JPS6041571A - Preparation of solid thin film on surface of object to be processed - Google Patents
Preparation of solid thin film on surface of object to be processedInfo
- Publication number
- JPS6041571A JPS6041571A JP59066211A JP6621184A JPS6041571A JP S6041571 A JPS6041571 A JP S6041571A JP 59066211 A JP59066211 A JP 59066211A JP 6621184 A JP6621184 A JP 6621184A JP S6041571 A JPS6041571 A JP S6041571A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- powder particles
- thin film
- electric field
- workpiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、静電的手法を利用して高速に加速した固体
の微細粉末粒子を固体の被加工物表面に衝突させ、付着
堆積させて固体薄膜を製造する薄膜製造方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention is a thin film manufacturing method in which solid fine powder particles accelerated at high speed collide with the surface of a solid workpiece using an electrostatic method and are deposited to form a solid thin film. It is about the method.
微小単位の物質に何らかの加速手段によって運動エネル
ギを与え、これを固体材料表面に衝突、例着堆積させて
膜を製造する従来の技術として、たとえば原子的単位の
イオンの衝突に基づくものとしては、イオン化蒸着(プ
ラズマ法、スパッタリング法)やイオンビーム蒸着、ま
たより大きな単位の固体物質を熱的に溶融化したものの
衝突に基づくものとして溶射技術がある。前者では、比
較的良質の膜材料が得られるものの、適正な膜形成条件
の設定がむずかしく、またそのために必要な雰囲気ガス
の制御等の周辺技術が複雑化して装置が大規模となる傾
向があった。一方、後者では、空気中で溶融化した高温
物質を被加工物表面に吹きつけて肉盛りするもので、形
成された膜材料の品質劣化あるいは被加工物質に生じる
熱的変質が必然的に避けられない欠点があった。Conventional techniques for manufacturing a film by imparting kinetic energy to minute units of matter by some kind of acceleration means, colliding with the surface of a solid material, and depositing the kinetic energy include, for example, those based on the collision of atomic units of ions. There are thermal spraying techniques based on ionization deposition (plasma method, sputtering method), ion beam deposition, and the collision of larger units of thermally melted solid materials. Although relatively high-quality film materials can be obtained in the former method, it is difficult to set appropriate film formation conditions, and the peripheral technology required for this purpose, such as controlling the atmospheric gas, tends to be complicated and the equipment tends to be large-scale. Ta. On the other hand, in the latter method, the surface of the workpiece is built up by spraying a high-temperature substance melted in the air, which inevitably avoids deterioration of the quality of the formed film material or thermal deterioration of the workpiece. There was a drawback that it could not be done.
本発明における薄膜製造法では、静電的加速手段を用い
る点では前者と同様の方法原理といえるが、加速対象が
イオンよりはるかに大きなサイズの微細な固体物質(粉
末粒子)であり、しかも固体物質同士の高速衝撃現象を
膜形成に利用することを特徴とする。そのため、膜の形
成機構あるいは形成された膜材料の性質は両者の場合と
は異ったものとなる。すなわち、微細な固体物質による
固体材料表面への高速衝撃下には高パワー密度のエネル
ギ供給に基づく高温・高圧力状態の発生があり、被衝撃
物質の結晶学的な構造変化あるいは異種物質間での化学
反応が期待できる。The thin film manufacturing method of the present invention can be said to have the same principle as the former method in that it uses electrostatic acceleration means, but the object of acceleration is a fine solid substance (powder particles) that is much larger in size than ions, and moreover, It is characterized by the use of high-speed impact phenomena between substances for film formation. Therefore, the film formation mechanism or the properties of the formed film material will be different in both cases. In other words, when a fine solid substance hits the surface of a solid material at high speed, a high temperature and high pressure state occurs due to the supply of energy with high power density, resulting in changes in the crystallographic structure of the impacted substance or changes in the structure of different materials. A chemical reaction can be expected.
第1図(a)は、本薄膜製造法の基本原理を示し、単一
の粉末粒子が電界中で帯電ならびに静電加速されて高速
を得、被加工物表面に衝突、付着するに至る経過を表わ
す。すなわち、直流高電圧電源5に接続された平板状電
極15と15はそれぞれ陽極および陰極を構成し、これ
らの電極間には、極間の距離dとその印加電圧に依存し
た強さの電界Eが加わる。最初、陽極表面近傍に存在し
た電気的に中性の粉末粒子17には、電界作用によって
電子の電界放射あるいは電極表面との接触による電導が
発生し、粉末粒子から陽極への電子eの移動が起って正
極性の帯電量が付与される。(同図中の(A))。その
結果、帯電した粉末粒子は、図の電界Eの方向に静電加
速されて高速を得、陰極表面に衝突する直前にその速度
は最高速度Vとなる。)同図中の(B))。高速の粉末
粒子は、衝突時にその運動エネルギを瞬時に解放するの
で、衝撃塑性的に強度形をうけて陰極表面上に付着堆積
する。(同図中の(C))。Figure 1 (a) shows the basic principle of this thin film manufacturing method, showing the process in which a single powder particle is charged and electrostatically accelerated in an electric field to obtain high speed, collide with and adhere to the surface of the workpiece. represents. That is, the flat electrodes 15 and 15 connected to the DC high voltage power supply 5 constitute an anode and a cathode, respectively, and an electric field E is created between these electrodes, the strength of which depends on the distance d between the electrodes and the applied voltage. is added. Initially, in the electrically neutral powder particles 17 that existed near the anode surface, field emission of electrons due to the action of the electric field or conduction due to contact with the electrode surface occurs, and the movement of electrons e from the powder particles to the anode occurs. This causes a positive charge amount to be applied. ((A) in the same figure). As a result, the charged powder particles are electrostatically accelerated in the direction of the electric field E in the figure to obtain a high speed, and their speed reaches the maximum speed V immediately before colliding with the cathode surface. ) (B) in the same figure). Since the high-speed powder particles instantaneously release their kinetic energy upon collision, they are impact-plastically strengthened and deposited on the cathode surface. ((C) in the same figure).
第1図(b)は、通常凝集集団状態にある実際的な微細
粉末粒子が、電界中において凝集集団状態から単一の微
細粉末粒子へと分離され、前記の帯電、静電加速挙動を
経て膜形成に関与するに至る経過を示す。すなわち、凝
集状態の粒子集団が陽極表面近傍で前記の帯電機構に基
づいて帯電(同図中の(D))する結果、帯電電荷同士
〇反撲力によってより小さな粒子集団に静電分散される
。(同図中の(E))。分離した粒子集団は正極性の帯
電量をもつので、陰極方向に静電加速されてその表面に
衝突し、ここでさらに衝撃力による機械的分離をうける
(同図中の(F))。陰極表面に衝突した粒子は、比較
的小さな径の集団のもので高速を得たものについてはそ
の表面上に付着するが、付着するに足る運動エネルギを
もたない比較的大きな径のものは負極性に再帯電して陽
極方向に静電加速される。このように、対向した平板状
電極間では、電極間の電界方向への往復運動の間に静電
分散および機械的分離が繰り返される結果、初期の凝集
集団粒子はより小さな集団粒子を経て個々の単一粒子へ
と分離が進む。また、凝集集団粒子が分離されると、極
間には多数個の帯電粉末粒子に起因する空間電荷界が形
成されるので、個々の粉末粒子はその静電力によって相
互に反撲される。そのため、電極間中の粉末粒子は、印
加電界の方向に帯電、加速を繰り返して往復運動しなが
ら、電極周辺部へと拡散運動する。Figure 1(b) shows that practical fine powder particles, which are normally in an agglomerated state, are separated from the agglomerated state into a single fine powder particle in an electric field, and undergo the above-mentioned charging and electrostatic acceleration behavior. The process leading to involvement in membrane formation is shown. That is, as a result of the aggregated particle population being charged near the anode surface based on the above-mentioned charging mechanism ((D) in the figure), the charged charges are electrostatically dispersed into smaller particle populations due to the repulsion force. ((E) in the same figure). Since the separated particle group has a positive charge, it is electrostatically accelerated toward the cathode and collides with its surface, where it is further mechanically separated by the impact force ((F) in the figure). Particles colliding with the cathode surface are a group of relatively small diameter particles that achieve high speed and adhere to the surface, but particles with relatively large diameters that do not have enough kinetic energy to adhere are attached to the negative electrode. It is electrostatically recharged and electrostatically accelerated toward the anode. In this way, between the opposing flat electrodes, electrostatic dispersion and mechanical separation are repeated during the reciprocating motion between the electrodes in the direction of the electric field, and as a result, the initial aggregated particles pass through smaller aggregated particles and become individual particles. Separation progresses to single particles. Further, when the aggregated particles are separated, a space charge field due to the large number of charged powder particles is formed between the poles, so that the individual powder particles are repulsed by the electrostatic force. Therefore, the powder particles between the electrodes are repeatedly charged and accelerated in the direction of the applied electric field, and move back and forth to diffuse toward the electrode periphery.
平板状電極間の静電加速によって、粉末粒子が得る速度
は理論的に
V=(2qVa/m)’ =(6βEOE2d /rp
o )’(ここで、q、m、γおよびρ0はそれぞれ粉
末粒子の帯電量、質量、半径および密度、Va、 Eお
よびdは電極間の印加電圧、印加電界強度および距離、
βは電荷係数、ε0は真空誘電率)で与えられ、粒子径
が小なる粉末粒子はど高速を得ることを示している。し
たがって、電極間での往復運動の間に粒子径の微細化が
進み、付着するに足る運動エネルギを得た高速粒子が選
択的に電極(被加工物)の表面に付着し、その堆積によ
る薄膜形成が進行することになる。第4図は、平行平板
電極間の帯電、加速に基づく往復運動の間に、初期の凝
集集団粒子がほぼ単一の粉末粒子にまで分離されること
を実証した実験結果の一例である。すなわち、往復運動
させずに極間から引き出した帯電粉末粒子の平均的な比
帯電量q/m(白ヌキ丸)が著しく低いのに対して、往
復運動させた場合のq / m (黒丸)は単一の粉末
粒子の理論値ζこ近0値を示し、引き出した粒子が前記
の理論速度に達していることを示す。このように、凝集
性の強(A微細な粉末粒子を静電加速の理論に適った高
速ζこまで加速できるのは、平板状電極の効果てあり、
また本薄膜製造法の特徴でもある。さらには、粉末粒子
の空間電荷界に起因した拡散運動によって、かなり広範
囲の被加工物表面上にほぼ一様な薄膜を形成できる特徴
がある。なお、第1図(a) 、(b)では、陰極面一
ヒに粒子の付着が進行するものとしているが、陽極面一
しても同様のことが起こる。しかし、陰極から陽極方向
に加速される負極性の帯電粒子では、電界の集中効果に
よって粒子からの電界電子放射に起因する帯電極性の逆
転が起こり易く、そのために陽極表面に衝突できない粒
子の割合が増大すると考えられて付着量は比較的少ない
。したがって、陰極側を被加工物とする方が、膜形成の
効率面において有利である。The velocity obtained by powder particles due to electrostatic acceleration between flat electrodes is theoretically V = (2qVa/m)' = (6βEOE2d /rp
o)' (where q, m, γ and ρ are the charge amount, mass, radius and density of the powder particles, respectively, Va, E and d are the applied voltage, applied electric field strength and distance between the electrodes,
β is the charge coefficient, and ε0 is the vacuum dielectric constant), which indicates that powder particles with a smaller particle size can achieve higher speeds. Therefore, during the reciprocating movement between the electrodes, the particle diameter becomes finer, and the high-speed particles that have acquired enough kinetic energy to adhere selectively adhere to the surface of the electrode (workpiece), resulting in a thin film formed by the accumulation. Formation will proceed. FIG. 4 is an example of experimental results demonstrating that initial aggregated particles are separated into almost single powder particles during reciprocating motion based on charging and acceleration between parallel plate electrodes. In other words, the average specific charge q/m (white blank circle) of charged powder particles pulled out from between the electrodes without reciprocating motion is extremely low, whereas the q/m (black circle) when reciprocating motion is performed. shows a value of 0 near the theoretical value ζ of a single powder particle, indicating that the drawn particles have reached the theoretical velocity mentioned above. In this way, the ability to accelerate highly cohesive (A fine powder particles) to a high speed ζ in accordance with the theory of electrostatic acceleration is due to the effect of the flat electrode.
This is also a feature of the present thin film manufacturing method. Furthermore, due to the diffusion movement caused by the space charge field of the powder particles, a substantially uniform thin film can be formed on the surface of the workpiece over a fairly wide range. In FIGS. 1(a) and 1(b), it is assumed that particles adhere to the entire cathode surface, but the same phenomenon occurs even when the particles are attached to the anode surface. However, with negatively charged particles accelerated from the cathode toward the anode, the charged polarity is likely to be reversed due to field electron emission from the particles due to the concentration effect of the electric field, and as a result, the proportion of particles that cannot collide with the anode surface is small. The amount of adhesion is relatively small, although it is thought that the amount of adhesion will increase. Therefore, it is more advantageous in terms of film formation efficiency to use the cathode side as the workpiece.
以下、本発明な一実施例につき図面を参照して詳説する
。Hereinafter, one embodiment of the present invention will be explained in detail with reference to the drawings.
第2図は本実施例に使用される膜製造装置の主要部を一
例として示す。膜の原材料たる粉末粒子を高電界中へ供
給するための粒子供給系Pは、適当に粒子供給用の細孔
を配した振動板8、この振動板を粉末充填容器7にゆる
く締結支持するための振動板押えリング9とたとえばゴ
ム製Oリングのような弾性リングIO1ならびに振動板
を電磁振動させるために設置された鉄心6と円筒状電磁
コイル16から成る。この粒子供給系とその振動板に対
向するように配置された被加工物4(平板状)との間に
は、前者を陽極性とする直流高電圧が高電圧電源5の接
続によって加えられており、同図では振動板と被加工物
とがそれぞれ第1図におIjる陽極と陰極とに対応する
電極構成となる。膜の形成は、電磁コイルによって発生
する交番磁界の作用で振動板を電磁振動させ、粒子供給
系に充填されていた粉末粒子1が振動板の細孔より電極
間に供給されて、前記の方法原理に従って振動板に対向
した被加工物表面上に進行して付着膜3を形成する。ま
た膜形成は、粒子の帯電量緩和防止、装置構成部品間の
絶縁耐力の向上、および吸着ガスの除去等のため、真空
ポンプ11によって高真空域にまで排気された真空容器
12中で実施される。FIG. 2 shows, as an example, the main parts of the membrane manufacturing apparatus used in this example. A particle supply system P for supplying powder particles, which are the raw materials of the membrane, into a high electric field includes a diaphragm 8 having appropriately arranged pores for supplying particles, and a diaphragm 8 for loosely fastening and supporting the diaphragm to a powder filling container 7. It consists of a diaphragm holding ring 9, an elastic ring IO1 such as a rubber O-ring, an iron core 6 and a cylindrical electromagnetic coil 16 installed to cause the diaphragm to electromagnetically vibrate. A high voltage DC voltage is applied between this particle supply system and a workpiece 4 (flat plate shape) arranged to face the diaphragm by connecting the high voltage power supply 5 to the workpiece 4 with the former as the anode. In this figure, the diaphragm and the workpiece have electrode configurations corresponding to the anode and cathode shown in FIG. 1, respectively. To form the film, the diaphragm is electromagnetically vibrated by the action of an alternating magnetic field generated by an electromagnetic coil, and the powder particles 1 filled in the particle supply system are supplied between the electrodes through the pores of the diaphragm, and the method described above is performed. According to the principle, the adhesive film 3 is formed on the surface of the workpiece facing the diaphragm. Furthermore, the film formation is carried out in a vacuum container 12 evacuated to a high vacuum region by a vacuum pump 11 in order to prevent the charge amount of the particles from relaxing, improve the dielectric strength between the device components, and remove adsorbed gas. Ru.
なお、同図に示した例では振動板を陽極として使用して
いるが、別の平板状陽極を振動板直下に挿入設置し、こ
の陽極と被加工物(陰極)との間に供給系から粉末粒子
を供給してもよい。さらには前記の電磁振動を利用する
粒子供給方式以外の方法として、粉末粒子を静電的に帯
電させることによって噴霧状化させた粒子ビームを陽極
と被加工物との間に流入させる方法もとり得る。In the example shown in the same figure, the diaphragm is used as an anode, but another flat anode is inserted and installed directly under the diaphragm, and the supply system is connected between this anode and the workpiece (cathode). Powder particles may also be provided. Furthermore, as a method other than the above-mentioned particle supply method using electromagnetic vibration, it is also possible to use a method in which a particle beam that is atomized by electrostatically charging powder particles flows between the anode and the workpiece. .
第3図は、本発明の他の方法を実施する装置の例を示し
、第2図と対応する部分には同一符号を付して重複説明
を省略する。この例においては、第2図の例では被加工
物を陰極として兼用していたものを図の如く分離して設
置し、電極13および14間で帯電、加速された粉末粒
子2の一部を陰極上の孔より引き出し、高速の粉末粒子
ビームとして被加工物の表面に照射して付着膜3の形成
な実施するものである。第2図の方法では粉末粒子の帯
電と加速に導電性の平板状電極を必要とするため、被加
工物もそのような材料および形状のものに限られるのに
対し、この方法によれば、粉末粒子の加速部と膜形成部
が分離されるために被加工物の制約は解除される。すな
わち、たとえば、その対象となる被加工物は、形状的に
は鋭利な突起形状をもつものでもよく、また材質的には
導体、半導体はもとより絶縁体でもよいので膜形成の適
用範囲が拡張される。さらには、引き出された加速粉末
粒子に対して、静電集束、再加速といった制御を施こす
ことも可能である。FIG. 3 shows an example of an apparatus for carrying out another method of the present invention, and parts corresponding to those in FIG. 2 are given the same reference numerals, and redundant explanation will be omitted. In this example, the workpiece that was also used as a cathode in the example of FIG. The deposited film 3 is formed by drawing out a powder particle beam through a hole on the cathode and irradiating the surface of the workpiece as a high-speed powder particle beam. The method shown in Figure 2 requires a conductive flat electrode to charge and accelerate the powder particles, so the workpiece is limited to those materials and shapes. Since the powder particle acceleration section and the film forming section are separated, restrictions on the workpiece are removed. That is, for example, the target workpiece may have a sharp protrusion shape, and the material may be a conductor, a semiconductor, or an insulator, so the range of application of film formation is expanded. Ru. Furthermore, it is also possible to perform controls such as electrostatic focusing and re-acceleration on the extracted accelerated powder particles.
本膜形成法の実施の一例として、電極間の印加電圧80
kv、極間距離5■、真空度I X 10 Torrの
形成条件において、平均粒子径0.024μmのカーボ
ンブラック粒子を炭素工具fll(SK3)表面に衝突
、同着させた場合、粒子径に相当する程度の微視的領域
の表面あらさをもつ平滑で、かつ緻密な炭素膜が70A
/minの形成速度で作製できることを確認した。本炭
素膜は被加工物表面に対する良好な密着性をもつので、
従来の炭素膜形成法である真空蒸着法、イオン化蒸着法
、イオンビーム蒸着法ではこれまでに報告例のない厚さ
数μm程度の厚膜形成が可能であった。この従来法に対
する優位性は、固体間の高速衝撃によって、粒子と被加
工物材料間および粒子材料間に強い結合が生まれるため
に他ならない。なお、本炭素膜の形成は、前記の実施条
件以外でも進行するが、印加電圧が80kv以上では、
凝集状態の比較的大きな径の粒子でも付着するに足る速
度を得ることができるのでそのような粒子の膜内へのと
り込みがあり、形成された膜材料の構造上の□均質性を
欠く場合がある。As an example of the implementation of this film formation method, the applied voltage between the electrodes is 80
When carbon black particles with an average particle size of 0.024 μm are collided with the surface of a carbon tool full (SK3) under the formation conditions of kv, distance between poles 5 ■, and vacuum degree I x 10 Torr, the particle size corresponds to the particle size. A smooth and dense carbon film with a surface roughness in the microscopic range of 70A
It was confirmed that it could be produced at a formation rate of /min. This carbon film has good adhesion to the surface of the workpiece, so
Conventional carbon film forming methods such as vacuum evaporation, ionization evaporation, and ion beam evaporation have made it possible to form a thick film with a thickness of several micrometers, which has never been reported before. This advantage over conventional methods is due to the high velocity impact between the solids, which creates strong bonds between the particles and the workpiece material and between the particle materials. Note that the formation of this carbon film proceeds under conditions other than those described above, but when the applied voltage is 80 kV or more,
Since it is possible to obtain a sufficient speed to adhere even relatively large diameter particles in agglomerated state, such particles may be incorporated into the film, and the formed film material may lack structural homogeneity. There is.
また、極度に低い印加電圧では、何着するに不充分な速
度となるので、膜形成が進行しないことはもちろんのこ
とである。Furthermore, if the applied voltage is extremely low, the speed will be insufficient for any deposition, and it goes without saying that film formation will not proceed.
本膜形成法において作製された炭素膜の特性について、
これまで確認された主要な事項とその用途を列記する。Regarding the characteristics of the carbon film produced using this film formation method,
List the main items confirmed so far and their uses.
まず、電気的特性に関する知見ならひにその用途に関し
ては、
(a)室温下の電気抵抗率は、10Ω・Cl11と測定
され、原材料カーボン粒子のそれ(to−6・cmオー
ダ)に比へて著しく抵抗の高い新しい薄膜半導体材料を
合成できた。また、半導体としての伝導型は、ゼーベッ
ク効果に基づく熱起電圧の測定よりP型と判定された。First of all, if we have knowledge about electrical properties, then regarding its uses: (a) The electrical resistivity at room temperature is measured to be 10Ω・Cl11, which is compared to that of raw carbon particles (to-6・cm order). A new thin-film semiconductor material with significantly higher resistance has been synthesized. Further, the conductivity type as a semiconductor was determined to be P type based on the measurement of thermoelectromotive voltage based on the Seebeck effect.
(b)抵抗率の温度依存性は、p、=Ae X P(B
/T)’(ここでρCは抵抗率、A、Bは材料定数、T
は絶対温度)の関係式に極めてよく適合することが測定
温度範囲80〜420にで確認された。本炭素膜材料が
薄膜ゆえに小さな熱容量であること、また炭素材料本来
の性質として大きな熱伝導率をもっことを考えると、温
度変化に対する応答性と信頼性に優れた温度計測用サー
ミスタ素子への適用が可能である。(b) The temperature dependence of resistivity is p, = Ae x P(B
/T)' (where ρC is resistivity, A and B are material constants, and T
It was confirmed that the measured temperature range was from 80 to 420 degrees Fahrenheit. Considering that this carbon film material has a small heat capacity because it is a thin film, and also has a high thermal conductivity as an inherent property of the carbon material, it can be applied to a thermistor element for temperature measurement with excellent responsiveness and reliability to temperature changes. is possible.
(c)抵抗率の電界依存性としては、高電界印加時に抵
抗率の値が著しく減じる非オーム性を示した。(c) The dependence of resistivity on electric field showed non-ohmic property in which the value of resistivity decreased significantly when a high electric field was applied.
すなわち、このとき電流の急増現象が起こるので、たと
えば大電流制御用のバリスタ素子への適用が考えられる
。That is, since a sudden increase in current occurs at this time, application to, for example, a varistor element for controlling a large current can be considered.
さらに、P型半導体である本炭素膜をn型珪素半導体上
に形成させてp−、n接合ダイオードを構成した場合の
特性として
(d)電流−電圧特性として、ある大きさの逆方向バイ
アス電圧のもとでツェナー降伏現象に基づく電流の急峻
な立ち上がりがある。このp−n接合面の特性は定電圧
ダイオード、スイッチングダイオードとじて利用できる
ばかりでなく、トランジスタ素子への適用をも示唆する
。Furthermore, the characteristics when this carbon film, which is a P-type semiconductor, is formed on an n-type silicon semiconductor to configure a p-, n-junction diode are (d) current-voltage characteristics, such as a reverse bias voltage of a certain magnitude. There is a steep rise in current due to the Zener breakdown phenomenon. The characteristics of this p-n junction surface not only can be used as a constant voltage diode and a switching diode, but also suggests application to transistor elements.
(e)白熱電球光および太陽光の照射時に光起電圧の発
生が認められ、太陽光電池への適用の可能性を見い出し
た。(e) Generation of photovoltaic voltage was observed upon irradiation with incandescent light and sunlight, and the possibility of application to solar cells was discovered.
つぎに、機械的特性に関する知見とその用途については
、
(f)マイクロビッカース試験iこおける本炭素膜の硬
さはI+、 = 1100〜1900と評価され、原材
料カーボンのそれに比べて著しく高い値を示した。また
、すべり摩擦試験において、膜材料同士の摩擦係数は約
0.1であった。これは固体間摩擦としてはかなり低い
値に部類し、しかも摩擦雰囲気が大気中および高真空中
にかかわらず一定して得られることから、良好な摩擦特
性を有することがわかった。Next, regarding the knowledge regarding mechanical properties and its uses, (f) The hardness of this carbon film in the micro Vickers test was evaluated as I+ = 1100 to 1900, which is a significantly higher value than that of the raw material carbon. Indicated. Furthermore, in the sliding friction test, the coefficient of friction between the membrane materials was approximately 0.1. This is a fairly low value for solid-solid friction, and since the frictional atmosphere is constant regardless of whether it is in the air or in a high vacuum, it was found that it has good frictional properties.
さらには、固体間摩擦におけるすべり摩耗および硬質砥
粒のひっかきに対するアブレシブ摩耗に対しても優れた
耐摩耗性を示すことが判明した。これらのことは、潤滑
性を有する硬質保護膜としての機械工業分野への各種応
用を示唆し、たとえば、切削性能の向上と長寿命化を目
的とした切削工具への適用、あるいは耐摩耗性の向上を
目的として摺動部をもつ各種機械部品への適用などが考
えられる。Furthermore, it has been found that it exhibits excellent wear resistance against sliding wear caused by solid-solid friction and abrasive wear caused by scratching by hard abrasive grains. These findings suggest various applications in the mechanical industry as a hard protective film with lubricity, such as application to cutting tools for the purpose of improving cutting performance and extending tool life, or for improving wear resistance. Applications to various mechanical parts with sliding parts may be considered for the purpose of improvement.
以上の実施例においては、本発明によって形成された膜
の電気的、機械的特性が原材料のそれとは著しく異った
ものに変化することを実証した。The above examples demonstrate that the electrical and mechanical properties of films formed according to the present invention change significantly from those of the raw materials.
この特性の変化は、カーボンブラック粒子の高速衝撃に
おいて局所的にダイヤモンド構造への結晶構造変換が生
じたことに基因すると考えてもよい。This change in properties may be considered to be due to local crystal structure conversion to a diamond structure caused by high-speed impact of carbon black particles.
このように本発明によれば、特異な性質をもつ膜材料の
合成が、比較的簡便な装置、技術を用いて実現できる。As described above, according to the present invention, membrane materials with unique properties can be synthesized using relatively simple equipment and techniques.
なお、本発明は前記実施例にのみ限定されるものではな
く、原材料粉末粒子としては、微細径のもので、かつ高
電界中で導電性を示す材質のものであれば使用可能であ
る。It should be noted that the present invention is not limited to the above-mentioned embodiments, and any raw material powder particles can be used as long as they have a fine diameter and are made of a material that exhibits conductivity in a high electric field.
第1図は本発明の基本原理を示す説明図、第2〜第3図
は本発明で用いられる膜製造装置の断面説明図、第4図
は平行平板電極間で凝集集団粒子が単一粉末粒子に分離
されることを示した実験結果の表である。
l・・・粉末粒子、2・・・帯電加速粉末粒子、3・・
・44着膜、 4・・・被加工物、5・・・高電圧電源
、 6・・・鉄心、7・・・粉末充填容器、8・・振動
板、9・・・振動仮押えリング 10・・・弾性リング
、11・・・ポンプ、12・・・真空容器、13・・・
電極、14・・・電極、15・・・平板状電極、16・
・・電磁コイル、!7・・・粉末粒子弟 2図
第30
図面の洋式(内容1:変更なし)
第1図
第4図
手続補正書動式)
%式%
2、発明の名称
被加工表面への固体薄膜製造方法
3、補正をする者
事件との関係: 特許出願人
愛媛県松山市和気町1丁目67番地
井手 敞(外3名)
4、代理人■533
大阪市東淀用区東中島1丁目20番14号東ロステーシ
ョンビル
昭和59年7月31日 (発送日)Figure 1 is an explanatory diagram showing the basic principle of the present invention, Figures 2 and 3 are cross-sectional diagrams of the membrane manufacturing apparatus used in the present invention, and Figure 4 is an explanatory diagram showing the agglomerated collective particles as a single powder between parallel plate electrodes. This is a table of experimental results showing separation into particles. l...Powder particles, 2...Charging accelerated powder particles, 3...
・44 Film deposition, 4... Workpiece, 5... High voltage power supply, 6... Iron core, 7... Powder filling container, 8... Vibration plate, 9... Vibrating temporary holding ring 10 ... Elastic ring, 11... Pump, 12... Vacuum container, 13...
Electrode, 14... Electrode, 15... Flat electrode, 16.
...Electromagnetic coil! 7... Powder particle younger brother 2 Figure 30 Western style of drawing (Contents 1: No change) Figure 1 Figure 4 Procedural amendment written style) % formula % 2. Name of the invention Method for producing solid thin film on processed surface 3. Person making the amendment Relationship to the case: Patent applicant Ide Tsutomu 1-67 Wakecho, Matsuyama City, Ehime Prefecture (3 others) 4. Agent 533 1-20-14 Higashinakajima, Higashiyodo Yo-ku, Osaka City No. Higashiro Station Building July 31, 1980 (Shipping date)
Claims (3)
的に帯電ならびに加速させて高速にしたものを被加工物
表面に衝撃、付着させて薄膜形成を行なうことを特徴と
する被加工物表面への固体薄膜製造方法。(1) Solid powder particles are electrostatically charged and accelerated in a high electric field applied in a vacuum to a high speed, and the particles are impacted and adhered to the surface of the workpiece to form a thin film. A method for producing a solid thin film on the surface of a workpiece.
微小な凝集集団粒子を用いてなる特許請求の範囲第1項
記載の被加工物表面への固体薄膜製造方法。(2) A method for producing a solid thin film on the surface of a workpiece according to claim 1, which uses fine agglomerated particles separated by the action of an electric field as solid powder particles.
単一粒子を利用してなる特許請求の範囲第1項記載の被
加工物表面への固体薄膜製造方法。 (り)固体粉末粒子を静電的に帯電ならびに加速させる
に平行平板電極間を用い該対向配設した電極間で凝集状
態の粒子を往復運動させることにより帯電、加速させて
なる特許請求の範囲第1項または第2項または第3項記
載の被加工物表面への固体薄膜製造方法。(3) A method for producing a solid thin film on the surface of a workpiece according to claim 1, which utilizes single particles separated by the action of an electric field as solid powder particles. (i) The solid powder particles are electrostatically charged and accelerated by using parallel plate electrodes, and the particles in agglomerated state are reciprocated between the facing electrodes, thereby being charged and accelerated. The method for producing a solid thin film on the surface of a workpiece according to item 1, item 2, or item 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59066211A JPS6041571A (en) | 1984-04-02 | 1984-04-02 | Preparation of solid thin film on surface of object to be processed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59066211A JPS6041571A (en) | 1984-04-02 | 1984-04-02 | Preparation of solid thin film on surface of object to be processed |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56177561A Division JPS5933670B2 (en) | 1981-11-04 | 1981-11-04 | Solid thin film production device on the surface of the workpiece |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6041571A true JPS6041571A (en) | 1985-03-05 |
JPS6320187B2 JPS6320187B2 (en) | 1988-04-26 |
Family
ID=13309261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59066211A Granted JPS6041571A (en) | 1984-04-02 | 1984-04-02 | Preparation of solid thin film on surface of object to be processed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6041571A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06158350A (en) * | 1992-11-18 | 1994-06-07 | Isao Sugai | Method for coating substrate |
KR100425600B1 (en) * | 1999-12-14 | 2004-04-03 | 주식회사 포스코 | Control Method for Zn Powder Fluidization Using Electrostatic Force |
JP2008137122A (en) * | 2006-12-04 | 2008-06-19 | Tatsuo Shiyouji | Coating method with fine particle |
DE102007029142A1 (en) * | 2007-06-25 | 2009-01-02 | 3D-Micromac Ag | Layer application device for electrostatic layer application of a powdery material and apparatus and method for producing a three-dimensional object |
WO2010150772A1 (en) * | 2009-06-24 | 2010-12-29 | 則竹 ひとみ | Fine particle coating apparatus and fine particle coating method |
EP2361705A1 (en) * | 2010-02-23 | 2011-08-31 | Robert Bosch GmbH | Device and method for connecting particles with a substrate |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0333780U (en) * | 1989-08-07 | 1991-04-03 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5225837A (en) * | 1975-08-20 | 1977-02-26 | Matsushita Electric Ind Co Ltd | Process and an apparatus for powder coating |
JPS52105945A (en) * | 1976-03-02 | 1977-09-06 | Ise Electronics Corp | Method of coating fluorescent substance |
-
1984
- 1984-04-02 JP JP59066211A patent/JPS6041571A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5225837A (en) * | 1975-08-20 | 1977-02-26 | Matsushita Electric Ind Co Ltd | Process and an apparatus for powder coating |
JPS52105945A (en) * | 1976-03-02 | 1977-09-06 | Ise Electronics Corp | Method of coating fluorescent substance |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06158350A (en) * | 1992-11-18 | 1994-06-07 | Isao Sugai | Method for coating substrate |
KR100425600B1 (en) * | 1999-12-14 | 2004-04-03 | 주식회사 포스코 | Control Method for Zn Powder Fluidization Using Electrostatic Force |
JP2008137122A (en) * | 2006-12-04 | 2008-06-19 | Tatsuo Shiyouji | Coating method with fine particle |
DE102007029142A1 (en) * | 2007-06-25 | 2009-01-02 | 3D-Micromac Ag | Layer application device for electrostatic layer application of a powdery material and apparatus and method for producing a three-dimensional object |
US8124192B2 (en) | 2007-06-25 | 2012-02-28 | Eos Gmbh Electro Optical Systems | Layer application device for an electrostatic layer application of a building material in powder form and device and method for manufacturing a three-dimensional object |
WO2010150772A1 (en) * | 2009-06-24 | 2010-12-29 | 則竹 ひとみ | Fine particle coating apparatus and fine particle coating method |
JP2011005379A (en) * | 2009-06-24 | 2011-01-13 | Tatsuo Shoji | Apparatus and method for coating fine particles |
EP2361705A1 (en) * | 2010-02-23 | 2011-08-31 | Robert Bosch GmbH | Device and method for connecting particles with a substrate |
Also Published As
Publication number | Publication date |
---|---|
JPS6320187B2 (en) | 1988-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2928063B1 (en) | Impulse generator and generator set | |
RU2546678C2 (en) | Method and device for electric power production | |
Becker | Study of surfaces by using new tools | |
US20220165555A1 (en) | Method of Manufacturing and Operating Nano-Scale Energy Conversion Device | |
US20070101823A1 (en) | Process and apparatus for producing metal nanoparticles | |
JPS6041571A (en) | Preparation of solid thin film on surface of object to be processed | |
US20200273959A1 (en) | Nano-Scale Energy Conversion Device | |
CN1090552C (en) | Abrasive material for precision surface treatment and manufacturing method thereof | |
WO2020176345A1 (en) | Nano-scale energy conversion device | |
US5382801A (en) | Method for producing minute particles and apparatus therefor | |
US11247225B2 (en) | Solid particle source, treatment system and method | |
JPS5933670B2 (en) | Solid thin film production device on the surface of the workpiece | |
Cooper et al. | Surface cleaning by electrostatic removal of particles | |
JPH0351787B2 (en) | ||
US6200643B1 (en) | Methods for coating substrates | |
Ishikawa | Applications of heavy-negative-ion sources for materials science | |
US5445852A (en) | Method of coating a substrate with a coating material by vibrating charged particles with a electric field | |
JP4837409B2 (en) | Nanoparticle production method | |
JP3120112B2 (en) | Precise placement of small objects | |
JP4565136B2 (en) | Electrostatic chuck | |
Sattler | Clusters in beams | |
KR101503385B1 (en) | Apparatus of coating conducting powder using electrostatic powder and method of coating by the apparatus | |
US11875964B2 (en) | Passive and active diamond-based electron emitters and ionizers | |
Tyagi | Theoretical analysis of silicon surface roughness induced by plasma etching | |
KR101503337B1 (en) | Apparatus of electrostatic powder coating of conducting powder using binder and method of coating by the apparatus |