JP2022083866A - 酸化鉱石の製錬方法 - Google Patents

酸化鉱石の製錬方法 Download PDF

Info

Publication number
JP2022083866A
JP2022083866A JP2020195445A JP2020195445A JP2022083866A JP 2022083866 A JP2022083866 A JP 2022083866A JP 2020195445 A JP2020195445 A JP 2020195445A JP 2020195445 A JP2020195445 A JP 2020195445A JP 2022083866 A JP2022083866 A JP 2022083866A
Authority
JP
Japan
Prior art keywords
reducing agent
mixture
reduction
oxide ore
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020195445A
Other languages
English (en)
Inventor
隆士 井関
Takashi Izeki
敏郎 丹
Toshiro Tan
逸平 山内
Ippei Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020195445A priority Critical patent/JP2022083866A/ja
Publication of JP2022083866A publication Critical patent/JP2022083866A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

【課題】得られるメタルの品位を高めることができ、高品質のメタルを効率的に製造することができる酸化鉱石の製錬方法を提供する。【解決手段】酸化鉱石と、第1の還元剤と、を含有する混合物を得る混合工程と、混合物に乾燥処理を施す乾燥工程と、乾燥工程を経た混合物を還元炉に装入し、還元炉に第2の還元剤を投入しながら混合物に還元処理を施す還元工程と、を有し、混合工程では、第1の還元剤として植物由来還元剤を含有する還元剤を使用し、還元工程では、第2の還元剤として植物由来還元剤を含有する還元剤を使用する酸化鉱石の製錬方法である。【選択図】図1

Description

本発明は、ニッケル酸化鉱等の酸化鉱石と、還元剤とから製造されるペレットを、還元炉にて高温下で還元加熱することによって製錬し、フェロニッケル等の還元物を得る製錬方法に関する。
リモナイトあるいはサプロライトと呼ばれるニッケル酸化鉱の製錬方法として、熔錬炉を使用して硫黄とともに硫化焙焼してニッケルマットを製造する乾式製錬方法、ロータリーキルンあるいは移動炉床炉を使用して炭素質還元剤を用いて還元し鉄-ニッケル合金(以下、「フェロニッケル」ともいう)を製造する乾式製錬方法、オートクレーブを使用して硫酸でニッケルやコバルトを浸出して得た浸出液に硫化剤を添加して混合硫化物(ミックスサルファイド)を製造する湿式製錬方法等が知られている。
上述した種々の製錬方法の中で、炭素源とともに還元してニッケル酸化鉱を製錬する場合、先ず、その原料鉱石を塊状物化やスラリー化等するための前処理が行われる。具体的に、ニッケル酸化鉱を塊状物化、すなわち粉状や微粒状から塊状にする際には、そのニッケル酸化鉱を、バインダーや還元剤等と混合し、さらに水分調整等を行った後に塊状物製造機に装入して、例えば10mm~30mm程度の塊状物(ペレット、ブリケット等を指す。)とするのが一般的である。
この塊状物には、含有する水分を「飛ばす」ために、ある程度の通気性が必要となる。また、塊状物内で均一に還元が進まないと、得られる還元物の組成が不均一になり、メタルが分散したり偏在したりする等の不都合が生じるため、混合物を均一に混合し、また塊状物を還元処理する際には可能な限り均一な温度を維持することが重要となる。
加えて、還元されて生成したフェロニッケルを粗大化させることも重要である。なぜなら、生成したフェロニッケルが、例えば数10μm~数100μm以下の細かな大きさであった場合、同時に生成したスラグと分離することが困難となり、フェロニッケルとしての回収率(収率)が大きく低下してしまうためである。このことから、還元後のフェロニッケルを粗大化する処理が必要となる。
また、製錬コストを如何に低く抑えることができるかについても重要であり、コンパクトな設備で操業できる連続処理が望まれている。
例えば、特許文献1には、金属酸化物と炭素質還元剤とを含む塊成物を、移動床型還元溶融炉の炉床上に供給して加熱し、金属酸化物を還元溶融させる粒状金属の製造方法において、塊成物同士の距離を0としたときの塊成物の炉床への最大投影面積率に対する、塊成物の炉床への投影面積率の相対値を敷密度としたとき、平均直径が19.5mm以上32mm以下の塊成物を、敷密度が0.5以上0.8以下になるように炉床上に供給して加熱する方法が開示されている。この方法では、塊成物の敷密度と平均直径とを併せて制御することで、粒状金属鉄の生産性を高められることが記載されている。
しかし、特許文献1に開示されている方法は、塊成物の外側で起こる反応を制御するための技術であり、還元反応において最も重要な因子である、塊成物の内部で起きる反応の制御については着目していない。このため、塊成物の内部で起きる反応を制御することで、反応効率を高め、還元反応をより均一に進めることで、より高品質のメタル(金属、合金)を得ることが求められていた。
また、特許文献1にあるような、特定の直径を有するものを塊成物として用いる方法は、特定の直径を有しないものを取り除く必要があるため、塊成物を作製する際の収率が低くなる課題があった。また、特許文献1にある方法は、塊成物の敷密度を0.5以上0.8以下に調整する必要があり、塊成物を積層させることもできないため、生産性の低い方法であった。これらの理由により、特許文献1にある方法は、製造コストが高いものであった。
このように、酸化鉱石を混合及び還元して金属や合金を製造する技術には、生産性を高め、製造コストを低減させ、メタルの品質を高める点で、多くの課題があった。なお、石炭などの化石燃料は、利用できる量が有限であり、還元に利用された後は環境中のCOを増加するなど環境面からの課題もある。
特開2011-256414号公報
本発明は、ニッケル酸化鉱石等の酸化鉱石を含む混合物を還元することでメタルを製造する製錬方法において、得られるメタルの品位を高めることができ、高品質のメタルを効率的に製造することができる酸化鉱石の製錬方法を提供することを目的とする。
本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、混合工程にて還元剤として植物由来還元剤を含有する還元剤を使用し、混合物に還元処理を施すに際に、植物由来還元剤を含有する還元剤を投入しながら混合物に還元処理を施すことによって上記課題を解決することができることを見出し、本発明を完成するに至った。
(1)本発明の第1は、酸化鉱石と、第1の還元剤と、を含有する混合物を得る混合工程と、前記混合物に乾燥処理を施す乾燥工程と、前記乾燥工程を経た混合物を還元炉に装入し、該還元炉に第2の還元剤を投入しながら該混合物に還元処理を施す還元工程と、を有し、前記第1の還元剤及び前記第2の還元剤として植物由来還元剤を含有する還元剤を使用する酸化鉱石の製錬方法である。
(2)本発明の第2は、第1の発明において、前記植物由来還元剤は澱粉である酸化鉱石の製錬方法である。
(3)本発明の第3は、第1又は第2の発明において、前記混合物中の前記第1の還元剤の含有量を、前記酸化鉱石を還元するために必要な化学当量100質量%に対して20質量%以上80質量%以下の割合となるように混合する酸化鉱石の製錬方法である。
(4)本発明の第4は、第1から第3のいずれかの発明において前記還元工程において、前記還元炉に投入される前記第2の還元剤の投入量が、該還元炉に装入される混合物に含有される前記第1の還元剤の全量に対して1質量%以上30質量%以下である酸化鉱石の製錬方法である。
(5)本発明の第5は、第1から第4のいずれかの発明において、前記酸化鉱石は、ニッケル酸化鉱石であり、前記還元工程では、前記ニッケル酸化鉱石を含む混合物に還元処理を施すことによりフェロニッケルを製造する酸化鉱石の製錬方法である。
本発明に係る酸化鉱石の製錬方法によれば、高品質なメタルを効率的に製造することができる。
ニッケル酸化鉱石の製錬方法の流れの一例を示す工程図である。 還元炉(回転炉床炉)の構成例を示す図(平面図)である。
以下、本発明の具体的な実施形態について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
≪1.本発明の概要≫
本発明は、例えばニッケル酸化鉱石等の酸化鉱石を原料として、その酸化鉱石と還元剤とを混合して得られる混合物を還元することによって、還元物であるメタルを製造する酸化鉱石の製錬方法である。例えば、原料鉱石としてニッケル酸化鉱石を用いる場合、還元物として鉄のニッケルの合金であるフェロニッケルメタルを製造する。
具体的に、本発明に係る酸化鉱石の製錬方法は、原料の酸化鉱石に混合する還元剤として植物由来還元剤を含有する還元剤(第1の還元剤)を使用し、還元炉に植物由来還元剤を含有する還元剤(第2の還元剤)を投入しながら混合物に還元処理を施すことを特徴としている。
このような方法によれば、還元剤として植物由来還元剤を含有する所定量の還元剤を含有する混合物に還元処理を施すことにより、得られるメタルの品位を高めることができる。
≪2.ニッケル酸化鉱石の製錬方法≫
以下では、本発明の具体的な実施形態(以下、「本実施の形態」という)として、原料鉱石にニッケル酸化鉱石を用い、そのニッケル酸化鉱石を還元することで、ニッケル酸化鉱石に含まれるニッケル(酸化ニッケル)と鉄(酸化鉄)とをメタル化して鉄-ニッケル合金(フェロニッケル)を生成させる製錬方法を例に挙げて説明する。
具体的に、本実施の形態に係るニッケル酸化鉱石の製錬方法は、図1に示すように、酸化鉱石と、還元剤と、を含有する混合物を得る混合工程S1と、得られる混合物を所定の形状に成形して塊状物とする塊状化工程S2と、得られた塊状物を乾燥する乾燥工程S3と、塊状物(混合物)に還元処理を施す還元工程S4と、得られた還元物(混合物)からメタルを回収する回収工程S5と、を有する。
<2-1.混合工程>
混合工程S1は、ニッケル酸化鉱石と還元剤とを混合して混合物を得る。具体的に、混合工程S1では、まず、原料鉱石であるニッケル酸化鉱石に、還元剤を添加して混合し、また任意成分の添加剤として、鉄鉱石、フラックス成分、バインダー等の、例えば粒径が0.2mm以上0.8mm以下程度の粉末を添加して混合し、混合物を得る。なお、混合処理は、混合機等を用いて行うことができる。
原料鉱石であるニッケル酸化鉱石としては、特に限定されないが、リモナイト鉱、サプロライト鉱等を用いることができる。なお、ニッケル酸化鉱石は、酸化ニッケル(NiO)と、酸化鉄(Fe)とを少なくとも含有する。
ここで、混合工程S1にてニッケル酸化鉱石と混合して混合物を構成する還元剤として植物由来還元剤を含有する還元剤を使用する。植物由来還元剤とは、植物に由来し、酸化鉱石を還元する機能を有する植物由来の有機物還元剤や、植物に由来する木材や竹材を炭化させた木炭や竹炭が挙げられる。なお、これらを含有する廃材や食品廃棄物等であってもよい。
植物由来還元剤を含有する還元剤を含有する混合物に還元処理を施すことにより、得られるメタルの品位を高めることができる。
さらに、植物由来還元剤は、一般的に石炭等の化石燃料と比べて安価であり、容易に再生可能である。また、植物由来還元剤は、化石燃料と異なり、枯渇の心配もない。また植物由来の還元剤として製造から消費までを通して考えれば温室効果ガスとされるCOが増加することもなく、環境負荷が少ない還元剤である。
なお、精製した植物由来の有機物還元剤を使用すれば、得られるメタルの品位を効率的かつ安定的に高めることが可能であるが、未精製の植物由来還元剤や植物由来の有機物還元剤を含む廃材、食品廃棄物等を使用してもよい。コストを低減できる上、環境負荷も少なくすることができる。この際、植物由来還元剤の割合や水分が許容できる範囲で管理することが好ましい。
植物由来還元剤としては植物由来の有機物還元剤であることが好ましい。植物由来の有機物還元剤は、炭素と水素と酸素からなる化合物(モノマー、オリゴマー、ポリマーを含む。)であるため、後述する乾燥工程S3や還元工程S4において、混合物中の有機物還元剤が加熱されると、有機物還元剤を構成する水素や酸素がHOを生成して抜けるとともに、有機物還元剤を構成する残りの炭素分が混合物内に均一に残存することとなる。すると、後述する還元工程S4において、均一に残存した炭素により均一に酸化鉱石を還元することが可能となって、得られるメタルの品位を効率的かつ安定的に高めることができる。
植物由来の有機物還元剤としては、澱粉、油、小麦粉、セルロース、ショ糖、乳糖、ブドウ糖(α-グルコース)、果糖等を挙げることができる。この中でも澱粉が特に好ましい。澱粉とは、例えば下記式(1)で表されるようなα-グルコースの重合物(ポリマー)である。
Figure 2022083866000002
澱粉は、炭素と水素と酸素からなる重合物(ポリマー)であるため、混合物中に均一に混ざりやすい。そのうえ、澱粉は吸水すると粘度が上昇する性質を有するため、バインダーとしての機能をも有し、混合物の成型も容易になる。
さらに、澱粉は、精製法が確立されており、純度が高く組成のばらつきが小さいものを得ることが容易である。このため、澱粉を含有する還元剤を使用することで、得られるメタルの品位を効率的かつ安定的に高めることが可能である。
澱粉としては、トウモロコシ澱粉、小麦澱粉、米澱粉、豆類の澱粉、馬鈴薯澱粉、甘藷澱粉、タピオカ澱粉、片栗粉、ワラビ粉、葛粉等を挙げることができる。
植物由来還元剤の含有量は、混合物に含まれる第1の還元剤全量中10質量%以上であることが好ましく、15質量%以上であることが好ましく、17質量%以上であることがさらに好ましい。植物由来還元剤の含有量は、混合物に含まれる第1の還元剤全量中80質量%以下であることが好ましく、70質量%以下であることが好ましく、65質量%以下であることがさらに好ましい。
なお、この還元剤は、上述した原料鉱石であるニッケル酸化鉱の粒度や粒度分布と同等のものであることが好ましい。粒度や粒度分布が同等であることにより、均一に混合し易くなり、還元反応も均一に生じることになるため好ましい。
第1の還元剤の混合量としては、ニッケル酸化鉱石を構成する酸化ニッケルと酸化鉄とを過不足なく還元するのに必要な還元剤の量を100質量%としたとき、80.0質量%以下の割合とすることが好ましく、65.0質量%以下とすることがより好ましい。また、第1の還元剤の混合量の下限値としては、特に限定されないが、化学当量の合計値100質量%に対して20.0質量%以上の割合とすることが好ましく、23.0質量%以上の割合とすることがより好ましい。
なお、酸化ニッケルと酸化鉄とを過不足なく還元するのに必要な還元剤の量とは、酸化ニッケルの全量をニッケルメタルに還元するのに必要な化学当量と、酸化鉄を鉄メタルに還元するのに必要な化学当量との合計値(以下、「化学当量の合計値」ともいう)と言い換えることができる。
任意成分の添加剤である鉄鉱石としては、例えば、鉄品位が50質量%程度以上の鉄鉱石、ニッケル酸化鉱石の湿式製錬により得られるヘマタイト等を用いることができる。また、フラックス成分としては、例えば、酸化カルシウム、水酸化カルシウム、炭酸カルシウム、二酸化珪素等を挙げることができる。また、バインダーとしては、例えば、ベントナイト、多糖類、樹脂、水ガラス、脱水ケーキ等を挙げることができる。
混合に際しては、混合性を高めるために混練を同時に行ってもよく、混合後に混練を行ってもよい。混練は、ブラベンダー等のバッチ式ニーダー、バンバリーミキサー、ヘンシェルミキサー、ヘリカルローター、ロール、一軸混練機、二軸混練機等を用いて行うことができる。混合物を混練することによって、その混合物にせん断力を加え、還元剤や原料粉末等の凝集を解いて均一に混合できるとともに、各々の粒子の密着性を向上させ、また空隙を減少させることができる。これにより、その混合物において還元反応が起りやすくなるとともに均一に反応させることができ、還元反応の反応時間を短縮することができる。また、品質のばらつきを抑えることができる。
また、混合を行った後、あるいは混合及び混練を行った後、押出機を用いて押出してもよい。これにより、混合物に対して圧力(せん断力)が加えられ、還元剤や原料粉末等の凝集を解いてその混合物をより均一に混合させた状態とすることができる。さらに、混合物内の空隙を減少させることができる。これらのことから、後述する還元工程S4において混合物の還元反応が均一に起りやすくなり、得られるメタルの品位を高めることができ、高品質なメタルを製造することができる。
押出機は、高圧、高せん断力で混合物を混練して成形できるものであることが好ましく、一軸押出機、二軸押出機等を挙げることができる。特に、二軸押出機を備えたものであることが好ましい。高圧、高せん断で混合物を混練することにより、原料粉の混合物の凝集を解くことができ、また効果的に混練することができるうえ、混合物の強度を高めることができる。また、二軸押出機を備えたものを用いることにより、連続的に高い生産性を保ちながら混合物を得ることができる。
混合工程S1では、ニッケル酸化鉱石を含む原料粉末を均一に混合することによって混合物を得る。下記表1に、混合工程S1にて混合する、一部の原料粉末の組成(質量%)の一例を示すが、原料粉末の組成としてはこれに限定されない。
Figure 2022083866000003
<2-2.塊状化工程>
塊状化工程S2は、得られる混合物を所定の形状に成形して塊状物(ペレット)とする。塊状化工程は必須の工程ではないが、混合物を所定の形状に成形することで取り扱い性を向上させることができる。塊状物(ペレット)の形状としては、還元炉の炉床に積層できる形状であればよいが、例えば、球状、直方体状、立方体状、円柱状等の形状であることが好ましい。混合物をこのような形状に成形することで、混合物の成形が容易になるため、成形にかかるコストを抑えることができる。また、成形する形状が複雑でないため、成形不良のペレットの発生を低減することができる。
塊状化工程S2では、例えば、ペレット成形装置を用いて混合物を成形することができる。ペレット成形装置としては、特に限定されないが、高圧、高せん断力で混合物を混練して成形できるものであることが好ましい。高圧、高せん断で混合物を混練することにより、原料粉の混合物の凝集を解くことができ、また効果的に混練することができるうえ、得られるペレットの強度を高めることができる。
また、ブリケットプレスを用いて成形することも可能である。設備やペレット強度、収率等を考慮して適宜、装置選定を行えばよい。
<2-3.乾燥工程>
乾燥工程S3は、塊状化工程S2で得られた塊状物を乾燥する。乾燥工程は必須の工程ではないが、先述した混合工程S1や塊状化工程S2での混練や塊状物の成形等において混合物を多量の水とともに混合した場合には、塊状物(混合物)に乾燥処理を施すことで、還元炉内の雰囲気気体に含まれる水分量を減らすことができる。また、澱粉を含有する還元剤を使用する場合には、塊状物に乾燥処理を施して塊状物中の澱粉が加熱されると、澱粉を構成する水素や酸素の少なくとも一部がHOを生成して抜けることとなる。塊状化工程S2で得られた塊状物を乾燥することにより、塊状物からなるペレットが崩壊することを防ぐことができ、それにより還元炉からの取り出しが困難になることを防ぐことができる。また、還元炉内の雰囲気気体に含まれる水分量をより効果的に減らすことができ、塊状物に含まれるメタルの酸化をより効果的に抑制することができる。
塊状物を乾燥する方法は、特に限定されず、塊状物を所定の乾燥温度(例えば、300℃以上400℃以下)に保持する方法や所定の乾燥温度の熱風を混合物に対して吹き付けて乾燥させる方法等、従来公知の手段を用いることができる。このような乾燥処理により、例えば、塊状物の固形分が70質量%程度で、水分が30質量%程度となるようにする。なお、この乾燥処理時における混合物自身の温度としては、100℃未満とすることが好ましく、これにより水分の突沸等による混合物の破裂を抑制することができる。
なお、この乾燥工程は、後述する還元炉の外で行ってもよいし、後述する還元炉内に塊状物を装入して還元炉内で乾燥処理を施してもよい。
ここで、特に体積の大きな塊状物を乾燥させる場合、乾燥前や乾燥後の塊状物にひびや割れが入っていてもよい。塊状物の体積が大きい場合には、還元時に塊状物が熔融して収縮するため、ひびや割れが生じることが多い。しかしながら、塊状物の体積が大きい場合には、ひびや割れによって生じる表面積の増加等の影響は僅かであるため、大きな問題は生じ難い。そのため、還元前の塊状物にひびや割れがあってもよい。
また、乾燥処理は連続して一度に行ってもよいし複数回に分けて行ってもよい。乾燥処理を複数回に分けて行うことにより混合物の破裂をより効果的に抑制することができる。なお、乾燥処理を複数回に分けて行った場合において、2回目以降の乾燥温度としては、150℃以上400℃以下が好ましい。この範囲で乾燥することにより、還元反応が進むことなく乾燥することが可能となる。
下記表2に、乾燥処理後の塊状物(混合物)における固形分中組成(質量部)の一例を示す。なお、塊状物(混合物)の組成としては、これに限定されるものではない。
Figure 2022083866000004
<2-4.還元工程>
還元工程S4は、乾燥工程で得られた塊状物(混合物)に還元処理を施す。具体的には、得られた塊状物(混合物)を還元炉に装入し、混合物に加熱還元処理を施す。還元工程S2における加熱還元処理により、混合物中の還元剤(第1の還元剤)に基づいて製錬反応(還元反応)が進行して、混合物中では、フェロニッケルメタル(以下、単に「メタル」という)と、フェロニッケルスラグ(以下、単に「スラグ」という)とが分かれて生成する。
加熱還元処理では、例えば1分程度のわずかな時間で、先ず還元反応の進みやすい混合物の表面近傍において混合物中の酸化ニッケル及び酸化鉄が還元されメタル化してフェロニッケルとなり、殻(シェル)を形成する。一方で、殻の中では、その殻の形成に伴ってスラグ成分が徐々に熔融して液相のスラグが生成する。これにより、混合物中では、メタルと、スラグとが分かれて生成する。
そして、処理時間が10分程度経過すると、還元反応に関与しない余剰の還元剤がメタルに取り込まれて融点を低下させて、メタルも液相となる。
このとき、還元剤として植物由来還元剤を含有する混合物に還元処理を施すことにより、得られるメタルの品位を高めることができる。
そして、還元工程S4では、還元炉に植物由来還元剤を含有する第2の還元剤を投入しながら混合物に還元処理を施すことを特徴としている。このように植物由来還元剤を含有する第2の還元剤を投入しながら混合物に還元処理を施することによって、メタルの再酸化を防ぎ、併せて再酸化したものを再度還元することが可能となり、得られるメタルの品位をさらに高めることができる。
第2の還元剤に含有される植物由来還元剤は、上述した第1の還元剤に含有される植物由来還元剤と同様に植物に由来し、酸化鉱石を還元する機能を有する植物由来の有機物還元剤や、植物に由来する木材や竹材を炭化させた木炭や竹炭が挙げられる。なお、第2の還元剤に含有される植物由来還元剤は上述した第1の還元剤に含有される植物由来還元剤と同じものであっても異なるものであってもよい。
植物由来還元剤としては植物由来の有機物還元剤であることが好ましく、この中でも澱粉が特に好ましい。澱粉は、精製法が確立されており、純度が高く組成のばらつきが小さいものを得ることが容易である。このため、澱粉を含有する還元剤を還元炉に投入する第2の還元剤として使用することで、得られるメタルの品位を効率的かつ安定的に高めることが可能である。
第2の還元剤に含有される植物由来還元剤の含有量は、第2の還元剤全量中50質量%以上であることが好ましく、70質量%以上であることが好ましく、90質量%以上であることがさらに好ましく、第2の還元剤が植物由来還元剤のみからなること(すなわち、植物由来還元剤の含有量が第2の還元剤全量中100質量%であること)が最も好ましい。
還元炉に投入される第2の還元剤の投入量は、特に制限されるものではないが、還元炉に装入される混合物に含有される第1の還元剤全量に対して1質量%以上30質量%以下であることが好ましい。このような投入量の範囲で還元炉に植物由来還元剤を含有する第2の還元剤を投入しながら混合物に還元処理を施すことで、得られるメタルの品位を効率的かつ安定的に高めることが可能である。
植物由来還元剤として植物由来の有機物還元剤を使用する場合には、加熱還元処理の途中で混合物中の植物由来の有機物還元剤や第2の還元剤として植物由来の有機物還元剤を還元炉内に投入する際に燃えてしまう可能性がある。そこで、還元炉内を低酸素濃度の雰囲気下にして混合物に還元処理を施すことが好ましい。低酸素濃度の雰囲気下とは、例えば酸素濃度が3.0体積%以下である雰囲気下で還元処理を施すことが好ましく、1.0体積%以下である雰囲気下で還元処理を施すことがより好ましい。また、窒素やアルゴン等の不活性ガス雰囲気下で還元処理を施してもよい。
また、植物由来の有機物還元剤を含有する第1の還元剤を使用する場合には、混合物中の有機物還元剤が加熱されると、有機物還元剤を構成する水素や酸素がHOを生成して抜けるとともに、残りの炭素分が混合物内に残存する。その結果、残りの炭素が還元剤となって均一に鉱石を還元することができる。
還元処理における温度(還元温度)としては、特に限定されないが、1200℃以上1450℃以下の範囲とすることが好ましく、1300℃以上1400℃以下の範囲とすることがより好ましい。このような温度範囲で還元することによって、均一に還元反応を生じさせることができ、品質のばらつきを抑制したフェロニッケルを生成させることができる。また、より好ましくは1300℃以上1400℃以下の範囲の還元温度で還元することで、比較的短時間で所望の還元反応を生じさせることができる。
還元処理における時間(処理時間)としては、還元炉の温度に応じて設定されるが、10分以上であることが好ましく、15分以上であることがより好ましい。他方で、還元加熱処理を行う時間の上限は、製造コストの上昇を抑える観点から、50分以下としてもよく、40分以下としてもよい。
なお、還元温度(℃)と還元時間(分)の数値を乗じた値を還元に要した熱量は、20000(℃×分)以上40000(℃×分)以下の範囲であることが好ましい。高品質なメタルを効率的に製造することができる。
還元炉としては、固定炉床であってもよいが、移動式炉床炉を用いることが好ましい。このような還元炉として移動炉床炉を使用することにより、混合物をより効率的に処理することができる。また、移動炉床炉を用いることで、連続的に還元反応が進行し、一つの設備で反応を完結させることができ、各工程における処理を別々の炉を用いて行うよりも処理温度の制御を的確に行うことができる。さらに、各処理間でのヒートロスを低減して、より効率的な操業が可能となる。以下、移動炉床炉の一例として、回転炉床炉の構成について、図2を用いて説明する。
図2は、炉床が回転する回転炉床炉の構成例を示す図(平面図)である。図2に示すように、円形状であって複数の処理室20a~20dに区分けされた回転炉床炉2を用いることができる。回転炉床炉2では、所定の方向に回転しながら、各領域においてそれぞれの処理を行う。この回転炉床炉では、各領域を通過する際の時間(移動時間、回転時間)を制御することで、それぞれの領域での処理温度を調整することができ、回転炉床炉が1回転する毎に混合物1が製錬処理される。ここで、回転炉床炉2は、炉外に予熱室が設けられていてもよい。また、回転炉床炉2は、炉外に冷却室が設けられていてもよい。なお、移動炉床炉としては、ローラーハースキルン等であってもよい。
還元炉の加熱手段は、特に制限はされないが、バーナーであっても、電気等を用いたものであってもよい。短時間で混合物に有効に加熱還元処理を施すことができることからバーナーであることが好ましい。また、バーナーを有する還元炉を用いる場合、燃料としては、例えばLPG、LNG、石炭、コークス、微粉炭等が用いられる。これらの燃料のコストは非常に安価であり、設備費やメンテナンス費に関しても電気炉等と比較して格段に安価に抑えることができる。
<2-5.回収工程>
回収工程S5は、還元工程S4で得られた還元物からメタルを回収する。具体的には、加熱還元処理によって得られた、メタル相とスラグ相とを含む還元物(混合物)を冷却し、必要に応じて粉砕して粉末化して、メタル(メタル粉末粒子)を分離して回収する。
固体として得られたメタル相とスラグ相との混在物からメタル相とスラグ相とを分離する方法としては、例えば、篩い分けによる不要物の除去に加えて、比重による分離や、磁力による分離等の方法を利用することができる。
また、得られたメタル相とスラグ相は、濡れ性が悪いことから容易に分離することができ、先述した還元工程S4によって得られる大きな混在物に対して、例えば、所定の落差を設けて落下させ、あるいは篩い分けの際に所定の振動を与える等の衝撃を付与することで、その混在物から、メタル相とスラグ相とを容易に分離することができる。
このようにしてメタル相とスラグ相とを分離することによって、メタル相を回収する。
以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
[混合工程]
各試料について原料鉱石としてのニッケル酸化鉱と、鉄鉱石と、フラックス成分として珪砂及び石灰石、バインダー、及び第1の還元剤を、適量の水を添加しながら混合機を用いて混合して混合物を得た。第1の還元剤は、微粉炭(炭素含有量:42重量%、平均粒径:約150μm)及び植物由来還元剤(澱粉)の混合物を使用した。第1の還元剤全量に対する植物由来還元剤(澱粉)の含有量は表4に記載の値となるようにした(表4中、「澱粉含有量」と表記。」)。また、原料鉱石であるニッケル酸化鉱に含まれる酸化ニッケルと酸化鉄(Fe)とを過不足なく還元するのに必要な量を100%としたときの第1の還元剤(微粉炭及び植物由来還元剤の混合物)の含有割合は表4に記載の値となるようにした(表4中、「還元剤の混合量」と表記。」)。
[塊状化工程]
次に混合工程で得られた混合物に適宜水分を添加してペレタイザーにより球状に成形された直径15±0.3mmの塊状物(試料)を得た。
[乾燥工程]
次に塊状化工程で得られた塊状物に対して、固形分が70質量%程度、水分が30質量%程度となるように、200℃~250℃の熱風を吹き付けて乾燥処理を施した。下記表3に、乾燥処理後の塊状物(試料)の固形分組成(炭素を除く)を示す。
Figure 2022083866000005
[還元工程]
次に、乾燥工程で得られた塊状物(試料)を、実質的に酸素を含まない窒素雰囲気下にした還元炉に各々装入した。なお、還元炉内の装入時の温度条件は、500±20℃とした。
次に、表4に示す温度及び時間で、混合物のペレットに対して還元加熱処理を施した。そして、実施例1~12の混合物(試料)については、加熱還元処理の途中であって還元時間終了8分前に澱粉(植物由来還元剤を含有する第2の還元剤)を表4に記載の投入量で還元炉内に投入した(表4中「第2の還元剤投入量」と表記)。還元処理後は、窒素雰囲気中で速やかに室温まで冷却して、試料を大気中へ取り出した。
ここで、塊状物の還元炉への装入は、予め、還元炉の炉床に、灰(主成分はSiOであり、その他の成分としてAl、MgO等の酸化物を少量含有する)を敷き詰め、その上に塊状物を載置することで行った。
[回収工程]
還元加熱処理後の各還元物(試料)について、湿式処理よる粉砕後、磁力選別によってメタルを回収した。そして、ニッケルメタル化率、メタル中ニッケル含有率を、ICP発光分光分析器(SHIMAZU S-8100型)により分析して算出した。
ニッケルメタル化率、メタル中のニッケル含有率、ニッケルメタル回収率は、以下の式(1)、(2)、(3)により算出した。
ニッケルメタル化率=メタル中のニッケルの質量/(還元物中の全てのニッケルの質量)×100(%) ・・・(1)式
メタル中ニッケル含有率=メタル中のニッケルの質量/(メタル中のニッケルと鉄の合計質量)×100(%) ・・・(2)式
ニッケルメタル回収率=回収されたニッケルの量/(投入した鉱石の量×鉱石中のニッケル含有割合)×100 ・・・(3)式
下記表4に、それぞれの試料における、ニッケルメタル化率、メタル中のニッケル含有率、ニッケルメタル回収率を示す。
Figure 2022083866000006
表4の結果に示されるように、混合工程にて還元剤として植物由来還元剤を含有する還元剤を使用し、混合物に還元処理を施すに際に、植物由来還元剤を含有する還元剤を投入しながら混合物に還元処理を施した実施例1~12では、ニッケルメタル化率、及びメタル中ニッケル含有率において良好な結果が得られた。このことから、本発明に係る酸化鉱石の製錬方法は、高品質なメタルを効率的に製造することができることが分かる。
一方、植物由来還元剤を含有する還元剤を投入せずに混合物に還元処理を施した比較例1~3では、高品質なメタルを効率的に製造することができていない。
1 混合物
2 回転路床炉
20a~20d 処理室
21 予熱室
40 冷却室

Claims (5)

  1. 酸化鉱石と、第1の還元剤と、を含有する混合物を得る混合工程と、
    前記混合物に乾燥処理を施す乾燥工程と、
    前記乾燥工程を経た混合物を還元炉に装入し、該還元炉に第2の還元剤を投入しながら該混合物に還元処理を施す還元工程と、を有し、
    前記第1の還元剤及び前記第2の還元剤として植物由来還元剤を含有する還元剤を使用する
    酸化鉱石の製錬方法。
  2. 前記植物由来還元剤は澱粉である
    請求項1に記載の酸化鉱石の製錬方法。
  3. 前記混合物中の前記第1の還元剤の含有量を、前記酸化鉱石を還元するために必要な化学当量100質量%に対して20質量%以上80質量%以下の割合となるように混合する
    請求項1又は2に記載の酸化鉱石の製錬方法。
  4. 前記還元工程において、前記還元炉に投入される前記第2の還元剤の投入量が、該還元炉に装入される混合物に含有される前記第1の還元剤の全量に対して1質量%以上30質量%以下である
    請求項1から3のいずれかに記載の酸化鉱石の製錬方法。
  5. 前記酸化鉱石は、ニッケル酸化鉱石であり、
    前記還元工程では、前記ニッケル酸化鉱石を含む混合物に還元処理を施すことによりフェロニッケルを製造する
    請求項1から4のいずれかに記載の酸化鉱石の製錬方法。
JP2020195445A 2020-11-25 2020-11-25 酸化鉱石の製錬方法 Pending JP2022083866A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020195445A JP2022083866A (ja) 2020-11-25 2020-11-25 酸化鉱石の製錬方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020195445A JP2022083866A (ja) 2020-11-25 2020-11-25 酸化鉱石の製錬方法

Publications (1)

Publication Number Publication Date
JP2022083866A true JP2022083866A (ja) 2022-06-06

Family

ID=81855328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020195445A Pending JP2022083866A (ja) 2020-11-25 2020-11-25 酸化鉱石の製錬方法

Country Status (1)

Country Link
JP (1) JP2022083866A (ja)

Similar Documents

Publication Publication Date Title
JP7439540B2 (ja) 酸化鉱石の製錬方法
WO2018147145A1 (ja) 金属酸化物の製錬方法
JP2017505379A (ja) マンガン含有合金鉄の生産方法
WO2018147146A1 (ja) 金属酸化物の製錬方法
JP2022083866A (ja) 酸化鉱石の製錬方法
JP7119856B2 (ja) 酸化鉱石の製錬方法
JP2022083865A (ja) 酸化鉱石の製錬方法
JP2022092451A (ja) ニッケル酸化鉱石の製錬方法
JP2022093175A (ja) ニッケル酸化鉱石の製錬方法
JP2022070031A (ja) 酸化鉱石の製錬方法
JP2022092452A (ja) ニッケル酸化鉱石の製錬方法
JP7147409B2 (ja) 酸化鉱石の製錬方法
JP6926674B2 (ja) 酸化鉱石の製錬方法
JP2021021090A (ja) 酸化鉱石の製錬方法
JP6981070B2 (ja) 酸化鉱石の製錬方法
JP2021102797A (ja) 酸化鉱石の製錬方法
JP2023019428A (ja) ニッケル酸化鉱石の製錬方法
JP2022093176A (ja) ニッケル酸化鉱石の製錬方法
JP7211178B2 (ja) ニッケル酸化鉱石の製錬方法
WO2018216513A1 (ja) 酸化鉱石の製錬方法
JP7459660B2 (ja) 酸化鉱石の製錬方法
JP7415369B2 (ja) 酸化鉱石の製錬方法
JP6798079B2 (ja) 酸化鉱石の製錬方法
JP2022119615A (ja) ニッケル酸化鉱石の製錬方法
JP7293910B2 (ja) 酸化鉱石の製錬方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240412