drive type having a grounded shield electrode between the high potential source and the recovery electrode that blocks the electrostatic force acting on the charged charge of the charge carrier in the electric field formed by the high potential source. Electrostatic generator. 請求項1において、高電位源と複数のシールド電極を円周上に配置した静電モータ。 The electrostatic motor according to claim 1, wherein a high potential source and a plurality of shield electrodes are arranged on the circumference. 請求項1において、高電位源と複数のシールド電極を直線的に配置した静電加速器。 The electrostatic accelerator according to claim 1, wherein a high potential source and a plurality of shield electrodes are linearly arranged.
JP2019049237A 2019-03-17 2019-03-17 Electrostatic application equipment of charging infusion type, driven by image force Pending JP2020150780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019049237A JP2020150780A (en) 2019-03-17 2019-03-17 Electrostatic application equipment of charging infusion type, driven by image force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049237A JP2020150780A (en) 2019-03-17 2019-03-17 Electrostatic application equipment of charging infusion type, driven by image force

Publications (1)

Publication Number Publication Date
JP2020150780A true JP2020150780A (en) 2020-09-17

Family

ID=72430089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049237A Pending JP2020150780A (en) 2019-03-17 2019-03-17 Electrostatic application equipment of charging infusion type, driven by image force

Country Status (1)

Country Link
JP (1) JP2020150780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021123177A1 (en) 2020-09-08 2022-03-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing Process of Secondary Battery and Secondary Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021123177A1 (en) 2020-09-08 2022-03-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing Process of Secondary Battery and Secondary Battery

Similar Documents

Publication Publication Date Title
EP1849508B1 (en) Moving toy utilizing magnetic force
JP6799484B2 (en) Electromechanical transducer and its manufacturing method
US11496068B2 (en) Energy harvesting apparatus using triboelectrification
JP2020150780A (en) Electrostatic application equipment of charging infusion type, driven by image force
US20140009098A1 (en) Interacting complex electric fields and static electric fields to effect motion
JP2019004549A (en) Electric field driven electrostatic generator
JP6286767B2 (en) Switchback electrostatic generator using asymmetric electrostatic force
JP2020110019A (en) Electrostatic force application equipment for charging charge carrier in closely contact charge method
JP7223094B2 (en) electrostatic motor
JP2022186550A (en) Optimum structure for electrostatic power generator
JP2023138883A (en) Novel electrostatic generator with high output and high life time
JP2012039842A (en) Electrostatic motor/electrostatic generator using a-type charge carrier body
JP3311988B2 (en) Electrostatic high voltage generator
JP2012039842A6 (en) Electrostatic motor / electrostatic generator using vertical charge carrier
JP2021078190A (en) Charge-carrier charging device in field drive type static electricity applied apparatus
US3390290A (en) Statorless homopolar motor or reaction torque generator
JP2024058731A (en) Electrostatic generator of asymmetric image force drive type
JP2020162302A (en) Power generator
JP2020065353A (en) Electric-field driven static-electricity applied equipment for charging electric charge carrier
KR102678200B1 (en) Droplet triboelectric nano generator based on magnetite/polyvinylidene fluoride nanocomposite in applied magnetic fields
KR102635270B1 (en) Triboelectric nanogenerator
JP2020039188A (en) Field driven electrostatic generator for charging charge carrier body by lorentz electromotive force
JP2021108524A (en) Image force driven electrostatic application apparatus and charging device of charge carrier body
JP2003164168A (en) Electrostatic motor using image force
JP2020043744A (en) Electric-field-driven electrostatic device using right-left asymmetrical electrostatic force as driving force