JP2022147327A - Surface coating cutting tool - Google Patents

Surface coating cutting tool Download PDF

Info

Publication number
JP2022147327A
JP2022147327A JP2021048520A JP2021048520A JP2022147327A JP 2022147327 A JP2022147327 A JP 2022147327A JP 2021048520 A JP2021048520 A JP 2021048520A JP 2021048520 A JP2021048520 A JP 2021048520A JP 2022147327 A JP2022147327 A JP 2022147327A
Authority
JP
Japan
Prior art keywords
coating layer
tool
cutting
average
area ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021048520A
Other languages
Japanese (ja)
Inventor
和宏 引田
Kazuhiro Hikita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2021048520A priority Critical patent/JP2022147327A/en
Publication of JP2022147327A publication Critical patent/JP2022147327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

To provide a surface coating cutting tool which presents excellent abrasion resistance and defect resistance for an extended period even when subjecting a material having a high deposition property to high speed intermittent cutting or high speed continuous cutting.SOLUTION: A surface coating cutting tool has a tool base body and a coating layer on a surface of the tool base body. The coating layer has an average layer thickness of 0.5-10.0 μm. When an average composition is represented by a composition formula: (Ti1-x-yAlxMoy)N, x is 0.50-0.65, and y is more than 0.00 and equal to or less than 0.20. The coating layer includes crystal grains having an NaCl-type face-centered cubic structure with an average grain diameter of 20-100 nm. An area ratio occupied by large contamination droplets is 0.100% or less, and an area ratio occupied by small contamination droplet is 0.001-0.100%.SELECTED DRAWING: None

Description

この発明は、表面被覆切削工具(以下、被覆工具ということがある)に関する。 The present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool).

従来、WC基超硬合金等を工具基体とし、この工具基体の表面に被覆層を蒸着法により形成した被覆工具が知られている。この被覆工具は耐摩耗性を有しているが、この耐摩耗性をさらに向上させるべく、種々の提案がなされ、被覆層の組成に関する提案もなされている。 Conventionally, there has been known a coated tool in which a WC-based cemented carbide or the like is used as a tool substrate and a coating layer is formed on the surface of the tool substrate by vapor deposition. Although this coated tool has wear resistance, various proposals have been made in order to further improve this wear resistance, and proposals have also been made regarding the composition of the coating layer.

例えば、特許文献1には、被覆層は、MoN(0.01≦y≦0.2)で表されるMoとNとの固溶体、MoN、MoNまたはこれらの混合体からなるA層と、Ti1-xAlN(0.3≦x≦0.7)からなるB層とが交互に各々2層以上積層され、前記A層の層厚λaと前記B層の層厚λbとは、それぞれ2~000nmであり、
その層厚比λa/λbは、工具基材側から被覆層の最表面側にかけて増大し、かつ工具基体に最も近い層厚比λa/λbは0.1~0.7であり、最表面側に最も近い層厚比λa/λbは1.5~10である被覆工具が記載され、該被覆工具は耐摩耗性に優れているとされている。
For example, in Patent Document 1, the coating layer is a solid solution of Mo and N represented by MoN y (0.01 ≤ y ≤ 0.2), Mo 2 N, MoN, or a mixture thereof. and a layer B made of Ti 1-x Al x N (0.3≦x≦0.7) are alternately laminated in two or more layers, and the layer thickness λa of the A layer and the layer thickness λb of the B layer are each 2 to 000 nm,
The layer thickness ratio λa/λb increases from the tool substrate side to the outermost surface side of the coating layer, and the layer thickness ratio λa/λb closest to the tool substrate is 0.1 to 0.7, and the outermost surface side A coated tool having a layer thickness ratio λa/λb of 1.5 to 10, which is the closest to , is said to be excellent in wear resistance.

特開2010-137305号公報JP 2010-137305 A

本発明は、前記事情や提案を鑑みてなされたもので、例えば、オーステナイト系ステンレス鋼のような、被覆工具に対する溶着性の高い材料を高速連続切削加工に供した場合であっても、優れた耐摩耗性、耐欠損性を長期間にわたり発揮する表面被覆切削工具を得ることを目的とする。 The present invention has been made in view of the above circumstances and proposals. An object of the present invention is to obtain a surface-coated cutting tool that exhibits wear resistance and chipping resistance for a long period of time.

ここで、溶着性の高い材料に対する高速連続切削加工とは、例えば、オーステナイトステンレス鋼では、60m/minよりも速い切削速度において切削工具の刃先が連続して切削を行う加工をいう。 Here, high-speed continuous cutting of a highly adhesive material refers to, for example, austenitic stainless steel in which the cutting edge of the cutting tool continuously cuts at a cutting speed higher than 60 m/min.

本発明の実施形態に係る表面被覆切削工具は、
工具基体と該工具基体の表面に被覆層を有し、
前記被覆層は、
その平均層厚が0.5~10.0μmであり、
平均組成を組成式:(Ti1-x-yAlMo)Nで表したとき、xは0.50~0.65、yは0.00を超え0.20以下であり、
平均粒径が20~100nmのNaCl型面心立方構造を有する結晶粒を含み、
かつ、
大きな混入液滴が占める面積割合が0.100%以下で、小さな混入液滴が占める面積割合が0.001~0.100%である。
A surface-coated cutting tool according to an embodiment of the present invention is
A tool base and a coating layer on the surface of the tool base,
The coating layer is
The average layer thickness is 0.5 to 10.0 μm,
When the average composition is represented by the composition formula: (Ti 1-x-y Al x Mo y )N, x is 0.50 to 0.65, y is more than 0.00 and 0.20 or less,
Containing crystal grains having an NaCl-type face-centered cubic structure with an average grain size of 20 to 100 nm,
And,
The area ratio occupied by large mixed droplets is 0.100% or less, and the area ratio occupied by small mixed droplets is 0.001 to 0.100%.

さらに、前記実施形態に係る表面被覆切削工具は、次の事項(1)を満足してもよい。 Furthermore, the surface-coated cutting tool according to the embodiment may satisfy the following item (1).

(1)前記被覆層のナノインデンテーション硬さが30GPa以上であること。 (1) The nanoindentation hardness of the coating layer is 30 GPa or more.

前記によれば、例えば、オーステナイト系ステンレス鋼のような、被覆工具に対する溶着性の高い材料を高速断続切削、高速連続切削加工に供した場合であっても、優れた耐摩耗性、耐欠損性を長期間にわたり発揮する。 According to the above, for example, even when a material with high adhesion to coated tools, such as austenitic stainless steel, is subjected to high-speed interrupted cutting or high-speed continuous cutting, excellent wear resistance and fracture resistance exert over a long period of time.

本発明者は、前記特許文献1に記載された被覆工具について検討した結果、次の(1)を認識した。 As a result of examining the coated tool described in Patent Literature 1, the present inventor recognized the following (1).

(1)被覆層は、Mo酸化物による固体潤滑性を示しているが、合金鋼または高硬度鋼の切削性能に関して優れた耐摩耗性を示すものの、例えば、オーステナイト系ステンレス鋼の切削においては耐熱性に劣り、一段の工具寿命延長が必要であること。 (1) The coating layer exhibits solid lubricity due to Mo oxides, and although it exhibits excellent wear resistance in terms of cutting performance of alloy steel or high-hardness steel, for example, in cutting austenitic stainless steel, it has heat resistance. Inferior in durability, and further extension of tool life is required.

本発明者は、この認識を基に、被覆層の組成、混入液滴について鋭意検討した。その結果、被覆層の成分としてTi、Alの他にMoを加え、混入液滴の大きさを制御することによって、例えば、オーステナイト系ステンレス鋼のような、被覆工具に対する溶着性の高い材料を高速連続切削加工に供した場合であっても、優れた耐摩耗性、耐欠損性を長期間にわたり発揮する被覆工具を得ることができるという知見を得た。 Based on this recognition, the present inventors diligently studied the composition of the coating layer and the entrained liquid droplets. As a result, by adding Mo in addition to Ti and Al as components of the coating layer and controlling the size of the mixed droplets, a material with high adhesion to the coated tool, such as austenitic stainless steel, can be produced at high speed. The present inventors have found that it is possible to obtain a coated tool that exhibits excellent wear resistance and chipping resistance over a long period of time even when subjected to continuous cutting.

以下、本発明の一実施形態の表面被覆切削工具について、説明する。なお、本明細書および特許請求の範囲において数値範囲を「A~B」(A、Bはともに数値である)と表現するとき、その範囲は上限(B)および下限(A)の数値を含んでおり、上限(B)と下限(A)の単位は同じである。また、数値は公差を含む。 A surface-coated cutting tool according to one embodiment of the present invention will be described below. In the present specification and claims, when a numerical range is expressed as "A to B" (both A and B are numerical values), the range includes the numerical values of the upper limit (B) and the lower limit (A). , and the units of the upper limit (B) and the lower limit (A) are the same. Also, the numerical values include tolerances.

1.被覆層
(1)平均層厚
被覆層の平均層厚は、0.5~10.0μmであることが好ましい。その理由は、平均層厚が、0.5μm未満であると、長期にわたって耐摩耗性、耐欠損性を発揮することが難しく、一方、10.0μmを超えると、被覆層が有する残留応力によって被覆層の工具基体からの剥離が生じやすくなり、チッピングが発生しやすくなるためである。
平均層厚は、0.5~3.0μmであることがより好ましい。
1. Coating Layer (1) Average Layer Thickness The average layer thickness of the coating layer is preferably 0.5 to 10.0 μm. The reason for this is that if the average layer thickness is less than 0.5 μm, it is difficult to exhibit wear resistance and chipping resistance over a long period of time. This is because the layer tends to peel off from the tool substrate, and chipping tends to occur.
More preferably, the average layer thickness is 0.5 to 3.0 μm.

なお、被覆層の平均層厚は、例えば、集束イオンビーム装置(FIB:Focused Ion Beam system)、クロスセクションポリッシャー装置(CP:Cross section Polisher)等を用いて、硬質被覆層を任意の位置の縦断面(インサートでは、工具基体表面の微小な凹凸を無視して、工具基体の表面が平らな面として扱ったときのこの面に対する垂直方向の断面。軸物工具では軸に対して垂直な断面。)で切断して観察用の試料を作製し、その縦断面を走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いた観察により複数箇所(3箇所以上)の層厚の測定結果を平均したものである。 In addition, the average layer thickness of the coating layer can be obtained by, for example, using a focused ion beam system (FIB), a cross section polisher (CP), or the like, for the hard coating layer at any position. Surface (For inserts, the cross section perpendicular to this surface when the surface of the tool base is treated as a flat surface, ignoring minute irregularities on the surface of the tool base. For shaft tools, the cross section perpendicular to the shaft.) A sample for observation is prepared by cutting with , and the longitudinal section is observed using a scanning electron microscope (SEM). be.

(2)平均組成
被覆層の平均組成は、組成式:(Ti1-x-yAlMn)Nで表したとき、xは0.50~0.65、yは0.00を超え0.20以下であることが好ましい。
その理由は、次のとおりである。
xが0.50未満であると、被覆層の硬さおよび耐酸化性が不十分ではなく、一方、0.65を超えると六方晶構造の結晶粒の析出量が増大し硬さが低下するためである。
(2) Average composition The average composition of the coating layer is represented by the composition formula: (Ti 1-xy Al x Mn y )N, where x is 0.50 to 0.65 and y is more than 0.00. It is preferably 0.20 or less.
The reason is as follows.
When x is less than 0.50, the hardness and oxidation resistance of the coating layer are not sufficient. It's for.

yは0.00を超えないと、Moのもたらす潤滑性を利用して耐摩耗性を向上させることができず、一方、0.20を超えると被覆層を構成する結晶の結晶構造が乱れて硬さが低下するためである。
Moが被覆層中に均質に分散していると、突発的なチッピングや被膜結晶粒の脱落が発生せず、安定した切削性能を発現することができる。
If y does not exceed 0.00, the lubricity provided by Mo cannot be used to improve wear resistance. This is because the hardness decreases.
When Mo is uniformly dispersed in the coating layer, sudden chipping and dropout of coating crystal grains do not occur, and stable cutting performance can be exhibited.

xは0.56~0.61、yは0.05~0.10であることがより好ましい。 More preferably, x is 0.56 to 0.61 and y is 0.05 to 0.10.

平均組成は、電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)を用い、電子線を硬被覆層の表面、もしくは、被覆層の任意の位置の縦断面の5箇所に照射し、それぞれの箇所から得られた被覆層を構成する元素に対応する特性X線を解析することで各元素の含有量の定量化を行い、その結果を算術平均して求める。 For the average composition, an electron beam microanalyzer (EPMA: Electron Probe Micro Analyzer) is used to irradiate the surface of the hard coating layer with an electron beam, or five longitudinal sections at arbitrary positions of the coating layer, and The content of each element is quantified by analyzing the characteristic X-rays corresponding to the elements forming the obtained coating layer, and the result is calculated by arithmetic mean.

なお、後述する製造法の一例に従えば、(Ti1-x-yAlMo)とNとの比は、1:1となるように製造されるが、不可避的に(意図せずに)1:1とならないものが存在することがある。 According to an example of the manufacturing method described later, the ratio of (Ti 1-xy Al x Mo y ) to N is 1:1, but inevitably (unintentionally 2) There may be cases where the ratio is not 1:1.

(3)NaCl型面心立方構造の結晶粒
被覆層は、硬度を与えるために、NaCl型面心立方構造の結晶粒を有することが好ましく、NaCl型面心立方構造の結晶粒の割合は、縦断面において、面積割合として70%以上であることが好ましい。この面積割合の上限は100%、すなわち、全ての結晶粒がNaCl型面心立方構造であってよい。
(3) NaCl-type face-centered cubic crystal grains The coating layer preferably has NaCl-type face-centered cubic crystal grains in order to provide hardness, and the ratio of the NaCl-type face-centered cubic crystal grains is In the longitudinal section, the area ratio is preferably 70% or more. The upper limit of this area ratio may be 100%, that is, all crystal grains may have a NaCl-type face-centered cubic structure.

このNaCl型面心立方構造の結晶粒の平均粒径は、20~100nmであることが好ましい。その理由は、20nm未満であると、粒界界面の増加により酸素や被削材成分の拡散が発生しやすくなって、耐凝着性が低下し、一方、100nmを超えると、凝着による凝着破壊が発生したときの破壊単位が大きくなり、耐チッピング性が低下するためである。 The average grain size of the NaCl-type face-centered cubic structure crystal grains is preferably 20 to 100 nm. The reason for this is that if it is less than 20 nm, diffusion of oxygen and components of the work material tends to occur due to an increase in the grain boundary interface, and the adhesion resistance decreases. This is because the unit of breakage when adhesion breakage occurs becomes larger and the chipping resistance is lowered.

ここで、前記平均粒径は、次のようにして求める。すなわち、透過型電子顕微鏡(TEM:Transmission Electron Microscope)による、自動結晶方位マッピング(ACOM:Automated Crystal Orientation Mapping)-TEMを用いた解析を行い、粒界を規定する。その後、粒界によって閉じた範囲を結晶粒とし、その結晶粒の最大長さを粒径と定める。任意の20個の結晶粒に対し、それぞれ粒径を求め、その算術平均を平均粒径とする。 Here, the average particle size is determined as follows. That is, analysis using automated crystal orientation mapping (ACOM)-TEM is performed by a transmission electron microscope (TEM) to define grain boundaries. After that, the range closed by the grain boundary is defined as the crystal grain, and the maximum length of the crystal grain is determined as the grain size. The grain size is obtained for each of 20 arbitrary crystal grains, and the arithmetic mean thereof is taken as the average grain size.

(4)混入液滴
被覆層において、大きな混入液滴が占める面積割合が0.100%以下(0.000%であってもよい)で、小さな混入液滴が占める面積割合が0.001~0.100%であることが好ましい。
その理由は、大きな混入液滴が占める面積割合が0.100%以下であれば、大きな混入液滴が存在しないと扱うことができ、被覆層における欠損の起点が少なく、耐摩耗性に優れるためであり、一方、小さな混入液滴が占める面積割合が0.001~0.100%であると、小さな混入液滴の量が適切に存在することにより、金属酸化物が生成されることによって固体潤滑性を与えるためである。
(4) Mixed droplets In the coating layer, the area ratio occupied by large mixed droplets is 0.100% or less (may be 0.000%), and the area ratio occupied by small mixed droplets is 0.001 to 0.100% is preferred.
The reason for this is that if the area ratio occupied by large mixed droplets is 0.100% or less, it can be treated as if there are no large mixed droplets, the coating layer has few starting points for defects, and the abrasion resistance is excellent. On the other hand, when the area ratio occupied by small entrained droplets is 0.001 to 0.100%, the presence of an appropriate amount of small entrained droplets produces a metal oxide, thereby solidifying This is to provide lubricity.

また、このように混入液滴を制御することにより、被覆層がMoを含んでいてもNaCl型面心立方構造の結晶粒を有することができる。 Also, by controlling the mixed droplets in this way, even if the coating layer contains Mo, it is possible to have crystal grains of NaCl-type face-centered cubic structure.

ここで、混入液滴は次のようなものをいう。すなわち、被覆層の縦断面に対して、SEM-EDSのマッピング分析およびTEM-EDSマッピング分析により、Al、Ti、Mo、N成分を測定したとき、Al、Ti、Moの金属成分が検出され、かつNが検出されない領域を混入液滴と扱う。 Here, the mixed liquid droplet means the following. That is, when the Al, Ti, Mo, and N components are measured by SEM-EDS mapping analysis and TEM-EDS mapping analysis for the longitudinal section of the coating layer, the metal components of Al, Ti, and Mo are detected, A region where N is not detected is treated as a mixed droplet.

混入液滴の大きさは、その最大長さ、すなわち、混入液滴の輪郭線上の任意の2点間の最大長さで規定する。特許請求の範囲、明細書でいう大きな混入液滴とは、この最大長さが50nm以上ものであり、小さな混入液滴とは10nm以上50nm未満のものである。 The size of an entrained droplet is defined by its maximum length, that is, the maximum length between any two points on the outline of the entrained droplet. In the claims and the specification, a large entrained droplet has a maximum length of 50 nm or more, and a small entrained droplet has a maximum length of 10 nm or more and less than 50 nm.

混入液滴の面積割合は、次のようにして決定する。
大きな混入液滴の面積割合は、それぞれ2μm(工具基体の表面に平行な方向)×2μm(工具基体の表面に垂直な方向、ただし、層厚が1μm未満の場合には層厚)の観察視野にて、3箇所以上をSEM-EDSマッピング分析により倍率50000倍にて縦断面を観察し、混入液滴の占める面積割合を求める。
小さな混入液滴の面積割合は、それぞれ1μm(工具基体の表面に平行な方向)×1μm(工具基体の表面に垂直な方向、ただし、層厚が1μm未満の場合には層厚)の観察視野にて、10箇所以上をTEM-EDSマッピング分析により倍率100000倍にて観察し、混入液滴の占める面積割合を求める。
The area ratio of entrained droplets is determined as follows.
The area ratio of the large mixed droplets is an observation field of 2 μm (direction parallel to the surface of the tool substrate)×2 μm (direction perpendicular to the surface of the tool substrate, however, if the layer thickness is less than 1 μm, the layer thickness). At 3 or more points, the longitudinal section is observed at a magnification of 50,000 times by SEM-EDS mapping analysis, and the area ratio occupied by the mixed droplets is obtained.
The area ratio of small mixed droplets is an observation field of 1 μm (direction parallel to the surface of the tool substrate)×1 μm (direction perpendicular to the surface of the tool substrate, however, if the layer thickness is less than 1 μm, the layer thickness). , 10 or more points are observed by TEM-EDS mapping analysis at a magnification of 100,000 times, and the area ratio occupied by the mixed droplets is determined.

ここで、工具基体の表面とは、縦断面においてエネルギー分散型X線分析法(EDS:Energy dispersive X-ray spectroscopy)を用いた元素マッピングを実施し、得られた元素マップに対して公知の画像処理を行うことで被覆層と工具基体の界面を定め、こうして得られた被覆層と工具基体との界面の粗さ曲線について、平均線を算術的に求め、これを工具基体の表面とする。そして、この平均線に対して、垂直な方向を工具基体に垂直な方向(層厚方向)とする。 Here, the surface of the tool substrate is a known image of an elemental map obtained by performing elemental mapping using energy dispersive X-ray spectroscopy (EDS) in a longitudinal section. The interface between the coating layer and the tool substrate is determined by performing the treatment, and the average line of the roughness curve of the interface between the coating layer and the tool substrate thus obtained is arithmetically determined, and this is used as the surface of the tool substrate. The direction perpendicular to the average line is defined as the direction perpendicular to the tool substrate (layer thickness direction).

また、工具基体がドリル、エンドミルのように曲面の表面を有する場合であっても、被覆層の層厚に対して工具径が十分に大きければ、測定領域における被覆層と工具基体との間の界面は略平面となることから、同様の手法により工具基体の表面を決定することができる。 Also, even if the tool base has a curved surface such as a drill or an end mill, if the tool diameter is sufficiently large relative to the thickness of the coating layer, the distance between the coating layer and the tool base in the measurement area will increase. Since the interface is substantially planar, the surface of the tool substrate can be determined in a similar manner.

すなわち、例えばドリル、エンドミルであれば、軸方向に垂直な断面の被覆層の縦断面においてEDSを用いた元素マッピングを実施し、得られた元素マップに対して公知の画像処理を行うことで被覆層と工具基体の界面を定め、こうして得られた被覆層と工具基体との界面の粗さ曲線について、平均線を算術的に求め、これを工具基体の表面とする。そして、この平均線に対して、垂直な方向を工具基体に垂直な方向と(層厚方向)する。 That is, for example, in the case of drills and end mills, elemental mapping is performed using EDS in a longitudinal section of the coating layer perpendicular to the axial direction, and the obtained elemental map is subjected to known image processing. The interface between the layer and the tool substrate is defined, and the mean line is arithmetically obtained for the roughness curve of the interface between the coating layer and the tool substrate thus obtained, and this is used as the surface of the tool substrate. Then, the direction perpendicular to this average line is defined as the direction perpendicular to the tool substrate (layer thickness direction).

(5)ナノインデンテーション硬さ
ナノインデンテーション硬さが30GPa以上であることがより好ましい。ナノインデンテーション硬さが30GPa以上であると、より耐摩耗性が向上し、加工硬化したステンレス鋼に対してもより優れた切削性能を発揮することができる。
(5) Nanoindentation hardness It is more preferable that the nanoindentation hardness is 30 GPa or more. When the nanoindentation hardness is 30 GPa or more, wear resistance is further improved, and excellent cutting performance can be exhibited even for work-hardened stainless steel.

ナノインデンテーションの硬さは超微小押込み硬さ試験機を用いて測定する。押込み硬さは、硬質被覆層の厚さ方向に垂直に所定荷重1.96×10-3N(200mgf)で所定の圧子(例えば、ベルコビッチ形状圧子とよばれる三角錐形状のダイヤモンド圧子)を押し込み、圧子が押し込んだ押込み深さに基づいて算出する。 The hardness of nanoindentation is measured using an ultra-micro indentation hardness tester. The indentation hardness is measured by indenting a predetermined indenter (for example, a triangular pyramid-shaped diamond indenter called a Berkovich-shaped indenter) with a predetermined load of 1.96 × 10 -3 N (200 mgf) perpendicular to the thickness direction of the hard coating layer. , is calculated based on the indentation depth of the indenter.

2.工具基体
(1)材質
材質は、従来公知の工具基体の材質であれば、前述の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例をあげるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、あるいは、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
2. Tool Substrate (1) Material Any material can be used as long as it is a conventionally known material for a tool substrate, as long as it does not interfere with the achievement of the above-mentioned object. For example, cemented carbide (WC-based cemented carbide, WC, containing Co, or further containing carbonitrides such as Ti, Ta, Nb, etc.), cermet ( TiC, TiN, TiCN, etc. as main components), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, or diamond sintered body is preferred.

(2)形状
工具基体の形状は、切削工具として用いられる形状であれば特段の制約はなく、インサートの形状、ドリルの形状が例示できる。
(2) Shape The shape of the tool base is not particularly limited as long as it is a shape used as a cutting tool, examples of which include the shape of an insert and the shape of a drill.

3.製造方法
スパッタンリング法または混入液滴の抑制が容易な高出力パルススパッタリング(High Power Impulse Magnetron Sputtering:HiPIMS)法を用いることができる。
3. Manufacturing Method A sputtering method or a high-power pulse sputtering (HiPIMS) method, which facilitates suppression of entrained liquid droplets, can be used.

次に、実施例について説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Next, examples will be described, but the present invention is not limited to these examples.

原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、およびCo粉末を用意した。これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した。その後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結した焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体1~2を作製した。ついで、切り刃部分にホーニング加工を施さないISO規格・DCGT11T302Mのインサート形状を持ったWC基超硬合金製の工具基体3~4を同様に作製した。 As raw material powders, WC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle size of 1 to 3 μm, were prepared. These raw material powders were compounded to the compounding composition shown in Table 1, wet-mixed in a ball mill for 72 hours, and dried. After that, the green compact was press molded at a pressure of 100 MPa, and the green compact was sintered in a vacuum of 6 Pa at a temperature of 1400° C. for 1 hour. Tool substrates 1 and 2 made of WC-based cemented carbide and having an insert shape conforming to ISO standard CNMG120408 were produced by honing No. 03. Next, tool substrates 3 and 4 made of WC-based cemented carbide and having an insert shape of ISO standard DCGT11T302M without honing on the cutting edge portion were produced in the same manner.

続いて、これら工具基体1~4に対して、以下の(a)~(c)の手順により被覆層を形成した。 Subsequently, coating layers were formed on these tool substrates 1 to 4 according to the following procedures (a) to (c).

(a)前記工具基体1~4のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、高出力パルススパッタリング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、一方、高出力パルススパッタリング装置内には、回転テーブルを挟んで対向する4か所にTiとAlとMoの焼結体ターゲットを配置した。 (a) Each of the tool substrates 1 to 4 is ultrasonically cleaned in acetone, dried, and placed radially at a predetermined distance from the central axis on a rotary table in a high-power pulse sputtering apparatus. On the other hand, sintered targets of Ti, Al, and Mo were arranged at four locations facing each other across the rotary table in the high-power pulse sputtering apparatus.

(b)前記装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら公転する工具基体に-200Vの直流バイアス電圧を印加した。その後、前記装置内へ放電・スパッタ用ガスとしてアルゴン(以下Arと表記する)ガスを導入し、2.0Paの雰囲気とした。さらに前記装置内に具備されるタングステンフィラメントへ40Aの電流を流すことによりArイオンを励起させ、前記工具基体を1時間、Arボンバード処理した。 (b) While the inside of the device is evacuated and maintained at a vacuum of 0.1 Pa or less, the inside of the device is heated with a heater to 500 ° C., and then a direct current of −200 V is applied to the tool base that revolves while rotating on the rotary table. A bias voltage was applied. Thereafter, an argon (hereinafter referred to as Ar) gas was introduced into the apparatus as a discharge/sputtering gas to create an atmosphere of 2.0 Pa. Furthermore, Ar ions were excited by passing a current of 40 A through a tungsten filament provided in the apparatus, and the tool substrate was subjected to Ar bombardment treatment for 1 hour.

(c)前記装置内にスパッタ用ガスとしてArガスと窒素ガスを導入して、装置内雰囲気を0.4~0.6Paとし、TiとAlとMoの焼結体ターゲットに表2に示される所定のパルススパッタ条件で、層厚に対応した時間で高出力パルススパッタを行った。これによって表3に示す実施例被覆インサート1~22(以下、実施例1~22と総称する)をそれぞれ製造した。 (c) Ar gas and nitrogen gas are introduced into the apparatus as sputtering gases, the atmosphere in the apparatus is set to 0.4 to 0.6 Pa, and the sintered target of Ti, Al and Mo is shown in Table 2. High power pulse sputtering was performed under predetermined pulse sputtering conditions for a time corresponding to the layer thickness. As a result, Example coated inserts 1 to 22 shown in Table 3 (hereinafter collectively referred to as Examples 1 to 22) were produced, respectively.

また、比較の目的で、これら工具基体1~4に対して、表4に示す条件で前記(a)~(c)の手順により被覆層を形成し、表5に示す比較被覆工具としての比較被覆インサート1~20(以下、比較例1~20と総称する)をそれぞれ製造した。 For the purpose of comparison, a coating layer was formed on these tool substrates 1 to 4 under the conditions shown in Table 4 according to the procedures (a) to (c) above, and the comparative coated tools shown in Table 5 were compared. Coated inserts 1-20 (hereinafter collectively referred to as Comparative Examples 1-20) were produced, respectively.

Figure 2022147327000001
Figure 2022147327000001

Figure 2022147327000002
Figure 2022147327000002

Figure 2022147327000003
Figure 2022147327000003

Figure 2022147327000004
Figure 2022147327000004

Figure 2022147327000005
Figure 2022147327000005

次に、実施例1~22、比較例1~20に対して、以下の切削試験1および2を行い、その結果を、それぞれ、表6、および表7に示す。 Next, the following cutting tests 1 and 2 were performed on Examples 1 to 22 and Comparative Examples 1 to 20, and the results are shown in Tables 6 and 7, respectively.

実施例1~11および比較例1~10について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下の条件で、乾式高速連続切削加工試験(切削試験1)を実施した。 For Examples 1 to 11 and Comparative Examples 1 to 10, a dry high-speed continuous cutting test (cutting test 1) was performed under the following conditions while screwing the tip of the tool steel cutting tool with a fixing jig. carried out.

(切削条件1)
被削材:SUS304
工具形状:ISO-CNMG120408
切削方式:乾式連続旋削加工(ターニング)
切削速度:200m/min
切込み:1.0mm
送り:0.8mm
切削時間:25分
(Cutting conditions 1)
Work material: SUS304
Tool shape: ISO-CNMG120408
Cutting method: dry continuous turning
Cutting speed: 200m/min
Notch: 1.0 mm
Feed: 0.8mm
Cutting time: 25 minutes

切削試験終了後に逃げ面摩耗幅を測定し、チッピングの有無を観察した。ただし、切削時間の満了前にチッピングが発生した場合は、切削を中止し切削開始からの時間を計測した。 After the cutting test was completed, the flank wear width was measured and the presence or absence of chipping was observed. However, when chipping occurred before the cutting time expired, the cutting was stopped and the time from the start of cutting was measured.

Figure 2022147327000006
Figure 2022147327000006

次いで、実施例12~22および比較例11~20について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下の条件で湿式高速連続切削加工試験(切削試験2)を実施した。 Next, for Examples 12 to 22 and Comparative Examples 11 to 20, a wet high-speed continuous cutting test (cutting test 2 ) was implemented.

被削材:SUS316
工具形状:ISO-DCGT11T302M
切削方式:湿式連続旋削加工(ターニング)
切削速度:60m/min
切込み:1.0mm
送り:0.08mm
切削時間:180分
Work material: SUS316
Tool shape: ISO-DCGT11T302M
Cutting method: Wet continuous lathe machining (turning)
Cutting speed: 60m/min
Notch: 1.0mm
Feed: 0.08mm
Cutting time: 180 minutes

切削試験終了後に逃げ面摩耗幅を測定し、チッピングの有無を観察した。ただし、切削時間の満了前にチッピングが発生した場合は、切削を中止し切削開始からの時間を計測した。 After the cutting test was completed, the flank wear width was measured and the presence or absence of chipping was observed. However, when chipping occurred before the cutting time expired, the cutting was stopped and the time from the start of cutting was measured.

Figure 2022147327000007
Figure 2022147327000007

表6、7に示す切削試験の結果から明らかなように、実施例1~22は、いずれも、高速連続切削加工に供しても逃げ面摩耗幅が少なく、優れた耐摩耗性、耐欠損性を有していた。これに対して、比較例1~20は、いずれも、切削試験が終了する前にチッピングが発生しており、短寿命であった。 As is clear from the results of the cutting tests shown in Tables 6 and 7, all of Examples 1 to 22 have a small flank wear width even when subjected to high-speed continuous cutting, and have excellent wear resistance and chipping resistance. had On the other hand, in Comparative Examples 1 to 20, chipping occurred before the cutting test was completed, and the life was short.

Claims (2)

工具基体と該工具基体の表面に被覆層を有する表面被覆切削工具であって、
前記被覆層は、
その平均層厚が0.5~10.0μmであり、
平均組成を組成式:(Ti1-x-yAlMo)Nで表したとき、xは0.50~0.65、yは0.00を超え0.20以下であり、
平均粒径が20~100nmのNaCl型面心立方構造を有する結晶粒を含み、
かつ、
大きな混入液滴が占める面積割合が0.100%以下で、小さな混入液滴が占める面積割合が0.001~0.100%である、
ことを特徴とする表面被覆切削工具。
A surface-coated cutting tool having a tool substrate and a coating layer on the surface of the tool substrate,
The coating layer is
The average layer thickness is 0.5 to 10.0 μm,
When the average composition is represented by the composition formula: (Ti 1-x-y Al x Mo y )N, x is 0.50 to 0.65, y is more than 0.00 and 0.20 or less,
Containing crystal grains having an NaCl-type face-centered cubic structure with an average grain size of 20 to 100 nm,
And,
The area ratio occupied by large mixed droplets is 0.100% or less, and the area ratio occupied by small mixed droplets is 0.001 to 0.100%.
A surface-coated cutting tool characterized by:
前記被覆層のナノインデンテーション硬さが30GPa以上であることを特徴とする請求項1に記載の表面被覆切削工具。 2. The surface-coated cutting tool according to claim 1, wherein the coating layer has a nanoindentation hardness of 30 GPa or more.
JP2021048520A 2021-03-23 2021-03-23 Surface coating cutting tool Pending JP2022147327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021048520A JP2022147327A (en) 2021-03-23 2021-03-23 Surface coating cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021048520A JP2022147327A (en) 2021-03-23 2021-03-23 Surface coating cutting tool

Publications (1)

Publication Number Publication Date
JP2022147327A true JP2022147327A (en) 2022-10-06

Family

ID=83463538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021048520A Pending JP2022147327A (en) 2021-03-23 2021-03-23 Surface coating cutting tool

Country Status (1)

Country Link
JP (1) JP2022147327A (en)

Similar Documents

Publication Publication Date Title
CN108883481B (en) Coated cutting tool
JP4967505B2 (en) Covering member
JP5344129B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
EP3960341A1 (en) Cutting tool
KR20190142359A (en) Sheath cutting tool
WO2016158717A1 (en) Coated cutting tool
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
WO2021085253A1 (en) Surface-coated cutting tool
JP4711177B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubricity coating layer
JP7415223B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance during heavy interrupted cutting.
JP2008284642A (en) Coated cutting tool
JP2005126736A (en) Hard film
JP5309733B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP7132548B2 (en) surface coated cutting tools
JP2022147327A (en) Surface coating cutting tool
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
WO2021193445A1 (en) Surface-coated cutting tool
JP6959577B2 (en) Surface coating cutting tool
JP2022147325A (en) Surface coating cutting tool
JP2022147326A (en) Surface coating cutting tool
JP6959578B2 (en) Surface coating cutting tool
JP4844879B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP4535249B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting