JP2022114765A - 光学系、撮像装置、車載システムおよび移動装置 - Google Patents

光学系、撮像装置、車載システムおよび移動装置 Download PDF

Info

Publication number
JP2022114765A
JP2022114765A JP2021011188A JP2021011188A JP2022114765A JP 2022114765 A JP2022114765 A JP 2022114765A JP 2021011188 A JP2021011188 A JP 2021011188A JP 2021011188 A JP2021011188 A JP 2021011188A JP 2022114765 A JP2022114765 A JP 2022114765A
Authority
JP
Japan
Prior art keywords
lens
optical system
conjugate side
refractive power
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021011188A
Other languages
English (en)
Inventor
周一 黒川
Shuichi Kurokawa
真 高橋
Makoto Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2021011188A priority Critical patent/JP2022114765A/ja
Publication of JP2022114765A publication Critical patent/JP2022114765A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】十分な画角と中心画角領域での結像倍率とを有し、小型の撮像装置を構成することができる光学系を提供する。【解決手段】光学系100Aは、拡大共役側から縮小共役側へ順に配置された、複数のレンズを有する前群101Aと、開口絞りSTと、複数のレンズを有する後群102Aからなる。前群は、拡大共役側から縮小共役側へ順に配置された、負の屈折力の第1レンズL1と、正の屈折力の第2レンズL2と、負の屈折力の第3レンズL3と、正の屈折力の第4レンズL4とを有する。【選択図】図1

Description

本発明は、車載カメラ等に撮像装置に好適な光学系に関する。
車載カメラは、車両の周辺の画像データを取得して他車両や障害物等の視認に利用されている。主として遠後方の他車両の視認に用いられるバックミラーに代えて用いられる車載カメラには、歪曲収差が補正された、y=f×tanθに近い射影特性を有する光学系が適している。一方、主として車両近くの広範囲を監視するために用いられる車載カメラには、y=f×θ(等距離射影)、y=2f×sin(θ/2)(等立体角射影)またはy=f×sinθ(正射影)の魚眼レンズが適している。ただし、これらの射影特性の魚眼レンズは結像倍率が低く、バックミラーの代わりとして用いることは難しい。このため、魚眼レンズと同等の広い画角を有し、かつ中心画角領域での結像倍率が大きい光学系が求められている。
特許文献1には、正射影方式よりも中心画角領域での結像倍率が大きい射影特性を有する中心窩レンズと称される光学系が開示されている。また特許文献2には、最大画角が不十分な特許文献1の光学系に比べて、より大きな最大画角(半画角90°)を有する中心窩レンズとしての光学系が開示されている。
特開2004-354572号公報 特開2007-155976号公報
しかしながら、特許文献2の光学系の広画角化に伴って、画像データを取得するための撮像素子のサイズが大きくなり、カメラが大型化する。
本発明は、十分な画角と中心画角領域での結像倍率とを有し、小型の撮像装置を構成することができるようにした光学系等を提供する。
本発明の一側面としての光学系は、拡大共役側から縮小共役側へ順に配置された、複数のレンズを有する前群と、開口絞りと、複数のレンズを有する後群からなる。前群は、拡大共役側から縮小共役側へ順に配置された、負の屈折力の第1レンズと、正の屈折力の第2レンズと、負の屈折力の第3レンズと、正の屈折力の第4レンズからなることを特徴とする。なお、上記光学系を用いた撮像装置や、該撮像装置を用いた車載システムや移動装置も、本発明の他の一側面を構成する。
本発明によれば、十分な画角と中心画角領域での結像倍率とを有し、小型の撮像装置を構成可能な光学系を実現することができる。
実施例1の光学系の断面図。 実施例1の光学系の射影特性を示す図。 実施例1の光学系の非球面の曲率を示す図。 実施例1の光学系の収差図。 実施例2の光学系の断面図。 実施例2の光学系の射影特性を示す図。 実施例2の光学系の非球面の曲率を示す図。 実施例2の光学系の収差図。 実施例3の光学系の断面図。 実施例3の光学系の射影特性を示す図。 実施例3の光学系の非球面の曲率を示す図。 実施例3の光学系の収差図。 各実施例の光学系を用いた車載システムのブロック図。 車載システムを搭載した車両の要部概略図。 車載システムの動作例を示すフローチャート。
以下、本発明の実施例について図面を参照しながら説明する。
図1、図5および図9はそれぞれ、実施例1、2および3の光学系100(A、B、C)を示している。各実施例の光学系100は、デジタルスチルカメラ、デジタルビデオカメラ、車載カメラ、携帯電話用カメラ、監視カメラ、ウェアラブルカメラ、医療用カメラ等の撮像装置に好適なものである。各図において、左側が拡大共役側(物体側)であり、右側が縮小共役側(像側)である。各実施例の光学系100は、拡大共役側に位置する不図示の物体からの光束を集光させて縮小共役側の像面300に物体像を形成する結像(撮像)光学系である。像面には、CCDセンサやCMOSセンサ等の撮像素子の撮像面(受光面)が配置される。ただし、各実施例の光学系は、縮小共役側に配置された液晶パネル等の空間光変調素子からの光束を拡大共役側に配置されたスクリーン等の被投射面に投射するプロジェクタの投射光学系として使用することもできる。以下の説明では、光学系が、車載カメラの撮像光学系として用いられる場合について説明する。
各実施例の光学系100は、拡大共役側から縮小共役側へ順に配置された、複数のレンズを有する前群101(A~C)と、開口絞りSTと、複数のレンズを有する後群102(A~C)とにより構成されている。光学系100と像面300との間には、IRカットフィルタ201とカバーガラス202が配置されている。また、必要に応じてローパスフィルタ等を追加で配置してもよい、IRカットフィルタ201等を省略してもよい。
また、前群101と開口絞りSTとの間および開口絞りSTと後群102との間にそれぞれ、軸外光束を制限するための絞りを配置してもよい。
図1に示す実施例1の光学系100Aにおいて、前群101Aは、4つのレンズL1、L2、L3、L4により構成されている。また、後群102Aも、4つのレンズL5、L6、L7、L8により構成されている。
前群101A(光学系100A)における最も拡大共役側のレンズ(第1レンズ)L1は、その拡大共役側と縮小共役側の両面が非球面で構成された非球面レンズ(第1の非球面レンズ)であり、近軸屈折力(近軸パワー)は負である。
前群101Aにおける拡大共役側から2番目のレンズ(第2レンズ)L2は、その両面が非球面で構成された非球面レンズ(第2の非球面レンズ)であり、近軸屈折力は正である。
前群101Aにおける拡大共役側から3番目と4番目のレンズ(第3レンズ、第4レンズ)L3、L4はいずれも球面レンズであり、それぞれの屈折力は負と正である。
後群102Aにおける最も拡大共役側、拡大共役側から2番目および3番目のレンズ(第5レンズ、第6レンズ、第7レンズ)L5、L6、L7はいずれも球面レンズであり、それぞれの屈折力は負、正、負である。
後群102A(光学系100A)における最も縮小共役側のレンズ(最終レンズ)L8は、その両面が非球面で構成された非球面レンズ(第3の非球面レンズ)であり、近軸屈折力は正である。
本実施例の光学系100Aは、接合レンズを含まず、すべて単レンズにより構成されている。車載カメラは夏場に直射日光が当たる高温(例えば70℃以上の)環境に置かれ、冬場に氷点下の低温環境に置かれる可能性があり、接合レンズでは接合されたレンズ材料間の線膨張係数の差により剥がれが生じるおそれがあるため、単レンズのみを使用している。
表1は、本実施例の光学系100Aの数値例を示している。(A)はレンズ構成を示しており、fは近軸焦点距離(以下、単に焦点距離ともいう)(mm)、FnoはFナンバーを示している。θmaxは最大半画角(°)を示している。また、拡大共役側から順に第i面の近軸曲率半径r(mm)、第i面と第(i+1)面との間隔d(mm)、各光学部材のd線に対する屈折率nとd線を基準とするアッベ数νを示している。
アッベ数νは、フラウンホーファ線のd線(587.6nm)、F線(486.1nm)、C線(656.3nm)における屈折率をNd、NF、NCとするとき、
ν=(Nd-1)/(NF-NC)で表される。
STは開口絞りの位置を示している。左側に*が付されたる面は、以下の式(1)により表現される非球面形状を有する。hは光軸から径方向での座標、zは光軸方向での座標(サグ量)、rは近軸曲率半径、kは円錐定数である。zの符号は、拡大共役側から縮小共役側へ向かう方向が正である。
Figure 2022114765000002
(B)に各非球面の円錐定数kと非球面係数B4、B6、B8、B10、B12、B14、B16を示す。「E±x」は、「10±x」を意味する。特に表記していない非球面係数については全て0である。上述した数値例に関する説明は、後述する他の実施例においても同じである。
本実施例の光学系100Aは、光軸と最軸外主光線とがなす角度、すなわち最大半画角θmaxがπ/2(=90°)の光学系であり、魚眼レンズと同等の最大半画角を有する。しかも本実施例の光学系100Aは、魚眼レンズに比べて、中心付近の画角領域(以下、中心画角領域という)の結像倍率が大きい光学系である。
図2(A)、(B)はそれぞれ、本実施例の光学系100Aの射影特性と解像度特性を示している。なお、図2(A)、(B)では、画角の単位として、°(deg)を用いている。
図2(A)に示す射影特性y(θ)は、半画角(光軸と入射光線とがなす角度)θと像面300上での結像高さ(像高)yとの関係を表している。また、図2(B)は、半画角θにおける微小画角変化に対する結像高さyの変化量、すなわち射影特性y(θ)の半画角θでの微分値dy(θ)/dθを表している。微分値dy(θ)/dθは、結像高さyにおける局所的な解像度に相当し、その値が大きいほど局所的な解像度が高いことを示す。また、局所的な解像度が高いことは、局所的な結像倍率が大きいことを示す。以下の説明における解像度は、この局所的な解像度を意味する。本実施例の光学系100Aは、一般的な魚眼レンズの射影方式のうち中心画角領域の解像度(以下、中心解像度という)が高い正射影方式(y(θ)=f×sinθ)のものよりも、さらに高い中心解像度を有する。
ここで、魚眼レンズと同等の広画角を得るためには、最大半画角θmaxが、以下の条件式(2)を満足することが好ましい。なお、条件式(2)では、画角の単位としてラジアンを用いている。
Figure 2022114765000003
また、以下の条件式(2)′、(2)″を満足すると、より魚眼レンズに近い広画角を得ることができる。
Figure 2022114765000004
Figure 2022114765000005
本実施例の光学系100Aは、中心解像度の低下を防ぐために、低画角領域において光学歪曲を抑制するように、通常の撮像用の光学系の射影特性(y=f×tanθ)に近い特性を有する。図2(B)から分かるように、低画角領域においては光軸上(画角0)の解像度よりも高い解像度が得られるようになっている。
また、低画角領域において光学歪曲が抑制されることで撮像画像の中心付近の歪みが小さくなるため、先行車や後続車両といった他車両等の検出精度を向上させることができる。しかも、バックミラーの代わりに低画角領域の撮像画像をモニターに映す場合には、目視による自然な遠近感が得られるとともに、電子的な歪曲補正を行う必要をなくしたり補正量を小さくしたりすることができ、画質の劣化を抑えて良好な視認性を得ることができる。
本実施例の光学系100Aでは、低画角領域では光軸上から画角の増加に伴って解像度が増加していき、高画角領域では画角の増加に伴って解像度が低下していく。このため、図2(B)に示すように、低画角領域と高画角領域との境界である半画角θa(0.262rad)において解像度が極大値を有する。また本実施例の光学系100Aでは、実際の解像度が平均解像度(y(θmax)/θmax)と等しくなる半画角θb(0.664rad)が最大半画角の1/2近傍になる。これにより、低画角領域の解像度と高画角領域の解像度のバランスを良くし、魚眼レンズと同等の広画角を得ながら、低画角領域での高い解像度と良好な光学性能を得ることができる。
一般的な魚眼レンズの射影方式のうち中心解像度が高い正射影方式では、本実施例と同じ最大半画角θmaxがπ/2である場合には、最周辺画角(最大半画角θmax)での解像度が0になる。しかし、車両の周辺の監視に使用される車載カメラにおいて最周辺画角の解像度が0では好ましくない。これに対して、本実施例の光学系100Aは、最大半画角θmaxがπ/2であるときの最周辺画角においても解像度が0とならず、一定以上の解像度を確保できるように構成されている。
また、中心解像度を高くするためには、光学系100Aの焦点距離fを長くする必要があるが、光学系100の焦点距離fを長くし過ぎると、良好な光学性能を維持しつつ魚眼レンズと同等の広画角を得ることが困難となる。高い中心解像度と魚眼レンズと同等の広画角とを両立するためには、前群101のうち最も拡大共役側のレンズL1の近軸屈折力を負とし、レンズL1の縮小共役側に隣接するレンズL2の近軸屈折力を正とするのが望ましい。
レンズL1の近軸屈折力を正とする方が光学系100の焦点距離fを長くするためには有利であるが、良好な光学性能を維持しつつ、魚眼レンズと同等の広画角を得ることが難しくなる。一方、レンズL1とレンズL2の近軸屈折力を共に負とする方が魚眼レンズと同等の広画角を得るためには有利であるが、良好な光学性能を維持しつつ高い中心解像度を得ることが難しくなる。したがって、高い中心解像度と魚眼レンズと同等の広画角を両立しつつ良好な光学性能を得るためには、本実施例のようにレンズL1の近軸屈折力を負とし、レンズL2の近軸屈折力を正とするのが望ましい。
また、良好な光学性能を得るために、前群101Aのうち最も縮小共役側のレンズL4の屈折力は正であることが望ましい。高画角領域では、レンズL1で大きく光束が曲げられた際にコマ収差が発生する。前述したようにレンズL1とレンズL2は近軸屈折力の符号が逆であるので、レンズL1で発生したコマ収差をレンズL2で補正する。このとき、レンズL2では補正しきれないコマ収差を、正の屈折力のレンズL4によって良好に補正することができる。さらに、レンズL4を縮小共役側に凸面を向けた形状のレンズとすることで、コマ収差に対する補正効果をより高めることができる。
また、レンズL4の拡大共役側のレンズL3の屈折力は負であることが望ましい。これにより、レンズL4に入射する光束の径を拡大して、コマ収差の補正効果をより高めることができる。
また、像面湾曲等の軸外収差をより良好に補正するには、本実施例のように、レンズL1とレンズL2を拡大共役側に凸面を向けたメニスカス形状のレンズとすることが好ましい。また、軸外収差をより良好に補正するために、レンズL1を非球面レンズとすることが効果的である。さらに、レンズL2を非球面レンズとすることも、軸外収差をより良好に補正するために効果的である。
図3は、レンズL1の非球面(1面、2面)とレンズL2の非球面(3面、4面)の径方向位置ごとの曲率を示す。各図において破線円で囲まれた箇所は、曲率の正負が反転する変曲点(径方向位置なので光軸を中心とした円)を示している。
前述したように本実施例の光学系100Aは、低画角領域においては光学歪曲を抑制して通常の撮像用の光学系の射影特性(y=f×tanθ)に近い射影特性を持つ。この場合、レンズL1、L2のそれぞれにおいて、少なくとも1つの非球面が変曲点を有することで、低画角領域での射影特性をf×tanθにより近づけて光学歪曲を抑制し易くなるため、好ましい。
さらにこれらの非球面の少なくとも1つ(例えば1面と2面)が変曲点を複数有するようにすると、最大半画角θmaxにおける解像度を高くし易くなるため、より好ましい。
レンズL1の焦点距離をf、レンズL2の焦点距離をfとするとき、以下の条件式(3)を満足することが好ましい。
Figure 2022114765000006
レンズL1とレンズL2の屈折力の正負が逆であるため、レンズL1で発生した球面収差、コマ収差および非点収差をレンズL2で補正することができる。条件式(3)の値が下限を下回ると、光束径が大きいレンズL2の方が屈折力の絶対値が大きくなり、特に球面収差が補正過剰となるため、好ましくない。また、条件式(3)の値が上限を上回ると、レンズL2の屈折力が小さくなって各収差が補正不足となるため、好ましくない。
なお、条件式(3)の数値範囲を以下のようにするとより好ましい。
Figure 2022114765000007
また、条件式(3)の数値範囲を以下のようにするとさらに好ましい。
Figure 2022114765000008
また、レンズL3の焦点距離をf、レンズL4の焦点距離をfとするとき、以下の条件式(4)を満足することが好ましい。
Figure 2022114765000009
条件式(4)の値が下限を下回ると、レンズL3による光束径の拡大効果に対してレンズL4の屈折力が強くなりすぎて、コマ収差が補正過剰となるため、好ましくない。また、条件式(4)の値が上限を上回ると、レンズL3による光束径の拡大効果に対してレンズL4の屈折力が小さくなりすぎてコマ収差が補正不足となるため、好ましくない。
なお、条件式(4)の数値範囲を以下のようにするとより好ましい。
Figure 2022114765000010
また、条件式(4)の数値範囲を以下のようにするとさらに好ましい。
Figure 2022114765000011
また、レンズL1のd線に対する屈折率nは、以下の条件式(5)を満足することが好ましい。
Figure 2022114765000012
レンズL1は、その拡大共役側の面が凸面であるメニスカス形状を有するため、条件式(5)を満足しないようにレンズL1の屈折率が低いと、メニスカス形状のサグ量や非球面量の増加に繋がって加工難易度が上がるため、好ましくない。また、光路長の短縮や光学系の小径化といった小型化の観点からも好ましくない。
また、レンズL2のd線に対する屈折率nは、以下の条件式(6)を満足することが好ましい。
Figure 2022114765000013
前述したように、レンズL1の近軸屈折力は負で、レンズL2の近軸屈折力は正である。したがって、ペッツバール和を低減するうえで、レンズL2の屈折率nは、レンズL1の屈折率nよりも大きいことが好ましい。
また、中心解像度を高めつつ魚眼レンズと同等の画角を得るために、前群101Aの(近軸)焦点距離faは、以下の条件式(7)を満足することが好ましい。
Figure 2022114765000014
条件式(7)の値が上限を超えると、正射影方式の魚眼レンズよりも中心解像度が低くなったり、魚眼レンズと同等の広画角を得ること又は魚眼レンズと同等の広画角を得られても高画角領域で良好な光学性能を維持することが難しくなったりするため、好ましくない。
なお、条件式(7)の数値範囲を以下のようにするとより好ましい。
Figure 2022114765000015
また、条件式(7)の数値範囲を以下のようにするとさらに好ましい。
Figure 2022114765000016
また、後群102のうち最も縮小共役側のレンズL8の屈折力は正であることが好ましい。レンズL8は軸外光線高さが大きい最も縮小共役側のレンズであるので、レンズL8の屈折力が正であることで、高画角領域における像面300に対する光線の入射角を小さくすることができる。この結果、良好な光学性能と高い中心解像度を有しつつ、魚眼レンズと同等の広画角を得易くすることができる。
また、レンズL8を非球面レンズとすることは、像面湾曲等の軸外収差をより良好に補正する上で効果的であるため、好ましい。ただし、レンズL8を非球面レンズとする場合には、高画角領域における像面300に対する光線の入射角を小さくする効果を維持するために、周辺部においても正の屈折力を有するような非球面レンズとすることが必要である。
また、後群102Aにおいて、レンズL8よりも拡大共役側に配置されたレンズL6とレンズL7はそれぞれ、正と負の屈折力を有することが好ましい。像面300上に物体像を形成する光学系100Aの全長を短縮して光学系100Aを小型化するためには、後群102A全体としての焦点距離が正となる必要がある。このため、後群102Aに屈折力が正のレンズが必要であるが、後群102Aを構成するすべてのレンズの屈折力が正であると、例えば後群102Aを構成するすべてのレンズで発生する球面収差が加算される。また、コマ収差等の軸外収差については、レンズL8の屈折力が正であるときには、屈折力が負のレンズを軸外光線高さが大きい位置に配置する方が軸外収差の補正上、効果的である。したがって、拡大共役側のレンズL6の屈折力を正とし、縮小共役側のレンズL7の屈折力を負とすることが好ましい。
レンズL6の焦点距離をf6、レンズL7の焦点距離をfとするとき、以下の条件式(8)を満足することが好ましい。
Figure 2022114765000017
条件式(8)の値が下限を下回ると、レンズL7の屈折力の絶対値が小さくなって球面収差やコマ収差が補正不足となるため、好ましくない。また、条件式(8)の値が上限を上回ると、レンズL7の屈折力の絶対値が大きくなって球面収差やコマ収差が補正過剰となるため、好ましくない。
なお、条件式(8)の数値範囲を以下のようにするとより好ましい。
Figure 2022114765000018
また、条件式(8)の数値範囲を以下のようにするとさらに好ましい。
Figure 2022114765000019
また、レンズL5については、前群102Aの焦点距離faの符号に応じて、屈折力を決めることが好ましい。本実施例では、前群102Aの焦点距離が正であるので、レンズL5の屈折力は反対に負としている。これにより、前群102Aの残存球面収差をレンズL5で補正することができ、より良好な光学性能を得易くなる。
レンズL5の焦点距離をfとするとき、以下の条件式(9)を満足することが好ましい。
Figure 2022114765000020
条件式(9)の値が下限を下回ると、レンズL5の屈折力の絶対値が大きくなって球面収差が過剰補正となるため、好ましくない。また、条件式(9)の上限は、前群101Aの焦点距離faとレンズL5の焦点距離fとが異符号であることを表している。
なお、条件式(9)の数値範囲を以下のようにするとより好ましい。
Figure 2022114765000021
また、条件式(9)の数値範囲を以下のようにするとさらに好ましい。
Figure 2022114765000022
また、前述したように、レンズL8は高画角領域における像面300に対する光線の入射角を小さくする効果を有する。そこで、開口絞りSTからレンズL8の縮小共役側の面までの光軸上の距離をD、光学系100Aの全長(レンズL1の拡大共役側の面からレンズL8の縮小共役側の面までの光軸上の距離)をLとするとき、以下の条件式(10)を満足することが好ましい。
Figure 2022114765000023
この条件式(10)を満足することで、光学系100Aの径方向において小型化しつつ、レンズL8における軸外光線高さを大きくできるため、好ましい。条件式(10)の値が上限を上回ると、開口絞りSTが拡大共役側に位置するためにレンズL8における軸外光線高さは大きくし易いが、レンズL8の径が大きくなるため、好ましくない。条件式(10)の値が下限を下回ると、開口絞りSTが縮小共役側に位置するためにレンズL8における軸外光線高さが大きくし難く、またレンズL1の径が大きくなるため、好ましくない。
なお、条件式(10)の数値範囲を以下のようにするとより好ましい。
Figure 2022114765000024
また、開口絞りSTが式(10)を満足する位置に配置される場合には、前群101Aと後群102Aのそれぞれを構成するレンズの数が互いに等しいことが好ましい。開口絞りSTが光学系100Aの光軸方向における中心近傍に配置した上で前群101Aと後群102Aのそれぞれを構成するレンズの数が互いに等しいと、前群101と後群102のそれぞれの収差補正上の分担割合を同程度に近づけられるため、良好な光学性能を得易くなる。
この際、前群101Aに含まれる負の屈折力のレンズの数をNa、後群102Aに含まれる負の屈折力のレンズの数をNbとするとき、以下の条件式(11)を満足することが好ましい。
Na≧Nb (11)
高い中心解像度と魚眼レンズと同等の広画角を両立しつつ良好な光学性能をより得易くするためには、前群101Aにおける負の屈折力のレンズの数と正の屈折力のレンズの数とが互いに等しいことが好ましい。また、前群101Aの焦点距離が正である場合には、後群102Aにおける負の屈折力のレンズの数と正の屈折力のレンズの数とが互いに等しいことが好ましい。一方、前群101Aの焦点距離が負である場合には、後群102Aにおける正の屈折力のレンズの数が負の屈折力のレンズの数より多い方が好ましい。したがって、前群101Aに含まれる負の屈折力のレンズの数Naは、後群102Aに含まれる負の屈折力のレンズの数Nb以上であることが好ましい。
図4は、本実施例の光学系100Aの縦収差(球面収差、非点収差、歪曲および倍率色収差)を示す。球面収差図において、FnoはFナンバーを示し、実線はd線(波長587.6nm)に対する球面収差を、二点鎖線はC線(波長656.3nm)に対する球面収差を、一点鎖線はF線(486.1nm)の球面収差をそれぞれ示している。非点収差図において、実線Sはサジタル像面を、破線Mはメリディオナル像面を示している。非点収差図において、サジタル像面とメリディオナル像面の差が非点収差であり、個々のうねりが像面湾曲を示す。歪曲収差はd線に対するものを示している。色収差図はC線とF線における倍率色収差を示している。ωは半画角(°)である。球面収差図と非点収差図の横軸は±0.2mm、歪曲収差図の横軸は±100%、色収差図の横軸は±0.01mmである。これらの収差図の説明は、後述する他の実施例でも同じである。
図4から分かるように、本実施例の光学系100Aでは、球面収差、像面湾曲、非点収差および倍率色収差が良好に補正されている。一方、歪曲については、低画角領域では小さく、高画角領域では結像高さが高くなるほど大きくなっており、低画角領域では高解像度を確保するためにy=f×tanθに近い特性となっている。
表2は、本実施例(数値例)におけるパラメータの値と、上述した各条件式の値をまとめて示している。表2から分かるように、本実施例の光学系100Aはいずれの条件式も満足している。このため、本実施例の光学系100Aは、高い中心解像度と魚眼レンズと同等の広画角を有しつつ、良好な光学性能を有する。
図5に示す実施例2の光学系100Bの基本的構成は、実施例1の光学系100Aと同じであり、実施例1の光学系100Aの構成要素に対応する構成要素には同一符号を付している。
前群101Bは、4つのレンズL1~L4により構成されている。レンズL1は、両面が非球面で構成された非球面レンズ(第1の非球面レンズ)であり、近軸屈折力は負である。レンズL2は、両面が非球面で構成された非球面レンズ(第2の非球面レンズ)であり、近軸屈折力は正である。レンズL3、L4は球面レンズであり、それぞれの屈折力は負と正である。
後群102Bは、4つのレンズL5~L8により構成されている。レンズL5、L6、L7は球面レンズであり、それぞれの屈折力は正、正および負である。レンズL5の屈折力の符号が実施例1と異なるのは、本実施例における前群101Aの焦点距離faの符号が実施例1と逆だからである。
レンズL8は、両面が非球面で構成された非球面レンズ(第3の非球面レンズ)であり、近軸屈折力は正である。また、レンズL8は、実施例1と同様に、周辺部においても正の屈折力を有する。
本実施例の光学系100Bは、接合レンズを含まず、すべて単レンズにより構成されている。
表3は、本実施例の光学系100Bの数値例を示している。本実施例の光学系100Bは、最大半画角θmaxがπ/2の光学系であり、魚眼レンズと同等の最大半画角を有する。
図6(A)、(B)はそれぞれ、本実施例の光学系100Bの射影特性と解像度特性を示している。これらの図から分かるように、本実施例の光学系100Bは、魚眼レンズと同等の広画角を有しながら、魚眼レンズよりも中心解像度が高い光学系となっている。
また、図6(B)から分かるように、本実施例の光学系100Bでは、低画角領域においては光軸上(画角0)の解像度よりも高い解像度が得られ、高画角領域では画角の増加に伴って解像度が低下している。このため、画角の増加に伴って解像度が増加する低画角領域と解像度が低下する高画角領域との境にある半画角θa(0.305rad)において解像度が極大値を有する。
また、本実施例では、実際の解像度が平均解像度(y(θmax)/θmax)と等しくなる半画角θb(0.722rad)が、最大半画角θmaxの1/2近傍になっている。さらに、本実施例では、最大半画角θmaxがπ/2である最周辺画角においても解像度が0とならずに一定以上の解像度を確保できるように構成されている。
図7は、レンズL1の非球面(1面、2面)とレンズL2の非球面(3面、4面)の径方向位置ごとの曲率を示す。本実施例では、1面、2面および3面が変曲点を有し、2面と3面が変曲点を2つ有する。実施例1とは変曲点を2つ有する面が異なるが、得られる効果は同様である。
図8は、本実施例の光学系100Bの縦収差を示す。この図から分かるように、本実施例の光学系100Bでは、球面収差、像面湾曲、非点収差および倍率色収差が良好に補正されている。一方、歪曲については、低画角領域では小さく、高画角領域では結像高さが高くなるほど大きくなっており、低画角領域では高解像度を確保するためにy=f×tanθに近い特性となっている。
表4は、本実施例(数値例)におけるパラメータと、上述した各条件式の値をまとめて示している。表4から分かるように、本実施例の光学系100Bはいずれの条件式も満足している。このため、本実施例の光学系100Bは、高い中心解像度と魚眼レンズと同等の広画角を有しつつ、良好な光学性能を有する。
図9に示す実施例3の光学系100Cの基本的構成は、実施例1の光学系100Aと同じであり、実施例1の光学系100Aの構成要素に対応する構成要素には同一符号を付している。
前群101Cは、4つのレンズL1~L4により構成されている。レンズL1は、両面が非球面で構成された非球面レンズ(第1の非球面レンズ)であり、近軸屈折力は負である。レンズL2は、両面が非球面で構成された非球面レンズ(第2の非球面レンズ)であり、近軸屈折力は正である。レンズL3、L4は球面レンズであり、それぞれの屈折力は負と正である。
後群102Cは、4つのレンズL5~L8により構成されている。レンズL5、L6、L7は球面レンズであり、それぞれの屈折力は実施例1と同様に負、正および負である。レンズL8は、両面が非球面で構成された非球面レンズ(第3の非球面レンズ)であり、近軸屈折力は正である。また、レンズL8は、実施例1と同様に、周辺部においても正の屈折力を有する。
本実施例の光学系100Cは、接合レンズを含まず、すべて単レンズにより構成されている。
表5は、本実施例の光学系100Cの数値例を示している。本実施例の光学系100Cは、最大半画角θmaxがπ/2の光学系であり、魚眼レンズと同等の最大半画角を有する。
図10(A)、(B)はそれぞれ、本実施例の光学系100Cの射影特性と解像度特性を示している。これらの図から分かるように、本実施例の光学系100Cは、魚眼レンズと同等の広画角を有しながら、魚眼レンズよりも中心解像度が高い光学系となっている。
ただし、図10(B)から分かるように、本実施例の光学系100Cでは、他の実施例に比べて低画角領域における歪曲をある程度許容しており、解像度は低画角領域では軸上と同等で高画角領域において画角の増加に伴って低下していく。このため、解像度は極大値を有さない。このような特性を有する本実施例の光学系100Cは、高解像度が必要な低画角領域が狭い場合や、バックミラーのような目視用途ではなくシステムによる監視用途にのみ使用される場合に好適である。
本実施例において、実際の解像度が平均解像度(y(θmax)/θmax)と等しくなる半画角θb(0.694rad)が最大半画角θmaxの1/2近傍になっている点は、他の実施例と同様である。また、最大半画角θmaxがπ/2である最周辺画角において解像度が0とならず、一定以上の解像度を確保できるように構成されている点も他の実施例と同様である。
図11は、レンズL1の非球面(1面、2面)とレンズL2の非球面(3面、4面)の径方向位置ごとの曲率を示す。本実施例では、1面、2面および3面が変曲点を有しており、1面と2面は変曲点を2つ有し、3面は変曲点を3つ有する。
図12は、本実施例の光学系100Cの縦収差を示す。この図から分かるように、本実施例の光学系100Cでは、球面収差、非点収差および倍率色収差が良好に補正されている。一方、歪曲については、低画角領域では小さく、高画角領域では結像高さが高くなるほど大きくなっているが、他の実施例よりも高解像度である低画角範囲は狭くなっている。
表6は、本実施例(数値例)におけるパラメータと、上述した各条件式の値をまとめて示している。表6から分かるように、本実施例の光学系100Cはいずれの条件式も満足している。このため、本実施例の光学系100Cは、高い中心解像度と魚眼レンズと同等の広画角を有しつつ、良好な光学性能を有する。
Figure 2022114765000025
Figure 2022114765000026

Figure 2022114765000027
Figure 2022114765000028

Figure 2022114765000029
Figure 2022114765000030

図13は、上述した各実施例の光学系を撮像光学系として用いた車載カメラ10とこれを備えた車載システム(運転支援装置)600の構成を示している。車載システム600は、自動車(車両)等の移動可能な移動体(移動装置)により保持され、車載カメラ10により取得した車両の周囲の画像情報に基づいて車両の運転(操縦)を支援するためのシステムである。
図14は、車載システム600を備えた移動装置としての車両700を示している。図14においては、車載カメラ10の撮像範囲50を車両700の前方に設定した場合を示しているが、撮像範囲50を車両700の後方や側方などに設定してもよい。
図14に示すように、車載システム600は、車載カメラ10と、車両情報取得装置20と、制御装置(制御部、ECU:エレクトロニックコントロールユニット)30と、警告装置(警告部)40とを備える。また、車載カメラ10は、撮像部1と、画像処理部2と、視差算出部3と、距離取得部(取得部)4と、衝突判定部5とを備えている。画像処理部2、視差算出部3、距離取得部4、及び衝突判定部5で、処理部が構成されている。撮像部1は、上述した各実施例の光学系と撮像素子とを有する。
図15のフローチャートは、車載システム600の動作例を示す。ステップS1では、撮像部1を用いて車両の周囲の障害物や歩行者などの対象物(被写体)を撮像し、複数の画像データ(視差画像データ)を取得する。
ステップS2では、車両情報取得装置20により車両情報の取得を行う。車両情報とは、車両の車速、ヨーレート、舵角などを含む情報である。
ステップS3では、撮像部1により取得された複数の画像データに対して、画像処理部2により画像処理を行う。具体的には、画像データにおけるエッジの量や方向、濃度値などの特徴量を解析する画像特徴解析を行う。ここで、画像特徴解析は、複数の画像データの夫々に対して行ってもよいし、複数の画像データのうち一部の画像データのみに対して行ってもよい。
ステップS4では、撮像部1により取得された複数の画像データ間の視差(像ずれ)情報を、視差算出部3によって算出する。視差情報の算出方法としては、SSDA法や面積相関法等の既知の方法を用いることができるため、ここでは説明を省略する。なお、ステップS2,S3,S4は、上記の順番に行われてもよいし、互いに並列して処理を行われてもよい。
ステップS5では、撮像部1により撮像した対象物との間隔情報を、距離取得部4によって取得(算出)する。距離情報は、視差算出部3により算出された視差情報と、撮像部1の内部パラメータおよび外部パラメータとに基づいて算出することができる。なお、ここでの距離情報とは、対象物との間隔、デフォーカス量、像ズレ量、などの対象物との相対位置に関する情報のことであり、画像内における対象物の距離値を直接的に表すものでも、距離値に対応する情報を間接的に表すものでもよい。
そして、ステップS6では、車両情報取得装置20により取得された車両情報や、距離取得部4により算出された距離情報を用いて、対象物までの距離が予め設定された設定距離の範囲内に含まれるか否かの判定を衝突判定部5によって行う。これにより、車両の周囲の設定距離内に対象物が存在するか否かを判定し、車両と対象物との衝突可能性を判定することができる。衝突判定部5は、設定距離内に対象物が存在する場合は「衝突可能性あり」と判定し(ステップS7)、設定距離内に対象物が存在しない場合は「衝突可能性なし」と判定する(ステップS8)。
次に、衝突判定部5は、「衝突可能性あり」と判定した場合、その判定結果を制御装置30や警告装置40に対して通知(送信)する。このとき、制御装置30は、衝突判定部5での判定結果に基づいて車両を制御し(ステップS6)、警告装置40は、衝突判定部5での判定結果に基づいて車両のユーザ(運転者、搭乗者)への警告を行う(ステップS7)。なお、判定結果の通知は、制御装置30及び警告装置40の少なくとも一方に対して行えばよい。
制御装置30は、車両の駆動部(エンジンやモータ等)に対して制御信号を出力することで、車両の移動を制御することができる。例えば、車両においてブレーキをかける、アクセルを戻す、ハンドルを切る、各輪に制動力を発生させる制御信号を生成してエンジンやモータの出力を抑制するなどの制御を行う。また、警告装置40は、ユーザに対して、例えば警告音(警報)を発する、カーナビゲーションシステムなどの画面に警告情報を表示する、シートベルトやステアリングに振動を与えるなどの警告を行う。
以上説明した車載システム600によれば、上記処理により、効果的に対象物の検知を行うことができ、車両と対象物との衝突を回避することが可能になる。特に、上述した各実施例の光学系を車載システム600に適用することで、車載カメラ10の全体を小型化して配置自由度を高めつつ、広画角にわたって対象物の検知および衝突判定を行うことが可能になる。
なお、距離情報の算出については、様々な方法を採り得るが、例として、撮像部1が有する撮像素子として、二次元アレイ状に規則的に配列された複数の画素部を有する瞳分割型の撮像素子を採用した場合について説明する。瞳分割型の撮像素子において、一つの画素部は、マイクロレンズと複数の光電変換部とから構成され、光学系の瞳における異なる領域を通過する一対の光束を受光し、対をなす画像データを各光電変換部から出力することができる。
そして、対をなす画像データ間の相関演算によって各領域の像ずれ量が算出され、距離取得部4により像ずれ量の分布を表す像ずれマップデータが算出される。あるいは、距離取得部4は、その像ずれ量をさらにデフォーカス量に換算し、デフォーカス量の分布(撮像画像の2次元平面上の分布)を表すデフォーカスマップデータを生成してもよい。また、距離取得部4は、デフォーカス量から変換される対象物との間隔の距離マップデータを取得してもよい。
また、車載システム600や移動装置700は、万が一移動装置700が障害物に衝突した場合に、その旨を車載システムの製造元(メーカー)や移動装置の販売元(ディーラー)などに通知するための通知装置(通知部)を備えていてもよい。例えば、通知装置としては、移動装置700と障害物との衝突に関する情報(衝突情報)を予め設定された外部の通知先に対して電子メールなどによって送信するもの採用することができる。
このように、通知装置によって衝突情報を自動通知する構成を採ることにより、衝突が生じた後に点検や修理などの対応を速やかに行うことができる。なお、衝突情報の通知先は、保険会社、医療機関、警察などや、ユーザが設定した任意のものであってもよい。また、衝突情報に限らず、各部の故障情報や消耗品の消耗情報を通知先に通知するように通知装置を構成してもよい。衝突の有無の検知については、上述した受光部2からの出力に基づいて取得された距離情報を用いて行ってもよいし、他の検知部(センサ)によって行ってもよい。
なお、車載システム600を運転支援(衝突被害軽減)に適用する場合について説明したが、これに限らず、車載システム600をクルーズコントロール(全車速追従機能付を含む)や自動運転などに適用してもよい。また、車載システム600は、自動車等の車両に限らず、例えば船舶や航空機、産業用ロボットなどの移動体に適用することができる。また、移動体に限らず、高度道路交通システム(ITS)等の物体認識を利用する種々の機器に適用することができる。
(その他の実施例)
以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。
100A~C 光学系
101A~C 前群
102A~C 後群
300 像面
ST 開口絞り

Claims (32)

  1. 拡大共役側から縮小共役側へ順に配置された、複数のレンズを有する前群と、開口絞りと、複数のレンズを有する後群からなる光学系であって、
    前記前群は、拡大共役側から縮小共役側へ順に配置された、負の屈折力の第1レンズと、正の屈折力の第2レンズと、負の屈折力の第3レンズと、正の屈折力の第4レンズとを有することを特徴とする光学系。
  2. 前記第1レンズおよび前記第2レンズは、拡大共役側に凸面を向けたメニスカス形状を有することを特徴とする請求項1に記載の光学系。
  3. 前記第1レンズの焦点距離をf、前記第2レンズの焦点距離をfとするとき、
    Figure 2022114765000031

    なる条件を満足することを特徴とする請求項1または2に記載の光学系。
  4. 前記第1レンズのd線に対する屈折率nと前記第2レンズのd線に対する屈折率nは、
    Figure 2022114765000032

    なる条件を満足することを特徴とする請求項1から3のいずれか一項に記載の光学系。
  5. 前記第1レンズは、非球面を有することを特徴とする請求項1から4のいずれか一項に記載の光学系。
  6. 前記第1レンズのd線に対する屈折率nは、
    Figure 2022114765000033

    なる条件を満足することを特徴とする請求項5に記載の光学系。
  7. 前記第2レンズは、非球面を有することを特徴とする請求項5または6に記載の光学系。
  8. 前記第1レンズと前記第2レンズはそれぞれ、変曲点を有する非球面を含むことを特徴とする請求項5から7のいずれか一項に記載の光学系。
  9. 前記第1の非球面レンズと前記第2の非球面レンズのうち少なくとも一方のレンズは、複数の変曲点を有する非球面を含むことを特徴とする請求項8に記載の光学系。
  10. 前記第4レンズは、縮小共役側に凸面を有することを特徴とする請求項1から9のいずれか一項に記載の光学系。
  11. 前記第3レンズの焦点距離をf、前記第4レンズの焦点距離をfとするとき、
    Figure 2022114765000034

    なる条件を満足することを特徴とする請求項1から10のいずれか一項に記載の光学系。
  12. 前記前群の焦点距離をfaとするとき、
    Figure 2022114765000035

    なる条件を満足することを特徴とする請求項1から11のいずれか一項に記載の光学系。
  13. 前記後群のうち最も拡大共役側のレンズの焦点距離は、前記前群の焦点距離と異符号であることを特徴とする請求項1から12のいずれか一項に記載の光学系。
  14. 前記後群のうち最も拡大共役側のレンズの焦点距離をfとするとき、
    Figure 2022114765000036

    なる条件を満足することを特徴とする請求項13に記載の光学系。
  15. 最も縮小共役側の最終レンズは、正の屈折力を有することを特徴とする請求項1から14のいずれか一項に記載の光学系。
  16. 前記最終レンズは、非球面を有し、近軸屈折力および周辺部での屈折力がともに正であることを特徴とする請求項15に記載の光学系。
  17. 前記開口絞りから最も縮小共役側の面までの光軸上の距離をD、最も拡大共役側の面から前記最も縮小共役側の面までの光軸上の距離をLとするとき、
    Figure 2022114765000037

    なる条件を満足することを特徴とする請求項1から16のいずれか一項に記載の光学系。
  18. 前記後群は、拡大共役側から縮小共役側へ順に配置された、負または正の屈折力の第5レンズと、正の屈折力の第6レンズと、負の屈折力の第7レンズと、前記最終レンズとを含むことを特徴とする請求項15から17のいずれか一項に記載の光学系。
  19. 前記第6レンズの焦点距離をf、前記第7レンズの焦点距離をfとするとき、
    Figure 2022114765000038

    なる条件を満足することを特徴とする請求項18に記載の光学系。
  20. 前記前群を構成するレンズの数と前記後群を構成するレンズの数とが互いに等しいことを特徴とする請求項1から19のいずれか一項に記載の光学系。
  21. 前記前群に含まれる負の屈折力のレンズの数をNa、前記後群に含まれる負の屈折力のレンズの数をNbとするとき、
    Na≧Nb
    なる条件を満足することを特徴とする請求項20に記載の光学系。
  22. 前記光学系の最大半画角をθmaxとするとき、
    Figure 2022114765000039

    なる条件を満足することを特徴とする請求項1から21のいずれか一項に記載の光学系。
  23. 請求項1から22のいずれか一項に記載の光学系と、
    該光学系を介して物体を撮像する撮像素子とを備えることを特徴とする撮像装置。
  24. 請求項23に記載の撮像装置と、
    該撮像装置により取得される前記物体の距離情報に基づいて、車両と前記物体との衝突可能性を判定する判定部とを備えることを特徴とする車載システム。
  25. 前記車両と前記物体との衝突可能性が有ると判定された場合に、前記車両の駆動部に制動力を発生させる制御信号を出力する制御装置を備えることを特徴とする請求項24に記載の車載システム。
  26. 前記車両と前記物体との衝突可能性が有ると判定された場合に、前記車両のユーザに対して警告を行う警告装置を備えることを特徴とする請求項24または25に記載の車載システム。
  27. 前記車両と前記物体との衝突に関する情報を外部に通知する通知装置を備えることを特徴とする請求項24から26のいずれか一項に記載の車載システム。
  28. 請求項23に記載の撮像装置を備え、該撮像装置を保持して移動可能であることを特徴とする移動装置。
  29. 前記撮像装置によって得られた前記物体の距離情報に基づいて前記物体との衝突可能性を判定する判定部を有することを特徴とする請求項28に記載の移動装置。
  30. 前記物体との衝突可能性が有ると判定された場合に、移動を制御する制御信号を出力する制御部を備えることを特徴とする請求項29に記載の移動装置。
  31. 前記物体との衝突可能性が有ると判定された場合に、前記移動装置のユーザに対して警告を行う警告部を備えることを特徴とする請求項29または30に記載の移動装置。
  32. 前記物体との衝突に関する情報を外部に通知する通知部を備えることを特徴とする請求項29から31のいずれか一項に記載の移動装置。
JP2021011188A 2021-01-27 2021-01-27 光学系、撮像装置、車載システムおよび移動装置 Pending JP2022114765A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021011188A JP2022114765A (ja) 2021-01-27 2021-01-27 光学系、撮像装置、車載システムおよび移動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021011188A JP2022114765A (ja) 2021-01-27 2021-01-27 光学系、撮像装置、車載システムおよび移動装置

Publications (1)

Publication Number Publication Date
JP2022114765A true JP2022114765A (ja) 2022-08-08

Family

ID=82743099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021011188A Pending JP2022114765A (ja) 2021-01-27 2021-01-27 光学系、撮像装置、車載システムおよび移動装置

Country Status (1)

Country Link
JP (1) JP2022114765A (ja)

Similar Documents

Publication Publication Date Title
JP6746328B2 (ja) 光学系、それを備える撮像装置及び投影装置
WO2017150486A1 (ja) 光学系、それを備える撮像装置及び投影装置
WO2017150493A1 (ja) 撮像装置及び投影装置
JP2023016888A (ja) 光学系、撮像装置、車載システムおよび移動装置
CN109307929B (zh) 带折射面和反射面的光学系统与图像拍摄装置和投影装置
US20240114248A1 (en) Image pickup system
US20240111134A1 (en) Optical system, image pickup apparatus, and image pickup system
JP2019101181A (ja) 撮像装置
EP4036625A1 (en) Optical system, image pickup apparatus, in-vehicle system, and moving apparatus
JP2022114765A (ja) 光学系、撮像装置、車載システムおよび移動装置
JP2019028127A (ja) 光学系、それを備える撮像装置及び投影装置
JP2021081663A (ja) 光学系及びそれを備える撮像装置
WO2017150492A1 (ja) 光学系、それを備える撮像装置及び投影装置
JP2018189747A (ja) 光学系、それを備える撮像装置及び投影装置
JP2019028128A (ja) 光学系、それを備える撮像装置及び投影装置
JP7379112B2 (ja) 光学系及びそれを備える撮像装置
US11927723B2 (en) Optical system, image pickup apparatus, in-vehicle system, and moving apparatus
US20220236533A1 (en) Optical system, image pickup apparatus, in-vehicle system, and moving apparatus
JP2019045722A (ja) 撮像装置、それを備える測距装置及び車載カメラシステム
US20230296881A1 (en) Optical system including cemented lenses, imaging apparatus including the same, and moving apparatus including the same
JP2023183790A (ja) 光学系、撮像装置、車載システム、および移動装置
JP2021081662A (ja) 光学系及びそれを備える撮像装置
JP2019045819A (ja) 光学系、それを備える撮像装置及び投影装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240124