JP2022081849A - 電力用半導体装置および電力用半導体装置の製造方法 - Google Patents

電力用半導体装置および電力用半導体装置の製造方法 Download PDF

Info

Publication number
JP2022081849A
JP2022081849A JP2020193040A JP2020193040A JP2022081849A JP 2022081849 A JP2022081849 A JP 2022081849A JP 2020193040 A JP2020193040 A JP 2020193040A JP 2020193040 A JP2020193040 A JP 2020193040A JP 2022081849 A JP2022081849 A JP 2022081849A
Authority
JP
Japan
Prior art keywords
porous body
plate
ceramic porous
resin
shaped resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020193040A
Other languages
English (en)
Other versions
JP7072624B1 (ja
Inventor
朋久 山根
Tomohisa Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020193040A priority Critical patent/JP7072624B1/ja
Application granted granted Critical
Publication of JP7072624B1 publication Critical patent/JP7072624B1/ja
Publication of JP2022081849A publication Critical patent/JP2022081849A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】近年求められているパワーモジュールの大容量化、低コスト化に対応した信頼性の高い電力用半導体装置を得ることを可能とする。【解決手段】電力用半導体素子1a,1bの通電による発熱を取り出すと共に露出した部分に前記発熱を伝熱するヒートスプレッダ3を有するパワーモジュール201、およびヒートスプレッダにヒートスプレッダの側の面が熱的に接合し、ヒートスプレッダと反対側の面が冷却器7と熱的に接合する板状樹脂含浸セラミックス多孔質体6を備え、パワーモジュールの冷却器の側の面と、冷却器のパワーモジュールの側の面と、板状樹脂含浸セラミックス多孔質体の板状樹脂含浸セラミックス多孔質体の延在方向の端面とによって囲まれ、板状樹脂含浸セラミックス多孔質体の含浸樹脂の板状樹脂含浸セラミックス多孔質体の延在方向の端面からの流出を許容する空間領域567aが設けられている。【選択図】図1

Description

本願は、電力用半導体装置および電力用半導体装置の製造方法に関するものである。
パワーモジュールとパワーモジュールを支持する支持部材との結合方法は、直接冷却方式と間接冷却方式に大別される。
直接冷却方式は例えば、固体セラミックスを絶縁層として、セラミックスの両面に金属を貼り付けて構成された金属回路基板を用い、当該金属回路基板の一方の面に半導体素子、配線部材等を実装し、もう一方の面と支持部材とを半田等の金属接合材で結合する冷却方式であり、放熱、接着機能を金属接合材により、絶縁機能を固体セラミックスにより実現する。
一方、間接冷却方式は、例えば、金属板の一方の面に半導体素子、配線部材を実装し、もう一方の面と支持部材との間に放熱絶縁グリスを配置し、ネジなどで固定する冷却方式であり、放熱、絶縁機能を放熱絶縁グリスにより、接着機能をネジにより実現する。
一般に、直接冷却方式は間接冷却方式と比べて放熱性に優れており、小型、大出力化に有利であるが、大面積、複数個のパワーモジュールを支持部材に金属接合材を用いて結合する装置、例えば金属接合材が半田であればリフロー半田付けを行うリフロー装置が大型化し、製造コストが高くなる。また、固体セラミックスと他の部材との線膨張係数の差が大きく、各接合部に発生する熱応力が大きく、特に金属接合材の接合信頼性が短くなりやすい課題がある。
間接冷却方式は大面積、複数個のパワーモジュールを支持部材と結合する際でも、大型の昇温装置などが不要であり、製造コストを低く抑えることが可能であるが、ネジ固定部が大きく、大型化し、また、グリスの劣化による熱抵抗の悪化、絶縁性の低下など、課題があった。
このような課題に対し、接着性、放熱性、絶縁性を有した絶縁放熱接着シートを用いてパワーモジュールを支持部材に直接接合する構造は例えば特許文献1に開示されている。
さらに最近では、従来のセラミックスフィラーを添加した絶縁シートより、さらに高熱伝導が実現できる、樹脂を含浸したセラミックス多孔質体を板状に成型した、板状樹脂含浸セラミックス多孔質体が用いられる場合がある。板状樹脂含浸セラミックス多孔質体(以下、絶縁樹脂シートと区別するため、板状樹脂含浸セラミックス多孔質体と記載する。)として、例えば特許文献2に、窒化物系セラミックスの多孔性焼結体に熱硬化性樹脂組成物が不完全硬化状態で含浸されている窒化物系セラミックス樹脂複合体が開示されている。
特開2003-153544号公報 国際公開第2019/111978号
特許文献1においては、その段落[0027]に「絶縁樹脂シートは例えば、エポキシ樹脂に窒化ホウ素などのセラミックフィラーを充填したもので、熱伝導率2~4W/(mK)、厚み0.1~0.15mm」と記載されており、仮にこの絶縁樹脂シートを用いて半導体装置を構成した場合、前記直接冷却方式と比べて熱抵抗が大きく、半導体装置の小型、大出力化ができない。
さらに、直接冷却方式において、支持部材と半導体素子を配置した金属回路基板とを接合するのに用いられる、半田に代表される金属接合材が、接合時に溶融することで、微小な凹凸、金属回路基板の反りを吸収するのに対し、特許文献1に開示の前記絶縁樹脂シートは変形が小さく、被着面の凹凸、反りの影響を受けやすく、良好な接着を得るためには被着面を切削加工などにより、改質する必要があるため、製造コストが高くなる課題がある。前記切削加工を行わずに良好な接着を得るためには、樹脂絶縁シートを、被着面の凹凸(例えば50μm)、反り(例えば20μm)を十分吸収できるように分厚くする方法もあるが、樹脂絶縁シートを分厚くすれば樹脂絶縁シートの熱抵抗が大きくなり、更に、特許文献1に例示のインバータ装置等の半導体装置の小型、大出力化ができない。
特許文献2においては、その段落[0066]に「本評価で用いたような熱伝導性絶縁接着シートの熱伝導率は、少なくとも30W/(mK)以上であれば実用的に用いるのに十分な値であるし、板状樹脂含浸セラミックス多孔質体では、接着時は加熱により、含浸樹脂の粘度が一時的に低下するとこで、セラミックス多孔質体と含浸樹脂が別々の挙動を示し、含浸樹脂部が被着面の凹凸、反りを吸収できる。なお、実施例1の25℃における熱伝導率は、100W/(mK)であった。」と記載されており、パワーモジュールへの活用方法については、その段落[0045]に「前記本発明の熱伝導性絶縁接着シートを電気絶縁層として備えている単層または多層の金属回路基板も本発明の実施態様のひとつである。」と記載され、その段落[0046]に「前記本発明の金属回路基板を用いたパワーモジュール構造体、LED発光装置も本発明の実施態様の一つである。」と記載されており、不完全硬化状態の樹脂含浸セラミックス多孔質体を用いて金属回路基板を構成する構造について言及がある。しかしながら、特許文献2においては、特許文献1のようにパワーモジュールを支持部材に直接接合する構造については言及がない。
なお、特許文献1の段落[0096]には、「図15において、電力用半導体素子部は、図15の(a)に示すようにまず、IGBT191A~191Dとダイオード201A~201CをSn/Pbなどの低融点又はSn/Ag/Cuなどの高融点半田23で導体22に接合する。次に、図15の(b)に示すように、絶縁樹脂シート25を冷却器24に仮接着する。最後に、図15の(c)に示すように、導体22を、IGBT191A~191Dとダイオード201A~201Cが接合されていない場所に、加圧力を均一化するために例えばシリコンゴムなどの弾性体45を配置し、加圧板46を介し加圧して、導体22と冷却器24を絶縁樹脂シート25で加圧、加熱接着する。加圧温度は、例えば160℃~170℃、加圧力は約20~30kgf/cm2 である。」と記載されており、続けて、段落[0097]に「図15の電力用半導体素子部においては、仮に最初に導体22と冷却器24 を絶縁樹脂シートで接着したとすると、IGBT191A~191Dとダイオード201A~201Cを半田付けするときに、絶縁樹脂シート25のガラス転移温度(例えば170℃位)以上に長時間加熱する必要があり、絶縁樹脂シートの特性が劣化する。これに対し、本実施形態では、上述した製造方法を採用するため、絶縁樹脂シートの特性が劣化することはない。」と記載されており、パワーモジュールを支持部材に直接接合することで、ダイボンド材を自由に選択し、絶縁シートの特性劣化を防止することはできる。
ここで、例えば特許文献2における前記樹脂含浸セラミックス多孔質体を用いてパワーモジュールを支持部材に直接接合する場合、前記絶縁樹脂シートと同じく、空気ボイドによる絶縁性の低下が課題となる。前記板状樹脂含浸セラミックス多孔質体も、前記樹脂絶縁シートと同じく、数%程度の空気ボイドを含んでおり、空気ボイドの影響により、電圧が印加された際にパッシェンの法則に従い、部分放電が発生する。部分放電が発生すると絶縁劣化が進み、部分放電が繰り返されることで絶縁破壊に至る。
これを防ぐために、前記絶縁シートと同じく、前記板状樹脂含浸セラミックス多孔質体も加熱加圧接合によって接合する必要がある。加熱により、板状樹脂含浸セラミックス多孔質体内の含浸樹脂は一時的に粘度が下がり、加圧に伴い流動する。
この時、前記絶縁樹脂シートは加熱により粘度の低下した樹脂とセラミック粒が一体となって流動するのに対し、前記板状樹脂含浸セラミックス多孔質体では、セラミックス多孔質体の骨格の一部と加熱により粘度の低下した含浸樹脂が流動する。
この挙動の差により、前記絶縁樹脂シート、前記板状樹脂含浸セラミックス多孔質体内に発生する圧力(以下、内圧)が異なり、同一条件で加圧した場合でも、板状樹脂含浸セラミックス多孔質体の方が内圧が低くなる。これにより、ボイドが残存することによって、接合信頼性の低下、放熱性の低下、絶縁信頼性の低下が懸念される。
一方で、前記板状樹脂含浸セラミックス多孔質体の加圧時の前記挙動により、凹凸への追従性が良く、前記絶縁樹脂シートのように過剰に厚みを分厚くする必要が無く、大容量化に有利である。
本願は、上記のような実情に鑑みてなされた技術を開示するものであり、その目的は、接合信頼性、放熱性、絶縁信頼性を向上し、実装面積の小型化、コストを抑制することで、近年求められているパワーモジュールの大容量化、低コスト化に対応した信頼性の高い電力用半導体装置を得ることを可能とすることにある。
本願に開示される電力半導体装置は、電力用半導体素子を封止した樹脂封止体に一部が露出するように封止され前記電力用半導体素子の通電による発熱を取り出すと共に前記露出した部分に前記発熱を伝熱するヒートスプレッダを有するパワーモジュール、および
前記ヒートスプレッダに前記ヒートスプレッダの側の面が熱的に接合し、前記ヒートスプレッダと反対側の面が冷却器と熱的に接合する板状樹脂含浸セラミックス多孔質体を備え、
前記パワーモジュールの前記冷却器の側の面と、前記冷却器の前記パワーモジュールの側の面と、前記板状樹脂含浸セラミックス多孔質体の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面とによって囲まれ、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面からの流出を許容する空間領域が設けられているものである。
本願に開示される電力用半導体装置によれば、接合信頼性、放熱性、絶縁信頼性を向上し、実装面積の小型化、コストを抑制することで、近年求められているパワーモジュールの大容量化、低コスト化に対応した信頼性の高い電力用半導体装置を得ることが可能となる。
本願の実施の形態1および実施の形態2に係る電力用半導体装置の事例を示す図で、図2のA-A線における断面を矢印方向にみたA-A断面図である。 本願の実施の形態1および実施の形態2に係る電力用半導体装置の事例を示す斜視図である。 図1の一点鎖線で囲まれた被拡大部Bを拡大して例示するB部拡大断面図である。 本願の実施の形態2を示す図で、距離Uと樹脂含浸セラミック多孔質体内内圧の計算例を示す説明図である。 本願の実施の形態3に係る電力用半導体装置の事例を示す図で、図1のA-A断面に相当する図である。 図5の一点鎖線で囲まれた被拡大部Cを拡大して例示するC部拡大断面図である。 本願の実施の形態4,5,6に係る電力用半導体装置の実施例のデータと、比較例のデータと、を示す説明図である。 本願の実施の形態4に係る半導体素子の縦横比とウェハ取れ数比との関係を例示する説明図である。 本願の実施の形態7に係る電力用半導体装置の事例を示す図で、図1のA-A断面に相当する図である。 図9の一点鎖線で囲まれた被拡大部Dを拡大して例示するD部拡大断面図である。 本願の実施の形態8に係る電力用半導体装置の事例を示す図で、図1のA-A断面に相当する図である。 図11の一点鎖線で囲まれた被拡大部Eを拡大して例示するE部拡大断面図である。 本願の実施の形態10に係る電力用半導体装置の製造工程の各工程での第1段階の中間構造を例示する断面図である。 本願の実施の形態10に係る電力用半導体装置の製造工程の各工程での第2段階の中間構造を例示する断面図である。 本願の実施の形態10に係る電力用半導体装置の製造工程の各工程での第3段階の中間構造を例示する断面図である。 本願の実施の形態10に係る電力用半導体装置の製造工程の各工程での第4段階の構造を例示する断面図である。 本願の実施の形態10に係る電力用半導体装置の製造工程における接合中の不完全硬化状態の板状樹脂含浸セラミックス多孔質体の挙動を例示する図であり、図3の拡大断面図に相当する断面図である。
以下に、本願に係る電力用半導体装置、例えば車載用の電力用半導体装置として顕著な効果を奏する各実施の形態を図1から図17に基づいて説明する。なお、本願は以下の記述に限定されるものではなく、本願の要旨を逸脱しない範囲において適宜変更可能である。以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合があり、また、本願の特徴に関係しない構成の図示は省略する。また、各図中、同一符号は同一または相当部分を示す。
実施の形態1.
本実施の形態1は、図1から図3に例示されている。図1は本願の実施の形態1および実施の形態2に係る電力用半導体装置の事例を示す図で、図2のA-A線における断面を矢印方向にみたA-A断面図である。図2は本願の実施の形態1および実施の形態2に係る電力用半導体装置の事例を示す斜視図である。図3は図1の一点鎖線で囲まれた被拡大部Bを拡大して例示するB部拡大断面図である。
図1から図3において、電力用半導体装置101はパワーモジュール201と、支持部材である冷却器7と、パワーモジュール201と冷却器7との間に介在する板状樹脂含浸セラミックス多孔質体6とを備える。板状樹脂含浸セラミックス多孔質体6は、熱伝導性が高いいわゆる高熱伝導材であり電気的絶縁体である。
説明の便宜上、図1の上下方向を厚さ方向、左右方向を面内方向と記載し、面内方向において、金属配線部材2a、2bが露出している側を外側、金属配線部材2a、2bに挟まれた部分を中心部とする。
パワーモジュール201は基本構成部分として、電力用半導体素子1a、1bと、金属配線部材2a、2b、2cと、高熱伝導材であり電気的導体であるヒートスプレッダ3を備え、樹脂封止体5によって封止されている。電力用半導体素子1a、1bは、ヒートスプレッダ3に、それぞれ配線部材でもある金属接合材4a、4bを用いて接合される。同様に電力用半導体素子1a、1bと金属配線部材2aとは金属接合材4c、4dを用いて接合される。
金属接合材4a、4b、4c、4dは例えば、はんだ、銀等の金属が考えられる。特に、金属接合材4a、4bは、例えば、300℃などの高温下で30MPaを超える加圧力を用いて焼結する焼結Agのような、超高信頼性、高放熱性の接合材を選択可能である。
金属配線部材2a、2b、2cは、例えばアルミニウム、銅等の金属が考えられ、金属配線部材2cと電力用半導体素子1a、1bとの接合部材は、アルミ、銅等の金属ワイヤが考えられる他、金属配線部材2aと電力用半導体素子1a、1bとの接続に金属ワイヤを用いる構造も選択できる。
電力用半導体素子1a、1bは、例えば、電圧駆動型のMOS-FET、IGBT、ダイオードであり、シリコンの他に、窒化ケイ素、窒化ガリウム、炭化ケイ素といった次世代半導体が使用されており、パワーモジュール201における主たる発熱源となる。
電力用半導体素子1a、1bが通電されることにより電力用半導体素子1a、1bが発生した熱は、ヒートスプレッダ3により効率的に取り出され、ヒートスプレッダ3内で効率的に伝達され、更に、ヒートスプレッダ3から板状樹脂含浸セラミックス多孔質体6を介して冷却器7へ伝達され、冷却器7で外部へ熱放散される。
金属配線部材2a、2b、2cは、樹脂封止体5の外側に露出した状態で成形され、外部との接続部分となる。金属配線部材2a、2bは主に大電力を通電し、金属配線部材2cは電力用半導体素子1a、1bへの制御信号を通電するのに用いられる。制御信号としては、例えば半導体素子がMOS-FETであれば、ゲート、制御ソース、温度センス、電流センス等が考えられる。
冷却器7は、電力用半導体素子1a、1bが動作時に発する熱を外部へ拡散するヒートシンクなどであり、例えばアルミニウム、銅など金属で構成される。本実施の形態では、放熱性を向上するため、図示するようにフィンが設けられている。また、冷却器7内に伝熱製溶液を流して、例えばラジエターなど周辺部品と接続した状態で冷却をおこなってもよい。冷却用溶液は例えば水などが考えられる。
パワーモジュール201は、少なくとも1面が冷却器7と板状樹脂含浸セラミックス多孔質体6によって結合された構造を有しており、具体的には、例えば、絶縁機能を有していないヒートスプレッダ3の厚み方向の一部が樹脂封止体5から露出した構造に形成されている。実施の形態1では、パワーモジュール201のヒートスプレッダ3の露出面と冷却器7との間を板状樹脂含浸セラミックス多孔質体6で結合する構造が例示されている。
板状樹脂含浸セラミックス多孔質体6は、例えば特許文献2に記載の、セラミックス一次粒子の多孔質体であり、気孔が三次元的に連続している多孔性の窒化物系セラミックス多孔質体中に、熱硬化性樹脂組成物が不完全硬化状態で含浸している窒化物系セラミックス樹脂複合体である。セラミックスは窒化ホウ素、窒化アルミニウム、窒化ケイ素等であり、1種類のみではなく2種類以上を組み合わせたものも選択できる。
前述の通り、板状樹脂含浸セラミックス多孔質体6も、エポキシ樹脂にセラミックス粒を充填した絶縁シートと同じく、数%~10%程度のボイドを含んでおり、ボイドにより接着性、絶縁性、放熱性が低下する懸念がある。そのため、製造時にはパワーモジュール201と冷却器7とをより強固に接合し、絶縁性、放熱性を向上するために、事前に樹脂封止体で封止されたパワーモジュール201が破壊されない範囲で加圧、加熱して接合される。加圧加熱接合時、板状樹脂含浸セラミックス多孔質体6内の含浸樹脂6bは一時的に粘度が下がり、加圧に伴い流動する。
この時、前記絶縁樹脂シートは加熱により粘度の低下した樹脂とセラミック粒が一体となって流動するのに対し、前記板状樹脂含浸セラミックス多孔質体6では、セラミックス多孔質体部6a(以下骨格6a)の一部と加熱により粘度の低下した含浸樹脂6bが流動する。
この挙動の差により、前記板状樹脂含浸セラミックス多孔質体6内に発生する圧力(以下、内圧)が異なり、同一条件で加圧した場合でも、板状樹脂含浸セラミックス多孔質体6の方が内圧が低くなる。これにより、ボイドが残存することによって、接合信頼性の低下、放熱性の低下、絶縁信頼性の低下が懸念され、例えば、車載品のような高信頼性が求められる用途においては十分な機能を満足しない場合もあり得る。
本願は、上記課題に対しパワーモジュール201と冷却器7、板状樹脂含浸セラミックス多孔質体6の構造を工夫したものであり、不完全硬化状態の板状樹脂含浸セラミックス多孔質体を用いてパワーモジュール201を冷却器7と結合し、ロバスト性の高い電力用半導体装置101を実現するものである。
前記板状樹脂含浸セラミックス多孔質体特有の接合時の課題を解決する構造を図1から3を用いて説明する。図2に電力用半導体装置101の斜視図を示し、図1に電力用半導体装置101のA-A断面図を示す。図3は、図1において一点鎖線で囲まれた被拡大部Bを拡大して例示するB部拡大断面図を示す。
加圧、加熱による接合時に板状樹脂含浸セラミックス多孔質体6の内部に発生する内圧は、パワーモジュール201と、前記冷却器7の前記パワーモジュール201の側の面とに囲まれた領域を流路と置き換えて、流体力学的に考えることができる。
例えば、前記板状樹脂含浸セラミックス多孔質体6の延在方向(図1および図3における左右方向)の端面と、パワーモジュール201の延材方向端面の位置が一致している場合、加熱、加圧による接合時に、板状樹脂含浸セラミックス多孔質体6内部の含浸樹脂6bが流動し、板状樹脂含浸セラミックス多孔質体6の端部に到達すると、板状樹脂含浸セラミックス多孔質体6の内圧がゼロとなり、ボイドが全く潰れなくなる。一方で、前記パワーモジュール201と前記冷却器7の前記パワーモジュール201側の面に、前記板状樹脂含浸セラミックス多孔質体6の含浸樹脂6bの前記板状樹脂含浸セラミックス多孔質体6の延在方向の端面からの流出を許容する空間領域567aが設けられている場合は、板状樹脂含浸セラミックス多孔質体6内の内圧がゼロとならず、ボイドを潰し、絶縁性を高めることが可能となる。
換言すれば、パワーモジュール201と冷却器7との対向方向(図3における上下方向)に見た板状樹脂含浸セラミックス多孔質体6の面積を、ヒートスプレッダ3の前記対向方向に見た面積より大きく、しかもパワーモジュール201および冷却器のそれぞれのパワーモジュール201より小さいく構成されていることにより、板状樹脂含浸セラミックス多孔質体6の内圧を高め、板状樹脂含浸セラミックス多孔質体6が有する本来の実力を使いきることにより、接合信頼性、放熱性、絶縁信頼性を向上させ、余分な設計マージンを設けることによる実装面積の大型化、コストアップを抑制することができる。
更に観点を変えれば、図1および図3に例示の電力用半導体装置101は、電力用半導体素子1a,1bを封止した樹脂封止体5に一部が露出するように封止され前記電力用半導体素子1a,1bの通電による発熱を取り出すと共に前記露出した部分に前記発熱を伝熱するヒートスプレッダ3を有するパワーモジュール201、および前記ヒートスプレッダ3に前記ヒートスプレッダ3の側の面が熱的に接合し、前記ヒートスプレッダ3と反対側の面が冷却器7と熱的に接合する板状樹脂含浸セラミックス多孔質体6を備え、前記パワーモジュール201の前記冷却器7の側の面と、前記冷却器7の前記パワーモジュール201の側の面と、前記板状樹脂含浸セラミックス多孔質体6の前記板状樹脂含浸セラミックス多孔質体6の延在方向(図1および図3における左右方向)の端面とによって囲まれ、前記板状樹脂含浸セラミックス多孔質体6の含浸樹脂6bの前記板状樹脂含浸セラミックス多孔質体6の延在方向の端面からの流出を許容する空間領域567aが設けられている電力用半導体装置である。
尚、加熱により軟化し板状樹脂含浸セラミックス多孔質体6の骨格6aから溢れ出た含浸樹脂6bは、前記対向方向に見た板状樹脂含浸セラミックス多孔質体6の外周面とパワーモジュール201の冷却器7との対向面と冷却器7のパワーモジュール201との対向面とに囲まれる空間領域567a内に流入し、場合によっては空間領域567aを埋め、場合によってはパワーモジュール201より外側に流出する場合もある。空間領域567aの板状樹脂含浸セラミックス多孔質体6の延在方向の長さは、例えば0.6mm、1mm等であり、長いほど内圧が高くなり、絶縁性が高くなるが、パワーモジュール201の投影面積が大きくなり、電力変換器の大型化につながる。
本実施の形態1に開示された車載用の電力用半導体装置によれば、接合信頼性、放熱性、絶縁信頼性を向上し、実装面積の小型化、コストを抑制することで、近年求められているパワーモジュールの大容量化、低コスト化に対応した電力用半導体装置を得ることができると同時に、事前に樹脂封止体で封止したパワーモジュールをマザー工場で生産し、冷却器と結合する工程を一般工場で行うことが可能となり、生産性を向上することができ、製造コストを低減できる。特に、半導体素子にSiCを使用した場合、SiCウェハは高価であるため、高放熱化によるコスト低減効果は顕著である。
実施の形態2.
実施の形態1と異なる部分のみ記載する。
図3の、パワーモジュール201における、樹脂封止体5とヒートスプレッダ3外周面との境界面Zから、前記板状樹脂含浸セラミックス多孔質体6の含浸樹脂流出部(板状樹脂含浸セラミックス多孔質体6の骨格6a)との境界部yまでの間の距離Uは、板状樹脂含浸セラミックス多孔質体6の骨格6aの細孔分布径(細孔径分布)のピーク値の50倍以上に設定されている。
ここでいう板状樹脂含浸セラミックス多孔質体6の骨格6aの平均細孔径は、板状樹脂含浸セラミックス多孔質体6を大気雰囲気中において、500℃から900℃で灰化することによって、樹脂を含まない骨格6aのみを抽出し、水銀圧入法で細孔径分布を測定、そのピーク値を抽出したものである。
前述のように、製造時の加圧、加熱による接合により板状樹脂含浸セラミックス多孔質体6内を含浸樹脂6bが流動するが、流動方向は板状樹脂含浸セラミックス多孔質体6の側面(図3における側面であり、板状樹脂含浸セラミックス多孔質体6の外周面でもある)が解放されているため、板状樹脂含浸セラミックス多孔質体6の中心部が最も圧力が高く、面内方向の外周辺上は圧力が最も低くなる。加圧、加熱接合時の流動はこの圧力差によって板状樹脂含浸セラミックス多孔質体6の中心部から外周辺上に向かう方向に流動して空間領域567a内に流入し、図3に例示のように、完成製品の状態では、空間領域567a内に板状樹脂含浸セラミックス多孔質体6の樹脂が固化した状態で存在している。
板状樹脂含浸セラミックス多孔質体6の中で中心部から外周に向かって含浸樹脂6b、ボイドが流動する際、接合時の加圧力を駆動力として板状樹脂含浸セラミックス多孔質体の骨格6a内の流体抵抗を反力としながら流動する。この加圧力と流体抵抗の差が板状樹脂含浸セラミックス多孔質体6内に発生する内圧であり、内圧が低いと不完全硬化状態の板状樹脂含浸セラミックス多孔質体にもともと存在するボイドを十分潰すことができず、ボイドが残存することによって、接合信頼性の低下、放熱性の低下、絶縁信頼性の低下が懸念される。
板状樹脂含浸セラミックス多孔質体6内に発生する内圧は、エルガン(Ergun)の経験式を用いて概算することができ、図4に示すように中心部からの距離に応じて変化する。
エルガン(Ergun)の経験式を以下に(式1)として示す。
Figure 2022081849000002

ここでΔP:圧力損失、L:長さ、μ:樹脂粘度、ρ:樹脂密度、V:流速、ε:気孔率、dp:平均細孔径。
図4は、平均細孔径7μmの計算例である。ボイドをつぶすのに必要な内圧は、加圧力よりも内圧計算値が高くなる領域であり、十分な内圧が得られる領域は距離U=1.0mmより内側となる。エルガン(Ergun)の式に従い、内圧は細孔径の2乗倍に比例するため、平均細孔径が7μm以下の場合にも、距離Uを平均細孔径の150倍以上とすることで、パワーモジュール201内で電圧が印加されるヒートスプレッダ3の直下にあたる板状樹脂含浸セラミックス多孔質体6は内圧が十分高い領域となり、接合信頼性、放熱性、絶縁信頼性が担保される。一方、平均細孔径が7μmより大きい場合は、距離Uを平均細孔径の150倍では十分な内圧が得られない。しかしながら、平均細孔径が板状樹脂含浸セラミックス多孔質体6の厚みの1/20より大きくなるような場合は、板状樹脂含浸セラミックス多孔質体6の骨格6aと樹脂6b間の接触面が大きくなり、絶縁性が低下するため、選択されない。
換言すれば、本実施の形態2における電力用半導体装置は、前記板状樹脂含浸セラミックス多孔質体6の延在方向の端面でもある前記境界部y(板状樹脂含浸セラミックス多孔質体6の外周面)から前記ヒートスプレッダ3の前記延在方向の端面である境界面Z(ヒートスプレッダ3の外周面と樹脂封止体5との境界面)までの距離(スプレッダ端-板状樹脂含浸セラミックス多孔質体端部間距離)Uが、前記板状樹脂含浸セラミックス多孔質体6の平均細孔径の150倍以上であり、かつ、前記平均細孔径のピーク値が、前記板状樹脂含浸セラミックス多孔質体6の前記延在方向と直交する方向の厚みの1/20より小さい電力用半導体装置である。
実施の形態3.
以下、本実施の形態3について、実施の形態1と異なる部分のみ記載する。
図5は実施の形態3における図2のA-A断面図である。図6は、図5の一点鎖線で囲まれた被拡大部Cを拡大して例示するC部拡大断面図である。ヒートスプレッダ34は、厚み方向において樹脂封止体5の、板状樹脂含浸セラミックス多孔質体6との被着面よりも3a突出している。
本願の電力用半導体装置104は上述の通り、電力用半導体素子1a、1bの発熱をヒートスプレッダ、板状樹脂含浸セラミックス多孔質体6、冷却器7へと放熱する。例えば、ヒートスプレッダ34の突出量3aが負の値をとり、ヒートスプレッダ34が凹んでいる場合、板状樹脂含浸セラミックス多孔質体6の特徴である、含浸樹脂6bの流動によって、ヒートスプレッダ34直下に含浸樹脂6bのみの層が発生し、電力用半導体素子1a、1bの発熱をヒートスプレッダ、含浸樹脂6b、板状樹脂含浸セラミックス多孔質体6、冷却器7へと放熱することになり、半導体装置の放熱性が低下する。ヒートスプレッダ34を3aだけ突出することでこの課題を解決する。尚、突出量3aは0以上の値をとる。
換言すれば、本実施の形態3の電力用半導体装置は、図5および図6に例示のように、前記ヒートスプレッダ34の前記露出の面が、前記樹脂封止体5の前記板状樹脂含浸セラミックス多孔質体6の側の面よりも凹んでいないように形成されている電力用半導体装置である。
実施の形態4.
以下、本実施の形態4について、実施の形態1と異なる部分のみ記載する。
半導体素子の縦横比とウェハ取れ数比との関係を例示する説明図である図8は、請求項4、5、6に関係し、電力用半導体素子1a,1b、ヒートスプレッダ3、パワーモジュール201と冷却器7の板状樹脂含浸セラミックス多孔質体6との被接着面の表面性状を振り、電力用半導体装置101を製造後に特性評価した実施例および比較例をまとめたものである。
評価項目は、(1) 素子の主電極間に電圧を印加した際のリーク電流測定(最大1200V、リーク電流1mA)、(2) 超音波探傷試験によるモールド割れ、剥離検査、(3) 板状樹脂含浸セラミックス多孔質体の厚み方向間の部分放電試験および絶縁評価(最大15kV、放電電荷量100pC)、(4) 熱サイクル試験後の超音波探傷試験による剥離進展(-40℃~125℃ 3kcyc)、(5) 熱サイクル試験後の熱抵抗測定値の熱抵抗劣化とした。
実施の形態4では、電力用半導体素子1a、1bの外形寸法および厚みを振って評価した。前述の通り、板状樹脂含浸セラミックス多孔質体6を用いてパワーモジュール201と冷却器7を接合する際、加圧、加熱が必要であり、加圧力は例えば、10MPaである。パワーモジュール201は、ヒートスプレッダ3、金属配線部材2a、2b、2cと電力用半導体素子1a、1bと樹脂封止体5の線膨張係数との差により反りが発生する。加圧、加熱による接合時は板状樹脂含浸セラミックス多孔質体6もパワーモジュール201も変形する。半導体素子の外形寸法、厚みによって、パワーモジュール201の変形に伴い、電力用半導体素子1a、1bが割れたり、樹脂封止体5と電力用半導体素子1a、1b間が剥離したりし、(1)素子特性、(2)モールド不良が発生する。実施例1~7と8の比較により、一辺20mmでは(1)素子特性不良が発生し、実施例8と9の比較により厚み60μm以上であれば(1)素子特性不良が発生しないことが分かった。本実施例において、電力用半導体素子1a、1bを一辺が15mm以下、厚み60μm以上とすることで、これらの不良が発生せず、良好な電力用半導体装置が得られる。
図8に半導体素子の縦横の長さの比と、半導体ウェハ上の素子取れ数の関係を示す。縦横の長さの比が5以上になると、取れ数は縦横比1(正方形)よりも8%低下し、取れ数低下によって素子コストが高くなる。特にウェハコストが高い次世代半導体、SiCではより顕著であり、実施の形態4では半導体素子の縦横比を5以下として電力用半導体装置101の高コスト化を防止している。
換言すれば、本実施の形態4の電力用半導体装置は、一辺が15mm以下、縦横の長さの比が5以下、かつ厚み60μm以上の半導体素子が、複数個並列に並べて前記樹脂封止体5に封止されて前記パワーモジュール204が構成されている電力用半導体装置である。
実施の形態5.
以下、本実施の形態5について、実施の形態1および6と異なる部分のみ記載する。
図7の通り、実施例1と実施例2の比較により、ヒートスプレッダ3の厚みが2mm以下では(1)半導体素子特性、(2)モールド不良が発生することがわかる。また、逆にヒートスプレッダ3の厚みが5mmを超える場合では、電力用半導体素子1a、1bの発熱を放熱するために必要な放熱面積を熱広がり角度45度と仮定した場合、電力用半導体素子1a、1bの端からヒートスプレッダ3の端までの距離が5mmとなり、パワーモジュールが大型化してしまう。よって本実施の形態ではヒートスプレッダ3の厚みを2mm以上、5mm以下と規定して、半導体装置の小型化と信頼性を両立している。
換言すれば、本実施の形態5の電力用半導体装置における、前記ヒートスプレッダ3、34は、その厚みが2mmから5mmの範囲内である。
実施の形態6.
以下、本実施の形態6について、実施の形態1,4および5と異なる部分のみ記載する。
図8の比較例として、表面性状を規定したAl板2枚を板状樹脂含浸セラミックス多孔質体6で貼り合わせた試験片を作成し、半導体装置の熱サイクル試験で印加される熱応力と同等の応力を、Al板の一方向に印加した疲労試験を行った。比較例1~6の結果より、表面性状をRz3以上とすれば電力用半導体装置の熱サイクル試験で破壊しないことを確認したが、実際に半導体装置で試験を行うと、Rz20以上になると板状樹脂含浸セラミックス多孔質体6の骨格6aが粗面に追従できず、熱抵抗が大きくなる結果となった。本実施の形態ではパワーモジュール201と、冷却器7の、板状樹脂含浸セラミックス多孔質体6と接合される面の内、少なくとも一方の表面性状がその最大高さ(Rz)3μm以上、20μm以下であることを特徴とすることで接合信頼性と低熱抵抗を両立する。
換言すれば、本実施の形態6の電力用半導体装置は、前記パワーモジュール201および前記冷却器7の、前記板状樹脂含浸セラミックス多孔質体6と接合される面の内、少なくとも一方の表面性状は、その最大高さ(Rz)が3μmから20μmの範囲内である電力用半導体装置である。
実施の形態7.
以下、本実施の形態7について、実施の形態1と異なる部分のみ記載する。
図10は実施の形態7における電力用半導体装置109の図2のA-A断面図に相当する断面を示し、図11は、図10における一点鎖線で囲まれた被拡大部Dを拡大して例示するD部拡大断面図を示す。パワーモジュール209内の段付きヒートスプレッダ39の、板状樹脂含浸セラミックス多孔質体6と接する面の外周辺を、全周にわたって少なくとも一段の段差を設け、段差部が樹脂封止体5に封止されていることを特徴とする。
換言すれば、本実施の形態7の電力変換装置は、前記ヒートスプレッダ3,39の、前記板状樹脂含浸セラミックス多孔質体6と接する面の外周部に、その全周にわたって少なくとも一段の段差39sが設けられており、前記段差39sの部分が前記樹脂封止体5で封止されている電力用半導体装置である。
このような構造にすることで、ヒートスプレッダ39と樹脂封止体5の間の密着が弱い部分の密着性を改善でき、前述の加圧、加熱による接合時の板状樹脂含浸セラミックス多孔質体6の含浸樹脂6bがパワーモジュール内部に流入し、パワーモジュール209が破壊されることを防止できる。段差の数が多いほど密着性が改善でき、より高信頼性を有した電力用半導体装置を得ることができる。
実施の形態8.
以下、本実施の形態8について、実施の形態1と異なる部分のみ記載する。
図12は実施の形態8における電力用半導体装置110の図2のA-A断面図に相当する断面を示し、図13は図12の一点鎖線で囲まれた被拡大部Eを拡大して例示するE部拡大断面図を示す。板状樹脂含浸セラミックス多孔質体6の含浸樹脂6bと、骨格6aと含浸樹脂6bの混合部間の境界部から、枠8の間に隙間W1,W2を空けて、隙間合計W1+W2が以下の不等式(式2)の範囲内になることを特徴とする。
具体的には、不完全硬化状態の板状樹脂含浸セラミックス多孔質体の1辺の長さをX、前記1辺と直交する他辺の長さをY、高さをt、含有ボイド体積割合をs、前記隙間をW1,W2とした時、以下の式2を満たす。
Figure 2022081849000003
上記の式2は、不完全硬化状態の板状樹脂含浸セラミックス多孔質体の加圧、加熱による接合前後の体積変化量を考慮したものであり、板状樹脂含浸セラミックス多孔質体6の変形時の挙動を考慮し、必要十分なクリアランスである隙間W1、W2を設ける枠を具備することで、上述の板状樹脂含浸セラミックス多孔質体6の含浸樹脂6bの流動によるパワーモジュール210の破壊を防止しつつ、枠の効果によって板状樹脂含浸セラミックス多孔質体6端部の内圧を高くすることができるため、実施の形態2に記載の距離Uを設けない場合でも絶縁性を向上でき、電力用半導体装置のさらなる小型、大出力化が可能である。実施の形態2に記載の距離Uと併用する場合には、板状樹脂含浸セラミックス多孔質体6の厚み、平均細孔径の選択肢を広げることが可能となる。
枠8は、パワーモジュール210と冷却器7の加圧接合時の例えば10MPaなどの高い加圧力を受けて変形、流動する含浸樹脂6bを抑え込める材料を選択する必要があり、加圧接合前は不完全硬化状態の板状樹脂含浸セラミックス多孔質体6よりも厚さが分厚く、加圧接合によって変形し、接合後の板状樹脂含浸セラミックス多孔質体6の厚みと同等または板状樹脂含浸セラミックス多孔質体6よりも分厚くなる材料を選定することが望まれる。枠8は必ずしもパワーモジュール210、冷却器7と別部材である必要はない。
実施の形態9.
以下、本実施の形態9について、実施の形態1と異なる部分のみ記載する。
実施の形態9では、図2のパワーモジュール201を冷却器7上に複数個搭載したものでも良い。板状樹脂含浸セラミックス多孔質体6によって冷却器7上にパワーモジュール201を接合する構造であるので、例えば、電力用半導体装置に求められる出力に応じてパワーモジュール201の冷却器7への搭載数を変更することによって、パワーモジュール201の設計変更を行わず、対応することが可能である。これによって、生産設備の変更が不要となり、製造コストを低減でき、安価で大出力な半導体装置を提供可能となる。
実施の形態10.
以下、本実施の形態10について、実施の形態1と異なる部分のみ記載する。
図13、図14、図15、図16は、それぞれ電力用半導体装置100の製造工程における中間構造を示す側面図である。電力用半導体装置100は、パワーモジュール200を製造後、冷却器7とパワーモジュール200とを、不完全硬化状態の板状樹脂含浸セラミックス多孔質体6cを用いて接合する。接合の際は不完全硬化状態の板状樹脂含浸セラミックス多孔質体内の含浸樹脂が再溶融する適切な温度に昇温された状態で加圧、一定時間保持した後、板状樹脂含浸セラミックス多孔質体を完全硬化させて接合する。
図13は、ヒートスプレッダ3上に電力用半導体素子1a、1bを金属接合材4a、4bで、電力用半導体素子1a、1bと金属配線部材2a、2bを金属接合材4c、4dとそれぞれ接合した後、金属配線部材2cと電力用半導体素子1aを金属ワイヤからなる金属接合材4eで接合した後の側面図を示し、この状態をパワーモジュール中間体199として示している。尚、電力用半導体素子1a、1bをヒートスプレッダ3上に金属接合材4a、4bで接合した後、電力用半導体素子1a、1bと金属配線部材2a、2bを接合してもよいし、同時に接合してもよい。
図14はパワーモジュール中間体199を樹脂封止体5で封止した状態を示し、この状態をパワーモジュール200とする。尚、金属配線部材2a、2b、2cは図13のように事前に曲げた状態で封止してもよいし、封止した後に曲げてもよい。
図15は、パワーモジュール200と冷却器7とを不完全硬化状態の板状樹脂含浸セラミックス多孔質体6cを用いて接合する工程を示す。図17は、接合中の不完全硬化状態の板状樹脂含浸セラミックス多孔質体6cの挙動を示しており、不完全硬化状態の板状樹脂含浸セラミックス多孔質体6cをパワーモジュール200と冷却器7との間に挟んだ状態で適切な温度に加熱し、含浸樹脂6bの粘度が低下したタイミングで加圧ブロック9のようなフラットなブロックを用いて加圧し、厚み低減量v(板状樹脂含浸セラミックス多孔質体の加圧接合前後の厚み変形量v)だけ変形させ、余剰分の含浸樹脂6bが流出して接合される。この時、加圧力と温度、加圧保持時間を適切に管理することで良好な接着が得られ、信頼性の高い電力用半導体装置100を構成することができる。
図16は、これらの工程を経て得られる電力用半導体装置100であり、不完全硬化状態の板状樹脂含浸セラミックス多孔質体6cを用いてパワーモジュール200と冷却器7とを接合する工程をとることによって、余剰な熱ストレスを板状樹脂含浸セラミックス多孔質体6に印加することなく半導体装置100を製造することができ、半導体装置100の信頼性を向上できる。例えば、パワーモジュール中間体199を製造する前の段階で、板状樹脂含浸セラミックス多孔質体6を用いてヒートスプレッダ3と冷却器7とを接合した場合、電力用半導体素子1a、1bとヒートスプレッダ3を金属接合材4a、4bを接合する工程において、金属接合材4a、4bが焼結Ag等の高温、高加圧(例えば、300℃、30MPa)等を必要とされる、次世代金属接合材を選択できず、半導体装置の大出力化ができない。
換言すれば、本実施の形態10の電力用半導体装置の製造方法は、パワーモジュールと、前記パワーモジュールに板状樹脂含浸セラミックス多孔質体を用いて接合された冷却器と、を備えた半導体装置であって、
前記パワーモジュールは、複数の半導体素子と、前記半導体素子を接合材を介して一方の面部に搭載したヒートスプレッダと、前記ヒートスプレッダに接合材を介して接合された主端子となる第1のリードフレームと、前記半導体素子に接合材を介して接合された主端子となる第2のリードフレームと、前記半導体素子と、前記ヒートスプレッダの前記半導体素子と接合される部分と、前記第1のリードフレームの一部分と、前記第2のリードフレームの一部分以外と、を封止する樹脂封止体と、を備え、
前記板状樹脂含浸セラミックス多孔質体の側面部に、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂が存在することを特徴とする半導体装置の製造方法において、
前記パワーモジュールと前記冷却器との間に上記板状樹脂含浸セラミックス多孔質体を配置し、板状樹脂含浸セラミックス多孔質体を加熱して、板状樹脂含浸セラミックス多孔質体内の含浸樹脂が半硬化状態から軟化するタイミングで、前記板状樹脂含浸セラミックス多孔質体の厚み方向に加圧を開始し、
この加圧によって、前記板状樹脂含浸セラミックス多孔質体の厚み方向に直行する方向において、含浸樹脂が染み出し、加熱を続行することで板状樹脂含浸セラミックス多孔質体を本硬化させ、パワーモジュールと冷却器を接合する、ことを特徴とする電力用半導体装置の製造方法である。
更に換言すれば、本実施の形態10における電力用半導体装置の製造方法は、電力用半導体素子を封止した樹脂封止体に一部が露出するように封止され前記電力用半導体素子の通電による発熱を取り出すと共に前記露出した部分に前記発熱を伝熱するヒートスプレッダを有するパワーモジュール、および前記ヒートスプレッダに前記ヒートスプレッダ側の面が熱的に接合し、前記ヒートスプレッダと反対側の面が冷却器と熱的に接合する板状樹脂含浸セラミックス多孔質体を備え、前記パワーモジュールの前記冷却器の側の面と、前記冷却器の前記パワーモジュールの側の面と、前記板状樹脂含浸セラミックス多孔質体の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面とによって囲まれ、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面からの流入を許容する空間領域が設けられている電力用半導体装置の製造方法であって、前記板状樹脂含浸セラミックス多孔質体を加熱して、板状樹脂含浸セラミックス多孔質体の内部の含浸樹脂が半硬化状態から軟化するタイミングで、前記板状樹脂含浸セラミックス多孔質体への前記延在方向と直交する方向の加圧を開始し、この加圧によって、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂が前記空間領域に流入した状態で前記板状樹脂含浸セラミックス多孔質体を本硬化させることにより前記パワーモジュールと前記冷却器とを接合する電力用半導体装置の製造方法である。
尚、以上で述べた実施の形態1から10は、それぞれ組み合わせて使用してもよい。また、技術的に好ましい種々の限定が付されているが、本願の技術的範囲は以上の説明において特に本願を限定する旨の記載がない限り、これらの形態に限られるものではない。
なお、本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
100,101,104,109,110 電力用半導体装置、200,201,204,209,210 パワーモジュール、199 パワーモジュール中間体、1a 電力用半導体素子、1b 電力用半導体素子、2a,2b,2c 金属配線部材、3,34 ヒートスプレッダ、3a 突出量、39 段付きヒートスプレッダ、39s 段差、4a,4b,4c,4d,4e 金属接合材、5 樹脂封止体、6 板状樹脂含浸セラミックス多孔質体、6a 骨格、6b 含浸樹脂、6c 不完全硬化状態の板状樹脂含浸セラミックス多孔質体、7 冷却器、8 枠、9 加圧ブロック、567a 空間領域、B,C,D,E 被拡大部、U 距離、Z 境界面、y 境界部、W1,W2 隙間、v 厚み低減量。
本願に開示される電力半導体装置は、電力用半導体素子を封止した樹脂封止体に一部が露出するように封止され前記電力用半導体素子の通電による発熱を取り出すと共に前記露出した部分に前記発熱を伝熱するヒートスプレッダを有するパワーモジュール、および
前記ヒートスプレッダに前記ヒートスプレッダの側の面が熱的に接合し、前記ヒートスプレッダと反対側の面が冷却器と熱的に接合する板状樹脂含浸セラミックス多孔質体を備え、
前記パワーモジュールの前記冷却器の側の面と、前記冷却器の前記パワーモジュールの側の面と、前記板状樹脂含浸セラミックス多孔質体の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面とによって囲まれ、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面からの流出を許容する空間領域が設けられ、
前記板状樹脂含浸セラミックス多孔質体の延在方向の端面から前記ヒートスプレッダの前記延在方向の端面までの距離が、前記板状樹脂含浸セラミックス多孔質体の板状樹脂含浸セラミックス多孔質体の平均細孔径の150倍以上であり、かつ、前記平均細孔径が、前記板状樹脂含浸セラミックス多孔質体の前記延在方向と直交する方向の厚みの1/20よりも小さい
ことを特徴とするものである。

Claims (10)

  1. 電力用半導体素子を封止した樹脂封止体に一部が露出するように封止され前記電力用半導体素子の通電による発熱を取り出すと共に前記露出した部分に前記発熱を伝熱するヒートスプレッダを有するパワーモジュール、および
    前記ヒートスプレッダに前記ヒートスプレッダの側の面が熱的に接合し、前記ヒートスプレッダと反対側の面が冷却器と熱的に接合する板状樹脂含浸セラミックス多孔質体を備え、
    前記パワーモジュールの前記冷却器の側の面と、前記冷却器の前記パワーモジュールの側の面と、前記板状樹脂含浸セラミックス多孔質体の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面とによって囲まれ、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂の前記板状樹脂含浸セラミックス多孔質体の延在方向の端面からの流出を許容する空間領域が設けられている
    ことを特徴とする電力用半導体装置。
  2. 前記板状樹脂含浸セラミックス多孔質体の延在方向の端面から前記ヒートスプレッダの前記延在方向の端面までの距離が、前記板状樹脂含浸セラミックス多孔質体の板状樹脂含浸セラミックス多孔質体の平均細孔径の150倍以上であり、かつ、前記平均細孔径が、前記板状樹脂含浸セラミックス多孔質体の前記延在方向と直交する方向の厚みの1/20よりも小さい
    ことを特徴とする請求項1に記載の電力用半導体装置。
  3. 前記ヒートスプレッダの前記露出の面が、前記樹脂封止体の前記板状樹脂含浸セラミックス多孔質体の側の面よりも凹んでいない
    ことを特徴とする請求項1または請求項2に記載の電力用半導体装置。
  4. 一辺が15mm以下、縦横の長さの比が5以下、かつ厚み60μm以上の半導体素子が、複数個並列に並べて前記樹脂封止体に封止されて前記パワーモジュールが構成されている
    ことを特徴とする請求項1から3のいずれか一項記載の電力用半導体装置。
  5. 前記ヒートスプレッダは、その厚みが2mmから5mmの範囲内である
    ことを特徴とする請求項1から4のいずれか一項記載の電力用半導体装置。
  6. 前記パワーモジュールおよび前記冷却器の、前記板状樹脂含浸セラミックス多孔質体と接合される面の内、少なくとも一方の表面性状は、その最大高さが3μmから20μmの範囲内である
    ことを特徴とする請求項1から5のいずれか一項記載の電力用半導体装置。
  7. 前記ヒートスプレッダの、前記板状樹脂含浸セラミックス多孔質体の板状樹脂含浸セラミックス多孔質体と接する面の外周部に、その全周にわたって少なくとも一段の段差が設けられており、前記段差の部分が前記樹脂封止体で封止されている
    ことを特徴とする請求項1から6のいずれか一項記載の電力用半導体装置。
  8. 請求項1から7のいずれか一項記載の電力用半導体装置において、前記パワーモジュールの前記板状樹脂含浸セラミックス多孔質体の板状樹脂含浸セラミックス多孔質体の延在方向の両側面部の前記空間領域に、隙間W1および隙間W2を空けて前記含浸樹脂の流動を阻害する枠が設けられており、
    前記板状樹脂含浸セラミックス多孔質体の1辺の長さをX、前記1辺と直交する他辺の長さをY、高さをt、含有ボイド体積割合をs、と置いたとき、
    前記隙間W1+前記隙間W2が、下式における範囲内に設定されていることを特徴とする電力用半導体装置。
    Figure 2022081849000004
  9. 前記パワーモジュールが、前記冷却器に複数並べて搭載されていることを特徴とする請求項1から8のいずれか一項記載の電力用半導体装置。
  10. 請求項1に記載の電力用半導体装置の製造方法であって、
    前記板状樹脂含浸セラミックス多孔質体を加熱して、前記板状樹脂含浸セラミックス多孔質体の内部の含浸樹脂が半硬化状態から軟化するタイミングで、前記板状樹脂含浸セラミックス多孔質体への前記延在方向と直交する方向の加圧を開始し、
    この加圧によって、前記板状樹脂含浸セラミックス多孔質体の含浸樹脂が前記空間領域に流入した状態で前記板状樹脂含浸セラミックス多孔質体を本硬化させることにより前記パワーモジュールと前記冷却器とを接合する
    ことを特徴とする電力用半導体装置の製造方法。
JP2020193040A 2020-11-20 2020-11-20 電力用半導体装置および電力用半導体装置の製造方法 Active JP7072624B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020193040A JP7072624B1 (ja) 2020-11-20 2020-11-20 電力用半導体装置および電力用半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020193040A JP7072624B1 (ja) 2020-11-20 2020-11-20 電力用半導体装置および電力用半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP7072624B1 JP7072624B1 (ja) 2022-05-20
JP2022081849A true JP2022081849A (ja) 2022-06-01

Family

ID=81654321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020193040A Active JP7072624B1 (ja) 2020-11-20 2020-11-20 電力用半導体装置および電力用半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP7072624B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048206A1 (ja) * 2022-08-30 2024-03-07 デンカ株式会社 積層体、及び積層体の製造方法、並びに、積層基板、及び積層基板の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196512A (ja) * 2000-01-11 2001-07-19 Mitsubishi Electric Corp 半導体装置
JP2008255410A (ja) * 2007-04-04 2008-10-23 Sumitomo Electric Ind Ltd 放熱用材料及びその製造方法
JP2013073964A (ja) * 2011-09-26 2013-04-22 Hitachi Automotive Systems Ltd パワーモジュール
JP2013125893A (ja) * 2011-12-15 2013-06-24 Hitachi Automotive Systems Ltd パワー半導体モジュールおよびパワーモジュール
JP2013143439A (ja) * 2012-01-10 2013-07-22 Hitachi Automotive Systems Ltd パワー半導体モジュール、パワーモジュールおよびパワーモジュールの製造方法
JP2014047362A (ja) * 2012-08-29 2014-03-17 Hitachi Automotive Systems Ltd パワー半導体モジュールおよびパワー半導体モジュールの製造方法
JP2016021450A (ja) * 2014-07-14 2016-02-04 日立オートモティブシステムズ株式会社 パワー半導体モジュール及びそれを用いたパワーモジュール
JP2017135150A (ja) * 2016-01-25 2017-08-03 日東シンコー株式会社 放熱部材及び半導体モジュール
JP2019145744A (ja) * 2018-02-23 2019-08-29 イビデン株式会社 伝熱基板
WO2020203586A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 複合体、複合体の製造方法、積層体及び積層体の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196512A (ja) * 2000-01-11 2001-07-19 Mitsubishi Electric Corp 半導体装置
JP2008255410A (ja) * 2007-04-04 2008-10-23 Sumitomo Electric Ind Ltd 放熱用材料及びその製造方法
JP2013073964A (ja) * 2011-09-26 2013-04-22 Hitachi Automotive Systems Ltd パワーモジュール
JP2013125893A (ja) * 2011-12-15 2013-06-24 Hitachi Automotive Systems Ltd パワー半導体モジュールおよびパワーモジュール
JP2013143439A (ja) * 2012-01-10 2013-07-22 Hitachi Automotive Systems Ltd パワー半導体モジュール、パワーモジュールおよびパワーモジュールの製造方法
JP2014047362A (ja) * 2012-08-29 2014-03-17 Hitachi Automotive Systems Ltd パワー半導体モジュールおよびパワー半導体モジュールの製造方法
JP2016021450A (ja) * 2014-07-14 2016-02-04 日立オートモティブシステムズ株式会社 パワー半導体モジュール及びそれを用いたパワーモジュール
JP2017135150A (ja) * 2016-01-25 2017-08-03 日東シンコー株式会社 放熱部材及び半導体モジュール
JP2019145744A (ja) * 2018-02-23 2019-08-29 イビデン株式会社 伝熱基板
WO2020203586A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 複合体、複合体の製造方法、積層体及び積層体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048206A1 (ja) * 2022-08-30 2024-03-07 デンカ株式会社 積層体、及び積層体の製造方法、並びに、積層基板、及び積層基板の製造方法

Also Published As

Publication number Publication date
JP7072624B1 (ja) 2022-05-20

Similar Documents

Publication Publication Date Title
TWI415228B (zh) 半導體封裝結構、覆晶封裝、及半導體覆晶封裝的形成方法
JP6272512B2 (ja) 半導体装置および半導体装置の製造方法
JP4569473B2 (ja) 樹脂封止型パワー半導体モジュール
CN101335263B (zh) 半导体模块和半导体模块的制造方法
CN108242401A (zh) 用于制造电子模块组件的方法和电子模块组件
JP6824913B2 (ja) 電力用半導体装置及びその製造方法
JP6287789B2 (ja) パワーモジュール及びその製造方法
US20090237890A1 (en) Semiconductor device and method for manufacturing the same
WO2011040313A1 (ja) 半導体モジュールおよびその製造方法
US11495517B2 (en) Packaging method and joint technology for an electronic device
US11862542B2 (en) Dual side cooling power module and manufacturing method of the same
WO2015132969A1 (ja) 絶縁基板及び半導体装置
JP6972622B2 (ja) 半導体装置および半導体装置の製造方法
JP2010192591A (ja) 電力用半導体装置とその製造方法
JP7072624B1 (ja) 電力用半導体装置および電力用半導体装置の製造方法
JP5899952B2 (ja) 半導体モジュール
JP7204919B2 (ja) パワーモジュールおよびその製造方法
JP5368357B2 (ja) 電極部材およびこれを用いた半導体装置
JP2017191826A (ja) 半導体装置およびその製造方法
CN102354688A (zh) 一种功率模块
JP5840102B2 (ja) 電力用半導体装置
JP5928324B2 (ja) 電力用半導体装置
WO2022239154A1 (ja) パワーモジュールおよび電力変換装置
JP6906654B2 (ja) 半導体装置およびその製造方法
JP2010141034A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220510

R151 Written notification of patent or utility model registration

Ref document number: 7072624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151