JP2022099282A - 荷電粒子顕微鏡用の無磁場サンプル面 - Google Patents

荷電粒子顕微鏡用の無磁場サンプル面 Download PDF

Info

Publication number
JP2022099282A
JP2022099282A JP2021203002A JP2021203002A JP2022099282A JP 2022099282 A JP2022099282 A JP 2022099282A JP 2021203002 A JP2021203002 A JP 2021203002A JP 2021203002 A JP2021203002 A JP 2021203002A JP 2022099282 A JP2022099282 A JP 2022099282A
Authority
JP
Japan
Prior art keywords
excitation
coil
optical element
magnetic field
sample surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021203002A
Other languages
English (en)
Inventor
ヘンストラ アレクサンデル
Alexander Henstra
クリスティアーン ティーメイヤー ペーター
Christiaan Tiemeijer Peter
モハンマディ-ゲイダーリ アリ
Ali Mohammadi-Gheidari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEI Co
Original Assignee
FEI Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEI Co filed Critical FEI Co
Publication of JP2022099282A publication Critical patent/JP2022099282A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/103Lenses characterised by lens type
    • H01J2237/1035Immersion lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/14Lenses magnetic
    • H01J2237/1405Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/14Lenses magnetic
    • H01J2237/1405Constructional details
    • H01J2237/141Coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/14Lenses magnetic
    • H01J2237/1405Constructional details
    • H01J2237/1415Bores or yokes, i.e. magnetic circuit in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24564Measurements of electric or magnetic variables, e.g. voltage, current, frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2802Transmission microscopes

Abstract

Figure 2022099282000001
【課題】TEMまたはSTEMなどの電子顕微鏡のサンプル面の磁場を変化させる。
【解決手段】荷電粒子顕微鏡は、少なくとも、サンプル面の反対側に配置された第一および第二の光学要素、サンプル面の周りに配置された第三の光学要素、および第一、第二および第三の光学要素を制御するために結合されたコントローラを含む。コントローラは第一および第二の光学要素を励起して第一および第二の磁気レンズを生成するように結合され、第一および第二の磁気レンズは、サンプル面の反対側に形成され、同じ方向に向けられ、第三の光学要素を励起して第三の磁気レンズを、反対方向に向けられたサンプル面で生成し、第一および第二の光学要素の励起に対する第三の光学要素の励起の比は、サンプル面での磁場を調整する。
【選択図】図1

Description

本発明は、一般に、荷電粒子顕微鏡レンズ、特に、サンプル面で無視できるかまたはゼロの磁場を生成する荷電粒子顕微鏡対物レンズに関する。
磁性レンズは、荷電粒子が高エネルギーである場合、対物レンズとして荷電粒子顕微鏡法で使用される。対物レンズは、荷電粒子ビームの集束とイメージングに使用される。このような対物レンズは、サンプルの近くまたは周囲にて強い磁場を使用するため、焦点距離が短くなる。これは大半の材料では問題にならないが、かようなレンズの構成でイメージングすると、感度の高い磁性材料が損傷または破壊される可能性がある。従来のアプローチは、サンプルでの磁場を低減または排除するために、磁気レンズをサンプルからさらに遠ざけることを含み得る。しかし、そのようなアプローチは焦点距離の増加をもたらし、それは荷電粒子顕微鏡の分解能を低下させる。磁性材料をイメージングするそのような技術によりある程度のことができるようになるが、分解能の低下は依然として問題であり、さらなる改善が望まれている。
TEMまたはSTEMなどの電子顕微鏡のサンプル面の磁場を変化させるための例示的な装置が、本明細書に開示されている。例示的な装置は、少なくとも第一および第二の光学要素を含み、第一および第二の光学要素はサンプル面の周りに配置される。第一および第二の光学要素の配置は、サンプル面の上下にあり得、上下は、電子顕微鏡の光軸に沿っている。顕微鏡はさらに、同じくサンプル面の周りに配置された第三の光学要素を含む。さらに、電子顕微鏡は、サンプル面での磁場に影響を与えるために、第一、第二、および第三の光学要素を制御するために結合されたコントローラを含む。コントローラは、コントローラによって実行されると、コントローラが、第一および第二の光学要素を励起して、サンプル面の周りに形成される第一および第二の磁気レンズを生成し、第一および第二のレンズは同じ方向に向けられ、第三の光学要素を励起して、第三の磁気レンズをサンプル面に生成し、第三の磁気レンズは、第一および第二の磁気レンズと反対方向に配向されることを引き起こす、コードを格納する非一時的メモリに結合され、またはそれを含み得、ここで、第一および第二の光学要素の励起の第三の光学要素の励起に対する比は、サンプル面での磁場を調整する。磁場の調整は、第三の磁性レンズのサンプル面での相互作用と、第一および第二の磁性レンズに由来するサンプル面に存在する磁場とに起因する。
電子顕微鏡のサンプル面の磁場を変化させるための例示的な方法が本明細書に開示されている。例示的な方法は、第一および第二のコイルの励起に基づいて、サンプル面の周りに第一および第二の磁気レンズを形成することであって、第一および第二の磁場は同じ方向に向けられ、サンプル面の反対側に対称的に配置される、こと、第三のコイルの励起に基づいて、サンプル面に第三の磁気レンズを形成することであって、第三の磁場は、第一および第二の磁気レンズの配向と反対の方向に配向される、こと、および少なくとも第三のコイルの励起に対する第一および第二のコイルの励起に対する第三のコイルの励起の比に基づいて、サンプル面での磁場を調整することを少なくとも含む。
図1は、本開示のある実施形態による、例示的な荷電粒子顕微鏡である。 図2は、本開示の実施形態による、例示的な対物レンズである。 図3は、本開示の実施形態による、荷電粒子顕微鏡のサンプル面での磁場を調整するための例示的な方法である。 図4Aは、本開示の実施形態による例示的な磁場のプロットである。 図4Bは、本開示の実施形態による例示的な磁場のプロットである。 図5は、本開示の一実施形態による、例示的な機能ブロック図である。
同様の参照番号は、図面のいくつかの図を通じて、対応する部分を指している。
本発明の実施形態が、サンプル面で調整可能な磁場を形成するように構成された1つまたは複数の対物レンズを含む荷電粒子顕微鏡という文脈で、以下に説明される。例えば、3つのレンズをサンプル面の周りに配置し、エネルギーを与えて、サンプル面で小さな磁場を打ち消すか、または生成することができる。いくつかの実施形態では、無場対物レンズは対称的またはほぼ対称的にエネルギーが与えられるが、一方、液浸対物レンズは無場対物レンズの反対側にエネルギーが与えられる。そのような実施形態では、液浸対物レンズの励起は、無場対物レンズのためにサンプル面で生成される磁場を低減または打ち消す。しかし、本明細書に記載の方法は一般に、コーンビームシステムおよびパラレルビームシステムの両方を含む広範囲の異なる断層撮影の方法および装置に適用可能であり、特定の装置タイプ、ビームタイプ、対象物タイプ、長さスケール、または走査軌道に限定されないことを理解すべきである。
本出願および特許請求の範囲において使用されるように、単数形「a」、「an」および「the」は、文脈上他に明確に指示されない限り、複数形も含む。加えて、用語「含む(includes)」は、「含む(comprises)」の意味である。さらに、用語「結合された」は、結合されたアイテム間の中間要素の存在を排除するものではない。
本明細書に記載のシステム、装置、および方法は多少なりとも制限的なものとして解釈されるべきではない。代わりに、本開示は、単独で、ならびに相互の様々な組み合わせおよび部分的な組み合わせにおいて、様々な開示された実施形態のすべての新規性および非自明性を有する特徴および態様を対象とする。開示されたシステム、方法、および装置は、任意の特定の態様もしくは特徴またはそれらの組み合わせに限定されるものではなく、開示されたシステム、方法、および装置は、任意の1つ以上の特定の利点が存在すべきである、または問題が解決されるべきであることも必要としない。いずれの動作理論も説明を容易にするためであるが、開示されたシステム、方法、および装置は、そのような動作理論に限定されるものではない。
開示された方法のいくつかの動作は、便宜的な提示のため、特定の順番で記載されているが、以下に記載される具体的な用語によって特定の順序が要求されない限り、この説明様式が並び替えを包含することが理解されるべきである。例えば、順次記載される動作は、場合によっては、並び替えられるかまたは同時に実行されることができる。さらに、単純化のために、添付の図は、開示されたシステム、方法、および装置を、他のシステム、方法、および装置とともに使用することができる様々な方式を示していない場合がある。追加的に、本説明は、時に、開示された方法を説明するために、「生成する」および「提供する」のような用語を使用する。これらの用語は、実施される実際の動作の高レベルの抽象化である。これらの用語に対応する実際の動作は、特定の実装に応じて、様々であり、当業者には容易に認識できる。
いくつかの例では、値、手順、または装置は、「最低」、「最良」、「最小」などと呼ばれる。そのような記載は、多くの使用される機能的選択肢からの選択が可能であることを示すことを意図しており、そのような選択は、他の選択よりも優れている、小さい、または他の点で望ましい必要はないことが理解されよう。
荷電粒子顕微鏡では、荷電粒子は、いわゆる「荷電粒子レンズ」によって集束およびイメージングされる。これらのレンズは、磁場または電場を適切に成形することによって作成できる。しかし、透過型電子顕微鏡(TEM)または走査型透過電子顕微鏡(STEM)に典型的な、60kVを超えるビーム電位で動作する電子顕微鏡の場合、電場で作られたレンズは、必要とされる大きな電場のために実用的ではない。これらのタイプの顕微鏡の場合、荷電粒子レンズを作成するための好ましい方法は、磁場を使用することである。
従来、磁気レンズは次のように構成されていた。数百の巻線を運ぶコイルが、顕微鏡の光軸を中心に回転対称に配置されている。コイルは数アンペアの電流で励起される。このような大電流では、コイル内のワイヤの電気抵抗が大きな電力損失につながる可能性がある。これは通常、コイルの水冷を使用して、また大径のワイヤを使用して処理される。そのようなコイルは、少なくとも約10センチメートルの直径および少なくとも約10平方センチメートルの断面(電流に垂直)を有する。コイルは励起されている間、顕微鏡の光軸上に軸方向(つまり、光軸に平行)に強い磁場を生成する。磁場は発散がないため、本質的に半径方向(つまり、光軸に垂直)の成分がある。これらの放射状成分は、光軸までの距離に比例して成長し、それらの正味の効果は、光軸までのこれらの粒子の距離に比例してスケーリングする、光軸に向かう荷電粒子の偏向である。したがって、そのような磁場は円形集束レンズとして機能する。
磁気レンズの集束強度は、軸方向磁場の2乗と軸方向磁場の長さ(光軸に沿って測定)に比例する。したがって、強力な磁気レンズを得るためには、コイルの周りに磁気ヨークを使用して磁束を誘導し、軸上の小さな領域に集束させることによって、光軸上の小さな領域に磁場を集中させるのが一般的である。このような小さな領域の長さはわずか数ミリメートルである。磁気レンズは、ヨーク、コイル、および水冷の構造全体で構成されているが、ここで使用される「磁気レンズ」という用語は、軸方向の磁場が集中する軸の近くの小さな領域のみを指す。さらに、本明細書で使用される「光学要素」という用語は、磁気レンズを形成する磁場を生成する構造(すなわち、コイル、ヨーク)を指す。
倍率が最も高く、収差が最も少ないため、強力なレンズが望ましい。ここで、収差は理想的な線形集束効果からの逸脱を意味する。最も重要な収差の1つは球面収差である。これは、粒子から光軸までの距離の3乗に比例する追加の集束効果を引き起こす。磁気レンズの球面収差は、磁場の長さ(光軸に沿って測定)および磁気レンズの焦点距離の3乗にほぼ直線的に比例する。
荷電粒子顕微鏡の分解能は、対物レンズの光学的な質によって左右される。対物レンズは、TEMなどの画像顕微鏡の場合は最初の画像レンズであり、SEMやSTEMなどの走査型顕微鏡の場合は最後のプローブ形成レンズである。したがって、最高の分解能を得るには、対物レンズを標本にできるだけ近づけ(焦点距離を最小化するため)、磁場の長さをできるだけ短くすることが望ましい。この目的のために、現代の荷電粒子顕微鏡は、多くの場合いわゆる液浸対物レンズを採用しており、その場合、標本は対物レンズの場の内側にある。このような浸漬により、確実に最小焦点距離と最小の場の長さになる。
対物レンズの磁場への標本の浸漬は、広範囲の標本に対して可能である。ただし、一部の種類の標本では、これらの標本には、例えば、外部磁場の存在下で変化または破壊される繊細な磁気構造(磁性粒子や磁気渦など)が含まれているため、浸漬は不可能である。このような標本は、「無磁場」条件でのみ、つまり、液浸タイプではなく、標本に磁場を生成しない対物レンズを使用してのみ研究できる。無磁場の状態を作り出すための先行のアプローチは、標本内の起こり得る繊細な磁気構造に影響を与えないように、その磁場の尾部がゼロにまで十分に低下するように、対物レンズを標本から十分に遠ざけることである。ただし、この単純なアプローチでは、通常、対物レンズと標本との間に非常に大きな距離(およびそれに対応して大きな焦点距離と大きな収差)が必要であるため、液浸レンズと比較して分解能が最大10分の1低下し、原子的な分解能はもはや達成できない。
磁気構造を有するいくつかの標本については、(本質的に)無磁場の状態でだけでなく、小さくて調整可能な磁場の存在下で標本をイメージングすることも望ましい。このとき、そのような磁場は可変であり、印加された外部磁場の関数として磁気構造の応答を調べることができる。
標本に比較的近く、標本での磁気の尾部が最小の対物レンズを作成するための1つの手法は、サンプル面の反対側に2つの対称的に配置され、励起された無磁場レンズを生成するのと同時に、サンプル面で(小さな)液浸対物レンズを生成することである。2つの無磁場レンズは、磁場が同じ方向を向くように大きさが等しく励起されるが、液浸対物レンズは、磁場が反対方向を向くように励起される。このように、無磁場レンズからサンプル面へのいずれかの磁場の漏れは、結果として生じる磁場が減少または排除されるように、液浸対物レンズの磁場と相互作用する。液浸レンズの励起と無磁場レンズの励起の比率は、結果として生じる磁場の状態を決定し、例えば、ゼロにされるか、小さな磁場に減少する(このような小さく調整可能な磁場は、例えば、外部磁場に対する磁性サンプルの応答の研究に有利である)。サンプル面での磁場の低減または除去は、光軸の方向、例えば、結果として生じる磁場のz成分にのみ行うことができ、対して、XおよびY成分(または半径方向成分)は、増加する前に光軸からわずかな距離減少し得る。液浸対物レンズを生成する励起の大きさは、無磁場レンズを生成する励起の大きさよりも小さくなり得る。前述のように、この相対的な動作構成により、サンプル面で小さな磁場を生成するか、サンプル面で磁場をゼロにすることができる。そのため、サンプルプランの磁場は、励起の比率を変更することで調整できる。
図1は、本開示の実施形態による、荷電粒子顕微鏡100の例である。荷電粒子顕微鏡(CPM)100は、いくつかの例では、TEMまたは走査型TEM(STEM)であり得るが、かような指定は、限定的または必須ではない。CPM100は、サンプル面での磁場が調整され得るように配置および構成された対物レンズを含み得る。例えば、対物レンズは、少なくとも光軸の方向の磁場がサンプル面で生成されないように、または小さな磁場のみがサンプル面で生成されるように励起され得る。磁場の半径方向成分が存在する可能性があるが、光軸からの半径方向の隔たりによっても減少する可能性があることにも留意されたい。サンプル面に存在する磁場のレベルを変更することにより、磁性材料を様々な磁気状態でイメージングできる。あるいは、対物レンズを励起して、より従来式に近いレンズ特性、例えば、サンプル面で生成される強い磁場を生成して、従来の液浸レンズを形成することができる。CPM100は、少なくとも、ソース102、コンデンサシステム104、対物レンズ106、サンプルホルダー108、投影システム110、検出器112、およびコントローラ114を含む。様々な構成要素102~112は、レンズ励起、投影制御、および検出器選択/データ処理などのそれらの機能的側面を制御するために、コントローラ114に結合され得る。CPM100は、追加またはより少ない構成要素を有することができ、CPM100に含まれる構成要素は、例示のみを目的としており、本開示に限定されないことに留意されたい。
ソース102は、ショットキー、電場放出、または熱電子などの任意のタイプの荷電粒子エミッタであり得る。コントローラ114は、所望の電流およびエネルギーの荷電粒子ビーム116を生成するために、ソース102に結合された1つまたは複数の電源(図示せず)に制御信号を発する。いくつかの実施形態では、ソース102は、コントローラ114によって制御されるエネルギーおよび電流で電子ビームを生成および放出する。
コンデンサシステム104は、ビーム116をサンプルホルダー108内のサンプルに向けて、および/または集束するように配置および構成された様々な光学部品およびビーム操作コンポーネントを含む。コントローラ114は、CPM100内の異なる平面でのビーム116の形状および焦点を決定し、サンプルホルダー108上のサンプルを横切るビーム116の動きを制御する制御信号を提供する。
サンプルホルダー108は、図1のビーム116によって示されるように、CPMの光軸に出入りすることができる細長いロッドであり得、例えば、サンプルに当たる電子が検出器112による最終的な検出のため光軸に沿って継続するようにサンプルを保持するように形成される。サンプルホルダー108の位置は、本明細書で参照されるように、サンプル面に配置されている。さらに、サンプルホルダー108は、例えば、光軸に垂直であるXY平面でサンプルを移動させる位置決め装置(図示せず)によって、複数の自由度で配置することができる。このような移動により、標本Sの様々な部分が、光軸に沿って移動する(Z方向に)電子ビーム116によって照明/撮像/検査されることが可能になる(かつ/または電子ビーム走査の代替として、走査運動が行われることが可能になる)。所望される場合、オプションの冷却デバイス(描写せず)が、標本ホルダーHとの熱接触状態にされ、それによって標本ホルダーH(およびそれ上の標本S)を例えば極低温に維持することができる。
投影システム110は、サンプルを横切るビーム116を検出器112に集束させるように制御される様々な静電/磁気レンズ、偏向器、補正器(スティグメータなど)などを含み得る。
検出器112は、サンプルを通過した透過荷電粒子を取得するために光路に独立して移動することができるいくつかの異なる検出器モジュールを備えることができる。異なる検出器の数は、少なくとも、CCDでイメージングできる蛍光スクリーン、例えば、電子などの荷電粒子を直接検出するように構成された固体センサー、および/または衝突する荷電粒子の位置をマッピングすることができるセグメント化検出器を含み得る。もちろん、他の検出器もこの開示の範囲内にある。
コントローラ114は、CPM100の他の様々な構成要素からデータを制御および受信するように結合されている。コントローラ114は、動作を同期させること、設定値を提供すること、信号を処理すること、計算を実行すること、およびメッセージ/情報を表示デバイス(描写せず)に表示することなど、様々な機能を提供することができる。さらに、コントローラ114は、1つまたは複数の処理コア、様々なタイプのメモリ、および1つまたは複数の通信インターフェースを含み得る。いくつかの例では、コントローラ114は、インターネット、ローカルエリアネットワーク、またはワイドエリアネットワークなどの任意のタイプのネットワークを介して、クラウドベースの処理システムおよびデータバンクに接続され得る。メモリは、コントローラ114に含まれるか、ネットワークを介してコントローラ114に結合されるかにかかわらず、実行されると、本明細書で論じられる技術に従ってCPM100の機能を制御する実行可能コードを含み得る。
対物レンズ106は、サンプルホルダー108の周りに配置され、複数の光学要素を含む。本明細書で使用される場合、「光学要素」という用語は、光軸に磁場を生成する構造を示す。従来、光学要素は、励起されたときに、囲まれたコイルによって生成された磁束を光軸の小さな領域に導くように形作られた磁気ヨークによって囲まれた1つまたは複数のコイルを含んでいる。光学要素のそれぞれは、対物レンズ106内部の光路に沿ってそれぞれの磁気レンズを生成する。生成される複数の磁気レンズは、少なくとも、2つの無場対物レンズおよび液浸対物レンズを含む。2つの無磁場対物レンズがサンプル面の周りに形成されている。本明細書で使用する場合、サンプル面の周りとは、2つの磁気レンズが、電子ビーム116によって表されるように、CPM100の光軸に平行な方向にサンプル面の上下に形成されるか、または別の言い方をすれば、サンプル面108の反対側に配置されることを意味する。2つの無磁場レンズは、サンプル面108の周りに対称的に配置することも、サンプル面108の周りにほぼ対称的に配置することもできる。本明細書で使用される場合、「サンプル面の周りに対称的に配置される」とは、2つの無磁場レンズのそれぞれが、サンプル面から等距離であるが、サンプル面の反対側に形成されることを意味するのに対し、「サンプル面の周りにほぼ対称に配置される」は、サンプル面から各無磁場レンズまでの距離が等しくなく、そのため、一方が他方よりもサンプル面に近づいたり遠ざかったりしている可能性があることを意味する。液浸対物レンズはサンプル面に形成され、サンプル面を含むボリュームで生成される。
2つの無磁場対物レンズは、それぞれの光学要素から形成され、これは、ヨークが巻き付けられ、ヨークがそこからサンプル面108に向かって延びるポールピースを有するそれぞれのコイルを含む。コイル、ヨークおよびポールピースは、サンプル面108の反対側に配置され、ポールピースは、サンプル面108に向かって延びる。液浸対物レンズは、2つの光学要素のコイル/ヨークの一方または両方に横方向に隣接して配置された1つまたは複数のコイルから形成することができる。対物レンズのコイルは、異なるサイズであっても、すべて同じサイズであってもよく、サイズは巻線の数を指す。当技術分野で理解されているように、コイルの励起は、通常、アンペアターン(AT)の観点から言及され、それによって形成されるレンズの強度および向きを決定する。
動作中、コントローラ114は、対物レンズ106を1つまたは複数の電源(図示せず)によって様々な方法で励起させて、サンプル面での磁場が調整されるようにする。例えば、対物レンズ106は、少なくとも光軸、例えば、磁場のz成分に沿って、サンプル面に磁場がないように励起され得る。あるいは、対物レンズ106は、再び光軸の方向に小さな磁場がサンプル面に生成されるように励起され得る。電場の無効化または小さな電場の生成は、例えば、磁性材料のイメージングおよび分析を可能にする。さらに、対物レンズ106は、より従来に近い方法で操作することができ、その結果、強力な液浸レンズがサンプル面に形成される。無磁場イメージング、小磁場イメージング、および従来のイメージングを提供するそのような柔軟性は、コイルの設計および対物レンズ106内部の様々な構成要素の対称性に起因し得る。
いくつかの実施形態では、無場対物レンズを形成するコイルは、対称的に同じ方向に、例えば、バイアスの同じ符号で励起され、一方、液浸対物レンズを形成する1つまたは複数のコイルは、無場対物レンズコイルと反対に励起される。無磁場対物レンズを形成するコイルの励起および液浸対物レンズを形成するコイルの励起は、サンプル面での磁場のz成分のゼロ化またはz方向の小さな磁場の生成のいずれかに至る。より具体的には、2つの励起の比は、サンプル面108での磁場がゼロにされるか、または減少されるかを決定し得る。さらに説明すると、2つの無磁場レンズからの磁場が漏れてサンプル面108に広がり、一方、浸漬対物レンズは、漏れた磁場と結合して、サンプル面での磁場をゼロにするかまたは減らすことができる。この結合された磁場は、励起の比率に応じた強さを有する。サンプル面に対する2組のレンズの物理的配置もまた、サンプル面での磁場に影響を与えることに留意されたい。さらに、無場対物レンズのコイルは等しく励起される必要はなく、代わりに、一方のコイルが他方のコイルの分数または倍数で励起され得ることに留意されたい。このような分数または倍数は、例えば、0.5から2の範囲になり得る。
図2は、本開示の実施形態による、例示的な対物レンズ206である。この図は、対物レンズ206の断面を示している。対物レンズ206は、対物レンズ106の例であり、いくつかの例を挙げれば、TEMまたはSTEMなどの荷電粒子顕微鏡に含まれ得る。対物レンズ206は、サンプル面208の周りに配置することができ、これは、画像取得のためにサンプルが配置されるCPM内の位置を表す。対物レンズ206は、サンプルプラン208に大きな磁場が存在する従来のモード、例えば、液浸モードで動作することができ、または対物レンズ206は、無磁場モード、例えば、磁場がサンプル面にほとんどまたはまったく存在しないモードで動作することができる。磁性材料を調べるには、必要に応じてサンプル面の位置で磁場をゼロにしたり、小さな磁場を生成したりできると有用である。
対物レンズ206は、少なくとも3つの光学要素を含む。第一の光学要素220は、サンプル面208の一方の側に配置され、第二の光学要素222は、サンプル面208の反対側に配置される。光学面の側は、例えば、電子ビームの伝搬のための光軸であり得る光軸216を基準としている。第三の光学要素は、コイル244および246を含み、さらに、保持要素250およびヨーク240および242の部分を含む。本例は、第三の光学要素が2つのコイル(244および246)を含む実施形態を示している。2つのコイルにおけるそのような分離の利点は、それがサンプルホルダー208の光軸への容易なアクセスを可能にすることである。あるいは、第三の要素は、1つのコイル(244または246)のみを含み得る。保持要素250は、特定の動作条件下で磁場アプリケータとして機能することができる。第三の光学要素もまた、サンプル面208の周り、例えば、サンプル面の両側に配置され、さらに、それぞれ第一および第二の光学要素に隣接して配置される。さらに、第一および第二の光学要素220、222は、ギャップGがそれらのそれぞれの極片の間に形成されるように配置され、ギャップは、サンプル面208の周りに形成される。図2は、対物レンズ206の断面を示しているが、様々な構成要素は、光軸216を中心とするトロイダル形状に形成され得る。
第一の光学要素220は、コイル228およびヨーク240を含む。ヨーク240は、第一および第二のポールピース230および232が形成され、サンプル面208に向かって延びるように形作られている。2つのポールピース230および232は、それぞれの端部でギャップによって分離されている。第二の光学要素222は、コイル234およびヨーク242を含む。ヨーク242は、第一および第二のポールピース236および238が形成され、サンプル面208に向かって延びるように形作られている。同様に、2つのポールピース236および238は、それぞれの端部でギャップによって分離されている。ギャップGは、第一の光学要素220のポールピース230と第二の光学要素222のポールピース236との間の距離から形成され、ギャップGは、サンプル面208を取り囲む。
第三の光学要素は、コイル244および246、少なくともポールピース230を含むヨーク240の部分、保持要素250、およびポールピース236を含むヨーク242の部分によって形成される。あるいは、第三の光学要素は、1つのコイル(コイル244またはコイル246など)のみを有し得る。第三の光学要素は、それぞれ第一および第二の光学要素220および222に横方向に隣接して配置することができるが、一般に、反対側のサンプル面208から実質的に等しい距離に配置することができる。
第一および第二のコイル228および234は、巻線に関して類似させて構成され得る。第三および第四のコイル244および246は、同様に、互いに類似させて構成され得る。いくつかの実施形態では、4つのコイル228、234、244および246はすべて、サイズが類似している。しかし、他の実施形態では、第一および第二のコイル228、234は、第三および第四のコイル244、246よりも大きくても小さくてもよい。
動作中、対物レンズ206は、光軸216に沿って移動する荷電粒子ビームを制御するために、またサンプル面208での磁場をさらに管理/調整/変更/修正するために通電され得る。第一および第二の光学要素220、222および/または第三および第四のコイル244、246の励起は、対物レンズ206の内部に複数の磁気レンズを形成することができる。例えば、第一の光学要素220の励起は、ポールピース230および232の端部に第一の磁場レンズを形成する。同様に、第二の光学要素222の励起は、ポールピース236および238の端部に第二の磁場レンズを形成する。第一および第二の磁場レンズはまた、当技術分野で知られているように、無磁場レンズと呼ばれることもある。第三の光学要素はまた、励起されて、サンプル面208に液浸対物レンズを形成することができる。液浸対物レンズは、コイル244および246の一方または両方の励起によって生成することができる。
例えば、いくつかの実施形態では、第一および第二の光学要素220、222は対称的に励起され、これは、それらが同じエネルギーで励起され、同じ配向で磁場を生成する一方で、第三および/または第四のコイル244、246は、つまり第三の光学要素は、互いに対称的に出るが、それらの結果として生じる磁場は、第一および第二の光学要素220、222によって生成された磁場と反対の配向にある。例えば、第一および第二の光学要素220、222は4000アンペアターン(AT)で励起され得、一方、第三および/または第四のコイル244、246は-18ATで励起される。他の実施形態では、第一および第二の光学要素の励起は、エネルギー、例えば、バイアスの大きさに関して対称ではなく、代わりに、第一または第二の光学要素の1つは、他の光学要素に提供される励起の分数または倍数である大きさで励起され得る。分数/倍数は励起の大きさに比例するが、励起の符号は同じになる。分数/倍数は、例えば0.5から2の範囲にすることができる。もちろん、他の励起も可能であり、選択された励起は、サンプル面での所望の磁場状態に基づくことができる。
上記の励起レジームでは、第一および第二の磁場レンズの両方の磁場が、サンプル面208に向かって漏れる可能性がある。2つのレンズが同じ方向を向いているため、この磁場の漏れは、付加的に結合する。しかし、液浸対物レンズは反対の向きを有するので、サンプル面で生成された液浸対物レンズはまた、漏れ磁場と結合し、結果として生じる磁場は小さいか、またはゼロにされる。サンプル面での磁場が打ち消されるか減少するかは、第一および第二の光学要素の第三の光学要素に対する相対的な励起に依存する。より具体的には、第一および第二の光学要素の励起に対する第三の光学要素の励起の比率は、サンプル面での磁場を調整する。例えば、図2の形状で、電子加速電圧が300kVの場合、第1と第2の光学要素を4000ATに励起して、300keVのエネルギーの電子をサンプル面に集束させる磁気レンズを生成でき、第三の光学要素を-18ATまで励起して、サンプル面208での磁場のz成分をゼロにすることができる。同様に、図2の形状で、電子加速電圧が100kVの場合、第一および第二の光学要素の励起は2100ATにでき、100keVの電子をサンプル面に集束させるレンズを生成する。第三の光学要素の励起は、サンプル面208での磁場のz成分をゼロにするために、-9.5ATに設定され得る。加速電圧のこれらの2つの例では、第一および第二の光学要素に対する第三の光学要素の励起の比率は一定で、-18:4000=-9.5:2100=-0.45%である。当業者は、この比率の一定性は、コイル励起と磁場との間が線形の関係である結果であること、この線形性が、高励起および/または狭い磁気ヨークで発生する可能性のある磁気飽和によって損なわれる可能性があること、およびこの比率は、磁気飽和の存在下での励起にいくらか依存することを理解する。
第一および第二の光学要素の4000ATの励起は、図2に示す形状および300keVのビームエネルギーの電子に対して有効である。他の実施形態では、300keVの電子を集束させるのに必要な第一および第二の光学要素の励起は、ポールピース230と240との間の選択されたギャップ、236と242との間のギャップ、ポールピースの内径に応じて、さらにポールピース内の可能な磁気の飽和に応じて、2000ATから8000ATの間で変化し得る。同様に、サンプルの磁場をゼロにするために必要な第三の光学要素の励起と第一および第二の光学要素の励起の比率は、選択した形状に応じて-0.01%から-5%の間で変化し得る。
サンプル面208での磁場を低減または排除するための光学要素の励起の対称性または略対称性が、結果として生じる磁場に到達する唯一の要因ではない可能性があることに留意されたい。対物レンズ206の物理的対称性もまた、磁場の調整に影響を与える。例えば、ポールピース230、232および236、238の対称性は、サンプル面に形成された液浸レンズとともに、第一および第二の光学要素によって生成された磁場がどのように相互作用するかに影響を与える。サンプル面がギャップG内部の中心にないそのようなシナリオでは、第一および第二の光学要素の相対的励起は、オフセットされたサンプル面208を司るように調整され得る。例えば、サンプル面208からより遠い光学要素は、他の光学要素よりも強い励起を受けることができる。もちろん、反対の励起のレジーム、例えば、より低い励起を受けるより近い光学要素もまた実行され得る。
図3は、本開示の実施形態による、荷電粒子顕微鏡のサンプル面での磁場を調整するための例示的な方法301である。方法301は、例えば、CPM100などの荷電粒子顕微鏡で実施することができる。方法301は、通常、サンプル面に強い磁場を有する従来のCPMで研究するのに問題のある磁性材料を調べるために使用することができる。方法301を実施することにより、そのような材料は、ゼロ磁場が存在するか、または小さな磁場が存在する状態で調べることができる。
方法301は、サンプル面の周りに第一および第二の磁気レンズを形成することを含むプロセスブロック303で開始することができる。第一および第二の磁気レンズは、光学要素220および222などの第一および第二の光学要素によって形成することができる。例えば、第一および第二の光学要素に関連する第一および第二のコイルは、励起されて第一および第二の磁気レンズを形成し得、これは、サンプル面の反対側に形成され得る。いくつかの実施形態では、第一および第二のコイルの励起は、少なくとも励起の符号に関して対称であり得る。対称的な励起は、少なくとも実施するCPMの光軸に対して、同じ方向に生成される磁場レンズをもたらす可能性がある。いくつかの実施形態では、励起はまた、コイル電流の符号だけでなく、励起の大きさに関して対称であり得る。しかし、他の実施形態では、1つの磁気レンズは、他の光学要素の励起の分数または倍数で励起される光学要素から形成され得、ここで、倍数は、励起の大きさに関する。倍数は、例えば、0.5から2の範囲であり得る。そのような実施形態では、バイアスの向きは同じであるが、バイアスの大きさは、2つの励起間で異なる可能性がある。
プロセスブロック303の後には、サンプル面に第三の磁気レンズを形成することを含むプロセスブロック305が続き得る。第三の磁場レンズは、第一および第二の磁気レンズの向きとは反対の方向に向けることができる。第三の磁気レンズは、第三の光学要素、すなわち、第三および/または第四のコイルを励起することによって生成することができる。第三と第四のコイルの両方が励起されている場合、それらは対称的に通電される可能性がある。コイル244および246は、第三および第四のコイルの例である。第一および第二の光学要素および第三の光学要素の励起の大きさも同様に異なることに留意されたい。例えば、第一および第二の光学要素の励起の大きさは、第三の光学要素の励起の大きさよりも大きくてもよい。いくつかの実施形態では、第一および第二の光学要素は4000ATで励起され、第三の光学要素は-18ATで励起される。
プロセスブロック305の後にはプロセスブロック307が続くことができ、第一および第二のコイルの励起に対する第三のコイルの励起の比に基づいてサンプル面での磁場を調整することを含む。励起の比率は、軸方向、例えば、z方向または光軸の方向の磁場の量を調整する。励起は、所与のサンプルまたは所与の画像取得に対して選択されて、ゼロ磁場または小さな磁場などの、サンプル面での所望の磁場を生成することができる。本明細書で言及される小さな磁場は、通常、約0.001テスラから約0.1テスラの範囲であるが、時には0.0001Tから0.001Tの範囲の小ささであり、時には0.1Tから0.5Tの範囲の大きさの磁場である。
図4Aおよび4Bはそれぞれ、本開示の一実施形態による例示的な磁場のプロット401および403を示す。プロット401および403に示されているデータは、それぞれZおよびX方向のサンプル面108および208などのサンプル面、および本明細書に開示されるように励起される対物レンズ106および206などの対物レンズに対する磁場の強度を示している。例えば、第一および第二の光学要素は4000ATで励起され得、一方、第三の光学要素は-18ATで励起され、これはサンプル面での磁場を最小化する。プロット401は、サンプル面の周りの光軸上の様々な位置での磁場のz成分の変化を示している。プロット401では、サンプル面はプロットのx軸上の位置ゼロ(0)であり、プロットで示されているように、この位置での磁場は非常に小さい。プロット(y軸)に基づいて、z=0における磁場は、3.0×10-5T未満である。メインレンズ、補助レンズ、または両方の励起を変化させると、z=0の磁場を変更するゼロにし得る。
プロット403は、x方向(光軸に垂直)の磁場を示し、これは、X方向の磁場のxおよびz成分の表現を含む。示されているように、磁場のx成分はz=0でゼロであり、z=-1mmでわずかに存在する。さらに、磁場のz成分は、xの距離が最大になるまで増加すると増加し、その後ゆっくりと減少する。このようなデータは、磁性サンプルが荷電粒子顕微鏡にロード/アンロードされるときに、対物レンズを非励起にする必要がある可能性があることを示している。
図5は、本開示の一実施形態による、例示的な機能ブロック図500である。図5は、本開示の一実施形態を実装するために使用され得るコンピュータシステム500を例解する、ブロック図である。コンピューティングシステム500は、システム100に含まれるコンピューティングハードウェアの一実施例であってもよい。コンピュータシステム500は、少なくとも、情報を処理するためのコア530などのハードウェアプロセッサを含み、通信バスに結合され得る。コンピューティングシステム500は、方法301などの、本明細書に開示される方法および技術を実装するために使用され得て、また、パルス化電子ビームのパルス周期とサンプルの走査の同期に基づいて、画像を取得するために使用され得る。
コンピュータシステム500はまた、コア530によって実行される情報および命令を記憶するためにバスに結合された、ランダムアクセスメモリ(RAM)または他の動的記憶デバイスなどの、メインメモリ532を含む。メインメモリ532はまた、コア530によって実行される命令の実行中、一時的変数または他の中間情報を記憶するために使用され得る。かかる命令は、コア530にアクセス可能な非一時的記憶媒体内に記憶されるとき、コンピュータシステム500を、命令で指定された動作を実施するようにカスタマイズされた専用マシンにレンダリングする。
コンピュータシステム500は、コア530のための静的情報および命令を記憶するためにバスに結合された、読み取り専用メモリ(ROM)534または他の静的記憶デバイスをさらに含む。磁気ディスクまたは光学ディスクなどの記憶デバイス536が、提供され、情報および命令を記憶するためのバスに結合される。
コンピュータシステム500は、情報をコンピュータユーザに表示するための、ディスプレイ31などのディスプレイにバスを介して結合されてもよい。英数字キーおよび他のキーを含む入力デバイス33は、コア530に情報およびコマンド選択を通信するためのバスに結合される。別のタイプのユーザ入力デバイスは、方向情報および命令選択をコア530に通信するため、およびディスプレイ上のカーソル移動を制御するためのマウス、トラックボール、またはカーソル方向キーなどのカーソル制御である。この入力デバイスは通常、デバイスが平面内の位置を指定することを可能にする、二つの軸、すなわち、第一の軸(例えば、「x」)および第二の軸(例えば、「y」)における2つの自由度を有する。
コンピュータシステム500は、カスタマイズされたハードワイヤードロジック、1つ以上のASICまたはFPGA、ファームウェアおよび/またはコンピュータシステムと組み合わせてコンピュータシステム500を専用マシンにするか、またはコンピュータシステム500のプログラムを作成するプログラムロジックを使用して、本明細書に記載の技術を実装してもよい。一実施形態によれば、本明細書の技術は、メインメモリ532内に収容される1つ以上の命令の1つ以上のシーケンスを実行するコア530に応答して、コンピュータシステム500によって実施される。そのような命令は、記憶デバイス536などの別の記憶媒体からメインメモリ532に読み込まれてもよい。メインメモリ532内に収容される命令のシーケンスの実行は、コア530に、本明細書に記載される処理工程を実施させる。代替的な実施形態では、ソフトウェア命令の代わりに、またはソフトウェア命令と組み合わせて、ハードワイヤード回路を使用してもよい。
本明細書で使用される「記憶媒体(storage media)」という用語は、機械を特定の方法で動作させるデータおよび/または命令を記憶する任意の非一時的媒体を指す。そのような記憶媒体は、不揮発性媒体および/または揮発性媒体を含み得る。不揮発性媒体は、例えば、記憶デバイス536のような、光または磁気ディスクを含む。揮発性媒体は、メインメモリ532のような動的メモリを含む。記憶媒体の一般的な形態は、例えば、フロッピーディスク、フレキシブルディスク、ハードディスク、ソリッドステートドライブ、磁気テープもしくは他の磁気データ記憶媒体、CDーROM、任意の他の光学データ記憶媒体、穴のパターンを持つ任意の物理媒体、RAM、PROM、EPROM、FLASH(登録商標)ーEPROM、NVRAM、任意の他のメモリチップもしくはカートリッジ、連想メモリ(CAM)、および三値連想メモリ(TCAM)を含む。
記憶媒体は、伝送媒体とは異なるが、伝送媒体と組み合わせて使用してもよい。伝送媒体は、記憶媒体間の情報の転送に関与する。例えば、伝送媒体は、バス640を備えるワイヤを含む、同軸ケーブル、銅線、および光ファイバを含む。伝送媒体はまた、電波および赤外線データ通信中に生成されるものなど、音響波または光波の形態を取ることもできる。
様々な形態の媒体が、1つ以上の命令の1つ以上のシーケンスを、実行のためにコア530に搬送することに関与し得る。例えば、命令は、最初は遠隔コンピュータの磁気ディスクまたはソリッドステートドライブ上で搬送されてもよい。遠隔コンピュータは、命令をその動的メモリにロードして、ネットワークを介して命令を送信することができる。
コンピュータシステム500はバスに結合された通信インターフェース538も含む。通信インターフェース538は、ローカルネットワークに接続されたネットワークリンク(図示せず)に結合される双方向データ通信を提供する。例えば、通信インターフェース538は、統合サービスデジタルネットワーク(ISDN)カード、ケーブルモデム、衛星モデム、または対応するタイプの電話回線へのデータ通信接続を提供するモデムであり得る。別の例として、通信インターフェース538は、互換性のあるLANへのデータ通信接続を提供するローカルエリアネットワーク(LAN)カードであってもよい。無線リンクも実装されてもよい。そのような実装では、通信インターフェース538は、様々なタイプの情報を表すデジタルデータストリームを搬送する電気信号、電磁信号、または光信号を送受信する。
コンピュータシステム500は、ネットワーク、ネットワークリンク、および通信インターフェース538を通じて、メッセージを送信し、プログラムコードを含むデータを受信することができる。インターネットの実施例では、サーバは、ISP、ローカルネットワーク、および/または通信インターフェース538を介して、インターネットを通じるアプリケーションプログラムに対して要求されたコードを送信してもよい。
受信されたコードは、受信された際にコア530によって実行されてもよく、および/または後の実行のために記憶デバイス536もしくは他の不揮発性記憶装置内に記憶されてもよい。
開示された技術を例示するために本明細書で考察された実施形態は、限定するものと見なされるべきではなく、実装の例を提供するにすぎない。当業者は、本明細書で意図され、本開示の範囲内にある、開示された技術を実装し得る他の無数の方式を理解するであろう。
TEMまたはSTEMなどの電子顕微鏡のサンプル面の磁場を変更するといった開示された技術を実施するための例示的な装置は、少なくとも、第一および第二の光学要素、サンプル面の周りに配置された第一および第二の光学要素を含む。第一および第二の光学要素の配置は、サンプル面の上下にあり得、上下は、電子顕微鏡の光軸に沿っている。顕微鏡はさらに、同じくサンプル面の周りに配置された第三の光学要素を含む。さらに、電子顕微鏡は、サンプル面での磁場に影響を与えるために、第一、第二、および第三の光学要素を制御するために結合されたコントローラを含む。コントローラは、コントローラによって実行されると、コントローラが、第一および第二の光学要素を励起して、サンプル面の周りに形成される第一および第二の磁気レンズを生成し、第一および第二のレンズは同じ方向に向けられ、第三の光学要素を励起して、第三の磁気レンズをサンプル面に生成し、第三の磁気レンズは、第一および第二の磁気レンズと反対方向に配向されることを引き起こす、コードを格納する非一時的メモリに結合され、またはそれを含み得、ここで、第一および第二の光学要素の励起の第三の光学要素の励起に対する比は、サンプル面での磁場を調整する。磁場の調整は、第三の磁性レンズのサンプル面での相互作用と、第一および第二の磁性レンズに由来するサンプル面に存在する磁場とに起因する。
上記の例示的な装置では、第三の光学要素の励起に対する第一および第二の光学要素の励起の比が、サンプル面での磁場の軸方向成分を排除する。
上記のいずれかの例示的な装置、第一および第二の光学要素の励起が2000から8000アンペアターンの間であり、第三の光学要素の励起が-1から-400アンペアターンの間である。
上記のいずれかの例示的な装置では、第一および第二の光学要素の励起と第三の光学要素の励起との比がサンプル面で液浸レンズを生成する。
上記のいずれかの例示的な装置、第一および第二の光学要素の励起が2000未満であり、第三の光学要素の励起が2000から8000アンペアターンの間である。
上記のいずれかの例示的な装置では、第二の励起の大きさが第一の励起の大きさの倍数である。
上記のいずれかの例示的な装置では、倍数が0.5から2の範囲にある。
上記のいずれかの例示的な装置では、第一および第二の光学要素は、それぞれ第一および第二のコイル、ならびにそれぞれ第一および第二のヨークを含み、第一および第二のヨークのそれぞれは、反対側からサンプル面に向かって延びるポールピースを含む。
上記のいずれかの例示的な装置では、第三の光学要素は、第三および第四のコイルを含み、第三のコイルは、第一の光学要素に隣接して配置され、第四のコイルは、第二の光学要素に隣接して配置される。
上記のいずれかの例示的な装置では、第三の光学要素の励起は、第三のコイルのみを励起することを含む。
上記のいずれかの例示的な装置では、第三の光学要素の励起が、同じ励起で第三および第四のコイルを励起することを含む。
TEMまたはSTEMなどの電子顕微鏡のサンプル面の磁場を変更するなどの、開示された技術を実施するための例示的な方法は、少なくとも、第一および第二のコイルの励起に基づいて、サンプル面の周りに第一および第二の磁気レンズを形成することであって、第一および第二の磁場は同じ方向に向けられ、サンプル面の反対側に対称的に配置される、こと、第三のコイルの励起に基づいて、サンプル面に第三の磁気レンズを形成することであって、第三の磁場は、第一および第二の磁気レンズの配向と反対の方向に配向される、こと、および少なくとも第三のコイルの励起に対する第一および第二のコイルの励起に対する第三のコイルの励起の比に基づいて、サンプル面での磁場を調整することを含む。
上記のいずれかの例示的な方法では、第一および第二のコイルの励起と少なくとも第三のコイルの励起との比が、サンプル面での磁場の軸方向成分を排除する。
上記のいずれかの例示的な方法では、第一および第二のコイルの励起は、2000~8000アンペアターンであり、第三の光学要素の励起は1~400アンペアターンである。
上記のいずれかの例示的な方法では、第一および第二のコイルの励起と少なくとも第三のコイルの励起との比が、サンプル面に液浸レンズを生成する。
上記のいずれかの例示的な方法では、第一および第二のコイルの励起が2000未満であり、第三の光学要素の励起が2000から8000アンペアターンの間である。
上記のいずれかの例示的な方法では、第一および第二のコイルの励起と少なくとも第三のコイルの励起との比が、サンプル面に小さな磁場を生成する。
上記のいずれかの例示的な方法では、第一および第二のコイルの励起が2000~8000アンペアターンであり、少なくとも第三のコイルの励起が-1~-400アンペアターンである。
上記のいずれかの例示的な方法では、少なくとも第三のコイルの励起の大きさが、前記第一および第二のコイルの励起の大きさの倍数である。
上記のいずれかの例示的な装置では、倍数が0.5から2の範囲にある。
上記のいずれかの例示的な方法では、サンプル面で第三の磁気レンズを形成するときに第四のコイルが励起され、第四のコイルが第三のコイルと同じように励起される。

Claims (23)

  1. 装置であって、
    サンプル面の反対側に配置された第一の光学要素および第二の光学要素と、
    前記サンプル面の周りに配置された第三の光学要素と、
    前記第一の光学要素、第二の光学要素および第三の光学要素を制御するために結合されたコントローラであって、前記コントローラによって実行されると、前記コントローラに、
    前記第一の光学要素および前記第二の光学要素を励起させて、第一の磁気レンズおよび第二の磁気レンズを生成し、前記第一の磁気レンズおよび前記第二の磁気レンズは、前記サンプル面の反対側に形成され、前記第一の磁気レンズおよび前記第二の磁気レンズは同じ方向に向けられ、
    前記第三の光学要素を励起させて、第三の磁気レンズを生成し、前記第三の磁気レンズを前記サンプル面に形成し、前記第三の磁気レンズは、前記第一の磁気レンズおよび前記第二の磁気レンズと反対方向に配向される、
    ようにする、コードを格納する非一時的メモリに結合された、またはそれを含むコントローラと、
    を含み、
    ここで、前記第一の光学要素および前記第二の光学要素の前記励起に対する前記第三の光学要素の前記励起の比は、前記サンプル面での磁場を調整する、装置。
  2. 前記第一の光学要素および前記第二の光学要素の前記励起に対する前記第三の光学要素の前記励起の前記比が、前記サンプル面での前記磁場の軸方向成分を打ち消す、請求項1に記載の装置。
  3. 前記第一の光学要素および前記第二の光学要素の前記励起は、2000~8000アンペアターンであり、前記第三の光学要素の前記励起は-1~-400アンペアターンである、請求項2に記載の装置。
  4. 前記第一の光学要素および前記第二の光学要素の前記励起に対する前記第三の光学要素の前記励起の前記比が、前記サンプル面に小さな磁場を生成する、請求項1に記載の装置。
  5. 前記第一の光学要素および前記第二の光学要素の前記励起は、2000~8000アンペアターンであり、前記第三の光学要素の前記励起は、-1~-400アンペアターンである、請求項4に記載の装置。
  6. 前記第一の光学要素および前記第二の光学要素の前記励起と前記第三の光学要素の前記励起との前記比が、前記サンプル面に液浸レンズを生成する、請求項1に記載の装置。
  7. 前記第一の光学要素および前記第二の光学要素の前記励起が2000アンペアターンより少なく、前記第三の光学要素の前記励起は2000~8000アンペアターンである、請求項6に記載の装置。
  8. 前記第三の光学要素の前記励起の大きさは、前記第一の光学要素および前記第二の光学要素の前記励起の大きさの倍数である、請求項1に記載の装置。
  9. 前記倍数が0.5から2の範囲にある、請求項8に記載の装置。
  10. 前記第一の光学要素および前記第二の光学要素が、
    それぞれ、第一のコイルおよび第二のコイルと、
    それぞれ、第一のヨークおよび第二のヨークと、を含み、
    ここで、前記第一のヨークおよび前記第二のヨークのそれぞれは、前記サンプル面に向かって延びるポールピースを含む、請求項1に記載の装置。
  11. 前記第三の光学要素は、第三のコイルおよび第四のコイルを含み、前記第三のコイルは、前記第一の光学要素に隣接して配置され、前記第四のコイルは、前記第二の光学要素に隣接して配置される、請求項1に記載の装置。
  12. 前記第三の光学要素の前記励起は、前記第三のコイルのみを励起することを含む、請求項11に記載の装置。
  13. 前記第三の光学要素の前記励起は、前記第三のコイルおよび前記第四のコイルを同じ励起で励起することを含む、請求項11に記載の装置。
  14. 第一のコイルおよび第二のコイルの励起に基づいて、サンプル面の周りに第一の磁気レンズおよび第二の磁気レンズを形成することであって、第一の磁場および第二の磁場は同じ方向に向けられ、前記サンプル面の反対側に対称的に配置される、こと、
    第三のコイルの励起に基づいて、前記サンプル面に第三の磁気レンズを形成することであって、第三の磁場は、前記第一の磁気レンズおよび前記第二の磁気レンズの配向と反対の方向に配向される、こと、および
    前記第一のコイルおよび前記第二のコイルの前記励起に対する前記第三のコイルの前記励起の比に基づいて、前記サンプル面での磁場を調整することを含む、方法。
  15. 少なくとも前記第三のコイルの前記励起に対する前記第一のコイルおよび前記第二のコイルの前記励起との前記比が、前記サンプル面での前記磁場の軸方向成分を排除する、請求項14に記載の方法。
  16. 前記第一のコイルおよび前記第二のコイルの前記励起は、2000~8000アンペアターンであり、前記第三のコイルの前記励起は1~400アンペアターンである、請求項15に記載の方法。
  17. 前記第一のコイルおよび前記第二のコイルの前記励起と少なくとも前記第三のコイルの前記励起との比が、前記サンプル面に液浸レンズを生成する、請求項14に記載の方法。
  18. 前記第一のコイルおよび前記第二のコイルの励起は、2000アンペアターン未満であり、前記第三のコイルの前記励起は2000~8000アンペアターンである、請求項17に記載の方法。
  19. 前記第一のコイルおよび前記第二のコイルの前記励起と少なくとも前記第三のコイルの前記励起との前記比が、前記サンプル面に小さな磁場を生成する、請求項14に記載の方法。
  20. 前記第一のコイルおよび前記第二のコイルの前記励起が2000~8000アンペアターンであり、少なくとも前記第三のコイルの前記励起が-1~-400アンペアターンである、請求項19に記載の方法。
  21. 前記第三のコイルの前記励起の大きさが、前記第一のコイルおよび前記第二のコイルの前記励起の大きさの倍数である、請求項14に記載の方法。
  22. 前記倍数が0.5から2である、請求項21に記載の方法。
  23. 前記サンプル面で前記第三の磁気レンズを形成するときに第四のコイルが励起され、前記第四のコイルが前記第三のコイルと同じように励起される、請求項14に記載の方法。
JP2021203002A 2020-12-22 2021-12-15 荷電粒子顕微鏡用の無磁場サンプル面 Pending JP2022099282A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/130,987 2020-12-22
US17/130,987 US11450505B2 (en) 2020-12-22 2020-12-22 Magnetic field free sample plane for charged particle microscope

Publications (1)

Publication Number Publication Date
JP2022099282A true JP2022099282A (ja) 2022-07-04

Family

ID=78851107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021203002A Pending JP2022099282A (ja) 2020-12-22 2021-12-15 荷電粒子顕微鏡用の無磁場サンプル面

Country Status (4)

Country Link
US (1) US11450505B2 (ja)
EP (1) EP4020519A1 (ja)
JP (1) JP2022099282A (ja)
CN (1) CN114664619A (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723454A (en) * 1980-07-16 1982-02-06 Jeol Ltd Electron lens
JP2005032588A (ja) * 2003-07-07 2005-02-03 Jeol Ltd 電子顕微鏡用磁界型対物レンズ
JP5449679B2 (ja) * 2008-02-15 2014-03-19 株式会社日立製作所 電子線観察装置および試料観察方法
JP6718782B2 (ja) * 2016-09-21 2020-07-08 日本電子株式会社 対物レンズおよび透過電子顕微鏡
JP6843913B2 (ja) * 2019-03-28 2021-03-17 日本電子株式会社 透過電子顕微鏡の制御方法および透過電子顕微鏡

Also Published As

Publication number Publication date
EP4020519A1 (en) 2022-06-29
US11450505B2 (en) 2022-09-20
US20220199353A1 (en) 2022-06-23
CN114664619A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
US6855938B2 (en) Objective lens for an electron microscopy system and electron microscopy system
JP7398481B2 (ja) 個別粒子ビームのアジマス偏向用の粒子ビームシステム及び粒子ビームシステムにおけるアジマス補正の方法
US7064325B2 (en) Apparatus with permanent magnetic lenses
JP2021528833A (ja) 低エネルギー走査型電子顕微鏡システム、走査型電子顕微鏡システム及び試料検知方法
NL1025272C2 (nl) Toestel werkend met een elektronenbundel en correctie van daarbij optredende aberratie.
JP2005276819A (ja) 帯電粒子ビームデバイスのための対物レンズ
JP6826637B2 (ja) 高性能検査走査電子顕微鏡装置およびその動作方法
JPS61208736A (ja) 走査粒子顕微鏡
EP3113206B1 (en) X-ray generator and adjustment method therefor
WO2015183734A1 (en) Electron beam imaging with dual wien-filter monochromator
JP6061771B2 (ja) 試料ホルダおよびそれを用いた荷電粒子線装置
KR101694239B1 (ko) 하전 입자선 장치
JP6901572B2 (ja) 荷電粒子線装置
JP2022099282A (ja) 荷電粒子顕微鏡用の無磁場サンプル面
JP5645386B2 (ja) 電磁場印加装置
JP6469222B2 (ja) 荷電粒子装置、荷電粒子の照射方法、および分析装置
JP2005032588A (ja) 電子顕微鏡用磁界型対物レンズ
JPH02284340A (ja) 可変焦点距離複合電磁レンズ
JP2005093106A (ja) 走査電子顕微鏡
JP6163255B2 (ja) 荷電粒子線装置及び球面収差補正方法
US20240087837A1 (en) Magnetic multipole device, charged particle beam apparatus, and method of influencing a charged particle beam propagating along an optical axis
Ishizuka et al. Emittance measurement of high-brightness microbeams