JP2022164949A - 配筋検査装置、配筋検査方法およびプログラム - Google Patents

配筋検査装置、配筋検査方法およびプログラム Download PDF

Info

Publication number
JP2022164949A
JP2022164949A JP2021070065A JP2021070065A JP2022164949A JP 2022164949 A JP2022164949 A JP 2022164949A JP 2021070065 A JP2021070065 A JP 2021070065A JP 2021070065 A JP2021070065 A JP 2021070065A JP 2022164949 A JP2022164949 A JP 2022164949A
Authority
JP
Japan
Prior art keywords
image
reinforcing bar
plane
unit
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021070065A
Other languages
English (en)
Other versions
JP7186821B2 (ja
Inventor
拓也 久柴
Takuya Hisashiba
謙二 平
Kenji Taira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Engineering Co Ltd
Original Assignee
Mitsubishi Electric Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Engineering Co Ltd filed Critical Mitsubishi Electric Engineering Co Ltd
Priority to JP2021070065A priority Critical patent/JP7186821B2/ja
Publication of JP2022164949A publication Critical patent/JP2022164949A/ja
Application granted granted Critical
Publication of JP7186821B2 publication Critical patent/JP7186821B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

【課題】定規またはマーカを検査領域に設置することなく、配筋検査を行うことができる配筋検査装置、配筋検査方法およびプログラムを提供する。【解決手段】配筋検査装置1は、鉄筋が配筋された複数の平面を含む構造体の三次元画像データを取得する三次元情報取得部11と、三次元画像データを用いて、複数の平面のうち、検査対象の平面を特定する平面特定部12と、ステレオカメラ2により撮影された検査対象の平面を含む構造体の三次元画像データを、ステレオカメラ2と検査対象の平面との距離が一定で、かつステレオカメラ2に検査対象の平面が正対した正対化画像に変換する画像変換部13と、正対化画像から検査対象の平面における鉄筋の位置を検出する位置検出部14と、鉄筋の位置に基づいて、正対化画像から鉄筋の画像を抽出する画像抽出部15と、抽出された鉄筋の画像を学習モデルに入力して、鉄筋の検査情報を推論する推論部16とを備える。【選択図】図1

Description

本開示は、配筋検査装置、配筋検査方法およびプログラムに関する。
鉄筋コンクリート構造物の施工においては、鉄筋を組み上げる配筋を行った後に、鉄筋が設計通り配筋されているかを検査する配筋検査が行われる。例えば、特許文献1には、配筋状態を撮影した画像を認識して解析を行うことにより、配筋の出来形を管理する配筋出来形管理システムが記載されている。特許文献1に記載される配筋出来形管理システムは、鉄筋の長さおよび太さの基準となる基準データを付与して撮影範囲を設定し、設定した撮影範囲で配筋状態を撮影した撮影データから配筋状態を認識する。
特開2020-27058号公報
鉄筋が配筋された検査領域の撮影画像における鉄筋の大きさは、カメラと検査領域との距離に応じて異なる。つまり、撮像画像においてカメラと検査領域との距離が遠い部分には、鉄筋は小さく写り、カメラと検査領域との距離が近ければ、撮影画像における鉄筋は大きく写る。このため、撮影画像における鉄筋の大きさをそのまま用いると、実際の鉄筋の大きさを正確に算出することができない。そこで、従来、検査領域とともに撮影された定規またはマーカを基準として、カメラと検査領域との距離に応じた鉄筋の大きさの違いを補正していた。
特許文献1に記載される従来の技術においても、配筋検査を行う度に、鉄筋の長さおよび太さの基準となる基準データとして、撮影対象の鉄筋を含む位置に定規またはマーカを設置する必要がある。
本開示は上記課題を解決するものであり、定規またはマーカを検査領域に設置することなく、配筋検査を行うことができる配筋検査装置、配筋検査方法およびプログラムを得ることを目的とする。
本開示に係る配筋検査装置は、鉄筋が配筋された複数の平面を含む構造体の三次元データを取得する三次元情報取得部と、三次元データを用いて、構造体における複数の平面のうち、検査対象の平面を特定する平面特定部と、撮影部により撮影された検査対象の平面を含む構造体の撮影画像を、撮影部と検査対象の平面との距離が一定で、かつ撮影部に検査対象の平面が正対した正対化画像に変換する画像変換部と、正対化画像から検査対象の平面における鉄筋の位置を検出する位置検出部と、検査対象の平面における鉄筋の位置に基づいて、正対化画像から鉄筋の画像を抽出する画像抽出部と、正対化画像から抽出された鉄筋の画像を学習モデルに入力して、鉄筋の検査情報を推論する推論部とを備える。
本開示によれば、鉄筋が配筋された複数の平面を含む構造体の三次元データを用いて、構造体における複数の平面のうち、検査対象の平面が特定され、撮影部により撮影された検査対象の平面を含む構造体の撮影画像が、撮影部と検査対象の平面との距離が一定で、かつ撮影部に検査対象の平面が正対した正対化画像に変換される。検出された検査対象の平面における鉄筋の位置に基づいて、正対化画像から鉄筋の画像が抽出され、正対化画像から抽出された鉄筋の画像を学習モデルに入力して、鉄筋の検査情報が推論される。
検査対象の平面を含む構造体の撮影画像を正対化画像に変換することにより、本開示に係る配筋検査装置は、定規またはマーカを検査領域に設置することなく、配筋検査を行うことができる。
実施の形態1に係る配筋検査装置の構成を示すブロック図である。 実施の形態1に係る配筋検査方法を示すフローチャートである。 三次元データの概要を示す説明図である。 図4A、図4Bおよび図4Cは、各層の平面を示す関数と、アウトライヤおよびインライヤとの関係を示すグラフである。 撮影画像を正対化画像に変換する処理を示す説明図である。 正対化画像における鉄筋の位置を検出する処理を示す説明図である。 図7A、図7Bおよび図7Cは、マスク画像における鉄筋部分に対応する線分を特定する処理を示す説明図である。 正対化画像から鉄筋の部分画像を抽出する処理を示す説明図である。 鉄筋の部分画像を学習モデルに入力して鉄筋の径を推論する処理を示す説明図である。 図10Aは、実施の形態1に係る配筋検査装置の機能を実現するハードウェア構成を示すブロック図であり、図10Bは、実施の形態1に係る配筋検査装置の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。
実施の形態1.
図1は、実施の形態1に係る配筋検査装置1の構成を示すブロック図である。配筋検査装置1は、ステレオカメラ2によって、鉄筋が配筋された複数の平面を含む構造体、すなわち、骨格として鉄筋が配筋された建築または土木の構造体を撮影した画像に基づいて、鉄筋を検査し、検査結果を表示装置3に出力する。例えば、配筋検査装置1は、前述した構造体に含まれる複数の平面から検査対象の平面における鉄筋の種類を判定し、判定した種類の鉄筋が検査対象の平面に配筋されている本数と、判定した鉄筋の隣り合う間隔とを検査する。配筋検査装置1は、例えば、タブレット端末、スマートフォンまたはパーソナルコンピュータ(PC)である。
鉄筋には、例えば、JIS規格に基づく16種類の鉄筋がある。16種類の鉄筋には、D4、D5、D6、D8、D10、D13、D16、D19、D22、D25、D29、D32、D35、D38、D41およびD51という「呼び名」が付与されている。呼び名は、鉄筋の公称直径を丸めた径の大きさを示している。例えば、呼び名がD10である鉄筋の公称直径は、9.53(mm)であり、呼び名がD13である鉄筋の公称直径は、12.7(mm)であり、呼び名がD16である鉄筋の公称直径は、15.9(mm)である。なお、建築物の骨格として一般的に使用される鉄筋は、D10以降の鉄筋である。
さらに、16種類の鉄筋のそれぞれには「節の平均間隔の最大値」が規定されている。例えば、D10の鉄筋における節の平均間隔の最大値は、6.7(mm)であり、D13の鉄筋の節における平均間隔の最大値は、8.9(mm)であり、D16の鉄筋における節の平均間隔の最大値は、11.1(mm)である。
16種類の鉄筋の径は、約3(mm)ごとに大きくなっている。撮影画像における鉄筋の3(mm)の差は、一般に、数ピクセル分の違いでしかない。このため、撮影画像における鉄筋の輪郭幅から実際の鉄筋の径を検出し、検出した径に基づいて鉄筋の種類を判定するのは困難であった。前述したように、16種類の鉄筋には、節の平均間隔の最大値が規定されているだけなので、実際の鉄筋における節の間隔は、メーカまたは生産ロットによって異なる。このため、鉄筋の種類ごとに異なる値であるにもかかわらず、従来、撮影画像から検出した鉄筋の節の間隔に基づいて、鉄筋の種類を判定するのは困難であった。
これに対し、配筋検査装置1は、学習装置4によって生成された学習モデルを用いて、鉄筋の撮影画像から鉄筋の径および節の間隔の少なくとも一方を推論し、推論結果データを用いて鉄筋の種類を判定する。例えば、学習モデルは、鉄筋の撮影画像を分割して得られる複数の部分画像を入力とし、鉄筋の径および節の間隔の少なくとも一方を出力する、ニューラルネットワークの機械学習モデルである。配筋検査装置1は、上記学習モデルを用いることにより、鉄筋の径および節の間隔の少なくとも一方を正確に検出でき、鉄筋の径および節の間隔の少なくとも一方に基づいて鉄筋の種類を判定することが可能である。
ステレオカメラ2は、左撮影部、右撮影部および三次元データ生成部を有した撮影部である。左撮影部は、左側から見た左視点画像を撮影する。右撮影部は、右側から見た右視点画像を撮影する。三次元データ生成部は、左視点画像データおよび右視点画像データに対してステレオマッチング処理を行うことにより、三次元データとして三次元画像を生成する。表示装置3は、配筋検査装置1が備える表示装置である。表示装置3は、例えば、LCD(Liquid Crystal Display)または有機EL(Electroluminescence)表示装置である。
学習装置4は、鉄筋の撮影画像が分割された複数の部分画像を入力とし、鉄筋の検査情報を出力する学習モデルを生成する装置であり、学習部41および記憶部42を備える。鉄筋の検査情報は、鉄筋の径、鉄筋の節の間隔、または鉄筋の径および節の間隔である。学習部41は、学習用データを用いて鉄筋の検査情報を学習することにより学習モデルを生成し、学習モデルを記憶部42に記憶する。学習アルゴリズムとして、例えば、深層学習(Deep Learning)、ニューラルネットワーク、遺伝的プログラミング、機能論理プログラミング、または、サポートベクターマシンを用いてもよい。
学習用データは、学習モデルの入力データである、鉄筋の撮影画像を分割した複数の部分画像データと、正解ラベルとを含むデータセットである。正解ラベルは、複数の部分画像データにそれぞれ対応する鉄筋の径を示す情報、複数の部分画像データにそれぞれ対応する鉄筋の節間隔を示す情報、または、複数の部分画像データにそれぞれ対応する鉄筋の径および節間隔を示す情報である。なお、学習用データには、後述する画像抽出部15が鉄筋の撮影画像を分割した複数の部分画像データを用いてもよい。
配筋検査装置1は、三次元情報取得部11、平面特定部12、画像変換部13、位置検出部14、画像抽出部15および推論部16を備える。三次元情報取得部11は、鉄筋が配筋された複数の平面を含む構造体の三次元データを、ステレオカメラ2から取得する。三次元データは、上記構造体が撮影された三次元画像データである。
平面特定部12は、三次元データを用いて、上記の構造体における複数の平面のうち、検査対象の平面を特定する。例えば、平面特定部12は、三次元情報取得部11によって取得された三次元データから検出した複数の三次元点が含まれる平面候補ごとに、平面候補との距離が閾値以下である三次元点の個数を算出する。そして、平面特定部12は、複数の平面候補のうち、算出した三次元点の個数が最も多い平面候補を、検査対象の平面として特定する。検査対象の平面は、上記構造体の最前面に位置する平面(最前面の平面)である。
画像変換部13は、ステレオカメラ2によって撮影された検査対象の平面を含む構造体の撮影画像を正対化画像に変換する。正対化画像は、ステレオカメラ2と検査対象の平面との距離が一定で、かつステレオカメラ2に検査対象の平面が正対している画像である。例えば、画像変換部13は、検査対象の平面において格子状に配筋された鉄筋上の任意の矩形の4隅の点を指定し、指定した4点の位置座標を用いてホモグラフィ変換行列を推定する。そして、画像変換部13は、推定したホモグラフィ変換行列に基づいて、撮影画像を、ステレオカメラ2に検査対象の平面が正対した正対化画像に変換する。
正対化画像は、ステレオカメラ2によって検査対象の平面が正面から撮影された画像であり、かつステレオカメラ2と検査対象の平面との距離が一定にスケーリングされた画像である。すなわち、正対化画像における全てのポイントが、ステレオカメラ2との距離が一定になるようにスケーリングされており、正対化画像においては、ステレオカメラ2と検査対象の平面との距離に応じた鉄筋の大きさの違いが補正されている。
位置検出部14は、画像変換部13によって生成された正対化画像から検査対象の平面における鉄筋の位置を検出する。例えば、位置検出部14は、正対化画像を閾値で二値化して鉄筋以外の部分がマスクされたマスク画像を生成し、生成したマスク画像の鉄筋部分の画素をカウントすることにより、正対化画像に含まれる検査対象の平面における鉄筋の位置を検出する。
画像抽出部15は、検査対象の平面における鉄筋の位置に基づいて、正対化画像から鉄筋の画像を抽出する。例えば、画像抽出部15は、検査対象の平面における鉄筋の位置に基づいて、正対化画像における鉄筋の画像を鉄筋ごとに特定し、特定した鉄筋の画像から鉄筋の長手方向に沿って同じ大きさの複数の部分画像を順に抽出する。画像抽出部15によって抽出された複数の部分画像データは、鉄筋の画像ごとに推論部16に出力される。
推論部16は、正対化画像から抽出された鉄筋の画像を学習モデルに入力して、鉄筋の検査情報を推論する。例えば、推論部16は、画像抽出部15によって鉄筋の画像ごとに抽出された複数の部分画像データを学習モデルに入力して鉄筋の径を推論する。または、推論部16は、画像抽出部15によって鉄筋の画像ごとに抽出された複数の部分画像データを学習モデルに入力して、鉄筋の節の間隔を推論する。または、推論部16は、画像抽出部15によって鉄筋の画像ごとに抽出された複数の部分画像データを学習モデルに入力して、鉄筋の径および節の間隔を推論する。
図2は、実施の形態1に係る配筋検査方法を示すフローチャートである。
三次元情報取得部11は、鉄筋が配筋された複数の平面を含む構造体の三次元データを取得する(ステップST1)。図3は、三次元データの概要を示す説明図であって、鉄筋20が配筋された複数の平面を含む構造体の三次元画像データ2Cを示している。図3に示すように、ステレオカメラ2は、上記構造体の左視点画像2Aおよび右視点画像2Bを撮影すると、左視点画像2Aの画像データおよび右視点画像2Bの画像データを用いて、上記構造体の三次元画像データ2Cを生成する。三次元情報取得部11は、三次元データとして、ステレオカメラ2から三次元画像データ2Cを取得する。
平面特定部12は、三次元画像データ2Cを用いて、上記構造体における複数の平面のうち、検査対象の平面を特定する(ステップST2)。検査対象の平面は、最前面の平面である。三次元画像データ2Cにおいて、ステレオカメラ2に近い、すなわち前面であるほど、被写体である鉄筋20は大きく写り、ステレオカメラ2から遠くなると、鉄筋20は小さく写る。鉄筋20が大きく写るということは、三次元画像データ2Cにおける鉄筋20に対応する三次元点が多いことを意味する。反対に、鉄筋20が小さく写るということは、三次元画像データ2Cにおける鉄筋20に対応する三次元点が少ないことを意味する。さらに、前面の平面であるほど、ステレオカメラ2との間を遮蔽する後面の鉄筋などの遮蔽物が少なく、オクルージョンが発生しにくい。
そこで、平面特定部12は、例えば、RANSAC(RANdom SAmple Consensus)法により、最前面の平面を特定する。平面特定部12は、三次元画像データ2Cからランダムに検出した三次元点群を使用して、平面候補を示す関数の推定を繰り返し実行する。図4A、図4Bおよび図4Cは、各層の平面を示す関数P(1)、P(2)およびP(3)とアウトライヤ31およびインライヤ32との関係を示すグラフであり、XY座標系における三次元点を示している。アウトライヤ31は、許容可能な範囲に含まれない三次元点であり、インライヤ32は、許容可能な範囲に含まれる三次元点である。
RANSAC法では、関数P(1)、P(2)およびP(3)を表すパラメータごとにインライヤ32となる三次元点の数がカウントされ、カウント数が最も多いパラメータが最適なパラメータに決定される。すなわち、決定されたパラメータを適用した関数で表される平面候補が最前面の平面の推定結果とされる。図4A、図4Bおよび図4Cから明らかなように、関数P(3)を表すパラメータにおいて、インライヤ32となる三次元点の数が最も多いので、平面特定部12は、関数P(3)で表される平面候補を最前面の平面として特定する。
次に、画像変換部13は、ステレオカメラ2によって撮影された検査対象の平面を含む構造体の撮影画像を、ステレオカメラ2と検査対象の平面との距離が一定であり、かつステレオカメラ2に検査対象の平面が正対した正対化画像に変換する(ステップST3)。図5は、撮影画像である三次元画像データ2Cを、正対化画像2Dに変換する処理を示す説明図であり、三次元画像データ2Cおよび正対化画像2Dにおける最前面の平面のみを示している。三次元画像データ2Cにおいて、ステレオカメラ2に近いほど、鉄筋20は大きく写り、ステレオカメラ2から遠くなると、鉄筋20は小さく写っている。つまり、三次元画像データ2Cが示す画像の下側は、ステレオカメラ2に近い位置にある鉄筋20が写っており、上側には、ステレオカメラ2から遠い位置にある鉄筋20が写っている。
画像変換部13は、三次元画像データ2Cにおける検査対象の平面に格子状に配筋された鉄筋20のうち、任意の矩形の4隅の点を指定し、当該矩形がステレオカメラ2の正面から見た形状となるホモグラフィ変換行列を推定する。そして、画像変換部13は、ホモグラフィ変換行列に基づいて、三次元画像データ2Cが示す画像を正対化画像2Dに変換する。正対化画像2Dにおける全てのポイントは、ステレオカメラ2との距離が一定になるようにスケーリングされるので、正対化画像2Dにおいては、ステレオカメラ2と検査対象の平面との距離に応じた鉄筋20の大きさの違いが補正されている。このため、定規またはマーカを基準として、ステレオカメラ2と検査領域との距離に応じた鉄筋の大きさの違いを補正する必要がない。
位置検出部14は、正対化画像から検査対象の平面における鉄筋の位置を検出する(ステップST4)。図6は、正対化画像における鉄筋の位置を検出する処理を示す説明図である。位置検出部14は、図6に示すように、画像変換部13によって三次元画像データ2Cから変換された正対化画像2Dを、マスク画像51に変換する。マスク画像51は、正対化画像2Dにおける鉄筋を示す領域を「1」、それ以外の領域を「0」で表す二値の画素値を有した画像である。画素値が「1」の領域は、白画素の領域となり、画素値が「0」の領域は、黒画素の領域となる。
例えば、位置検出部14は、左視点画像2Aおよび右視点画像2Bを用いて、同一位置にある鉄筋の画像上のずれ量を、左右の視差として算出し、視差を用いて鉄筋の画像部分を特定し、特定した画像部分の画素値を「1」とし、それ以外の画像部分を「0」としてマスク画像51を生成する。そして、位置検出部14は、マスク画像51において白画素のカウント数が閾値以上である位置を、鉄筋の位置として検出する。位置検出部14は、図6に示すように、マスク画像51を回転させて白画素の数をカウントすることで、鉄筋のX方向の位置およびY方向の位置を検出することができる。すなわち、正対化画像2Dにおいて、縦方向に並ぶ鉄筋の位置と、横方向に並ぶ鉄筋の位置が検出される。
次に、位置検出部14は、マスク画像51において鉄筋に対応する線分を特定する処理を行う。図7A、図7Bおよび図7Cは、マスク画像における鉄筋部分に対応する線分を特定する処理を示す説明図である。図7Aに示すように、マスク画像51において、白画素の領域A、領域Bおよび領域Cがある場合、どの領域が鉄筋の画像に対応するのか不明である。そこで、位置検出部14は、白画素の領域A、領域Bおよび領域Cを通る座標軸における領域Aの長さD(1)、領域Bの長さD(2)および領域Cの長さD(3)と、領域Aと領域Bとの間隔D(4)と、領域Bと領域Cとの間隔D(5)とを算出する。
位置検出部14は、図7Bに示すように、間隔D(4)および間隔D(5)のうち、閾値以上の間隔が空いた領域間は鉄筋ではないと判定し、閾値未満の間隔が空いた領域同士は同じ鉄筋に対応する画像領域であると判定する。例えば、位置検出部14は、閾値未満の間隔D(4)が空いた領域Aと領域Bを通り長さがD(6)である線分52で示す画像領域を、同じ鉄筋に対応する画像領域であると判定する。またD(5)は閾値以上であるので、位置検出部14は、マスク画像51において、領域Bと領域Cとの間に鉄筋に対応する画像領域がないと判定する。位置検出部14は、マスク画像51において鉄筋の画像領域であると判定した部分の位置情報を正対化画像2Dに付与し、この正対化画像2Dを画像抽出部15に出力する。
画像抽出部15は、正対化画像2Dの検査対象の平面における鉄筋の位置に基づいて、正対化画像2Dから鉄筋の画像を抽出する(ステップST5)。図8は、正対化画像から鉄筋の部分画像を抽出する処理を示す説明図である。画像抽出部15は、図8に示すように、正対化画像から、長手方向に沿った鉄筋20の画像2Eを抽出する。さらに、画像抽出部15は、画像2Eから順次同一の大きさの部分画像2F(1)、2F(2)、2F(3)を抽出して推論部16に出力する。部分画像2F(1)、2F(2)、2F(3)は、例えば、縦横が同じ画素数の正方形の画像である。画像抽出部15は、正対化画像2Dにおける全ての鉄筋20について部分画像の抽出を行う。
推論部16は、正対化画像2Dから抽出された鉄筋20の画像を学習モデルに入力し、鉄筋20の検査情報を推論する(ステップST6)。学習モデルは、例えば、画像抽出部15によって抽出された複数の部分画像データを入力とし、図8に示す鉄筋20の径Dを推論するモデルである。また、学習モデルは、画像抽出部15によって抽出された複数の部分画像データを入力とし、図8に示す鉄筋20の節の間隔Lを推論するモデルである。または、学習モデルは、画像抽出部15によって抽出された複数の部分画像データを入力とし、図8に示す鉄筋20の径Dおよび節の間隔Lを推論するモデルである。
図9は、鉄筋20の部分画像を学習モデルに入力して鉄筋の径Dを推論する処理を示す説明図である。図9において、学習モデルは、鉄筋の画像から抽出された複数の部分画像と、各部分画像に付与された鉄筋の径Dを示す正解ラベルとのセットである学習用データを用いて生成されたモデルである。推論部16は、複数の部分画像データを学習モデルに入力して部分画像データごとに推論を行い、部分画像ごとに径Dの鉄筋が写っている確率と鉄筋以外が写っている確率とを算出する。
例えば、推論結果データ61(1)は、図8に示した部分画像2F(1)において、各種類の鉄筋が写っている確率と鉄筋以外のもの(NON)が写っている確率とを算出した結果である。推論結果データ61(1)におけるD10~D51は、前述した鉄筋の呼び名である。同様に、推論結果データ61(2)は、図8に示した部分画像2F(2)において、各種類の鉄筋が写っている確率と鉄筋以外のもの(NON)が写っている確率とを算出した結果である。このような推論結果データが、同じ鉄筋の画像から抽出された全ての部分画像データについて算出される。
続いて、学習モデルは、同じ鉄筋の画像から抽出された全ての部分画像データについての推論結果データを平均することにより、当該鉄筋の画像における推論結果データ62を算出する。例えば、推論結果データ62には、各種類の鉄筋が写っている確率を平均した値と、鉄筋以外のもの(NON)が写っている確率を平均した値が含まれる。推論部16は、推論結果データ62に基づいて鉄筋の径Dを判定する。図9の例では、図8に示した画像2Eにおける鉄筋の種類がD16、すなわち径Dが15.9(mm)の鉄筋であると判定されている。推論部16は、上記学習モデルを用いることにより、鉄筋の径Dを正確に検出でき、鉄筋の径Dに基づいて鉄筋の種類を判定することが可能である。
また、推論部16は、複数の部分画像を入力とし、正対化画像2Dから抽出した鉄筋の画像における鉄筋の節の間隔Lを出力する学習モデルを用いて、鉄筋の節の間隔Lを推論してもよい。学習モデルは、鉄筋の画像から抽出された複数の部分画像と、各部分画像に付与された鉄筋の節の間隔Lを示す正解ラベルとのセットである学習用データを用いて生成されたモデルである。推論部16は、複数の部分画像データを上記学習モデルに入力して部分画像データごとに推論を行い、部分画像ごとに、節間隔Lである鉄筋が写っている確率と鉄筋以外が写っている確率とを算出する。学習モデルは、同じ鉄筋の画像から抽出された全ての部分画像データについての推論結果データを平均することにより、当該鉄筋の画像における推論結果データを算出する。推論部16は、算出した推論結果データに基づいて、鉄筋の節の間隔Lを正確に検出でき、鉄筋の節の間隔Lに基づいて、鉄筋の種類を判定することが可能である。
さらに、推論部16は、複数の部分画像を入力とし、正対化画像2Dから抽出した鉄筋の画像における鉄筋の径Dおよび節の間隔Lを出力する学習モデルを用いて、鉄筋の検査情報として鉄筋の径Dおよび節の間隔Lを推論してもよい。学習モデルは、鉄筋の画像から抽出された複数の部分画像と、各部分画像に付与された鉄筋の径Dおよび節の間隔Lを示す正解ラベルとのセットである学習用データを用いて生成されたモデルである。推論部16は、複数の部分画像データを上記学習モデルに入力して部分画像データごとに推論を行い、部分画像ごとに、径Dおよび節間隔Lである鉄筋が写っている確率と、鉄筋以外が写っている確率とを算出する。学習モデルは、同じ鉄筋の画像から抽出された全ての部分画像データについての推論結果データを平均することにより、当該鉄筋の画像における推論結果データを算出する。推論部16は、算出した推論結果データに基づいて、鉄筋の径Dおよび節の間隔Lを正確に検出でき、鉄筋の径Dおよび節の間隔Lに基づいて、鉄筋の種類を判定することが可能である。
配筋検査装置1が備える三次元情報取得部11、平面特定部12、画像変換部13、位置検出部14、画像抽出部15および推論部16の機能は、処理回路により実現される。すなわち、配筋検査装置1は、図2に示したステップST1からステップST6の処理を実行するための処理回路を備える。処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
図10Aは、配筋検査装置1の機能を実現するハードウェア構成を示すブロック図である。図10Bは、配筋検査装置1の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。図10Aおよび図10Bにおいて、入力インタフェース100は、ステレオカメラ2から配筋検査装置1へ出力される三次元データを中継するインタフェースである。出力インタフェース101は、配筋検査装置1から表示装置3へ出力される検査結果などを中継するインタフェースである。
処理回路が図10Aに示す専用のハードウェアの処理回路102である場合、処理回路102は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)またはこれらを組み合わせたものが該当する。
配筋検査装置1が備える、三次元情報取得部11、平面特定部12、画像変換部13、位置検出部14、画像抽出部15および推論部16の機能を別々の処理回路で実現してもよく、これらの機能をまとめて一つの処理回路で実現してもよい。
処理回路が図10Bに示すプロセッサ103である場合、配筋検査装置1が備える三次元情報取得部11、平面特定部12、画像変換部13、位置検出部14、画像抽出部15および推論部16の機能は、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせにより実現される。なお、ソフトウェアまたはファームウェアは、プログラムとして記述されてメモリ104に記憶される。
プロセッサ103は、メモリ104に記憶されたプログラムを読み出して実行することにより、配筋検査装置1が備える三次元情報取得部11、平面特定部12、画像変換部13、位置検出部14、画像抽出部15および推論部16の機能を実現する。例えば、配筋検査装置1は、プロセッサ103によって実行されるときに、図2に示したステップST1からステップST6の処理が結果的に実行されるプログラムを記憶するためのメモリ104を備える。これらのプログラムは、三次元情報取得部11、平面特定部12、画像変換部13、位置検出部14、画像抽出部15および推論部16が行う処理の手順または方法を、コンピュータに実行させる。メモリ104は、コンピュータを、三次元情報取得部11、平面特定部12、画像変換部13、位置検出部14、画像抽出部15および推論部16として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。
メモリ104は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。
配筋検査装置1が備える三次元情報取得部11、平面特定部12、画像変換部13、位置検出部14、画像抽出部15および推論部16の機能の一部を、専用のハードウェアで実現し、一部を、ソフトウェアまたはファームウェアで実現してもよい。例えば、三次元情報取得部11、平面特定部12、画像変換部13、位置検出部14および画像抽出部15は、専用のハードウェアである処理回路102によって機能を実現し、推論部16は、プロセッサ103がメモリ104に記憶されたプログラムを読み出して実行することによって機能を実現する。このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせにより上記機能を実現することができる。
図1の例では、配筋検査装置1とは別に設けられた外部装置である学習装置4を示したが、学習装置4を構成する学習部41および記憶部42は、配筋検査装置1が備える構成要素であってもよい。また、記憶部42は、学習部41を備える配筋検査装置1との間でデータ通信が可能な外部装置の構成要素であってもよい。この配筋検査装置1において、記憶部42は、配筋検査中に、画像抽出部15によって抽出された部分画像データを順次記憶する。記憶部42に記憶された複数の部分画像データは、例えば、操作部(図1において不図示)を使用して入力された正解ラベルが付与されて、学習用データとして記憶部42に記憶される。学習部41は、記憶部42に記憶された学習用データを入力して学習モデルを生成する。推論部16は、学習部41によって生成された学習モデルを用いて、鉄筋の検査情報を推論する。これにより、推論部16は、現場ごとに生成された学習モデルを用いて、鉄筋の検査情報を推論することが可能であり、配筋検査の精度が向上する。
以上のように、実施の形態1に係る配筋検査装置1は、鉄筋20が配筋された複数の平面を含む構造体の三次元画像データ2Cを用いて、構造体における複数の平面のうち、検査対象の平面を特定し、ステレオカメラ2によって撮影された検査対象の平面を含む構造体の三次元画像データ2Cが、ステレオカメラ2と検査対象の平面との距離が一定で、かつステレオカメラ2に検査対象の平面が正対した正対化画像2Dに変換する。さらに、配筋検査装置1は、検出した検査対象の平面における鉄筋20の位置に基づいて、正対化画像2Dから鉄筋20の画像を抽出し、正対化画像2Dから抽出した鉄筋20の画像を学習モデルに入力して、鉄筋20の検査情報を推論する。検査対象の平面を含む構造体の撮影画像を正対化画像2Dに変換することにより、配筋検査装置1は、定規またはマーカを検査領域に設置することなく、配筋検査を行うことができる。
実施の形態1に係る配筋検査装置1において、画像抽出部15が、正対化画像から抽出した鉄筋の画像を複数の部分画像に分割する。推論部16は、複数の部分画像を入力し、正対化画像2Dから抽出した鉄筋20の画像における鉄筋20の径Dを出力する学習モデルを用いて鉄筋20の径Dを推論する。推論部16は、上記学習モデルを用いることにより、鉄筋の径Dを正確に検出でき、鉄筋の径Dに基づいて鉄筋の種類を判定することが可能である。
実施の形態1に係る配筋検査装置1において、画像抽出部15が、正対化画像2Dから抽出した鉄筋20の画像を複数の部分画像に分割する。推論部16は、複数の部分画像を入力し、正対化画像2Dから抽出した鉄筋20の画像における鉄筋20の節の間隔Lを出力する学習モデルを用いて鉄筋20の節の間隔Lを推論する。推論部16は、算出した推論結果データに基づいて、鉄筋の節の間隔Lを正確に検出でき、鉄筋の節の間隔Lに基づいて、鉄筋の種類を判定することが可能である。
実施の形態1に係る配筋検査装置1において、画像抽出部15が、正対化画像2Dから抽出した鉄筋20の画像を複数の部分画像に分割する。推論部16は、複数の部分画像を入力し、正対化画像2Dから抽出した鉄筋20の画像における鉄筋20の径Dおよび節の間隔Lを出力する学習モデルを用いて鉄筋20の径Dおよび節の間隔Lを推論する。推論部16は、算出した推論結果データに基づいて、鉄筋の径Dおよび節の間隔Lを正確に検出でき、鉄筋の径Dおよび節の間隔Lに基づいて、鉄筋の種類を判定することが可能である。
実施の形態1に係る配筋検査装置1において、位置検出部14が、正対化画像2Dを鉄筋以外の部分がマスクされたマスク画像51に変換し、マスク画像51の鉄筋部分の画素をカウントすることにより、正対化画像2Dの検査対象の平面における鉄筋の位置を検出する。これにより、配筋検査装置1は、正対化画像2Dにおいて縦方向に並ぶ鉄筋の位置と横方向に並ぶ鉄筋の位置を正確に検出することが可能である。
なお、実施の形態の任意の構成要素の変形もしくは実施の形態の任意の構成要素の省略が可能である。
1 配筋検査装置、2 ステレオカメラ、2A 左視点画像、2B 右視点画像、2C 三次元画像データ、2D 正対化画像、3 表示装置、4 学習装置、11 三次元情報取得部、12 平面特定部、13 画像変換部、14 位置検出部、15 画像抽出部、16 推論部、20 鉄筋、31 アウトライヤ、32 インライヤ、41 学習部、42 記憶部、51 マスク画像、52 線分、61(1),61(2),62 推論結果データ、100 入力インタフェース、101 出力インタフェース、102 処理回路、103 プロセッサ、104 メモリ。
本開示に係る配筋検査装置は、鉄筋が配筋された複数の平面を含む構造体の三次元データを取得する三次元情報取得部と、三次元データを用いて、構造体における複数の平面のうち、検査対象の平面を特定する平面特定部と、撮影部により撮影された検査対象の平面を含む構造体の撮影画像を、撮影部と検査対象の平面との距離が一定で、かつ撮影部に検査対象の平面が正対した正対化画像に変換する画像変換部と、正対化画像から検査対象の平面における鉄筋の位置を検出する位置検出部と、検査対象の平面における鉄筋の位置に基づいて、正対化画像から鉄筋の画像を抽出する画像抽出部と、正対化画像から抽出された鉄筋の画像を学習モデルに入力して、鉄筋の検査情報を推論する推論部とを備え、位置検出部は、正対化画像を鉄筋以外の部分がマスクされたマスク画像に変換し、マスク画像において、マスクされていない隣接した領域同士の間隔が閾値以上である場合に、これらの領域が検査対象の平面における同一の鉄筋に対応する領域ではないと判定し、マスクされていない隣接した領域同士の間隔が閾値未満である場合、これらの領域が同一の鉄筋に対応する領域であると判定することにより、正対化画像の検査対象の平面における、判定結果の鉄筋の位置を検出する。

Claims (7)

  1. 鉄筋が配筋された複数の平面を含む構造体の三次元データを取得する三次元情報取得部と、
    前記三次元データを用いて、前記構造体における複数の平面のうち、検査対象の平面を特定する平面特定部と、
    撮影部により撮影された前記検査対象の平面を含む前記構造体の撮影画像を、前記撮影部と前記検査対象の平面との距離が一定で、かつ前記撮影部に前記検査対象の平面が正対した正対化画像に変換する画像変換部と、
    前記正対化画像から前記検査対象の平面における鉄筋の位置を検出する位置検出部と、
    前記検査対象の平面における鉄筋の位置に基づいて、前記正対化画像から鉄筋の画像を抽出する画像抽出部と、
    前記正対化画像から抽出された鉄筋の画像を学習モデルに入力して、鉄筋の検査情報を推論する推論部と、を備えた
    ことを特徴とする配筋検査装置。
  2. 前記画像抽出部は、前記正対化画像から抽出した鉄筋の画像を、複数の部分画像に分割し、
    前記推論部は、複数の前記部分画像を入力し、前記正対化画像から抽出した鉄筋の画像における鉄筋の径を出力する前記学習モデルを用いて、鉄筋の検査情報として鉄筋の径を推論する
    ことを特徴とする請求項1に記載の配筋検査装置。
  3. 前記画像抽出部は、前記正対化画像から抽出した鉄筋の画像を、複数の部分画像に分割し、
    前記推論部は、複数の前記部分画像を入力し、前記正対化画像から抽出した鉄筋の画像における鉄筋の節の間隔を出力する前記学習モデルを用いて、鉄筋の検査情報として鉄筋の節の間隔を推論する
    ことを特徴とする請求項1に記載の配筋検査装置。
  4. 前記画像抽出部は、前記正対化画像から抽出した鉄筋の画像を、複数の部分画像に分割し、
    前記推論部は、複数の前記部分画像を入力し、前記正対化画像から抽出した鉄筋の画像における鉄筋の径および節の間隔を出力する前記学習モデルを用いて、鉄筋の検査情報として鉄筋の径および節の間隔を推論する
    ことを特徴とする請求項1に記載の配筋検査装置。
  5. 前記位置検出部は、前記正対化画像を鉄筋以外の部分がマスクされたマスク画像に変換し、前記マスク画像の鉄筋部分の画素をカウントすることにより、前記正対化画像の前記検査対象の平面における鉄筋の位置を検出する
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の配筋検査装置。
  6. 三次元情報取得部が、鉄筋が配筋された複数の平面を含む構造体の三次元データを取得するステップと、
    平面特定部が、前記三次元データを用いて、前記構造体における複数の平面のうち、検査対象の平面を特定するステップと、
    画像変換部が、撮影部により撮影された前記検査対象の平面を含む前記構造体の撮影画像を、前記撮影部と前記検査対象の平面との距離が一定で、かつ前記撮影部に前記検査対象の平面が正対した正対化画像に変換するステップと、
    位置検出部が、前記正対化画像から前記検査対象の平面における鉄筋の位置を検出するステップと、
    画像抽出部が、前記検査対象の平面における鉄筋の位置に基づいて、前記正対化画像から鉄筋の画像を抽出するステップと、
    推論部が、前記正対化画像から抽出された鉄筋の画像を学習モデルに入力して、鉄筋の検査情報を推論するステップと、を備えた
    ことを特徴とする配筋検査方法。
  7. コンピュータを、
    鉄筋が配筋された複数の平面を含む構造体の三次元データを取得する三次元情報取得部と、
    前記三次元データを用いて、前記構造体における複数の平面のうち、検査対象の平面を特定する平面特定部と、
    撮影部により撮影された前記検査対象の平面を含む前記構造体の撮影画像を、前記撮影部と前記検査対象の平面との距離が一定で、かつ前記撮影部に前記検査対象の平面が正対した正対化画像に変換する画像変換部と、
    前記正対化画像から前記検査対象の平面における鉄筋の位置を検出する位置検出部と、
    前記検査対象の平面における鉄筋の位置に基づいて、前記正対化画像から鉄筋の画像を抽出する画像抽出部と、
    前記正対化画像から抽出された鉄筋の画像を学習モデルに入力して、鉄筋の検査情報を推論する推論部として機能させるためのプログラム。
JP2021070065A 2021-04-19 2021-04-19 配筋検査装置、配筋検査方法およびプログラム Active JP7186821B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021070065A JP7186821B2 (ja) 2021-04-19 2021-04-19 配筋検査装置、配筋検査方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021070065A JP7186821B2 (ja) 2021-04-19 2021-04-19 配筋検査装置、配筋検査方法およびプログラム

Publications (2)

Publication Number Publication Date
JP2022164949A true JP2022164949A (ja) 2022-10-31
JP7186821B2 JP7186821B2 (ja) 2022-12-09

Family

ID=83845868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021070065A Active JP7186821B2 (ja) 2021-04-19 2021-04-19 配筋検査装置、配筋検査方法およびプログラム

Country Status (1)

Country Link
JP (1) JP7186821B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084673A1 (ja) * 2022-10-21 2024-04-25 三菱電機株式会社 配筋検査装置、学習装置、配筋検査システムおよび配筋検査方法
JP7508750B1 (ja) 2023-10-24 2024-07-02 コムシス情報システム株式会社 配筋測定システムおよび配筋測定方法。

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026663A (ja) * 2018-08-10 2020-02-20 オリンパス株式会社 配筋検査装置
JP2020027058A (ja) * 2018-08-14 2020-02-20 前田建設工業株式会社 配筋出来形管理システム及び配筋出来形管理方法
CN111179232A (zh) * 2019-12-20 2020-05-19 山东大学 基于图像处理的钢筋尺寸检测系统及方法
JP2020165748A (ja) * 2019-03-29 2020-10-08 鹿島建設株式会社 検査支援装置
WO2021024499A1 (ja) * 2019-08-08 2021-02-11 鹿島建設株式会社 鉄筋判定装置および鉄筋判定方法
JP2021022028A (ja) * 2019-07-25 2021-02-18 株式会社大林組 画像処理装置、画像処理方法及び画像処理プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026663A (ja) * 2018-08-10 2020-02-20 オリンパス株式会社 配筋検査装置
JP2020027058A (ja) * 2018-08-14 2020-02-20 前田建設工業株式会社 配筋出来形管理システム及び配筋出来形管理方法
JP2020165748A (ja) * 2019-03-29 2020-10-08 鹿島建設株式会社 検査支援装置
JP2021022028A (ja) * 2019-07-25 2021-02-18 株式会社大林組 画像処理装置、画像処理方法及び画像処理プログラム
WO2021024499A1 (ja) * 2019-08-08 2021-02-11 鹿島建設株式会社 鉄筋判定装置および鉄筋判定方法
CN111179232A (zh) * 2019-12-20 2020-05-19 山东大学 基于图像处理的钢筋尺寸检测系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084673A1 (ja) * 2022-10-21 2024-04-25 三菱電機株式会社 配筋検査装置、学習装置、配筋検査システムおよび配筋検査方法
JP7508750B1 (ja) 2023-10-24 2024-07-02 コムシス情報システム株式会社 配筋測定システムおよび配筋測定方法。

Also Published As

Publication number Publication date
JP7186821B2 (ja) 2022-12-09

Similar Documents

Publication Publication Date Title
US10255480B2 (en) Monitoring object shape and deviation from design
JP5263694B2 (ja) 物体位置推定用情報作成装置、物体位置推定用情報作成方法およびプログラム
JP6286474B2 (ja) 画像処理装置および領域追跡プログラム
CN108229475B (zh) 车辆跟踪方法、系统、计算机设备及可读存储介质
JP7186821B2 (ja) 配筋検査装置、配筋検査方法およびプログラム
JP6083091B2 (ja) 鉄筋検査支援装置およびプログラム
JP6757690B2 (ja) 検査支援装置、検査支援方法及びプログラム
KR101747216B1 (ko) 표적 추출 장치와 그 방법 및 상기 방법을 구현하는 프로그램이 기록된 기록 매체
JP5538868B2 (ja) 画像処理装置、その画像処理方法及びプログラム
JP2018173276A (ja) 計測支援装置、計測支援方法及びプログラム
JP4042750B2 (ja) 画像処理装置、コンピュータプログラム、及び画像処理方法
CN107004274B (zh) 估计未聚焦全光数据的深度的方法和装置
JP4427052B2 (ja) 画像処理装置および領域追跡プログラム
JP2011237296A (ja) 3次元形状計測方法、3次元形状計測装置、及びプログラム
JP4990876B2 (ja) 画像処理装置
JP2015045919A (ja) 画像認識方法及びロボット
JP6802944B1 (ja) 検査支援装置、検査支援方法及びプログラム
JP7214023B1 (ja) 配筋検査装置、配筋検査方法およびプログラム
JP7340434B2 (ja) 配筋検査システム、配筋検査方法、及び配筋検査プログラム
JP5935118B2 (ja) 物体検出装置および物体検出方法
JP6025400B2 (ja) ワーク位置検出装置、及びワーク位置検出方法
JP2023013544A (ja) 配筋検査装置、配筋検査方法およびプログラム
JP2023166059A (ja) 配筋検査装置、配筋検査方法およびプログラム
JP2013190938A (ja) ステレオ画像処理装置
JP2012234431A (ja) 境界線検出装置、境界線検出方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221129

R150 Certificate of patent or registration of utility model

Ref document number: 7186821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150