JP6799484B2 - Electromechanical transducer and its manufacturing method - Google Patents

Electromechanical transducer and its manufacturing method Download PDF

Info

Publication number
JP6799484B2
JP6799484B2 JP2017051470A JP2017051470A JP6799484B2 JP 6799484 B2 JP6799484 B2 JP 6799484B2 JP 2017051470 A JP2017051470 A JP 2017051470A JP 2017051470 A JP2017051470 A JP 2017051470A JP 6799484 B2 JP6799484 B2 JP 6799484B2
Authority
JP
Japan
Prior art keywords
charging
movable member
rotating member
substrate
fixed substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017051470A
Other languages
Japanese (ja)
Other versions
JP2018157663A (en
Inventor
渡邊 真
真 渡邊
輝 和泉
輝 和泉
伊原 隆史
隆史 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2017051470A priority Critical patent/JP6799484B2/en
Publication of JP2018157663A publication Critical patent/JP2018157663A/en
Application granted granted Critical
Publication of JP6799484B2 publication Critical patent/JP6799484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気機械変換器およびその製造方法に関する。 The present invention relates to an electromechanical converter and a method for manufacturing the same.

半永久的に電荷を保持する性質を持つエレクトレットを利用することで発生する静電的な相互作用により電力と動力の間の変換を行う電気機械変換器が知られている。例えば、特許文献1には、エレクトレットが設けられた第一の電極と、エレクトレットから離間配置された第二の電極とを備え、外部からの振動によってエレクトレットおよび第二の電極の一方が他方に対して相対的に運動する静電誘導型発電素子が記載されている。また、特許文献2には、複数のエレクトレット膜を備えた第1の基板と、複数の電極を備えた第2の基板とで構成され、第1の基板が側方運動を行うことにより、エレクトレット膜と電極との重なり面積が増減して電極に電荷の変化が生じ、この電荷の変化を電気エネルギーとして取り出すことにより発電を行う静電誘導型発電器が記載されている。 An electromechanical converter that converts between electric power and electric power by electrostatic interaction generated by using an electret having a property of holding electric charge semipermanently is known. For example, Patent Document 1 includes a first electrode provided with an electret and a second electrode separated from the electret, and one of the electret and the second electrode is directed to the other due to external vibration. An electrostatic induction type power generation element that moves relatively is described. Further, Patent Document 2 is composed of a first substrate provided with a plurality of electret films and a second substrate provided with a plurality of electrodes, and the first substrate moves laterally to cause an electret. Described is an electrostatic induction generator that generates electricity by increasing or decreasing the overlapping area between the film and the electrode and causing a change in electric charge in the electrode, and extracting this change in electric charge as electrical energy.

特開2012−138514号公報Japanese Unexamined Patent Publication No. 2012-138514 国際公開第2010/047076号International Publication No. 2010/047076

一般に、こうした電気機械変換器の帯電膜(帯電部)は、正または負のどちらか一方に帯電する材料のみで構成される。例えば、電気機械変換器が動力を電力に変換する発電器の場合には、その発電出力は帯電部の電位と接地電位との電位差に応じた大きさになるため、発電出力をそれ以上に向上させることは難しい。この点は、電気機械変換器が電力を動力に変換する電動機の場合でも同様である。 In general, the charging film (charging portion) of such an electromechanical converter is composed of only a material that charges either positively or negatively. For example, in the case of a generator in which an electromechanical converter converts power into electric power, the power generation output becomes larger according to the potential difference between the potential of the charged part and the ground potential, so that the power generation output is further improved. It's difficult to get it done. This point is the same even in the case of an electric motor in which an electromechanical converter converts electric power into power.

正に帯電する材料と負に帯電する材料とで2種類の帯電膜を作製し、それらを交互に配置して帯電部を構成すれば、帯電膜を正負の一方に帯電する材料で構成した場合よりも電気機械変換器の出力は向上する。しかしながら、その場合には、2種類の材料で正の帯電膜と負の帯電膜とを両方作製する必要があり、電気機械変換器の製造時の帯電工程などが複雑になる。 If two types of charging films are made of a positively charged material and a negatively charged material, and they are arranged alternately to form a charged part, the charged film is composed of a material that charges either positive or negative. The output of the electromechanical transducer is higher than that. However, in that case, it is necessary to prepare both a positive charge film and a negative charge film with two kinds of materials, which complicates the charging process at the time of manufacturing the electromechanical converter.

本発明は、帯電膜を正負の一方に帯電する材料で構成しながら、帯電膜を正に帯電する材料と負に帯電する材料とで構成した場合と同等に電気機械変換器の出力を向上させることを目的とする。 The present invention improves the output of the electromechanical transducer in the same manner as when the charged film is composed of a material that charges either positively or negatively and the charged film is composed of a material that charges positively and a material that charges negatively. The purpose is.

帯電部と対向電極との間の静電的な相互作用を利用して電力と動力の間の変換を行う電気機械変換器であって、固定基板と、固定基板との間で一定の距離を保って移動可能な可動部材と、可動部材の固定基板との対向面である第1の面および可動部材の対向面とは反対側の面である第2の面において、第1の面と第2の面とで可動部材の移動方向に互い違いに形成され、かつ互いに同じ極性に帯電した複数の帯電膜と、固定基板の可動部材との対向面において移動方向に配置された複数の対向電極とを有し、可動部材の第1の面および第2の面における帯電膜同士の間の領域に複数の帯電膜とは反対の極性の電荷が誘起されることで、第1の面および第2の面では互いに反対の極性に帯電した領域が移動方向に交互に配置されていることを特徴とする電気機械変換器が提供される。 An electromechanical transducer that converts between electric power and power by utilizing the electrostatic interaction between the charged part and the counter electrode, and keeps a certain distance between the fixed substrate and the fixed substrate. The first surface and the first surface are the first surface which is the opposite surface of the movable member which can be maintained and moved and the fixed substrate of the movable member, and the second surface which is the surface opposite to the opposite surface of the movable member. A plurality of charging films alternately formed on the two surfaces in the moving direction of the movable member and charged with the same polarity, and a plurality of counter electrodes arranged in the moving direction on the facing surface of the fixed substrate with the movable member. By inducing a charge having a polarity opposite to that of the plurality of charging films in the region between the charging films on the first surface and the second surface of the movable member, the first surface and the second surface Provided is an electromechanical transducer characterized in that regions charged with opposite electrodes are alternately arranged in a moving direction.

上記の電気機械変換器では、可動部材は誘電体で構成されていることが好ましい。 In the above electromechanical transducer, the movable member is preferably made of a dielectric material.

上記の電気機械変換器では、複数の帯電膜は、可動部材の第1の面および第2の面において第1の面と第2の面とで移動方向に互い違いに形成された複数の溝部を満たすように形成されており、可動部材の第1の面および第2の面は、複数の帯電膜および複数の溝部による凹凸がない平坦面であることが好ましい。 In the electromechanical converter described above, the plurality of charging films form a plurality of grooves formed alternately in the moving direction on the first surface and the second surface of the movable member on the first surface and the second surface. It is preferable that the first surface and the second surface of the movable member are flat surfaces that are not uneven due to the plurality of charging films and the plurality of grooves.

上記の電気機械変換器は、可動部材を挟んで固定基板とは反対側に配置された第2の固定基板をさらに有し、複数の対向電極は、第2の固定基板の可動部材との対向面においても移動方向に配置されていることが好ましい。 The electromechanical transducer described above further has a second fixed substrate arranged on the side opposite to the fixed substrate with the movable member interposed therebetween, and the plurality of counter electrodes face the movable member of the second fixed substrate. It is preferable that the surface is also arranged in the moving direction.

上記の電気機械変換器では、可動部材は、可動部材の中心を通る回転軸の周りに回転可能であり、複数の帯電膜と複数の対向電極は、それぞれ回転軸を中心として放射状に配置されていることが好ましい。 In the electromechanical transducer above, the movable member is rotatable around a rotation axis that passes through the center of the movable member, and the plurality of charge films and the plurality of counter electrodes are arranged radially around the rotation axis. It is preferable to have.

上記の電気機械変換器では、可動部材は、固定基板に平行な方向に往復移動可能なスライド板であり、複数の帯電膜と複数の対向電極は、それぞれ移動方向に垂直に延びる帯状の形状を有することが好ましい。 In the above electromechanical transducer, the movable member is a slide plate that can reciprocate in the direction parallel to the fixed substrate, and the plurality of charge films and the plurality of counter electrodes each have a strip-like shape extending perpendicular to the movement direction. It is preferable to have.

上記の電気機械変換器は、極性が交互に切り替わる電圧を複数の対向電極に印加して、複数の帯電膜と複数の対向電極との間で発生する静電気力により可動部材を移動させる駆動部をさらに有することが好ましい。 The electromechanical transducer described above applies a voltage that alternates polarities to a plurality of counter electrodes, and causes a drive unit that moves a movable member by an electrostatic force generated between the plurality of charging films and the plurality of counter electrodes. It is preferable to have more.

上記の電気機械変換器は、可動部材の移動に応じて複数の帯電膜と複数の対向電極との間の静電誘導により発生した電力を蓄積する蓄電部をさらに有することが好ましい。 It is preferable that the electromechanical converter further has a power storage unit that stores electric power generated by electrostatic induction between a plurality of charging films and a plurality of counter electrodes according to the movement of the movable member.

また、帯電部と対向電極との間の静電的な相互作用を利用して電力と動力の間の変換を行う電気機械変換器の製造方法であって、基板の第1の面および第1の面とは反対側の面である第2の面に、第1の面と第2の面とで互い違いになるように、相互に間隔を空けて、絶縁体による複数の薄膜領域を形成する工程と、基板を接地するとともに、複数の薄膜領域のそれぞれに対向するように放電用電極を配置して、放電用電極から基板に向けて放電により電子を放出させることで、複数の薄膜領域を同時に帯電させる工程と、複数の対向電極が配置された固定基板との間で一定の距離を保って移動可能なように、固定基板に対向させて基板を配置する工程とを有し、帯電させる工程により、基板の第1の面および第2の面における薄膜領域同士の間の領域に複数の薄膜領域とは反対の極性の電荷が誘起されて、第1の面および第2の面では互いに反対の極性に帯電した領域が交互に形成されることを特徴とする製造方法が提供される。 Further, it is a method for manufacturing an electromechanical converter that converts between electric power and power by utilizing an electrostatic interaction between a charged portion and a counter electrode, and is a method for manufacturing a first surface and a first surface of a substrate. On the second surface, which is the surface opposite to the surface of the above, a plurality of thin film regions made of an insulator are formed at intervals so that the first surface and the second surface are staggered. A plurality of thin film regions are formed by grounding the substrate and arranging discharge electrodes so as to face each of the plurality of thin film regions and discharging electrons from the discharge electrodes toward the substrate by discharge. It has a step of simultaneously charging and a step of arranging the substrate facing the fixed substrate so that the substrate can be moved while maintaining a constant distance between the fixed substrate on which a plurality of counter electrodes are arranged, and charging is performed. By the process, charges having opposite polarities to the plurality of thin film regions are induced in the region between the thin film regions on the first surface and the second surface of the substrate, and the first surface and the second surface are mutually charged. Provided is a manufacturing method characterized in that regions charged with opposite electrodes are formed alternately.

上記の電気機械変換器によれば、帯電膜を正負の一方に帯電する材料で構成しながら、帯電膜を正に帯電する材料と負に帯電する材料とで構成した場合と同等に電気機械変換器の出力を向上させることができる。 According to the electromechanical converter described above, electromechanical conversion is equivalent to the case where the charging film is composed of a material that charges either positive or negative, and the charging film is composed of a material that charges positively and a material that charges negatively. The output of the vessel can be improved.

電気機械変換器1の概略構成図である。It is a schematic block diagram of an electromechanical converter 1. 発電部10の斜視図である。It is a perspective view of the power generation part 10. 回転軸11を中心とする円周方向に沿った発電部10の部分断面図である。It is a partial sectional view of the power generation part 10 along the circumferential direction about the rotation shaft 11. 回転錘18の配置例を示す電気機械変換器1の断面図である。It is sectional drawing of the electromechanical converter 1 which shows the arrangement example of a rotary weight 18. 帯電膜14の帯電方法を説明するための図である。It is a figure for demonstrating the charging method of the charging film 14. 別の回転部材12’の部分断面図である。It is a partial cross-sectional view of another rotating member 12'. 別の発電部10’の部分断面図である。It is a partial sectional view of another power generation part 10'. 別の電気機械変換器1’の概略構成図である。It is a schematic block diagram of another electromechanical converter 1'. さらに別の電気機械変換器2の概略構成図である。It is a schematic block diagram of still another electromechanical converter 2. さらに別の電気機械変換器3の概略構成図である。It is a schematic block diagram of still another electromechanical converter 3. 比較例の発電部と発電部10の出力波形の差異を示す図である。It is a figure which shows the difference of the output waveform of the power generation part and the power generation part 10 of a comparative example.

以下、図面を参照しつつ、電気機械変換器およびその製造方法を説明する。ただし、本発明は図面または以下に記載される実施形態には限定されないことを理解されたい。 Hereinafter, the electromechanical converter and its manufacturing method will be described with reference to the drawings. However, it should be understood that the present invention is not limited to the drawings or embodiments described below.

図1は、電気機械変換器1の概略構成図である。電気機械変換器1は、発電部10および蓄電部20を有する。発電部10は、回転軸11、回転部材12、固定基板13、帯電膜14および対向電極15,16を有する。図1では、発電部10として、固定基板13の上面と回転部材12の下面を並べて示している。電気機械変換器1は、外部環境の運動エネルギーを用いて回転部材12を回転させ、回転部材12と対向電極15,16との間の静電誘導により静電気を発生させることで、動力から電力を取り出す発電装置(エレクトレット発電器)である。 FIG. 1 is a schematic configuration diagram of the electromechanical converter 1. The electromechanical converter 1 has a power generation unit 10 and a power storage unit 20. The power generation unit 10 has a rotating shaft 11, a rotating member 12, a fixed substrate 13, a charging film 14, and counter electrodes 15 and 16. In FIG. 1, the upper surface of the fixed substrate 13 and the lower surface of the rotating member 12 are shown side by side as the power generation unit 10. The electromechanical converter 1 rotates a rotating member 12 using the kinetic energy of the external environment, and generates static electricity by electrostatic induction between the rotating member 12 and the counter electrodes 15 and 16, thereby generating electric power from power. It is a power generator (electric generator) to be taken out.

図2は、発電部10の斜視図である。図3は、回転軸11を中心とする円周方向に沿った発電部10の部分断面図である。図2および図3に示すように、発電部10は、互いに平行に配置された回転部材12および固定基板13で構成される。回転部材12と固定基板13の間には、一定の間隔が空けられている。図3では、簡単のために、図の横方向が回転部材12および固定基板13の円周方向(図2の矢印C方向)に相当するように変形して図示している。 FIG. 2 is a perspective view of the power generation unit 10. FIG. 3 is a partial cross-sectional view of the power generation unit 10 along the circumferential direction centered on the rotation shaft 11. As shown in FIGS. 2 and 3, the power generation unit 10 is composed of a rotating member 12 and a fixed substrate 13 arranged in parallel with each other. There is a certain distance between the rotating member 12 and the fixed substrate 13. In FIG. 3, for the sake of simplicity, the lateral direction of the drawing is deformed so as to correspond to the circumferential direction of the rotating member 12 and the fixed substrate 13 (direction of arrow C in FIG. 2).

回転軸11は、回転部材12の回転中心となる軸であり、図2に示すように、回転部材12の中心を貫通している。回転軸11の上下端は、軸受けを介して、図示しない電気機械変換器1の筐体に固定されている。なお、図3では回転軸11の図示を省略している。 The rotating shaft 11 is a shaft that serves as the center of rotation of the rotating member 12, and as shown in FIG. 2, penetrates the center of the rotating member 12. The upper and lower ends of the rotating shaft 11 are fixed to the housing of the electromechanical converter 1 (not shown) via bearings. In FIG. 3, the rotation shaft 11 is not shown.

回転部材12は、可動部材の一例であり、例えばシリコン基板またはガラスエポキシ基板などの周知の基板材料で構成される。回転部材12の材質は、金属よりも誘電体である方が好ましい。図2に示すように、回転部材12は、例えば円板状の形状を有し、その中心で回転軸11に接続している。発電部10では、例えば回転部材12か、または回転部材12とは別々に、重量バランスの偏りを有する回転錘が取り付けられる。回転部材12は、電気機械変換器1を携帯する人体の運動または電気機械変換器1が取り付けられた機械などの振動を動力源として、回転軸11の周りを、円周方向である図2の矢印C方向(時計回りおよび反時計回り)に回転可能である。すなわち、回転部材12は、固定基板13との間で一定の距離を保って移動可能である。 The rotating member 12 is an example of a movable member, and is made of a well-known substrate material such as a silicon substrate or a glass epoxy substrate. The material of the rotating member 12 is preferably a dielectric rather than a metal. As shown in FIG. 2, the rotating member 12 has, for example, a disk-shaped shape, and is connected to the rotating shaft 11 at the center thereof. In the power generation unit 10, for example, a rotary member 12 or a rotary weight having a weight balance bias is attached separately from the rotary member 12. The rotating member 12 is rotated around the rotating shaft 11 in a circumferential direction by using the movement of a human body carrying the electromechanical converter 1 or the vibration of a machine to which the electromechanical converter 1 is attached as a power source. It can rotate in the direction of arrow C (clockwise and counterclockwise). That is, the rotating member 12 can move with respect to the fixed substrate 13 while maintaining a constant distance.

図4は、回転錘18の配置例を示す電気機械変換器1の断面図である。図4では、回転部材12を回転させるための回転錘18が、電気機械変換器1の筐体内で回転部材12とは別に配置された場合の例を示している。図示した例では、回転錘18は、電気機械変換器1の筐体内に設けられた回転軸11とは別の回転軸11’に取り付けられている。この場合、回転軸11には歯車19が、回転軸11’には歯車(増速輪列)19’がそれぞれ取り付けられ、歯車19と歯車19’とが連結している。これにより、回転錘18の回転運動が歯車19’を介して歯車19に伝達して、回転部材12を回転させることができる。 FIG. 4 is a cross-sectional view of the electromechanical converter 1 showing an arrangement example of the rotary weight 18. FIG. 4 shows an example in which the rotary weight 18 for rotating the rotary member 12 is arranged separately from the rotary member 12 in the housing of the electromechanical converter 1. In the illustrated example, the rotary weight 18 is attached to a rotary shaft 11'which is different from the rotary shaft 11 provided in the housing of the electromechanical converter 1. In this case, a gear 19 is attached to the rotating shaft 11, and a gear (acceleration train wheel) 19'is attached to the rotating shaft 11', and the gear 19 and the gear 19'are connected to each other. As a result, the rotational movement of the rotary weight 18 is transmitted to the gear 19 via the gear 19', and the rotating member 12 can be rotated.

固定基板13は、ガラスエポキシ基板などの周知の基板材料で構成される。図2に示すように、固定基板13は、例えば円板状の形状を有し、回転部材12の下面に対向して回転部材12の下側に配置されている。固定基板13は、回転部材12とは異なり、図示しない電気機械変換器1の筐体に固定されている。 The fixed substrate 13 is made of a well-known substrate material such as a glass epoxy substrate. As shown in FIG. 2, the fixed substrate 13 has, for example, a disk-like shape, and is arranged below the rotating member 12 so as to face the lower surface of the rotating member 12. Unlike the rotating member 12, the fixed substrate 13 is fixed to the housing of the electromechanical converter 1 (not shown).

帯電膜14は、エレクトレット材料で構成された薄膜であり、回転軸11の周辺の中央部分を除いて、回転部材12の上下面に、回転軸11を中心として放射状に形成されている。帯電膜14は、円周方向に間隔を空けて形成された矩形または略台形の複数の部分領域で構成され、すべて同一の極性に帯電している。以下では、帯電膜14は負に帯電しているものとして説明する。帯電膜14のエレクトレット材料としては、例えば、CYTOP(登録商標)に代表されるフッ素樹脂などの樹脂材料、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリビニルクロライド(PVC)、ポリスチレン(PS)、ポリテトラフルオロエチレン(PTFE)、ポリビニルデンジフルオライド(PVDF)もしくはポリビニルフルオライド(PVF)などの高分子材料、または、シリコン酸化物(SiO)もしくはシリコン窒化物(SiN)などの無機材料が用いられる。 The charging film 14 is a thin film made of an electret material, and is formed radially on the upper and lower surfaces of the rotating member 12 with the rotating shaft 11 as the center, except for the central portion around the rotating shaft 11. The charging film 14 is composed of a plurality of rectangular or substantially trapezoidal partial regions formed at intervals in the circumferential direction, and all are charged with the same polarity. Hereinafter, the charging film 14 will be described as being negatively charged. Examples of the electlet material of the charging film 14 include resin materials such as fluororesin represented by CYTOP (registered trademark), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polystyrene (PS), and poly. Polymer materials such as tetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) or polyvinyl fluoride (PVF), or inorganic materials such as silicon oxide (SiO 2 ) or silicon nitride (SiN) are used. ..

帯電膜14は、固定基板13との対向面である回転部材12の下面(第1の面)と、その対向面とは反対側の面である回転部材12の上面(第2の面)とにおいて、互いに1ピッチ分ずつずれて配置されている。すなわち、回転部材12の下面で帯電膜14が配置された円周方向の位置における回転部材12の上面には、帯電膜14は配置されておらず、同様に、回転部材12の上面で帯電膜14が配置された円周方向の位置における回転部材12の下面にも、帯電膜14は配置されていない。言い換えると、帯電膜14は、回転部材12の下面と上面とで、回転部材12の回転方向に互い違いに形成されている。 The charging film 14 includes a lower surface (first surface) of the rotating member 12 which is a surface facing the fixed substrate 13 and an upper surface (second surface) of the rotating member 12 which is a surface opposite to the facing surface. In, they are arranged so as to be offset by one pitch from each other. That is, the charging film 14 is not arranged on the upper surface of the rotating member 12 at the position in the circumferential direction where the charging film 14 is arranged on the lower surface of the rotating member 12, and similarly, the charging film 14 is arranged on the upper surface of the rotating member 12. The charging film 14 is also not arranged on the lower surface of the rotating member 12 at the position in the circumferential direction where the 14 is arranged. In other words, the charging film 14 is formed alternately on the lower surface and the upper surface of the rotating member 12 in the rotation direction of the rotating member 12.

図3に示すように、帯電膜14の表面には負の電荷が集中し、回転部材12に接している側の帯電膜14の面には正の電荷が誘起される。これにより、回転部材12でも、帯電膜14に接している側の面には負の電荷が誘起され、帯電膜14とは反対側の面には正の電荷が誘起される。このため、負に帯電した帯電膜14を回転部材12の片面に配置すると、その基板の裏面には正の電荷が誘起される。回転部材12を誘電体で構成することにより、回転部材12の帯電膜14とは反対側の表面に、帯電膜14とは反対の極性の電荷が誘起され、その反対側の表面が帯電膜14とは反対の電位になる。したがって、負に帯電する1種類の帯電材料だけで、正に帯電した帯電膜と負に帯電した帯電膜とを両方作製したのと同じ状態を実現することができる。 As shown in FIG. 3, negative charges are concentrated on the surface of the charging film 14, and positive charges are induced on the surface of the charging film 14 on the side in contact with the rotating member 12. As a result, even in the rotating member 12, a negative charge is induced on the surface on the side in contact with the charging film 14, and a positive charge is induced on the surface on the side opposite to the charging film 14. Therefore, when the negatively charged charging film 14 is arranged on one side of the rotating member 12, a positive charge is induced on the back surface of the substrate. By forming the rotating member 12 with a dielectric material, a charge having a polarity opposite to that of the charging film 14 is induced on the surface of the rotating member 12 opposite to the charging film 14, and the surface on the opposite side is the charging film 14. The potential is opposite to that of. Therefore, it is possible to realize the same state as when both the positively charged charging film and the negatively charged charging film are produced by using only one kind of negatively charged charging material.

このように、回転部材12では、上下面における帯電膜14同士の間の矩形または略台形の領域121に、帯電膜14とは反対である正の電荷が誘起される。回転部材12では、負に帯電した帯電膜14が上面と下面において円周方向に交互に配置されており、正の電荷が誘起される帯電膜14以外の領域121も、上面と下面において円周方向に交互に配置されている。このため、回転部材12の上下面には、それぞれ、互いに反対の極性に帯電した正の帯電領域121と負の帯電膜14とが円周方向に交互に配置されている。さらに、それらの配置は、上面と下面で1ピッチ分(矩形または略台形の領域1個分)ずれている。 As described above, in the rotating member 12, a positive charge opposite to that of the charging film 14 is induced in the rectangular or substantially trapezoidal region 121 between the charging films 14 on the upper and lower surfaces. In the rotating member 12, negatively charged charging films 14 are alternately arranged in the circumferential direction on the upper surface and the lower surface, and the region 121 other than the charging film 14 in which a positive charge is induced is also circumferential on the upper surface and the lower surface. They are arranged alternately in the direction. Therefore, positively charged regions 121 and negatively charged films 14 charged with opposite polarities are alternately arranged in the circumferential direction on the upper and lower surfaces of the rotating member 12, respectively. Further, their arrangement is shifted by one pitch (one rectangular or substantially trapezoidal region) on the upper surface and the lower surface.

対向電極15,16は、それぞれ矩形または略台形の複数の電極で構成され、固定基板13の上面(回転部材12との対向面)において、円周方向に交互に、かつ回転軸11を中心とする放射状に形成されている。対向電極15同士および対向電極16同士は、帯電膜14と同様に、円周方向に間隔を空けて形成され、かつ等間隔に配置されている。回転軸11を中心とする同一円周上では、対向電極15および対向電極16の幅は同じであり、その大きさは帯電膜14の幅と同じかほぼ同じであることが好ましい。また、回転部材12の片面における帯電膜14の個数、対向電極15の個数、および対向電極16の個数も、同じであることが好ましい。 The counter electrodes 15 and 16 are each composed of a plurality of rectangular or substantially trapezoidal electrodes, and are alternately arranged in the circumferential direction on the upper surface of the fixed substrate 13 (the surface facing the rotating member 12) and centered on the rotating shaft 11. It is formed in a radial pattern. Similar to the charging film 14, the counter electrodes 15 and the counter electrodes 16 are formed at intervals in the circumferential direction and are arranged at equal intervals. On the same circumference centered on the rotating shaft 11, the widths of the counter electrode 15 and the counter electrode 16 are the same, and it is preferable that the size is the same as or substantially the same as the width of the charging film 14. Further, it is preferable that the number of charging films 14 on one side of the rotating member 12, the number of counter electrodes 15, and the number of counter electrodes 16 are the same.

回転部材12が回転すると、それに伴い、回転部材12の下面における正の帯電領域121および負の帯電膜14と、対向電極15,16との間の重なり面積が増減する。このため、正の帯電領域121および負の帯電膜14が作る電界により対向電極15,16に引き寄せられる電荷が、回転部材12の回転に伴い増減する。発電部10は、このようにして、対向電極15と対向電極16の間に交流電流を発生させることにより、静電誘導を利用した発電を行う。 As the rotating member 12 rotates, the overlapping area between the positively charged region 121 and the negatively charged film 14 on the lower surface of the rotating member 12 and the counter electrodes 15 and 16 increases or decreases accordingly. Therefore, the electric charge attracted to the counter electrodes 15 and 16 by the electric field created by the positive charging region 121 and the negative charging film 14 increases or decreases as the rotating member 12 rotates. In this way, the power generation unit 10 generates an alternating current between the counter electrode 15 and the counter electrode 16 to generate power using electrostatic induction.

蓄電部20は、整流回路21および二次電池22を有し、回転部材12の回転に応じて帯電領域121および帯電膜14と対向電極15,16との間の静電誘導により発生した電力を蓄積する。対向電極15,16からの出力は整流回路21に接続され、整流回路21は二次電池22に接続されている。整流回路21は、4個のダイオードを有するブリッジ式の回路であり、対向電極15と対向電極16の間で生成された電流を整流する。二次電池22は、リチウム二次電池などの充放電可能な電池であり、発電部10によって発電された電力を蓄積し、図示しない駆動対象の回路にその電力を供給する。 The power storage unit 20 has a rectifier circuit 21 and a secondary battery 22, and receives electric power generated by electrostatic induction between the charging region 121 and the charging film 14 and the counter electrodes 15 and 16 in accordance with the rotation of the rotating member 12. accumulate. The outputs from the counter electrodes 15 and 16 are connected to the rectifier circuit 21, and the rectifier circuit 21 is connected to the secondary battery 22. The rectifier circuit 21 is a bridge type circuit having four diodes, and rectifies the current generated between the counter electrode 15 and the counter electrode 16. The secondary battery 22 is a rechargeable / dischargeable battery such as a lithium secondary battery, which stores the electric power generated by the power generation unit 10 and supplies the electric power to a circuit to be driven (not shown).

図5は、帯電膜14の帯電方法を説明するための図である。発電部10(電気機械変換器1)の製造時には、まず、回転部材12となる誘電体基板の上下面に、上面と下面とで互い違いになるように、相互に間隔を空けて、絶縁体による複数の薄膜領域14’が形成される。その際、誘電体基板の上下面に帯電用の電極を形成し、その上に、帯電膜14となる薄膜領域14’として、例えば樹脂膜を形成してもよい。その上で、図5に示すように、誘電体基板(回転部材12)が接地され、誘電体基板の上下面の各薄膜領域14’に対向するように放電用電極(針電極)91が配置される。そして、高電圧電源90により、各放電用電極91に例えば数千V程度の高電圧が掛けられる。 FIG. 5 is a diagram for explaining a charging method of the charging film 14. At the time of manufacturing the power generation unit 10 (electromechanical converter 1), first, the upper and lower surfaces of the dielectric substrate to be the rotating member 12 are spaced from each other so that the upper surface and the lower surface are staggered, and an insulator is used. A plurality of thin film regions 14'are formed. At that time, electrodes for charging may be formed on the upper and lower surfaces of the dielectric substrate, and a resin film may be formed on the electrodes as the thin film region 14'to be the charging film 14. Then, as shown in FIG. 5, the dielectric substrate (rotating member 12) is grounded, and the discharge electrode (needle electrode) 91 is arranged so as to face each thin film region 14'on the upper and lower surfaces of the dielectric substrate. Will be done. Then, a high voltage of, for example, several thousand V is applied to each discharge electrode 91 by the high voltage power supply 90.

すると、放電用電極91から誘電体基板に向けてコロナ放電により電子が放出されるので、その電子により、誘電体基板の上下面の薄膜領域14’が同時に負に帯電して帯電膜14になる。また、薄膜領域14’の帯電に伴い、誘電体基板の上下面における薄膜領域14’同士の間の領域121には、帯電膜14とは反対の極性である正の電荷が誘起される。このため、誘電体基板の上下面では、互いに反対の極性に帯電した領域(帯電領域121と帯電膜14)が交互に形成される。その上で、対向電極15,16が配置された固定基板13との間で一定の距離を保って回転可能なように、固定基板13に対向させて、誘電体基板が回転軸11に固定される。以上の工程により、図1に示す発電部10が完成し、さらに対向電極15,16を蓄電部20に電気的に接続すれば、電気機械変換器1が完成する。 Then, electrons are emitted from the discharge electrode 91 toward the dielectric substrate by corona discharge, and the electrons simultaneously negatively charge the thin film region 14'on the upper and lower surfaces of the dielectric substrate to become the charging film 14. .. Further, as the thin film region 14'is charged, a positive charge having a polarity opposite to that of the charging film 14 is induced in the region 121 between the thin film regions 14'on the upper and lower surfaces of the dielectric substrate. Therefore, on the upper and lower surfaces of the dielectric substrate, regions (charged region 121 and charged film 14) charged with opposite polarities are alternately formed. Then, the dielectric substrate is fixed to the rotating shaft 11 so as to face the fixed substrate 13 so that the counter electrodes 15 and 16 can rotate with the fixed substrate 13 arranged at a constant distance. To. By the above steps, the power generation unit 10 shown in FIG. 1 is completed, and if the counter electrodes 15 and 16 are electrically connected to the power storage unit 20, the electromechanical converter 1 is completed.

なお、図5に示す帯電工程は、回転部材12の片面ずつ行ってもよい。ただし、帯電を片面ずつ行うと、先に帯電させた一方の面における帯電膜14の電荷の一部が、次の帯電処理の影響を受けて抜ける可能性がある。このため、回転部材12の両面の帯電膜14を同時に帯電させた方が、帯電膜14の電位をより大きく維持できるので好ましい。 The charging step shown in FIG. 5 may be performed on each side of the rotating member 12. However, if charging is performed on each side, a part of the charge of the charging film 14 on the previously charged side may be affected by the next charging process and escape. Therefore, it is preferable to simultaneously charge the charging films 14 on both sides of the rotating member 12 because the potential of the charging film 14 can be maintained larger.

図11(A)および図11(B)は、それぞれ、比較例の発電部と発電部10の出力波形の差異を示す図である。図11(A)は、回転部材12の上面側の帯電部14がなくそれ以外は発電部10と同一の構成を有する発電部の対向電極15,16からの電圧Vの出力波形を示し、図11(B)は、発電部10の対向電極15,16からの電圧Vの出力波形を示す。 11 (A) and 11 (B) are diagrams showing differences in the output waveforms of the power generation unit and the power generation unit 10 of the comparative example, respectively. FIG. 11A shows the output waveform of the voltage V from the counter electrodes 15 and 16 of the power generation unit having the same configuration as the power generation unit 10 except that the charging unit 14 on the upper surface side of the rotating member 12 is not provided. Reference numeral 11 (B) shows the output waveform of the voltage V from the counter electrodes 15 and 16 of the power generation unit 10.

比較例の発電部では、帯電膜14が回転部材12の下面(固定基板13との対向面)のみに形成されており、上記の正の帯電領域121に相当するものがないので、接地電位と負電位の領域で静電誘導が発生する。このため、比較例の発電部からの出力電圧の波形は図11(A)に示すようになる。この場合、発電部からの発電出力は、帯電膜14の負電位と、接地電位(帯電膜14同士の間の領域の電位)との電位差に応じた大きさになる。 In the power generation unit of the comparative example, the charging film 14 is formed only on the lower surface of the rotating member 12 (the surface facing the fixed substrate 13), and there is no corresponding positive charging region 121. Electrostatic induction occurs in the negative potential region. Therefore, the waveform of the output voltage from the power generation unit of the comparative example is shown in FIG. 11 (A). In this case, the power generation output from the power generation unit has a magnitude corresponding to the potential difference between the negative potential of the charging film 14 and the ground potential (potential in the region between the charging films 14).

一方、発電部10では、上記の比較例で接地電位であった帯電膜14同士の間の領域121が正電位になって、正電位と負電位の領域で静電誘導が発生する。このため、発電部10からの出力電圧の波形は図11(B)に示すようになる。発電部10の発電出力は、帯電膜14の負電位と領域121の正電位との電位差に応じた大きさになり、発電部10からの出力波形の幅A2は、比較例の発電部からの出力波形の幅A1よりも大きい。したがって、発電部10を有する電気機械変換器1では、比較例の発電部を有する電気機械変換器と比べて静電誘導の電位差が大きくなり、発電出力が向上する。 On the other hand, in the power generation unit 10, the region 121 between the charging films 14 which was the ground potential in the above comparative example becomes a positive potential, and electrostatic induction occurs in the region of the positive potential and the negative potential. Therefore, the waveform of the output voltage from the power generation unit 10 is shown in FIG. 11 (B). The power generation output of the power generation unit 10 has a size corresponding to the potential difference between the negative potential of the charging film 14 and the positive potential of the region 121, and the width A2 of the output waveform from the power generation unit 10 is from the power generation unit of the comparative example. It is larger than the width A1 of the output waveform. Therefore, in the electromechanical converter 1 having the power generation unit 10, the potential difference of electrostatic induction becomes larger than that of the electromechanical converter having the power generation unit of the comparative example, and the power generation output is improved.

また、電気機械変換器1では、負に帯電する材料だけで正の帯電領域121を形成することができるため、帯電材料はどちらかの一方の極性に帯電するものだけでよく、帯電膜14を形成する工程が簡略化される。なお、領域121に誘起される正電荷の量を増やし電位を高くするためには、回転部材12となる誘電体基板の厚さは、必要な強度が確保される範囲内でなるべく薄い方が好ましい。 Further, in the electromechanical converter 1, since the positively charged region 121 can be formed only by the material that is negatively charged, only the material that is charged to either one of the polarities is required, and the charging film 14 may be formed. The forming process is simplified. In order to increase the amount of positive charge induced in the region 121 and raise the potential, it is preferable that the thickness of the dielectric substrate to be the rotating member 12 is as thin as possible within the range in which the required strength is secured. ..

図6は、別の回転部材12’の部分断面図である。回転部材12’は図2の回転部材12と同様に円板状の形状を有し、図6でも、図3と同様に、図の横方向が回転部材12’の円周方向(図2の矢印C方向)に相当するように変形して図示している。 FIG. 6 is a partial cross-sectional view of another rotating member 12'. The rotating member 12'has a disk-like shape similar to the rotating member 12 of FIG. 2, and in FIG. 6, as in FIG. 3, the lateral direction of the drawing is the circumferential direction of the rotating member 12'(in FIG. 2). It is deformed and shown so as to correspond to the arrow C direction).

回転部材12’の上下面には、回転部材12と同様に、それぞれ、互いに反対の極性に帯電した正の帯電領域121と負の帯電膜14とが円周方向に交互に配置されており、それらの配置は、上面と下面で1ピッチ分ずれている。ただし、回転部材12は平坦な基板であり、その上下面に帯電膜14が帯電膜14の厚さ分だけ突出しているのに対し、回転部材12’では、その上下面に帯電膜14用の複数の溝部が形成されており、溝部以外の回転部材12の表面と帯電膜14の露出面が同一平面になっている。より詳細には、回転部材12’の上下面には、その上面と下面とで円周方向に互い違いに複数の溝部が形成されており、回転部材12’の帯電膜14は、それらの溝部を満たすように形成されている。このため、回転部材12’の上下面は、帯電膜14およびそれらの溝部による凹凸がない平坦面である。 Similar to the rotating member 12, positive charging regions 121 and negative charging films 14 charged to opposite polarities are alternately arranged in the circumferential direction on the upper and lower surfaces of the rotating member 12'. Their arrangement is offset by one pitch on the top and bottom surfaces. However, the rotating member 12 is a flat substrate, and the charging film 14 projects on the upper and lower surfaces thereof by the thickness of the charging film 14, whereas in the rotating member 12', the charging film 14 is used on the upper and lower surfaces thereof. A plurality of groove portions are formed, and the surface of the rotating member 12 other than the groove portions and the exposed surface of the charging film 14 are flush with each other. More specifically, on the upper and lower surfaces of the rotating member 12', a plurality of grooves are formed alternately on the upper surface and the lower surface in the circumferential direction, and the charging film 14 of the rotating member 12'provides these grooves. It is formed to meet. Therefore, the upper and lower surfaces of the rotating member 12'are flat surfaces without unevenness due to the charging film 14 and the grooves thereof.

このように、帯電膜14を回転部材に埋め込んで、回転部材12’の上下面を平坦面にしてもよい。その場合、回転部材12’の上下面で各溝部の深さを同じにしてもよく、例えば、各溝部の深さを回転部材12’の厚さの1/2程度として、上下面の溝部の底面をほぼ同じ高さに揃えてもよい。あるいは、固定基板13との対向面である回転部材12’の下面側の領域121に誘起される正電荷を増やすために、回転部材12’の下面側よりも、固定基板13とは反対側である上面側の溝部を深くすることで、上面側の帯電膜14の底面を固定基板13に近付けてもよい。 In this way, the charging film 14 may be embedded in the rotating member so that the upper and lower surfaces of the rotating member 12'are flat surfaces. In that case, the depth of each groove may be the same on the upper and lower surfaces of the rotating member 12'. For example, the depth of each groove may be about ½ of the thickness of the rotating member 12', and the grooves on the upper and lower surfaces may be the same. The bottom surfaces may be aligned at approximately the same height. Alternatively, in order to increase the positive charge induced in the region 121 on the lower surface side of the rotating member 12'which is the surface facing the fixed substrate 13, the side opposite to the fixed substrate 13 rather than the lower surface side of the rotating member 12' The bottom surface of the charging film 14 on the upper surface side may be brought closer to the fixed substrate 13 by deepening the groove portion on the upper surface side.

回転部材の厚さを同じとすれば、回転部材12よりも回転部材12’の方が、溝部の分だけ帯電膜14とその反対側における回転部材の表面との距離が近くなるため、その分、領域121に誘起される正電荷の量が多くなる。したがって、回転部材12’を用いると、回転部材12を用いた場合よりも、帯電膜14の負電位と帯電領域121の正電位との電位差が大きくなって、発電出力がさらに向上する。また、帯電膜14を回転部材の表面に突出させるよりも回転部材内に埋め込んだ方が、回転部材の表面の平坦度が上がるので、回転部材12’の方が、安定して固定基板13との間の距離を縮められる。回転部材と固定基板13とを近付けた方がそれらの間に発生する電圧が高くなるので、この点でも回転部材12’の方が好ましい。また、回転部材12’では、帯電膜14による表面の凸凹がないため、高速で回転したときでも空気抵抗が少ないという利点もある。 Assuming that the thickness of the rotating member is the same, the distance between the charging film 14 and the surface of the rotating member on the opposite side of the rotating member 12'is closer than that of the rotating member 12 by the amount of the groove. , The amount of positive charge induced in the region 121 increases. Therefore, when the rotating member 12'is used, the potential difference between the negative potential of the charging film 14 and the positive potential of the charging region 121 becomes larger than when the rotating member 12 is used, and the power generation output is further improved. Further, since the flatness of the surface of the rotating member is improved by embedding the charging film 14 in the rotating member rather than projecting it from the surface of the rotating member, the rotating member 12'is more stable with the fixed substrate 13. The distance between them can be shortened. Since the voltage generated between the rotating member and the fixed substrate 13 is higher when the rotating member and the fixed substrate 13 are brought closer to each other, the rotating member 12'is preferable in this respect as well. Further, since the rotating member 12'does not have surface irregularities due to the charging film 14, there is an advantage that air resistance is low even when rotating at high speed.

図7は、別の発電部10’の部分断面図である。発電部10’は、上記した発電部10のものと同じ回転軸11(図7では図示せず)、回転部材12、固定基板13、帯電膜14および対向電極15,16に加えて、固定基板17を有する。図7は、図3と同様に、図の横方向が回転部材12および固定基板13,17の円周方向(図2の矢印C方向)に相当するように変形して図示している。 FIG. 7 is a partial cross-sectional view of another power generation unit 10'. The power generation unit 10'is a fixed substrate in addition to the same rotating shaft 11 (not shown in FIG. 7), a rotating member 12, a fixed substrate 13, a charging film 14, and counter electrodes 15 and 16 as those of the power generation unit 10 described above. Has 17. Similar to FIG. 3, FIG. 7 is deformed so that the lateral direction of the figure corresponds to the circumferential direction of the rotating member 12 and the fixed substrates 13 and 17 (the direction of arrow C in FIG. 2).

固定基板17は、固定基板13と同じものであり、回転部材12を挟んで固定基板13と上下対称になるように、回転部材12の上側に配置されている。固定基板17にも、固定基板13と同様に、対向電極15,16が円周方向に交互に形成されている。発電部10’のように、回転部材12の一方の面(下面)だけでなく他方の面(上面)にも対向電極15,16が対向するように、第2の固定基板である固定基板17を配置してもよい。これにより、発電部10と比べて、発電量を容易に増やすことができる。 The fixed substrate 17 is the same as the fixed substrate 13, and is arranged above the rotating member 12 so as to be vertically symmetrical with the fixed substrate 13 with the rotating member 12 interposed therebetween. Similar to the fixed substrate 13, the counter electrodes 15 and 16 are alternately formed on the fixed substrate 17 in the circumferential direction. A fixed substrate 17 which is a second fixed substrate so that the counter electrodes 15 and 16 face not only one surface (lower surface) of the rotating member 12 but also the other surface (upper surface) like the power generation unit 10'. May be placed. As a result, the amount of power generation can be easily increased as compared with the power generation unit 10.

図1に示した電気機械変換器1の発電部10では、固定基板13に形成された2組の対向電極15,16から発電電流が取り出される。電気機械変換器1の形態は、静止している固定基板13上の電極のみから電流を取り出せばよく、回転する回転部材12との電気的接続が不要であるため、便利である。ただし、このような形態に限らず、回転部材12と固定基板13の両方を蓄電部20に電気的に接続して発電電流を取り出してもよいので、この場合の例を次に説明する。 In the power generation unit 10 of the electromechanical converter 1 shown in FIG. 1, the power generation current is taken out from the two sets of counter electrodes 15 and 16 formed on the fixed substrate 13. The form of the electromechanical converter 1 is convenient because it is sufficient to take out the current only from the electrodes on the stationary fixed substrate 13 and it is not necessary to electrically connect the rotating member 12 to the rotating member 12. However, the present invention is not limited to such a form, and both the rotating member 12 and the fixed substrate 13 may be electrically connected to the power storage unit 20 to take out the generated current. Therefore, an example in this case will be described below.

図8は、別の電気機械変換器1’の概略構成図である。電気機械変換器1’の発電部10’’は、図1の発電部10と同様の構成を有するが、回転部材12が蓄電部20に電気的に接続されている点と、固定基板13上には1組の対向電極15のみが形成されている点が発電部10とは異なる。発電部10’’では、回転軸11は導電部材で構成され、帯電膜14を構成する矩形または略台形の各部分領域は、電気接点を介して回転軸11に接続されている。電気機械変換器1’では、蓄電部20が回転軸11と対向電極15に電気的に接続されており、それらを介して発電電流が取り出される。なお、帯電膜14の各部分領域を1つずつ回転軸11に接続するのではなく、部分領域同士を連結配線した上で、その連結配線を回転軸11に接続してもよい。 FIG. 8 is a schematic configuration diagram of another electromechanical converter 1'. The power generation unit 10 ″ of the electromechanical converter 1'has the same configuration as the power generation unit 10 of FIG. 1, but the rotating member 12 is electrically connected to the power storage unit 20 and the fixed substrate 13 is on. Is different from the power generation unit 10 in that only one set of counter electrodes 15 is formed in the power generation unit 10. In the power generation unit 10 ″, the rotating shaft 11 is composed of a conductive member, and each rectangular or substantially trapezoidal partial region constituting the charging film 14 is connected to the rotating shaft 11 via an electric contact. In the electromechanical converter 1', the power storage unit 20 is electrically connected to the rotating shaft 11 and the counter electrode 15, and the generated current is taken out through them. Instead of connecting each partial region of the charging film 14 to the rotating shaft 11 one by one, the connecting wiring may be connected to the rotating shaft 11 after connecting the partial regions to each other.

図9は、さらに別の電気機械変換器2の概略構成図である。電気機械変換器2は、アクチュエータ30および駆動部40を有し、アクチュエータ30は、電気機械変換器1の発電部10と同一の構成を有する。アクチュエータ30でも、回転部材12の上下面には、それぞれ、正の帯電領域121と負の帯電膜14とが円周方向に交互に配置されており、それらの配置は、上面と下面で1ピッチ分ずれている。また、アクチュエータ30の対向電極15,16は、それぞれ電気配線を介して駆動部40に接続されている。電気機械変換器2は、駆動部40に入力された電気信号をもとに、回転部材12と対向電極15,16との間で発生する静電気力を利用して回転部材12を回転させることにより、電力から動力を取り出す駆動装置(エレクトレットモータ)である。 FIG. 9 is a schematic configuration diagram of yet another electromechanical converter 2. The electromechanical converter 2 has an actuator 30 and a drive unit 40, and the actuator 30 has the same configuration as the power generation unit 10 of the electromechanical converter 1. Also in the actuator 30, positive charging regions 121 and negative charging films 14 are alternately arranged in the circumferential direction on the upper and lower surfaces of the rotating member 12, respectively, and the arrangement thereof is one pitch on the upper surface and the lower surface. It is out of alignment. Further, the counter electrodes 15 and 16 of the actuator 30 are connected to the drive unit 40 via electrical wiring, respectively. The electromechanical converter 2 rotates the rotating member 12 by utilizing the electrostatic force generated between the rotating member 12 and the counter electrodes 15 and 16 based on the electric signal input to the drive unit 40. , A drive device (electric motor) that extracts power from electric power.

駆動部40は、アクチュエータ30を駆動するための回路であり、クロック41および比較器42,43を有する。駆動部40は、極性が交互に切り替わる交番電圧を対向電極15,16に印加して、回転部材12の帯電領域121および帯電膜14と、固定基板13の対向電極15,16との間で発生する静電気力により、回転部材12を回転させる。 The drive unit 40 is a circuit for driving the actuator 30, and includes a clock 41 and comparators 42 and 43. The drive unit 40 applies an alternating voltage whose polarity is alternately switched to the counter electrodes 15 and 16, and is generated between the charging region 121 and the charging film 14 of the rotating member 12 and the counter electrodes 15 and 16 of the fixed substrate 13. The rotating member 12 is rotated by the electrostatic force.

図9に示すように、クロック41の出力は比較器42,43の入力に接続され、比較器42の出力は対向電極15に、比較器43の出力は対向電極16に、それぞれ電気配線を介して接続されている。比較器42,43は、それぞれクロック41からの入力信号の電位と接地電位とを比較し、その結果を2値で出力するが、比較器42,43の出力信号は互いに逆の符号である。クロック41からの入力信号がHのときには、対向電極15は+V、対向電極16は−Vの電位になり、入力信号がLのときには、対向電極15は−V、対向電極16は+Vの電位になる。 As shown in FIG. 9, the output of the clock 41 is connected to the inputs of the comparators 42 and 43, the output of the comparator 42 is connected to the counter electrode 15, and the output of the comparator 43 is connected to the counter electrode 16 via electrical wiring. Is connected. The comparators 42 and 43 compare the potential of the input signal from the clock 41 with the ground potential, respectively, and output the result as a binary value, but the output signals of the comparators 42 and 43 have opposite codes. When the input signal from the clock 41 is H, the counter electrode 15 has a potential of + V and the counter electrode 16 has a potential of −V, and when the input signal is L, the counter electrode 15 has a potential of −V and the counter electrode 16 has a potential of + V. Become.

駆動部40は、アクチュエータ30の駆動時に、一方の対向電極15に帯電膜14の帯電と同じ符号の電圧を印加し、他方の対向電極16に帯電膜14の帯電とは異なる符号の電圧を印加して、それらの電圧の符号を交互に反転させる。このように電圧が印加されると、帯電領域121および帯電膜14が作る電界と対向電極15,16が作る電界との相互作用により、帯電領域121および帯電膜14と対向電極15,16との間に引力または斥力が発生する。駆動部40が交番電圧を対向電極15,16に印加することにより、回転部材12には連続した力が加わるため、回転部材12を回転させることができる。 When the actuator 30 is driven, the drive unit 40 applies a voltage having the same sign as the charge of the charging film 14 to one facing electrode 15 and a voltage having a code different from the charging of the charging film 14 to the other facing electrode 16. Then, the signs of those voltages are alternately inverted. When the voltage is applied in this way, the electric field created by the charging region 121 and the charging film 14 and the electric field created by the counter electrodes 15 and 16 interact with each other to cause the charging region 121 and the charging film 14 and the counter electrodes 15 and 16 to interact with each other. An attractive or repulsive force is generated between them. When the drive unit 40 applies an alternating voltage to the counter electrodes 15 and 16, a continuous force is applied to the rotating member 12, so that the rotating member 12 can be rotated.

アクチュエータ30を有する電気機械変換器2でも、帯電膜14同士の間の領域121が正電位になって、そこでも対向電極15,16との間で静電気力が発生する。このため、電気機械変換器2では、例えば帯電膜14が回転部材12の下面(固定基板13との対向面)のみに形成され上記の正の帯電領域121に相当するものがないアクチュエータを有する比較例の電気機械変換器の場合よりも、発生する駆動力(回転トルク)が大きくなる。言い換えると、電気機械変換器2では、こうした比較例の電気機械変換器よりも低い印加電圧であっても、その比較例の電気機械変換器と同じ大きさの回転トルクが得られるという効果もある。すなわち、電気機械変換器2は、比較例の電気機械変換器よりも低消電で駆動できるため、小さい容量の電池で駆動する腕時計などの電子機器への適用に適している。 Even in the electromechanical converter 2 having the actuator 30, the region 121 between the charging films 14 becomes a positive potential, and an electrostatic force is also generated between the counter electrodes 15 and 16 there. Therefore, in the electromechanical converter 2, for example, a comparison has an actuator in which the charging film 14 is formed only on the lower surface of the rotating member 12 (the surface facing the fixed substrate 13) and there is no corresponding positive charging region 121. The driving force (rotational torque) generated is larger than that of the electromechanical transducer in the example. In other words, the electromechanical converter 2 also has an effect that a rotational torque having the same magnitude as that of the electromechanical converter of the comparative example can be obtained even if the applied voltage is lower than that of the electromechanical converter of the comparative example. .. That is, since the electromechanical converter 2 can be driven with lower static elimination than the electromechanical converter of the comparative example, it is suitable for application to electronic devices such as wristwatches driven by a battery having a small capacity.

なお、電気機械変換器2のアクチュエータ30でも、回転部材12を図6の回転部材12’に代えてもよいし、図7の発電部10’と同様に、回転部材12を挟んで固定基板13とは反対側にも、対向電極15,16を有する第2の固定基板を配置してもよい。 In the actuator 30 of the electromechanical converter 2, the rotating member 12 may be replaced with the rotating member 12'in FIG. 6, and the fixed substrate 13 sandwiches the rotating member 12 as in the power generation unit 10'in FIG. A second fixed substrate having counter electrodes 15 and 16 may be arranged on the opposite side as well.

図10(A)〜図10(C)は、さらに別の電気機械変換器3の概略構成図である。図10(A)に示すように、電気機械変換器3は、アクチュエータ50および駆動部40を有する。アクチュエータ50は、筐体51、スライド板52、固定基板53、帯電膜54および対向電極55,56を有する。図10(B)および図10(C)は、対向電極55,56の配置およびスライド板52の移動方向を示す平面図である。 10 (A) to 10 (C) are schematic configuration diagrams of still another electromechanical converter 3. As shown in FIG. 10A, the electromechanical transducer 3 has an actuator 50 and a drive unit 40. The actuator 50 has a housing 51, a slide plate 52, a fixed substrate 53, a charging film 54, and counter electrodes 55 and 56. 10 (B) and 10 (C) are plan views showing the arrangement of the counter electrodes 55 and 56 and the moving direction of the slide plate 52.

電気機械変換器3は、駆動部40に入力された電気信号をもとに、スライド板52と対向電極55,56との間で発生する静電気力を利用して、スライド板52を往復移動させることにより、電力から動力を取り出す駆動装置である。電気機械変換器の可動部材は、電気機械変換器1,1’,2の回転部材12のように回転するものに限らず、電気機械変換器3のスライド板52のようにスライド移動するものであってもよい。 The electromechanical converter 3 reciprocates the slide plate 52 by utilizing the electrostatic force generated between the slide plate 52 and the counter electrodes 55 and 56 based on the electric signal input to the drive unit 40. As a result, it is a drive device that extracts power from electric power. The movable members of the electromechanical converter are not limited to those that rotate like the rotating members 12 of the electromechanical converters 1, 1'and 2, but also those that slide and move like the slide plate 52 of the electromechanical converter 3. There may be.

スライド板52は、可動部材の一例であり、例えばシリコン基板またはガラスエポキシ基板などの周知の基板材料で構成され、図示しない可動支持部により筐体51内に支持されている。スライド板52の材質も、回転部材12と同様に、金属よりも誘電体である方が好ましい。また、固定基板53は、箱型の筐体51の底面に配置されている。スライド板52は、固定基板53との間で一定の距離を保って、固定基板53に平行な方向(水平方向、矢印A方向)に往復移動可能である。 The slide plate 52 is an example of a movable member, and is made of a well-known substrate material such as a silicon substrate or a glass epoxy substrate, and is supported in the housing 51 by a movable support portion (not shown). As with the rotating member 12, the material of the slide plate 52 is preferably a dielectric rather than a metal. Further, the fixed substrate 53 is arranged on the bottom surface of the box-shaped housing 51. The slide plate 52 can reciprocate in a direction parallel to the fixed substrate 53 (horizontal direction, arrow A direction) while maintaining a constant distance from the fixed substrate 53.

帯電膜54は、エレクトレット材料で構成されすべて同一の極性(例えば負)に帯電した薄膜であり、スライド板52の移動方向と直交する方向に延び、かつスライド板52の移動方向に等間隔に配置された複数の帯状(直線状)の領域で構成される。帯電膜54は、スライド板52の上下面において、互いに1ピッチ分ずつずれて(すなわち、スライド板52の移動方向に互い違いに)形成されている。帯電膜54の極性を負とすれば、スライド板52の材質を誘電体にすることにより、スライド板52の上下面における帯電膜54同士の間の帯状の領域521には、帯電膜54とは反対である正の電荷が誘起される。このため、アクチュエータ50でも、スライド板52の上下面には、それぞれ、正の帯電領域521と負の帯電膜54とが矢印A方向に交互に配置されており、それらの配置は、上面と下面で1ピッチ分ずれている。 The charging film 54 is a thin film made of an electrette material and charged with the same polarity (for example, negative), extends in a direction orthogonal to the moving direction of the slide plate 52, and is arranged at equal intervals in the moving direction of the slide plate 52. It is composed of a plurality of strip-shaped (straight) regions. The charging film 54 is formed on the upper and lower surfaces of the slide plate 52 so as to be offset by one pitch from each other (that is, alternately in the moving direction of the slide plate 52). If the polarity of the charging film 54 is negative, the material of the slide plate 52 is made of a dielectric material, so that the band-shaped region 521 between the charging films 54 on the upper and lower surfaces of the slide plate 52 is covered with the charging film 54. The opposite positive charge is induced. Therefore, even in the actuator 50, positive charging regions 521 and negative charging films 54 are alternately arranged in the direction of arrow A on the upper and lower surfaces of the slide plate 52, respectively, and the arrangement thereof is the upper surface and the lower surface. Is off by one pitch.

対向電極55,56は、それぞれスライド板52の移動方向と直交する方向に延びる複数の帯状の電極で構成され、固定基板53の上面において、スライド板52の移動方向に交互に形成されている。対向電極55同士および対向電極56同士はそれぞれ等間隔に配置されており、それらの幅は同じであることが好ましい。また、対向電極55,56の幅は、帯電膜54の幅と同じかほぼ同じであることが好ましく、スライド板52の片面における帯電膜54の個数、対向電極55の個数、および対向電極56の個数も、同じであることが好ましい。 The counter electrodes 55 and 56 are each composed of a plurality of strip-shaped electrodes extending in a direction orthogonal to the moving direction of the slide plate 52, and are formed alternately on the upper surface of the fixed substrate 53 in the moving direction of the slide plate 52. The counter electrodes 55 and 56 are arranged at equal intervals, and it is preferable that their widths are the same. Further, the widths of the counter electrodes 55 and 56 are preferably the same as or substantially the same as the width of the charge film 54, and the number of charge films 54 on one side of the slide plate 52, the number of counter electrodes 55, and the counter electrodes 56. The number is also preferably the same.

駆動部40は、アクチュエータ50を駆動するための回路であり、対向電極55,56に電気配線を介して接続されている。駆動部40は、電気機械変換器2のものと同様の構成を有し、極性が交互に切り替わる電圧を対向電極55,56に印加することにより、図10(B)および図10(C)に示すように、スライド板52を筐体51内で水平方向(矢印A方向)にスライド移動させる。 The drive unit 40 is a circuit for driving the actuator 50, and is connected to the counter electrodes 55 and 56 via electrical wiring. The drive unit 40 has the same configuration as that of the electromechanical converter 2, and by applying a voltage at which the polarities are alternately switched to the counter electrodes 55 and 56, FIGS. 10 (B) and 10 (C) are shown. As shown, the slide plate 52 is slid and moved in the housing 51 in the horizontal direction (arrow A direction).

アクチュエータ50を有する電気機械変換器3でも、帯電膜54同士の間の領域521が正電位になって、そこでも対向電極15,16との間で静電気力が発生する。このため、電気機械変換器3では、帯電膜54をスライド板52の下面(固定基板53との対向面)のみに形成したり、帯電膜54をスライド板52の上下面における矢印A方向の同じ位置に形成したりしたアクチュエータを有する電気機械変換器の場合よりも、発生する駆動力が大きくなる。 Even in the electromechanical converter 3 having the actuator 50, the region 521 between the charging films 54 becomes a positive potential, and an electrostatic force is also generated between the counter electrodes 15 and 16 there. Therefore, in the electromechanical converter 3, the charging film 54 is formed only on the lower surface of the slide plate 52 (the surface facing the fixed substrate 53), or the charging film 54 is formed on the upper and lower surfaces of the slide plate 52 in the same direction as the arrow A. The generated driving force is larger than that in the case of an electromechanical transducer having an actuator formed at a position.

なお、電気機械変換器3のアクチュエータ50でも、スライド板52に帯電膜54用の複数の溝部を形成し、それらの溝部を満たすように帯電膜54を形成して、帯電膜54をスライド板52の上下面を帯電膜54およびそれらの溝部による凹凸がない平坦面にしてもよい。また、図7の発電部10’と同様に、筐体51の上面にも、スライド板52の上面に対向するように対向電極55,56を配置して、それらの対向電極55,56も駆動部40に電気的に接続してもよい。また、電気機械変換器3の駆動部40を電気機械変換器1の蓄電部20に代え、外部環境の運動エネルギーを用いてスライド板52を矢印A方向にスライド移動させることで、スライド板52と対向電極55,56との間の静電誘導により静電気を発生させて動力から電力を取り出す発電装置を構成してもよい。 Also in the actuator 50 of the electromechanical converter 3, a plurality of grooves for the charging film 54 are formed on the slide plate 52, the charging film 54 is formed so as to fill the grooves, and the charging film 54 is formed on the slide plate 52. The upper and lower surfaces may be flat surfaces without unevenness due to the charging film 54 and the grooves thereof. Further, similarly to the power generation unit 10'in FIG. 7, facing electrodes 55 and 56 are arranged on the upper surface of the housing 51 so as to face the upper surface of the slide plate 52, and the facing electrodes 55 and 56 are also driven. It may be electrically connected to the unit 40. Further, the drive unit 40 of the electromechanical converter 3 is replaced with the power storage unit 20 of the electromechanical converter 1, and the slide plate 52 is slid and moved in the direction of the arrow A by using the kinetic energy of the external environment to obtain the slide plate 52. A power generation device may be configured in which static electricity is generated by electrostatic induction between the counter electrodes 55 and 56 to extract power from the power.

1,1’,2,3 電気機械変換器
10,10’,10’’ 発電部
11,11’ 回転軸
12,12’ 回転部材
13,17,53 固定基板
14,54 帯電膜
15,16,55,56 対向電極
20 蓄電部
30,50 アクチュエータ
40 駆動部
52 スライド板
1,1', 2,3 Electromechanical transducer 10,10', 10'Power generation unit 11,11'Rotating shaft 12,12'Rotating member 13,17,53 Fixed substrate 14,54 Charging film 15,16, 55, 56 Opposite electrode 20 Power storage unit 30, 50 Actuator 40 Drive unit 52 Slide plate

Claims (9)

帯電部と対向電極との間の静電的な相互作用を利用して電力と動力の間の変換を行う電気機械変換器であって、
固定基板と、
前記固定基板との間で一定の距離を保って移動可能な可動部材と、
前記可動部材の前記固定基板との対向面である第1の面および前記可動部材の前記対向面とは反対側の面である第2の面において、前記第1の面と前記第2の面とで前記可動部材の移動方向に互い違いに形成され、かつ互いに同じ極性に帯電した複数の帯電膜と、
前記固定基板の前記可動部材との対向面において前記移動方向に配置された複数の対向電極と、を有し、
前記可動部材の前記第1の面および前記第2の面における前記帯電膜同士の間の領域に前記複数の帯電膜とは反対の極性の電荷が誘起されることで、前記第1の面および前記第2の面では互いに反対の極性に帯電した領域が前記移動方向に交互に配置されている、
ことを特徴とする電気機械変換器。
An electromechanical transducer that converts between electric power and power by utilizing the electrostatic interaction between the charged part and the counter electrode.
With a fixed board
A movable member that can move with a certain distance from the fixed substrate,
In the first surface of the movable member facing the fixed substrate and the second surface of the movable member opposite to the facing surface, the first surface and the second surface A plurality of charging films formed alternately in the moving direction of the movable member and charged with the same polarity with each other.
It has a plurality of counter electrodes arranged in the moving direction on the surface of the fixed substrate facing the movable member.
By inducing a charge having a polarity opposite to that of the plurality of charging films in the region between the charging films on the first surface and the second surface of the movable member, the first surface and the first surface and On the second surface, regions charged with opposite polarities are alternately arranged in the moving direction.
An electromechanical transducer characterized by that.
前記可動部材は誘電体で構成されている、請求項1に記載の電気機械変換器。 The electromechanical converter according to claim 1, wherein the movable member is made of a dielectric material. 前記複数の帯電膜は、前記可動部材の前記第1の面および前記第2の面において前記第1の面と前記第2の面とで前記移動方向に互い違いに形成された複数の溝部を満たすように形成されており、
前記可動部材の前記第1の面および前記第2の面は、前記複数の帯電膜および前記複数の溝部による凹凸がない平坦面である、請求項1または2に記載の電気機械変換器。
The plurality of charged films fill a plurality of grooves formed alternately in the moving direction between the first surface and the second surface on the first surface and the second surface of the movable member. Is formed like
The electromechanical converter according to claim 1 or 2, wherein the first surface and the second surface of the movable member are flat surfaces without unevenness due to the plurality of charging films and the plurality of grooves.
前記可動部材を挟んで前記固定基板とは反対側に配置された第2の固定基板をさらに有し、
前記複数の対向電極は、前記第2の固定基板の前記可動部材との対向面においても前記移動方向に配置されている、請求項1〜3のいずれか一項に記載の電気機械変換器。
It further has a second fixed substrate arranged on the opposite side of the movable member from the fixed substrate.
The electromechanical converter according to any one of claims 1 to 3, wherein the plurality of counter electrodes are arranged in the moving direction also on the surface of the second fixed substrate facing the movable member.
前記可動部材は、前記可動部材の中心を通る回転軸の周りに回転可能であり、
前記複数の帯電膜と前記複数の対向電極は、それぞれ前記回転軸を中心として放射状に配置されている、請求項1〜4のいずれか一項に記載の電気機械変換器。
The movable member is rotatable around a rotation axis passing through the center of the movable member.
The electromechanical converter according to any one of claims 1 to 4, wherein the plurality of charging films and the plurality of counter electrodes are arranged radially around the rotation axis.
前記可動部材は、前記固定基板に平行な方向に往復移動可能なスライド板であり、
前記複数の帯電膜と前記複数の対向電極は、それぞれ前記移動方向に垂直に延びる帯状の形状を有する、請求項1〜4のいずれか一項に記載の電気機械変換器。
The movable member is a slide plate that can be reciprocated in a direction parallel to the fixed substrate.
The electromechanical converter according to any one of claims 1 to 4, wherein the plurality of charging films and the plurality of counter electrodes each have a strip-shaped shape extending perpendicularly to the moving direction.
極性が交互に切り替わる電圧を前記複数の対向電極に印加して、前記複数の帯電膜と前記複数の対向電極との間で発生する静電気力により前記可動部材を移動させる駆動部をさらに有する、請求項1〜6のいずれか一項に記載の電気機械変換器。 A claim that further includes a driving unit that applies a voltage that alternately switches polarities to the plurality of counter electrodes and moves the movable member by an electrostatic force generated between the plurality of charging films and the plurality of counter electrodes. Item 4. The electromechanical converter according to any one of Items 1 to 6. 前記可動部材の移動に応じて前記複数の帯電膜と前記複数の対向電極との間の静電誘導により発生した電力を蓄積する蓄電部をさらに有する、請求項1〜6のいずれか一項に記載の電気機械変換器。 The invention according to any one of claims 1 to 6, further comprising a power storage unit that stores electric power generated by electrostatic induction between the plurality of charging films and the plurality of counter electrodes in response to the movement of the movable member. The electromechanical converter described. 帯電部と対向電極との間の静電的な相互作用を利用して電力と動力の間の変換を行う電気機械変換器の製造方法であって、
基板の第1の面および前記第1の面とは反対側の面である第2の面に、前記第1の面と前記第2の面とで互い違いになるように、相互に間隔を空けて、絶縁体による複数の薄膜領域を形成する工程と、
前記基板を接地するとともに、前記複数の薄膜領域のそれぞれに対向するように放電用電極を配置して、前記放電用電極から前記基板に向けて放電により電子を放出させることで、前記複数の薄膜領域を同時に帯電させる工程と、
複数の対向電極が配置された固定基板との間で一定の距離を保って移動可能なように、前記固定基板に対向させて前記基板を配置する工程と、を有し、
前記帯電させる工程により、前記基板の前記第1の面および前記第2の面における前記薄膜領域同士の間の領域に前記複数の薄膜領域とは反対の極性の電荷が誘起されて、前記第1の面および前記第2の面では互いに反対の極性に帯電した領域が交互に形成される、
ことを特徴とする製造方法。
It is a manufacturing method of an electromechanical converter that converts between electric power and power by utilizing the electrostatic interaction between a charged part and a counter electrode.
The first surface of the substrate and the second surface, which is the surface opposite to the first surface, are spaced apart from each other so that the first surface and the second surface are staggered. And the process of forming multiple thin film regions with an insulator,
The plurality of thin films are grounded and the discharge electrodes are arranged so as to face each of the plurality of thin film regions, and electrons are discharged from the discharge electrodes toward the substrate by discharge. The process of charging the area at the same time and
It has a step of arranging the substrate so as to face the fixed substrate so that the substrate can be moved with a fixed distance from the fixed substrate on which a plurality of counter electrodes are arranged.
By the charging step, a charge having a polarity opposite to that of the plurality of thin film regions is induced in a region between the thin film regions on the first surface and the second surface of the substrate, and the first On the surface of the surface and the second surface, regions charged with opposite polarities are alternately formed.
A manufacturing method characterized by that.
JP2017051470A 2017-03-16 2017-03-16 Electromechanical transducer and its manufacturing method Active JP6799484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017051470A JP6799484B2 (en) 2017-03-16 2017-03-16 Electromechanical transducer and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017051470A JP6799484B2 (en) 2017-03-16 2017-03-16 Electromechanical transducer and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018157663A JP2018157663A (en) 2018-10-04
JP6799484B2 true JP6799484B2 (en) 2020-12-16

Family

ID=63718385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017051470A Active JP6799484B2 (en) 2017-03-16 2017-03-16 Electromechanical transducer and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6799484B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7077206B2 (en) * 2018-11-01 2022-05-30 シチズン時計株式会社 Manufacturing method of electrostatic induction type converter and electrostatic induction type converter
JP7107813B2 (en) * 2018-11-01 2022-07-27 シチズン時計株式会社 Electrostatic induction transducer, manufacturing method for electrostatic induction transducer, wristwatch
JP2020156205A (en) * 2019-03-20 2020-09-24 シチズン時計株式会社 Electrostatic induction type converter and method of manufacturing electrostatic induction type converter
CN110190772B (en) * 2019-05-29 2020-05-29 厦门大学 Independent induction type generator based on double electric charge layers in liquid and power generation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696258A (en) * 1970-07-30 1972-10-03 Gen Time Corp Electret motors capable of continuous rotation
JPH02219478A (en) * 1989-02-17 1990-09-03 Seiko Epson Corp Electret generator
JPH05184162A (en) * 1991-12-27 1993-07-23 Masafumi Yano Electrostatic actuator
JP2002068477A (en) * 2000-08-30 2002-03-08 Hitachi Metals Ltd Very little grain carrying device
JP2016185022A (en) * 2015-03-26 2016-10-20 シチズンホールディングス株式会社 Power generator
US10554082B2 (en) * 2015-04-17 2020-02-04 Shin-Etsu Chemical Co., Ltd. Axial gap type rotating machine

Also Published As

Publication number Publication date
JP2018157663A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6799484B2 (en) Electromechanical transducer and its manufacturing method
US9484842B2 (en) Segmentally structured disk triboelectric nanogenerator
US9985554B2 (en) Triboelectric nanogenerator
US9571009B2 (en) Rotating cylindrical and spherical triboelectric generators
US9543860B2 (en) Triboelectric nanogenerator
JP5800707B2 (en) Power generation device and power generation apparatus equipped with the same
JP6861718B2 (en) Electromechanical transducer
KR101532889B1 (en) Frictional electrostatic energy harvester coupled with frictional material and ferroelectric material
JP7022683B2 (en) Electrostatic electromechanical converter
JP6789156B2 (en) Electromechanical transducer
JP2016185022A (en) Power generator
JP6707018B2 (en) Electromechanical converter
JP6678526B2 (en) Electromechanical transducer
JP6832690B2 (en) Electromechanical transducer
JP6656055B2 (en) Electromechanical transducer
KR101885023B1 (en) Energy harvesting apparatus using triboelectrification
CN108476002B (en) Power generation or conversion system
JP5826681B2 (en) Manufacturing method of electret board
JP2018068065A (en) Electromechanical converter
JP5876179B2 (en) Power generator
JP2018098833A (en) Electromechanical transducer
WO2019181026A1 (en) Electromechanical converter and method for manufacturing same
JP6700139B2 (en) Method for manufacturing electret substrate
KR102206021B1 (en) Thermoelectric generation element using triboelectric field effect
JP6964983B2 (en) Manufacturing method of electret board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201120

R150 Certificate of patent or registration of utility model

Ref document number: 6799484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150