JP2022110079A - 事前定義されたビューポイントルックアップテーブルを用いるサラウンドビューのための3次元レンダリング - Google Patents

事前定義されたビューポイントルックアップテーブルを用いるサラウンドビューのための3次元レンダリング Download PDF

Info

Publication number
JP2022110079A
JP2022110079A JP2022080086A JP2022080086A JP2022110079A JP 2022110079 A JP2022110079 A JP 2022110079A JP 2022080086 A JP2022080086 A JP 2022080086A JP 2022080086 A JP2022080086 A JP 2022080086A JP 2022110079 A JP2022110079 A JP 2022110079A
Authority
JP
Japan
Prior art keywords
vehicle
cameras
image
warp
warp map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022080086A
Other languages
English (en)
Other versions
JP7397262B2 (ja
Inventor
ヴィジャヤンバブ アッピア ヴィクラム
Vijayanbabu Appia Vikram
シヴァリンガッパ スジス
Shivalingappa Sujith
ラメシュブハル ジャダブ ブリジェシュ
Rameshbhal Jadav Brijesh
ハリヤニ ヘマント
Hariyani Hemant
ダブラル シャシャンク
Dabral Shashank
マングラ マヤンク
Mangla Mayank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of JP2022110079A publication Critical patent/JP2022110079A/ja
Application granted granted Critical
Publication of JP7397262B2 publication Critical patent/JP7397262B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/23Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
    • B60R1/27Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view providing all-round vision, e.g. using omnidirectional cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/28Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with an adjustable field of view
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/06Ray-tracing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • G06T15/205Image-based rendering
    • G06T3/18
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/10Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
    • B60R2300/105Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using multiple cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/20Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of display used
    • B60R2300/202Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of display used displaying a blind spot scene on the vehicle part responsible for the blind spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/306Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing using a re-scaling of images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/802Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for monitoring and displaying vehicle exterior blind spot views

Abstract

【課題】事前定義されたビューポイントルックアップテーブルを用いる3次元(3D)サラウンドビュー(3D SRV)システム及びサラウンドビューを単一表示スクリーン上に表示する方法を提供する。【解決手段】方法は、複数の画像フレーム711~714を対応する複数のカメラから受信し、事前定義された第1の仮想ビューポイントに対応するビューポイントワープマップを選択し706、ビューポイントワープマップは表示スクリーンにおける各出力ピクセル位置について複数の画像フレームにおけるソースピクセル位置を定義し、ワープマップをオフラインで事前定義704した後の使用のためにストアし、ビューポイントワープマップに従って、複数の画像フレームからの出力画像の各ピクセルについてピクセルデータを選択することによって、表示スクリーンのための出力画像を合成707し、合成した画像を表示スクリーン上に表示する710。【選択図】図7

Description

本願は、一般に、3次元(3D)サラウンドビュー(3D SRV)のための画像システムに関し、より具体的には、事前定義されたビューポイントルックアップテーブルを用いる3D SRVのレンダリングに関する。
人間の操作エラーを減らすために、先進運転支援システム(ADAS)と呼ばれる新しいクラスの埋め込み型安全システムが自動車に導入されてきている。こうしたシステムは、後方ビューカメラ、電子安定制御、及びビジョンベースの歩行者検出システムなどの機能を提供することができる。これらのシステムの多くは、コンピュータビジョン処理に依拠して、一つ又は複数のカメラの視野内のオブジェクトを検出する。例えば、2013年10月の「Making Cars Safer Through Technology Innovation」を参照のこと。
"Making Cars Safer Through Technology Innovation" Oct. 2013
自動車のサラウンドビューカメラシステムは、ドライバーが車両の360度周囲の全体ビューを見ることができるようにすることによって、ドライバーが車両を安全に駐車することを支援する、新進の自動車ADAS技術である。こうしたシステムは通常、車両周囲に搭載され、各々が異なる方向を向いた、4台から6台の広角(魚眼レンズ)カメラを含む。これらのカメラ入力から、車両の周囲の複合ビューが合成され、駐車の間、リアルタイムでドライバーに表示される。
サラウンドビューを単一ディスプレイスクリーン上に表示するための方法の説明する例において、特定時間についての複数の画像フレームが、対応する複数のカメラから受信され得る。事前定義された第1の仮想ビューポイントに対応するビューポイントワープマップ(viewpoint warp map)が選択され得る。ビューポイントワープマップは、表示スクリーンの各出力ピクセル位置について、複数の画像フレームにおけるソースピクセル位置を定義する。ワープマップは、オフラインで事前定義され、後の使用のためにストアされる。ビューポイントワープマップに従って、複数の画像フレームからの出力画像の各ピクセルについてピクセルデータを選択することによって、表示スクリーンのための出力画像が合成される。その後、合成された画像は表示スクリーン上に表示される。
2次元サラウンドビューを生成するためのプロセスを図示する図形フローチャートである。
サラウンドビューシステムにおいて用いるための例示の3次元(3D)ボウルメッシュ(bowl mesh)の例示である。
図2の3Dボウルメッシュの上に重ねられた例示のシーンを図示する。
図2の3Dボウルメッシュを用いて仮想ビューポイントのために生成される3Dサラウンドビュー(SRV)画像を図示する。
図4の3D SRV画像を形成するための光線追跡プロセスを図示する。
図5の光線追跡プロセスの一部がオフラインでどのように実施され得るかを図示する。
事前定義されたビューポイントルックアップテーブルを用いて3D SRVを形成するためのプロセスを示す図形フローチャートである。
図7のプロセスをより詳細に示すフローチャートである。
3D SRVシステムを備える例示の車両を示す図である。
3D SRVシステムの実施形態を示す例示のブロック図である。
様々な図における同様の要素は、整合性のために同様の参照番号によって示される。
ほとんどの視覚表示システムは2次元(2D)であるため、2Dディスプレイ上に投影することによる3次元(3D)ワールドの表現は、人間の可視化のためのレンダリンググラフィックスの重要な部分である。いくつかのアプリケーションは、様々な3Dグラフィックス能力のために設計された特殊なグラフィックコアであるグラフィックス処理ユニット(GPU)の助けを借りて、2Dディスプレイ上に3Dをレンダリングする。多くのこうした新進アプリケーションのうちの1つが、車に搭載される広角魚眼レンズカメラを用いる3Dサラウンドビューである。サラウンドビューカメラソリューションは、車の周囲に搭載される複数の魚眼レンズカメラから、複合3Dサラウンドビュー画像を作成し得る。様々なビューポイントからのリアルタイムの3Dワールド表現は、通常、グラフィックスプロセッサによって成される。
事前定義されたビューポイントルックアップテーブルを備える2Dワープハードウェアアクセラレータを用いて2Dディスプレイ上に3D表現をレンダリングするための代替手法を本明細書において説明する。この代替手法は、表面が滑らかに変化する3Dワールド表現に適している。オートモーティブ3Dサラウンドビューは、ワールドが滑らかな表面によって表されるようなアプリケーションの1つである。後述するように、この方法の例示の実施形態は3Dサラウンドビューカメラソリューションに適用され得る。しかしながら、この技法は、医療用イメージング、複数のカメラを備えるセキュリティシステム、及び工業応用例など、複数のビューポイントからの滑らかな表面レンダリングを用い得る任意のアプリケーションに適用され得る。
図1は、2Dサラウンドビューを生成するためのプロセスを図示する図形フローチャートである。2Dサラウンドビューを生成するためのプロセスを、より複雑なプロセスを説明する又は3Dサラウンドビューを生成する前に、簡単に説明する。2Dサラウンドビューは、車両の真上に位置し、真下を見下ろしているようなビューポイントから、複合画像を生成する。実質的には、車両近辺の仮想上面図が提供される。
オートモーティブサラウンドビューは、「アラウンドビュー」又は「サラウンドビジョン監視システム」とも呼ばれ、車両を囲むエリアの360度ビューをドライバーに提供する新進のオートモーティブADAS技術である。サラウンドビューシステムは、通常、車両周囲に搭載される4台から6台の魚眼カメラを含む。例えば、カメラセット100が、フロントバンパに1台、リヤバンパにもう一台、両側のミラーの下に1台ずつを備える。各カメラによって生成される画像は、各カメラからの画像データの一つ又は複数のフレームをストアするためのメモリ回路を含む、画像信号処理システム(ISP)102に提供され得る。各カメラによって捕捉される魚眼画像111~114は、概念的には、例えば、車両110の周囲に配置され得る。この例証において、スケールモデル車両(4台のカメラが搭載されている)が、駐車場を表すジオラマにおいて位置決めされる。
複数の魚眼レンズカメラからサラウンドビューを生成する一般的なプロセスは、例えば、2015年10月のVikram Appia等による「TIのTDAx SoCsに対するADASのためのサラウンドビューカメラシステム」に記載されており、この文献は、参照により本明細書に組み込まれる。基本的なサラウンドビューカメラソリューションは、通常、幾何学的アライメント及び複合ビュー合成という、2つの主要アルゴリズム構成要素を含む。幾何学的アライメントは、入力ビデオフレームについて魚眼歪みを補正し、それらを一般的な鳥瞰透視投影(birds-eye perspective)に変換する。合成アルゴリズムは、幾何学的補正の後に複合サラウンドビューを生成する。シームレスにスティッチングされた(stitched)サラウンドビュー出力を生成するために、「測光アライメント」と呼ばれる別の主要アルゴリズムが必要となり得る。測光アライメントは、シームレスなスティッチングを達成するために、近接するビュー間の明るさ及び色のミスマッチを補正する。測光補正は、米国特許出願公開番号US2015/0254825、発明の名称「サラウンドビューカメラソリューションによりディスプレイを処理するための方法、装置、及びシステム」に記載されており、これは、参照により本明細書に組み込まれる。
"Surround view camera system for ADAS on TI’s TDAx SoCs" Vikram Appia et al., October 2015 米国特許出願公開番号US2015/0254825
カメラシステムキャリブレーションは、サラウンドビューカメラシステムの重要な構成要素である。このステップは、魚眼レンズ歪み補正(LDC)及び透視投影変換(perspective transformation)の両方を含む。魚眼歪み補正の場合、放射状歪み関数の逆変換を適用することによって元の入力フレームから魚眼を除去するために、放射状歪みモデルが用いられ得る。LDCの後、すべての入力ビューが単一ワールド座標系において適切に記録されるように、4つの入力LDC補正済みフレームを変換するために、各カメラに1つの、4つの外因性キャリブレーションマトリックスが推定され得る。チャートベースのキャリブレーション手法が用いられ得る。チャートのコンテンツは、アルゴリズムが正確且つ確実に特徴を見つけてマッチングすることを促進するように設計される。特定のチャート設計の一つが、126、127に示されている。2015年10月30日出願の米国仮特許出願番号US62/249,031、発明の名称「オンライン・サラウンドビュー・キャリブレーションのための特徴点検出」に記載されているような他のチャートも用いられ得、当該出願は、参照により本明細書に組み込まれる。3D SRVキャリブレーションのこの例では、チャートは平坦な地面の上に置かれ得、これは、ほとんどの自動車に都合がよい。しかしながら、必要であれば、チャートは異なる方位で配置することも可能である。
米国仮特許出願番号US62/249,031
サラウンドビューカメラのキャリブレーションの間、4つのキャリブレーションチャートが車両周囲に置かれ得る。各チャートは2つの近接するカメラの共通の視野(FOV)内に置かれるべきであり、すなわち、隣接するカメラのどのペアも1つの共通チャートを「見る」はずである。(隣接するカメラにおいて1つの共通チャートを有することが理想的であるが、各カメラ画像における単一のチャートが最低要件である。)例えば、チャート画像127及び128は、2つの異なるカメラで撮られた同じチャートのビューである。その後、魚眼画像111~114によって示されるように、各カメラからのフレームが同時に捕捉される。
異なるシーン照明、カメラ自動露光(AE)、及び自動ホワイトバランス(AWB)に起因して、異なるカメラによって捕捉された同じオブジェクトの色及び明るさが全く異なる可能性がある。その結果、スティッチングされた複合画像は、2つの近接するビュー(すなわち、カメラ入力)間で顕著な測光差を有する可能性がある。サラウンドビューシステムのための測光アライメントの目標は、複合ビューが、あたかも車両の上方に置かれた単一カメラから撮影されたかのごとく見えるように、異なるビューの明るさ及び色全体を一致させることである。これを達成するため、各ビューについて全体的な色及び明るさ補正機能が、近接ビューの重複領域における不一致が最小化されるように設計される。
適切な幾何学的アライメントが既に入力フレームに適用されているものと想定すると、例えば、デジタル信号プロセッサ(DSP)130を用いて複合サラウンドビュー132が生成され得る。複合サラウンドビューは、カメラ100のセットからの4つの入力フレームすべてからのデータを用いる。重複領域は、同じ物理ワールドから生じるフレームの一部であるが、2つの近接カメラによって捕捉されており、すなわちO{m,n}であり、ここで、m=1、2、3、4、及びn=(m+1)mod4である。O{m,n}は、ビューmとビューnとの間の重複領域を指し、nは、時計回り順にビューmの隣のビューである。O{m,n}における各位置において、2つのピクセルが利用可能であり、この2つのピクセルは、ビューmからの画像データと、ビューnからのそれに空間的に対応するものである。
カメラシステムがキャリブレーションされた後、サラウンドビュー合成「Synthesis」機能が、4つの魚眼カメラ100から入力ビデオストリームを受信し、複合2Dサラウンドビュー132を作成する。上述したように、LDCモジュール120は、4台の魚眼カメラ100の各々からの画像フレームに対し、魚眼補正、遠近法ワープ(perspective warp)、アライメント、及びバイリニア/バイキュービック補間を実施し得る。LDCモジュール120は、例えば、ハードウェアアクセラレータ(HWA)モジュールであり得る。HWA LDCの例が以下で説明される。DSPモジュール130は、スティッチングを実施し、最終的な複合出力画像132上に、車両画像134などの車両の画像をオーバーレイすることができる。
合成は、幾何学的LUTにおいて符号化されたマッピングを用いて、スティッチングされた出力画像を作成する。2つの近接する入力フレームからの画像データが必要とされる、出力フレームの重複領域において、各出力ピクセルが、2つの入力画像におけるピクセル位置にマッピングする。重複領域において、2つの近接画像からの画像データは、ブレンディングされ得るか、又は、2つの画像のうちの1つからのデータを用いるため二分決定が成され得る。この例では、標準的なアルファブレンディング技法を用いる結果が示されている。例えば、複合サラウンドビュー132において、チャート画像133は、2つの異なるカメラからのチャート画像127及び128のブレンディングされたバージョンである。
3D SRV機能の概要
図2は、サラウンドビューシステムにおいて用いるための、例示の3次元(3D)ボウルメッシュ200の例示である。3D SRV画像の場合、車両周囲のワールドは、ボウルの形状で表され得る。シーンの完全な深さがないため、ボウルは車両周囲のワールドの形状についての妥当な想定である。このボウルは、任意の滑らかに変化する表面とし得る。この特定の表現において、車の近くの領域では平坦201であり、それぞれ、前方及び後方について202、203で示されるように車から離れると湾曲している、ボウル200が用いられる。この例では、ボウルは、204で示されるように両側がほんのわずかに上方に湾曲し得る。他の実施形態において他のボウル形状が用いられ得る。
図3は、図2の3Dボウルメッシュ200上にオーバーレイされる例示のシーンを示す。この例において、車両325の画像が、メッシュ200上のシーンの上に重畳される。車両画像325は、例えば、カメラのセットが搭載された車両のポジションを表すために用いられ得る。この例では、4つのキャリブレーションフィールド(図示されているキャリブレーションフィールド326、327、及び328を含む)が、車両325の周囲に配置されている。
図4は、図2の3Dボウルメッシュ200を用いて仮想ビューポイントについて生成される3Dサラウンドビュー画像を図示する。この例において、仮想ビューポイントは車両画像325上方のやや後方にあるが、車両画像325によって表されるスケールモデル車両は、図1に用いられる同じ駐車場ジオラマに位置する。この例では、画像の上部402はボウルメッシュ200の隆起部分202から導出され、下部401はボウルメッシュ200の平坦部分201から導出される。
後述するように、仮想ビューポイントのセットが、事前に定義され得、その後、車両画像325によって表される車両の周囲付近のビデオ画像をリアルタイムで生成するために、例えば、毎秒30フレームの速度で順次呼び出され得る。仮想ビューポイントの選択は、ドライバーからの合図に対応し得る。例えば、フォワードからリバースへシフトすることによって、ビューポイントを車両の後方を見るように変更し得る。また、例えば、ハンドルを回転することで、ビューポイントの進行方向が、弧を描くように動き得る。ビューポイントは、例えば、低速では車両のより近くで弧を描くように動き得、高速になると車両からより遠くを弧を描くように動き得る。このようにして、例えば、車両を駐車させる際に助けるために、車両の周囲付近を表示するリアルタイムビデオ画像が車両のドライバーに提供され得る。
図5は、図4の3D SRV画像を形成するための光線追跡プロセスを図示する。この例は、ボウルメッシュ200(図2)と同様のボウルメッシュの一部500の断面図を表す。ボウルメッシュ500は、平坦部分201及び隆起部分202(図2)と同様に、平坦部分501及び隆起部分502を含み得る。上述したように、魚眼レンズ512を備えるカメラ511が実際の車両の前方に搭載され得る。3D SRV出力画像のための画像面522を備える仮想ビューポイント521が、例えば、上述したように、実際の車両位置の上方にあるように定義され得る。
以前のシステムにおいて、グラフィックスプロセッサが提供され得、グラフィックスプロセッサは、ワールドの全体的な3D表現をストアし、531、532で示される例示の光線など、3Dポイントをディスプレイ上に投影することによって各ポイントを出力表示面522上にマッピングする。カメラの初期キャリブレーション513が、ワールドに対する魚眼カメラにおけるピクセルにワールド位置のマッピングを提供する。したがって、グラフィックスプロセッサは、表示スクリーン及び入力カメラに対する各ワールド位置のマッピングを有し、(出力表示におけるあらゆる位置についてこの情報を用いて)選ばれたビューポイントについて3Dサラウンドビュー出力をレンダリングする。
しかしながら、画像をリアルタイムでレンダリングするための光線追跡には、画像システムのコストを増大させ、大量の電力を消費する可能性のある強力なグラフィックスプロセッサが必要である。例示の実施形態において、或るプロセスが、光線追跡及び画像レンダリングのプロセスを、事前選択されたビューポイントのセットについての2つの別々の動作に分割する。これにより、計算を多用する光線追跡のタスクをオフラインで実施し、その結果をリアルタイム画像レンダリングの間に用いるためにストアすることが可能となる。
図6は、ビューポイントルックアップテーブル(LUT)のセットを作成するために、図5の光線追跡プロセスの一部がオフラインでどのように実施され得るかを図示する。次いで、リアルタイム画像レンダリングの間、本明細書で説明する或るプロセスが、LDC 120(図1)などのレンズ歪み補正(LDC)処理モジュールを備えて含まれ得る、2Dワープハードウェアアクセラレータ(HWA)を利用し得る。2Dワープアクセラレータは、事前定義されたビューポイントLUTを利用することにより、出力画像におけるブロックを入力画像におけるブロックにマッピングすることによって、出力から入力へのマッピングを実施する。
この例は、ボウルメッシュ200(図2)と同様のボウルメッシュの一部500の断面図を表す。ボウルメッシュ500は、平坦部分201及び隆起部分202(図2)と同様に、平坦部分501及び隆起部分502を含み得る。上述したように、魚眼レンズ512を備えるカメラ511が実際の車両の前方に搭載され得る。
3D SRV出力画像のための画像面622を備える仮想ビューポイント621が、上述したように、実際の車両位置の上方にあるように事前定義され得る。上述したように、ビューポイントのセットが、オフラインで事前定義及び準備され得る。
出力画像面622上の位置についてカメラ511によって提供される入力画像にマッピングすることは、出力画像面622における2D位置からの光線をオフラインキャスティングすること、及び、光線が3Dワールドと交差する位置を識別することに関与する。光線631、632は例示であり、例えば、光線631は3Dワールドの平坦部分501と交差し、光線632は3Dワールドの隆起部分502と交差する。オフライン光線キャスティング動作は、3Dワールド(ボウル)メッシュ500のX、Y、及びZ座標を備える仮想ビュー面622上のあらゆる2Dポイントのマッピングを生成する。3Dワールドにおける位置が識別された後、自動キャリブレーション手順642において生成されるカメラキャリブレーションマトリックスは、カメラ511からの入力画像における2D位置に対する3D位置のマッピングに用いられ得る。この手法を用いるマッピングが、2D画像面622における各位置に対して実施される。ハードウェアアクセラレータに必要とされる2Dワープテーブルは、カメラ511からの入力画像への出力画像面622からのこうしたマッピングのサブサンプリングされたアレイである。
異なる仮想カメラビューポイントを備える一連のこうしたマッピングを介して反復すること、及び、ビデオフレームレートにおける各マッピングに対して2D出力を作成することによって3Dサラウンドビューが得られ得る。上述したように、各サラウンドビューは、例えば、4つの広角魚眼カメラからの4つの画像を組み合わせるスティッチングされた画像であり得る。
光線キャスティングのタスクはコストの掛かる動作であるため、641に示されるように、マッピングをオフラインで実施して、後の再使用のためにストアされ得るマッピングされたルックアップテーブル(LUT)を生成し得る。ストアされたLUTは、その後、643に示されるように、ランタイムの間に再使用され得る。搭載されるカメラの物理的位置が変化しない場合、キャリブレーションマトリックスも不変のままである。したがって、仮想カメラポジション遷移は事前定義され得、HWA LUTマッピングは、オフラインで作成され得、初期的にストアされ得る。
事前定義されたLUT生成は、2つの機能ブロックに更に分けられ得る。3Dワールド(ボウル)マッピングへの仮想2Dカメラ出力面のマッピングは、コンピュータなどのオフラインツールにおいて別々にストアされ得る。3Dワールド(ボウル)から入力カメラへのマッピングは、画像システムの一部であるプロセッサによってオンボードで成され得る。
これは、2つの理由でマッピング機能の効果的な区分である。3Dワールドマッピングに対する仮想ビューはカメラの向きとは無関係であるため、車両の製造の間、又は車両の寿命の間など、カメラが動くたびに各車両についてこのマッピングを再生成する必要はない。最もコストの掛かる光線キャスティング動作はオフラインで実施され得る。
これらの仮想カメラ遷移をカメラキャリブレーションから分離することによって、様々なカメラ構成に対して同じメッシュを再使用し得る。例えば、必ずしもサラウンドビュー用でなくてよい、異なる車種及び異なるマルチカメラレンダリングアプリケーションを、同じメッシュに適応させることができる。
所与のビューポイントからの、より複雑であるが静止しているジープ/車の画像のピクチャ画像もオフラインで生成され得る。各ビューポイントについて、同じ仮想カメラポジションから見た車の1つのこうした2Dピクチャが抽出され得る。関連付けられた車の画像を用いるこうしたマッピングのシーケンス全体は、オンラインキャリブレーション手順に移され得る。
図7は、事前定義されたビューポイントルックアップテーブルを用いて3D SRVを形成するためのプロセスを示す図形フローチャートである。上述したように、事前定義された仮想ビューポイントのセットについてのマッピングテーブルは、オフラインで準備され得、後の使用のために車両上にストアされ得る。車両の動作の間、車両周辺の3D環境が、車両の周囲に搭載された魚眼カメラによって受信されるライブカメラフィードからレンダリングされ得る。様々な仮想ビューポイントからのシーンをレンダリングすることによって、ワールドの3D可視化が達成され得る。
上述したように、各々が仮想ビュー2D位置からワールドビューメッシュX、Y、Z位置への対応を含む、ビューポイントルックアップテーブル(LUT)のセットは、オフラインで準備され、車両上にストアされ得る。車両の動作の間、例えば、ドライバーの入力に応答して特定のビューポイントが選択され得る。各選択された仮想ビューポイントについて、700に示されるように、対応するビューポイントLUTが選択され得る。カメラキャリブレーションパラメータ702は、上述したような車両の周囲の地上に置かれたキャリブレーションチャートを用いて、自動キャリブレーション手順によって発生し得る。これは、車両が組み立てられ、例えば、カメラセットアップが成されたときに一度、実施され得る。
選択されたビューポイントLUT700及びカメラキャリブレーションパラメータは、その後、704に示されるように、デジタル信号プロセッサ(DSP)などのプロセッサに送られ得る。DSPは、各選択されたビューポイントLUTをカメラキャリブレーションパラメータと組み合わせて、4つの魚眼カメラの各々について、各仮想ビューについてのHWA LUTに変換する。その後、これらのキャリブレーションされたビューポイントLUTは、ワープHWA706によりアクセスされ得るメモリモジュールにストアされ、車両がライブモードで動作されるときに、スティッチング及びブレンディングのためにDSP707によって順次再使用される。
カメラが搭載された車両の動作の間、魚眼レンズを備える4台のカメラから30fps(フレーム数毎秒)でのビデオの一定ストリームが受信され、4台のカメラは、車両の前方、後方、及び各サイドミラー上に搭載されている。1フレームに対応する4つの画像の例示のセットが、画像711~714によって示されている。
各フレームを処理するため、ワープHWA 706は、現在選択されている仮想ビューポイントに対応するストレージからのキャリブレーションされたビューポイントLUTにアクセスし、キャリブレーションされたビューポイントLUTを用いて、4つの仮想レンダリングビューを形成するために、4つの入力画像の各々に対してワープ動作を行なう。このプロセスは、この例示のシステムに対して、30fpsの速さで各フレームについて反復される。
その後、2Dスティッチング及びブレンディングプロセスが、上述したように、車両のドライバーが見ることができる表示スクリーン上に表示され得る最終的な複合3D SRVを形成するために、DSPプロセス707によって実施され得る。DSPプロセス707は、例えば、DSPプロセス704を実施する同じDSPプロセッサによって、又は異なるDSPによって、実施され得る。現在選択されている仮想ビューポイントに対応するモデル車両画像が、事前に処理された車両画像708のライブラリからも選択され得、710に示されている最終的な3D SRVディスプレイ画像を形成するために複合3D SRV上にオーバーレイされ得る。
上述したように、車両の外側の仮想ビューポイントからの車両近辺の現実的な30fpsビデオ3Dサラウンドビューを形成するために、選択された仮想ビューポイントは、車両の動きの方向及び速さなどのドライバーからの合図に応答し得る。
図8は、図7のプロセスをより詳細に示すフローチャートである。このデータフローは、捕捉及び処理801、キャリブレーション802、2D画像ワープ803、及び合成器804という、サブモジュールの下で分類され得る。次に、各サブモジュールをより詳細に説明する。
捕捉及び処理
捕捉及び処理ブロック801は、車両の周辺に配置され、捕捉ブロック815に結合されるカメラ811~814などの複数のカメラからビデオを捕捉するためのモジュールを含む。捕捉ブロック815の出力は、本明細書全体を通して「マルチチャネルビデオ」と呼ばれる。ブロック817は、必要であれば、既知の又は後に開発される画像処理方法を用いて、色補正動作(BayerフォーマットからYUV420フォーマットへの変換、色調マッピング、ノイズフィルタ、ガンマ補正など)を実施し得る。ブロック816は、既知の又は後に開発される技法を用いて、最適な画質を達成するために、ビデオセンサの自動露出制御、及びホワイトバランスを実施し得る。ブロック818は、センサから捕捉される各フレームが同じ時間期間にあることを保証するために、すべてのカメラ811~814を合成する。
本明細書において説明する特定の実施では4つのカメラが用いられている。本明細書において説明する同じ原理は、他の実施形態におけるN台のカメラに拡張可能であり、Nは4より大きくても小さくてもよい。
キャリブレータ
キャリブレーションサブブロック802は、上述した自動キャリブレーション手順によって発生するカメラキャリブレーションマトリックス821を利用し、ワールドビューメッシュ822と組み合わせて、2DワープHWA LUTを発生させる。上述したように、ワールドビューメッシュ822は、オフライン発生され得、キャリブレータ機能823による後の使用のためにストアされ得る。
各事前定義された仮想ビューポイントについて、キャリブレータモジュール823は、関連する3Dボウルメッシュテーブル822を読み取り、カメラキャリブレーションパラメータ821を考慮し、4つのチャネルの各々について2Dメッシュルックアップテーブルを発生させる。
これは、通常、ワンタイム動作であり、システムが開始されたとき、例えば、組み立てプロセスの間にシステムが車両内に配置されたとき、成される。このプロセスは、車両上に搭載されたカメラのうちの1つについてポジション変更が感知されるとき必ず反復され得る。いくつかの実施形態において、キャリブレーションプロセス823は、例えば、車両が始動されるたびに反復され得る。
画像ワープ
画像ワープモジュール803は、レンズ歪み補正(LDC)ハードウェアアクセラレータ(HWA)、及びキャリブレータ823によって生成される2Dメッシュルックアップテーブルを用いて、捕捉及び処理サブブロック801によって提供される入力ビデオフレームをワープさせ得る。画像をレンダリングするための2Dワープ動作は、画像をレンダリングするために以前のシステムにおいて用いられている3D光線キャスティングプロセスよりもずっと容易に成される。したがって、魚眼歪み補正及びビューポイントワープがどちらも、事前定義されたビューポイントLUTを用いる単一動作において成され得る。
この例において、ワープHWA803は、画像ワープアルゴリズム又はルックアップテーブルに従って、データのパッチを1つのフレームバッファから別のフレームバッファに移動させるように構成される機能モジュールである。レンズ歪み補正モジュールの一般的な動作は知られている。例えば、2DワープHWAが、テキサス インスツルメンツ インコーポレイテッド(TI)から入手可能なTDA3x SoC内に含められる。TDA3x SoCは、TIのDSPコアの固定小数点及び浮動小数点デュアルTMS320C66x世代、完全にプログラム可能なVision AccelerationPac(EVE)、及びデュアルARM(登録商標)Cortex(登録商標)-M4コア並びに画像信号プロセッサ(ISP)を含む、異種のスケーラブルアーキテクチャに基づく。TDA3x SoCは、LVDSベースのサラウンドビューシステムのための、ディスプレイ、CAN、及びマルチカメラインターフェース(パラレル及びシリアルの両方)を含む周辺装置のホストも組み込む。
画像ワープモジュール803は、すべてのビデオチャネル及びすべてのビューポイントについて2Dメッシュテーブルを受信してこれらをストアし、所与の仮想ビューポイントと、各チャネルについてのビデオフレームの出力サイズ、処理パラメータ(ブロックの幅/高さなど)などのメタデータ、及びその対応する仮想ビューポイントと併せて、2Dメッシュテーブルの関連付けられたセットとの間の関係を維持する。
画像ワープモジュール803は、新しいビューポイントを選択するためのコマンドを受信するたびに、選択されたビューポイントについてどのカメラチャネルが必要とされるかを決定し得る。これは、例えば、ビューポイントメッシュが発生するときにオフラインプロセスにおいて決定され得る。例えば、SRV出力がヒッチビューにズームインするために車両の後部を見ている場合、前方カメラは必要でない可能性がある。
画像ワープモジュール803は、ビューポイントを選択するためのコマンドを受信するたびに、所与のビューポイントについて必要な2Dメッシュルックアップテーブルを取り出し、必要な処理パラメータを確立し、各チャネルについて適切なメッシュテーブルを関連付ける。受信した2Dメッシュテーブルは、車両が最初に始動したときに利用可能であるように、不揮発性メモリにストアされ得る。別の実施形態において、2Dメッシュテーブルは、揮発性メモリにストアされ得、そのため、システムがオンになるたびに再ローディングが必要になる。
ワープモジュール803は、各チャネルから1つのビデオフレームを順次処理する。各チャネルが処理される前に、ワープHWAは、関連付けられた処理パラメータと共に構成される。各入力フレームはセットとして処理され、1セットは、合成される各チャネルから1つのフレームを含む。この結果、捕捉されたフレームレートでビューポイントを変更するとき、フリッカ/アーティファクト無しの遷移となる。
所与のビューポイントについて発生された出力は、合成器ブロック804に提供され得る。
システム始動(立ち上げ)時間を最小化するために、メッシュテーブルは1回発生され得、不揮発性メモリにストアされ得、後続の始動/立ち上げにはキャリブレーションプロセスがバイパスされ得る。次のシステム始動/立ち上げの際、メッシュテーブルは、上述したように処理される、不揮発性メモリ及びビデオフレームから読み取ることができる。
合成器
合成器モジュール804は、各ビデオチャネルから1つのフレームを含む複合ビデオフレームを発生させる責務を負う。仮想ビューポイントに応じて、複合パラメータは変化する可能性がある。このモジュールは、図1に関連して上述した合成ブロックと同様である。魚眼入力画像の代わりに、合成器ブロック804は、各カメラ画像についてワープHWA 803修正出力を受信する。
合成ブロックは、上述したように、近接カメラに対応する画像をスティッチング及びブレンディングし得る。ブレンディングライン位置は仮想ビューの位置に基づいて変動し得、この情報はまた、ビューメッシュに対するオフライン発生されたワールドにおいて符号化される。合成ブロックは、ビデオフレームレート、すなわち30fps、で呼び出され、スティッチングされた出力画像を30fpsで発生させる。
表示サブシステム805が、合成器804からビデオストリーム出力を受信し得、車両のドライバーが見るための、接続されたLCD、モニタ、又はTVなどの表示ユニット上に、同じ内容を表示し得る。システムは、検出されるオブジェクト、歩行者、及び警告などのメタデータも表示するように構成され得る。
この例では、捕捉及び処理サブシステム801、ワープHWA803、及び表示システム805は、例えば、高性能RISC(縮小命令セットコンピューティング)プロセッサ及び関連付けられたメモリであり得る、画像処理ユニット831によってホストされ得る。キャリブレータ823及び合成器804は、例えば、DSP(デジタル信号プロセッサ)及び関連付けられたメモリによってホストされ得る。他の実施形態において、様々なサブシステムが、異なる構成のプロセッサによってホスト/制御され得る。
システム例
図9は、本明細書で説明するような3D SRVシステムが装備される、例示の車両900の例示である。この例は、前方カメラ911、同乗者サイドカメラ912、後方カメラ913、及びドライバーサイドカメラ914の、4台のカメラを有する。サイドカメラ912、914は、例えば、後方ビューミラー内に搭載され得る。車両900は、本明細書で説明するように、ドライバー可視表示デバイス920上に3D SRVを提供するためにカメラ911~914を用いるADASを含む。
ADASは、車両900内の制御システムに結合され得、制御システムは、例えば、エンジン、ステアリング、及び/又はブレーキシステムに結合され得る。制御システムは、様々なタイプのADAS機能を行なうために画像処理システム1330によって処理される画像データを用い得る。
ADAS技術の進化は、いくつかのイノベーション領域に関連する。2つの重要な関連傾向は、センサ、カメラ、及び電子機器などの個々の構成要素を縮小すること、並びに、専用機能をより包括的なシステムに統合することを含む。より大きなシステムを廉価で構築するためには、より小さくより安価な構成要素が必要であるため、これらの傾向は相補的である。例えば、車線維持支援のために働く同じ前方カメラが、車の前方のオブジェクトを検出し、道路標識を読み取り、又は衝突を回避するためにブレーキをかけるための情報も提供することが可能である。しかしながら、より複雑なADAS機能を実施するためには、より多くのカメラからの、及び、超音波、LIDAR、及びレーダなどの他のセンサからの入力、並びに、それらの異なるセンサ要素からのデータの融合が必要である。融合はまた、個々のセンサソリューションの欠点も克服させ得、或るレベルの冗長性を提供し得る。
図10は、図9を参照し、車両900などの車両に含まれ得る3D SRVシステム1000の実施形態の例示のブロック図である。表示システム805は、車両900内に設置されるか、又は遠隔であってよい。遠隔実装の場合、本明細書に示されるように、例えば、表示システムとADASとの間にワイヤレスリンクが確立され得る。
1022に示されるように、ADAS1000は、本明細書で説明する技法の実施形態を含むように増強され得る、TDA3x及びTDA3xデバイスファミリーなど、テキサス インスツルメンツ インコーポレイテッド(TI)から入手可能なものなどのSoCデバイスに基づき得る。TIは、設計を簡略化し、空間を最小化して、図10に示されるようなセンサ融合を容易にするために、周辺装置のセットをTDAxxソリューション内に完全に組み込んでいる。特に、サラウンドビュー及びバックアップカメラのようなカメラベースシステムのための通信インターフェースは、SerDesモジュール1021などの、TIの最新世代FPD-Link III SerDesファミリーから利点を得ることができ、こういったファミリーは、単一同軸ケーブルを用いて遠隔ADAS衛星を中央処理モジュールに接続するための作業を減少させることを助ける。コネクタを小型化し構成要素を高度に統合させることに起因して、配線作業を減少させ、モジュールを小型化することによって、ADASのためのセンサモジュールの数が増加し続けることで新車に価格及び重量の上昇を負担させないことを確実にすることを助ける。例えば、2015年8月のHannes Estlによる「先進運転支援システムを用いる自動運転の実現化」を参照のこと。
"Paving the way to self-driving cars with advanced driver assistance system" Hannes Estl, August 2015
他の実施形態
本明細書において4台のカメラを備える車両が示されているが、他の実施形態はより多いか又はより少ないカメラを含み得る。
上記では30fpsのビデオフレームレートを説明したが、他の実施形態は、より速いか又はより遅いフレームレートを用い得る。しかしながら、より速いフレームレートは、より高価な処理機能を必要とする可能性がある。
本明細書において、ADASを参照して例示の実施形態を説明してきたが、ADAS以外のコンピュータビジョン応用例が、自動車、工業用応用例、高性能コンピューティング、ロボット、及びドローンなどの例示の実施形態から利点を得ることができる。
本明細書において自動車900が示されているが、他の実施形態を他のタイプの車両(トラック、列車、飛行機、及びドローンなど)に配置し得、車両の動作を支援するか又は完全に制御するために用いることができる。
本明細書においてドライバーが乗車する従来の車両について説明してきたが、「ドライバー」が車両から遠隔に居る、遠隔サイトから制御可能な自律走行車などの車両において、他の実施形態を実装し得る。
本明細書で用いられる場合、「車両」という用語は、リアルタイムで仮想ビューポイントを形成するために複数のカメラからの画像の低コストで低電力の処理が有益な、他のタイプのデバイス(ロボット、工業用デバイス、及び医療用デバイスなど)にも適用可能である。
本明細書において説明する技法は、ハードウェア、ソフトウェア、ファームウェア、又はそれらの任意の組み合わせにおいて実装され得る。ソフトウェアにおいて実装される場合、ソフトウェアは、マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、又はデジタル信号プロセッサ(DSP)などの一つ又は複数のプロセッサにおいて実行され得る。こういった技法を実行するソフトウェアは、初期的に、コンパクトディスク(CD)、ディスケット、テープ、ファイル、メモリ、又は任意の他のコンピュータ可読ストレージデバイスなどのコンピュータ可読媒体にストアされ、その後、プロセッサにおいてロード及び実行され得る。いくつかの場合において、ソフトウェアはまた、コンピュータ可読媒体、及びコンピュータ可読媒体のためのパッケージング材料を含む、コンピュータプログラム製品において販売され得る。いくつかの場合において、ソフトウェア命令は、取り外し可能コンピュータ可読媒体(例えば、フロッピーディスク、光ディスク、フラッシュメモリ、USBキー)を介する、別のデジタルシステム上のコンピュータ可読媒体からの伝送経路を介する、などによって流通され得る。
デジタルシステムにおける構成要素は、説明された機能を逸脱することなく、異なる名前で称され得、及び/又は、本明細書に示されていない方法で組み合わされ得る。本明細書において、「結合する」という用語及びその派生語は、間接的、直接的、光学、及び/又はワイヤレス電気接続を意味する。したがって、第1のデバイスが第2のデバイスに結合する場合、その接続は、直接電気接続を介するもの、他のデバイス及び接続を介した間接的電気接続を介するもの、光電気接続を介するもの、及び/又は、ワイヤレス電気接続を介するものであってよい。
本明細書において、方法ステップが逐次的に提示及び説明され得るが、図示及び説明されるステップの一つ又は複数が、省かれ得、反復され得、同時に成され得、並びに/或いは、図に示される順及び/又は本明細書において説明される順とは異なる順で成され得る。したがって、例示の実施形態は、図示されるステップ及び/又は本明細書において説明されるステップの特定の順に限定されるものではない。
特許請求の範囲内で、説明した実施形態における改変が可能であり、他の実施形態が可能である。

Claims (20)

  1. サラウンドビューを単一表示スクリーン上に表示するための方法であって、
    対応する複数のカメラから特定時間についての複数の画像フレームを受信すること、
    事前定義された第1の仮想ビューポイントに対応する第1のワープマップを選択することであって、前記ワープマップが、前記表示スクリーンにおける各出力ピクセル位置について、前記複数の画像フレームにおけるソースピクセル位置を定義し、前記第1のワープマップが、事前定義され、後の使用のためにストアされる、前記第1のワープマップを選択すること、
    前記第1のワープマップに従って、前記複数の画像フレームからの前記出力画像の各ピクセルについてピクセルデータを選択することによって、前記表示スクリーンのための出力画像を合成すること、及び、
    前記出力画像を前記表示スクリーン上に表示すること、
    を含む、方法。
  2. 請求項1に記載の方法であって、
    前記表示スクリーン上にビデオシーケンスを生成するために、複数の異なる事前定義された仮想ビューポイントに対応する複数の事前定義されたワープマップのうちの異なるマップを逐次的に選択することを更に含む、方法。
  3. 請求項1に記載の方法であって、
    前記複数のカメラが車両上に搭載され、前記第1のワープマップが試験台における複数の試験カメラを用いて生成されたものである、方法。
  4. 請求項3に記載の方法であって、
    オフラインセットアッププロセスの間に、前記複数のカメラと前記複数の試験カメラのうちの対応する試験カメラとの間の位置の差に対処するために、前記第1のワープマップがキャリブレーションパラメータと組み合わされる、方法。
  5. 請求項3に記載の方法であって、
    前記第1のワープマップを形成するために前記車両上に搭載される処理モジュールを用いて、前記複数のカメラと前記複数の試験カメラのうちの対応する試験カメラとの間の位置の差に対処するために、第1のローワープマップをキャリブレーションパラメータと組み合わせることを更に含む、方法。
  6. 請求項5に記載の方法であって、
    前記第1のワープマップが、前記車両上に配置される不揮発性メモリにストアされる、方法。
  7. 請求項1に記載の方法であって、
    前記複数のカメラが車両上に搭載され、第1の車両画像を選択すること及びこれを前記出力画像上に重ねることを更に含み、前記第1の車両画像が、前記第1のビューポイントに対応するモデル車両から予め抽出されており、後の使用のためにストアされている、方法。
  8. 請求項1に記載の方法であって、
    前記出力画像を合成することが、前記第1のワープマップを用いてレンズ歪みを補正するために各画像フレームをワープすることによって前記複数のカメラの各々に対応する別個の仮想ビューをレンダリングし、
    前記方法が更に、前記出力画像を形成するため、前記別個の仮想ビューのうちの2つ又はそれ以上をスティッチング及びブレンディングすることを含む、方法。
  9. サラウンドビューを単一表示スクリーン上に表示するための方法であって、
    3次元(3D)ビューを表すビュー表面を定義すること、
    前記ビュー表面から画像を捕捉するために、複数の試験カメラを適所に位置決めすること、
    第1の仮想ビューポイントについて第1のワープマップを発生させることであって、前記第1の仮想ビューポイントに対応する出力フレームにおける2次元(2D)ピクセル位置からの光線を、前記ビュー表面と交差するようにキャスティングすること、及び、その光線を、前記複数の試験カメラのうちの1つにおける対応するピクセル位置にマッピングすること、並びに、光線をキャスティングするステップ、及び、その光線を前記出力フレームの各2Dピクセル位置についてマッピングするステップを反復することを含む、前記第1のワープマップを発生させること、及び、
    前記第1のワープマップを後の使用のためにストアすること、
    を含む、方法。
  10. 請求項9に記載の方法であって、
    複数の仮想ビューポイントに対応する複数のワープマップを発生させること、及び、前記複数のワープマップを後の使用のためにストアすることを更に含む、方法。
  11. 請求項10に記載の方法であって、
    前記複数のカメラが車両上に搭載するために位置決めされ、前記方法が、
    前記複数の仮想ビューポイントからモデル車両の複数の車両画像を抽出すること、及び、
    前記複数の車両画像を、前記複数のワープマップのうちの対応するワープマップと共に後の使用のためにストアすること、
    を更に含む、方法。
  12. 請求項9に記載の方法であって、
    前記複数のワープマップを、第1の車両上の処理システムにストアすること、
    前記第1の車両上に搭載される複数のライブカメラについて、前記複数のライブカメラと前記複数の試験カメラのうちの対応する試験カメラとの間の位置の差に対処するために、カメラキャリブレーションパラメータのセットを決定すること、
    複数のキャリブレーションされたワープマップを形成するために、カメラキャリブレーションパラメータの前記セットを用いて前記複数のワープマップを更新すること、及び、
    キャリブレーションされたワープマップの前記セットを、後の使用のために前記車両の前記処理システムにストアすること、
    を更に含む、方法。
  13. 3Dサラウンドビューシステムであって、
    車両、
    前記車両上に搭載される複数のカメラ、
    前記車両のドライバーが見るための、前記車両上に搭載される表示スクリーン、及び
    前記複数のカメラから特定時間の間、複数の画像フレームを受信するように結合され、前記表示スクリーンに出力画像を提供するように結合される出力を有する、画像処理システム、
    を含み、
    前記画像処理システムが、事前定義された第1の仮想ビューポイントに対応する第1のワープマップを選択するように構成され、前記第1のワープマップが、前記表示スクリーンにおける各出力ピクセル位置について、前記複数の画像フレームにおけるソースピクセル位置を定義し、前記第1のワープマップが、事前定義され、後の使用のためにストアされ、
    前記画像処理システムはまた、各画像フレームに対応する別個の仮想ビューを形成するため、前記第1のワープマップを用いてレンズ歪みを補正するように各画像フレームをワ
    ープすることによって、前記表示スクリーンについて前記出力画像を合成するように構成される、3Dサラウンドビューシステム。
  14. 請求項13に記載のシステムであって、
    前記画像処理システムが更に、前記出力画像を形成するために、前記別個の仮想ビューのうちの2つ又はそれ以上をスティッチング及びブレンディングするように構成される、システム。
  15. 請求項13に記載のシステムであって、
    前記画像処理システムが更に、前記表示スクリーン上にビデオシーケンスを生成するために、複数の異なる事前定義された仮想ビューポイントに対応する複数の事前定義されたワープマップのうちの異なるワープマップを逐次的に選択するように構成される、システム。
  16. 請求項13に記載のシステムであって、
    前記第1のワープマップが、試験台における複数の試験カメラを用いて生成されたものである、システム。
  17. 請求項16に記載のシステムであって、
    オフラインセットアッププロセスの間、前記複数のカメラと前記複数の試験カメラのうちの対応する試験カメラとの間の位置の差に対処するために、前記第1のワープマップがキャリブレーションパラメータと組み合わされている、システム。
  18. 請求項16に記載のシステムであって、
    前記画像処理システムが更に、前記第1のワープマップを形成するため、前記車両上に搭載される処理モジュールを用いて、前記複数のカメラと前記複数の試験カメラのうちの対応する試験カメラとの間の位置の差に対処するために、第1のローワープマップをキャリブレーションパラメータと組み合わせるように構成される、システム。
  19. 請求項18に記載のシステムであって、
    前記第1のワープマップが前記車両上に配置される不揮発性メモリにストアされる、システム。
  20. 請求項13に記載のシステムであって、
    前記画像処理システムが更に、第1の車両画像を選択するように、及びこれを前記出力画像上に重ねるように構成され、前記第1の車両画像が、前記第1のビューポイントに対応するモデル車両から予め抽出されており、後の使用のためにストアされている、システム。
JP2022080086A 2016-01-06 2022-05-16 事前定義されたビューポイントルックアップテーブルを用いるサラウンドビューのための3次元レンダリング Active JP7397262B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662275631P 2016-01-06 2016-01-06
US62/275,631 2016-01-06
US15/298,214 US10523865B2 (en) 2016-01-06 2016-10-19 Three dimensional rendering for surround view using predetermined viewpoint lookup tables
US15/298,214 2016-10-19
PCT/US2017/012585 WO2017120506A1 (en) 2016-01-06 2017-01-06 Three dimensional rendering for surround view using predetermined viewpoint lookup tables
JP2018535294A JP2019503007A (ja) 2016-01-06 2017-01-06 事前定義されたビューポイントルックアップテーブルを用いるサラウンドビューのための3次元レンダリング

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018535294A Division JP2019503007A (ja) 2016-01-06 2017-01-06 事前定義されたビューポイントルックアップテーブルを用いるサラウンドビューのための3次元レンダリング

Publications (2)

Publication Number Publication Date
JP2022110079A true JP2022110079A (ja) 2022-07-28
JP7397262B2 JP7397262B2 (ja) 2023-12-13

Family

ID=59235936

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018535294A Pending JP2019503007A (ja) 2016-01-06 2017-01-06 事前定義されたビューポイントルックアップテーブルを用いるサラウンドビューのための3次元レンダリング
JP2022080086A Active JP7397262B2 (ja) 2016-01-06 2022-05-16 事前定義されたビューポイントルックアップテーブルを用いるサラウンドビューのための3次元レンダリング

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018535294A Pending JP2019503007A (ja) 2016-01-06 2017-01-06 事前定義されたビューポイントルックアップテーブルを用いるサラウンドビューのための3次元レンダリング

Country Status (5)

Country Link
US (2) US10523865B2 (ja)
EP (1) EP3400578B1 (ja)
JP (2) JP2019503007A (ja)
CN (1) CN108604366B (ja)
WO (1) WO2017120506A1 (ja)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10922559B2 (en) * 2016-03-25 2021-02-16 Bendix Commercial Vehicle Systems Llc Automatic surround view homography matrix adjustment, and system and method for calibration thereof
KR20180008244A (ko) * 2016-07-14 2018-01-24 엘지이노텍 주식회사 이미지 생성 방법 및 생성 장치
US10911745B2 (en) 2016-12-28 2021-02-02 Texas Instruments Incorporated Calibration of a surround view camera system
JP6699567B2 (ja) * 2017-01-17 2020-05-27 トヨタ自動車株式会社 撮像装置
KR20180086794A (ko) * 2017-01-23 2018-08-01 삼성전자주식회사 차량 주변의 객체를 나타내는 영상을 생성하는 방법 및 장치.
JP6730613B2 (ja) * 2017-02-28 2020-07-29 株式会社Jvcケンウッド 俯瞰映像生成装置、俯瞰映像生成システム、俯瞰映像生成方法およびプログラム
JP6941472B2 (ja) * 2017-04-26 2021-09-29 株式会社デンソーテン 映像再生装置、映像再生システム、及び映像再生方法
US10861359B2 (en) * 2017-05-16 2020-12-08 Texas Instruments Incorporated Surround-view with seamless transition to 3D view system and method
CN109547766B (zh) * 2017-08-03 2020-08-14 杭州海康威视数字技术股份有限公司 一种全景图像生成方法及装置
US10475154B2 (en) * 2017-08-11 2019-11-12 Caterpillar Inc. Machine surround view system and method for generating 3-dimensional composite surround view using same
CN111033555B (zh) * 2017-08-25 2024-04-26 株式会社索思未来 修正装置、修正程序以及记录介质
CN110786004B (zh) * 2017-08-25 2021-08-31 本田技研工业株式会社 显示控制装置、显示控制方法及存储介质
JP6958163B2 (ja) * 2017-09-20 2021-11-02 株式会社アイシン 表示制御装置
US11417080B2 (en) * 2017-10-06 2022-08-16 Nec Corporation Object detection apparatus, object detection method, and computer-readable recording medium
US11006087B2 (en) * 2017-10-13 2021-05-11 Mitsubishi Electric Corporation Image synthesizing device and image synthesizing method
US20190130526A1 (en) * 2017-10-27 2019-05-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Metadata based quality enhancement post-video warping
US10417911B2 (en) 2017-12-18 2019-09-17 Ford Global Technologies, Llc Inter-vehicle cooperation for physical exterior damage detection
US10600234B2 (en) 2017-12-18 2020-03-24 Ford Global Technologies, Llc Inter-vehicle cooperation for vehicle self imaging
US11057573B2 (en) * 2017-12-20 2021-07-06 Texas Instruments Incorporated Multi camera image processing
US10944950B2 (en) * 2017-12-21 2021-03-09 Texas Instruments Incorporated Transmitting functional safety statistics via transmitted video
US10745005B2 (en) 2018-01-24 2020-08-18 Ford Global Technologies, Llc Inter-vehicle cooperation for vehicle self height estimation
DE102018102560A1 (de) 2018-02-06 2019-08-08 Connaught Electronics Ltd. Verfahren zum Anzeigen einer Szene von einem bestimmten Blickpunkt aus auf einer Anzeigevorrichtung eines Fahrzeugs und Fahrerassistenzsystem
DE102018203968A1 (de) * 2018-03-15 2019-09-19 Conti Temic Microelectronic Gmbh Zweiwege-Sensorsystem für Kraftfahrzeuge
US10628690B2 (en) 2018-05-09 2020-04-21 Ford Global Technologies, Llc Systems and methods for automated detection of trailer properties
JP2021533633A (ja) * 2018-07-31 2021-12-02 スリーエム イノベイティブ プロパティズ カンパニー 車両支援システム
DE102018119481A1 (de) * 2018-08-10 2020-02-13 Connaught Electronics Ltd. Verfahren zum Bereitstellen einer Bilddarstellung von mindestens einem Teil einer Umgebung eines Kraftfahrzeugs, Computerprogrammprodukt und Fahrerassistenzsystem
JP7445642B2 (ja) 2018-08-13 2024-03-07 マジック リープ, インコーポレイテッド クロスリアリティシステム
US11227435B2 (en) 2018-08-13 2022-01-18 Magic Leap, Inc. Cross reality system
JP7208356B2 (ja) * 2018-09-26 2023-01-18 コーヒレント・ロジックス・インコーポレーテッド 任意の世界ビューの生成
KR102467556B1 (ko) * 2018-10-04 2022-11-17 (주)티랩스 실측 깊이정보를 이용한 정밀한 360 이미지 제작기법
JP2022512600A (ja) 2018-10-05 2022-02-07 マジック リープ, インコーポレイテッド 任意の場所における場所特有の仮想コンテンツのレンダリング
WO2020121882A1 (ja) * 2018-12-13 2020-06-18 ソニー株式会社 制御装置、制御方法、および制御プログラム
US20190141310A1 (en) * 2018-12-28 2019-05-09 Intel Corporation Real-time, three-dimensional vehicle display
JP7160701B2 (ja) * 2019-01-23 2022-10-25 株式会社小松製作所 作業機械のシステム及び方法
EP3818339B1 (en) * 2019-02-04 2024-02-21 Mobileye Vision Technologies Ltd. Systems and methods for vehicle navigation
US11351917B2 (en) 2019-02-13 2022-06-07 Ford Global Technologies, Llc Vehicle-rendering generation for vehicle display based on short-range communication
US11050932B2 (en) * 2019-03-01 2021-06-29 Texas Instruments Incorporated Using real time ray tracing for lens remapping
US10867409B2 (en) * 2019-04-22 2020-12-15 Great Wall Motor Company Limited Methods and systems to compensate for vehicle calibration errors
US11341607B2 (en) 2019-06-07 2022-05-24 Texas Instruments Incorporated Enhanced rendering of surround view images
CN112116530B (zh) * 2019-06-19 2023-08-18 杭州海康威视数字技术股份有限公司 鱼眼图像畸变矫正方法、装置和虚拟显示系统
US11380046B2 (en) * 2019-07-23 2022-07-05 Texas Instruments Incorporated Surround view
US10897600B1 (en) 2019-09-09 2021-01-19 Texas Instruments Incorporated Sensor fusion based perceptually enhanced surround view
DE102019126814A1 (de) * 2019-10-07 2021-04-08 Connaught Electronics Ltd. Elektronische Steuereinheit
CN114616534A (zh) 2019-10-15 2022-06-10 奇跃公司 具有无线指纹的交叉现实系统
CN114600064A (zh) 2019-10-15 2022-06-07 奇跃公司 具有定位服务的交叉现实系统
JP7442029B2 (ja) * 2019-10-17 2024-03-04 株式会社東海理化電機製作所 画像処理装置、画像処理プログラム
JP7458741B2 (ja) * 2019-10-21 2024-04-01 キヤノン株式会社 ロボット制御装置及びその制御方法及びプログラム
KR102599558B1 (ko) * 2019-10-24 2023-11-08 현대모비스 주식회사 자동차용 센서 통합 모듈
KR102634606B1 (ko) * 2019-10-24 2024-02-13 현대모비스 주식회사 자동차용 센서 통합 모듈
JP2023504775A (ja) 2019-11-12 2023-02-07 マジック リープ, インコーポレイテッド 位置特定サービスおよび共有場所ベースのコンテンツを伴うクロスリアリティシステム
EP4073763A4 (en) 2019-12-09 2023-12-27 Magic Leap, Inc. CROSS-REALLY SYSTEM WITH SIMPLIFIED PROGRAMMING OF VIRTUAL CONTENT
JP7065068B2 (ja) * 2019-12-13 2022-05-11 本田技研工業株式会社 車両周囲監視装置、車両、車両周囲監視方法およびプログラム
CN113065999B (zh) * 2019-12-16 2023-03-10 杭州海康威视数字技术股份有限公司 车载全景图生成方法、装置、图像处理设备及存储介质
US11170464B2 (en) * 2020-01-03 2021-11-09 Texas Instruments Incorporated Low latency streaming remapping engine
US11410395B2 (en) 2020-02-13 2022-08-09 Magic Leap, Inc. Cross reality system with accurate shared maps
WO2021163295A1 (en) 2020-02-13 2021-08-19 Magic Leap, Inc. Cross reality system with prioritization of geolocation information for localization
US11562525B2 (en) 2020-02-13 2023-01-24 Magic Leap, Inc. Cross reality system with map processing using multi-resolution frame descriptors
CN115461787A (zh) 2020-02-26 2022-12-09 奇跃公司 具有快速定位的交叉现实系统
CN111367291B (zh) * 2020-03-19 2023-07-21 深圳国信泰富科技有限公司 一种自越障机器人及控制方法
WO2021222371A1 (en) 2020-04-29 2021-11-04 Magic Leap, Inc. Cross reality system for large scale environments
CN111464749B (zh) * 2020-05-07 2021-05-25 广州酷狗计算机科技有限公司 进行图像合成的方法、装置、设备及存储介质
JP7238868B2 (ja) * 2020-08-20 2023-03-14 トヨタ自動車株式会社 ドライバ支援システム
CN114466176A (zh) * 2020-11-09 2022-05-10 聚好看科技股份有限公司 一种全景视频显示方法及显示设备
US11593996B2 (en) 2021-02-09 2023-02-28 Waymo Llc Synthesizing three-dimensional visualizations from perspectives of onboard sensors of autonomous vehicles
DE102021112646A1 (de) 2021-05-17 2022-11-17 Connaught Electronics Ltd. Erzeugen eines zusammengefügten bildes aus kameradaten
EP4095745B1 (en) * 2021-05-24 2023-06-28 Axis AB An image processor and a method therein for providing a target image
US20230031023A1 (en) * 2021-07-29 2023-02-02 Qualcomm Incorporated Multiple camera system
US20230171397A1 (en) 2021-11-30 2023-06-01 Texas Instruments Incorporated Fail safe surround view
DE102022120236B3 (de) * 2022-08-11 2023-03-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum harmonisierten Anzeigen von Kamerabildern in einem Kraftfahrzeug und entsprechend eingerichtetes Kraftfahrzeug

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010112433A (ko) * 1999-04-16 2001-12-20 마츠시타 덴끼 산교 가부시키가이샤 화상처리장치 및 감시시스템
JP2002083285A (ja) 2000-07-07 2002-03-22 Matsushita Electric Ind Co Ltd 画像合成装置および画像合成方法
US20020180727A1 (en) * 2000-11-22 2002-12-05 Guckenberger Ronald James Shadow buffer control module method and software construct for adjusting per pixel raster images attributes to screen space and projector features for digital warp, intensity transforms, color matching, soft-edge blending, and filtering for multiple projectors and laser projectors
JP4744823B2 (ja) * 2004-08-05 2011-08-10 株式会社東芝 周辺監視装置および俯瞰画像表示方法
US7359575B2 (en) * 2004-12-07 2008-04-15 Silicon Optix Inc. Dynamic warp map generation system and method
JP4927512B2 (ja) 2006-12-05 2012-05-09 株式会社日立製作所 画像生成装置
US8525825B2 (en) * 2008-02-27 2013-09-03 Google Inc. Using image content to facilitate navigation in panoramic image data
US8204299B2 (en) * 2008-06-12 2012-06-19 Microsoft Corporation 3D content aggregation built into devices
JP5627253B2 (ja) * 2009-05-29 2014-11-19 富士通テン株式会社 画像処理装置、電子装置、および、画像処理方法
US8502860B2 (en) * 2009-09-29 2013-08-06 Toyota Motor Engineering & Manufacturing North America (Tema) Electronic control system, electronic control unit and associated methodology of adapting 3D panoramic views of vehicle surroundings by predicting driver intent
JP5500255B2 (ja) 2010-08-06 2014-05-21 富士通株式会社 画像処理装置および画像処理プログラム
RU2010134021A (ru) 2010-08-17 2012-02-27 Общество с ограниченной ответственностью "Интеллектуальные системы" (RU) Транспортная видеосистема кругового обзора и способ получения виртуального вида сверху
JP5716389B2 (ja) * 2010-12-24 2015-05-13 日産自動車株式会社 車両用表示装置
JP5668857B2 (ja) 2011-07-29 2015-02-12 富士通株式会社 画像処理装置、画像処理方法および画像処理プログラム
KR101209072B1 (ko) 2011-12-08 2012-12-06 아진산업(주) 워핑 방정식과 다중 룩업 테이블을 이용한 차량 어라운드 뷰 영상 생성장치
JP5959264B2 (ja) 2012-03-29 2016-08-02 三菱電機株式会社 画像処理装置及び方法、並びにコンピュータプログラム
US9723272B2 (en) * 2012-10-05 2017-08-01 Magna Electronics Inc. Multi-camera image stitching calibration system
US9225942B2 (en) * 2012-10-11 2015-12-29 GM Global Technology Operations LLC Imaging surface modeling for camera modeling and virtual view synthesis
US20140114534A1 (en) * 2012-10-19 2014-04-24 GM Global Technology Operations LLC Dynamic rearview mirror display features
JP6310652B2 (ja) * 2013-07-03 2018-04-11 クラリオン株式会社 映像表示システム、映像合成装置及び映像合成方法
US10210399B2 (en) * 2013-12-20 2019-02-19 Magna Electronics Inc. Vehicle vision system with image processing
US9533618B2 (en) * 2014-03-07 2017-01-03 Texas Instruments Incorporated Method, apparatus and system for processing a display from a surround view camera solution
US9621798B2 (en) * 2014-07-07 2017-04-11 GM Global Technology Operations LLC Grid-based image resolution enhancement for video processing module
US9727055B2 (en) * 2015-03-31 2017-08-08 Alcatel-Lucent Usa Inc. System and method for video processing and presentation
JP6582557B2 (ja) * 2015-05-28 2019-10-02 株式会社ソシオネクスト 描画装置、描画方法および描画プログラム
US10187590B2 (en) * 2015-10-27 2019-01-22 Magna Electronics Inc. Multi-camera vehicle vision system with image gap fill

Also Published As

Publication number Publication date
CN108604366A (zh) 2018-09-28
JP7397262B2 (ja) 2023-12-13
WO2017120506A1 (en) 2017-07-13
JP2019503007A (ja) 2019-01-31
US20170195564A1 (en) 2017-07-06
US10523865B2 (en) 2019-12-31
US11303806B2 (en) 2022-04-12
EP3400578B1 (en) 2021-12-01
CN108604366B (zh) 2023-12-15
EP3400578A1 (en) 2018-11-14
EP3400578A4 (en) 2019-01-16
US20200195846A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
JP7397262B2 (ja) 事前定義されたビューポイントルックアップテーブルを用いるサラウンドビューのための3次元レンダリング
JP4642723B2 (ja) 画像生成装置および画像生成方法
JP5739584B2 (ja) 車両周辺視角化のための3次元映像合成装置およびその方法
TWI578271B (zh) 動態影像處理方法以及動態影像處理系統
US11341607B2 (en) Enhanced rendering of surround view images
US10897600B1 (en) Sensor fusion based perceptually enhanced surround view
TWI505203B (zh) 產生車用影像的影像處理方法及影像處理裝置
Thomas et al. Development of a cost effective bird's eye view parking assistance system
JP2009124377A (ja) 車両周辺画像処理装置及び車両周辺状況提示方法
JP2019202584A (ja) 画像処理装置および画像処理方法
US11858420B2 (en) Below vehicle rendering for surround view systems
JP2012065228A (ja) 画像処理装置、画像表示システム及び画像表示方法
JP5803646B2 (ja) 車両周辺監視装置
JP5047915B2 (ja) 車載用画像処理装置及びその画像処理方法
JP2008219716A (ja) 表示制御装置
JP2005124010A (ja) 撮像装置
JP2022529657A (ja) 車両周辺部の画像を生成するための方法ならびに車両周辺部の画像を生成するための装置
JP2005223568A (ja) 画像合成装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220520

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20220520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231107

R150 Certificate of patent or registration of utility model

Ref document number: 7397262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150