JP2022070855A - 交流回転電機の制御装置 - Google Patents

交流回転電機の制御装置 Download PDF

Info

Publication number
JP2022070855A
JP2022070855A JP2022003453A JP2022003453A JP2022070855A JP 2022070855 A JP2022070855 A JP 2022070855A JP 2022003453 A JP2022003453 A JP 2022003453A JP 2022003453 A JP2022003453 A JP 2022003453A JP 2022070855 A JP2022070855 A JP 2022070855A
Authority
JP
Japan
Prior art keywords
current
command value
switching
axis
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022003453A
Other languages
English (en)
Other versions
JP7271735B2 (ja
Inventor
信吾 原田
Shingo Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020179445A external-priority patent/JP2022070399A/ja
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2022003453A priority Critical patent/JP7271735B2/ja
Publication of JP2022070855A publication Critical patent/JP2022070855A/ja
Application granted granted Critical
Publication of JP7271735B2 publication Critical patent/JP7271735B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

Figure 2022070855000001
【課題】全相短絡状態からスイッチング制御に切り替えるときに、電流の制御精度が悪化することを抑制できる交流回転電機の制御装置を提供する。
【解決手段】電流指令値及び電流の検出値に基づいて、電圧指令値を算出し、電圧指令値に基づいて、インバータが有する複数のスイッチング素子をオンオフするスイッチング制御と、複数相の巻線が相互に短絡するように複数のスイッチング素子をオンオフする全相短絡制御と、を切り替えて実行し、全相短絡制御からスイッチング制御に切り替えられたときに、電流指令値を、複数相の巻線に鎖交する電機子鎖交磁束の大きさが最小となる値である切換電流値に設定する交流回転電機の制御装置1。
【選択図】図2

Description

本願は、交流回転電機の制御装置に関するものである。
交流回転電機(以下、モータともいう)の制御装置において、回転子の位置センサを用いずにモータを駆動するセンサレス方式が広く普及している。このようなセンサレス方式の交流回転電機の制御装置において、インバータが停止している状態で回転子が空転している状態からインバータを再起動する構成が開示されている。
特許文献1の技術では、モータの空転時に巻線を一定時間短絡させ、その時の巻線電流に基づき推定した回転子の位置および速度と、再起動までの時間を用いて位置の推定値を初期化し、インバータを再起動することが行われる。
特許文献2の技術では、モータの空転時に巻線を短絡させ、その時の巻線電流に基づき推定した回転子の位置を用いて位置の推定値を初期化しインバータを再起動することが行われる。
また、特許文献3の技術では、電流フィードバック制御とフィードフォワード制御を行うことで高速かつ高精度な速度制御を可能にする交流電動機のセンサレス制御装置が開示されている。
特開平11-75394号公報 特開2018-7390号公報 特開2010-279095号公報 特許第4672236号 特許第6253850号
しかし、特許文献1の技術では、一度巻線を短絡させた後、再度インバータを停止させるため、モータの誘起電圧が電源電圧を超えるシステムでは、意図しない回生電流が流れてしまう。そのため、例えば自動車においてモータがエンジンに接続されており、かつ電源にバッテリを用いるシステムに適用するとバッテリの過充電を引き起こすおそれがある。
また、特許文献2の技術では、短絡状態からインバータを再起動するため、推定自体は行える。しかし、再起動する際に、短絡状態で流れていた電流の影響が考慮されていないため、再起動直後に電流の制御精度が悪化し、推定精度が悪化する可能性がある。
同様に、特許文献3においても3相短絡状態からインバータを再起動することは考慮されていない。
したがって、これらの特許文献の技術を組み合わせて実施した場合、3相短絡状態で流れていた電流の影響が考慮されていないために、3相短絡状態から再起動した直後は、電流の制御精度が悪化し、トルク変動を引き起こす可能性がある。さらに、センサレス制御を行う場合、電流の制御精度の悪化により、回転角度及び回転角速度の推定精度が悪化し、トルク変動が生じる可能性がある。
そこで、本願は、複数相の巻線を相互に短絡させた全相短絡状態から、電圧指令値に基づいてスイッチング素子をオンオフするスイッチング制御に切り替えるときに、電流の制御精度が悪化することを抑制できる交流回転電機の制御装置を提供することを目的する。
本願に係る交流回転電機の制御装置は、複数相の巻線を設けたステータとロータとを有する交流回転電機を、インバータを介して制御する交流回転電機の制御装置であって、
前記複数相の巻線に流れる電流を検出する電流検出部と、
電流指令値を設定する電流指令値算出部と、
前記電流指令値及び電流の検出値に基づいて、電圧指令値を算出する電圧指令値算出部と、
前記電圧指令値に基づいて、前記インバータが有する複数のスイッチング素子をオンオフして、前記複数相の巻線に電圧を印加するスイッチング制御と、前記複数相の巻線が相互に短絡するように前記複数のスイッチング素子をオンオフする全相短絡制御と、を切り替えて実行するインバータ制御部と、を備え、
前記電流指令値算出部は、前記全相短絡制御から前記スイッチング制御に切り替えられたときに、前記電流指令値を、前記複数相の巻線に鎖交する電機子鎖交磁束の大きさが最小となる値である切換電流値に設定するものである。
本願に係る交流回転電機の制御装置によれば、電機子鎖交磁束が最小になる電流値は、全相短絡状態の電流値に近いので、切り替え時に、電流検出値とスイッチング制御の電流指令値との偏差が大きくなることを抑制できる。そのため、切り替え時に、電流指令値と電流検出値との電流偏差を小さくすることができ、過渡的に操作量が過大になり、電流値が大きく変動することを抑制でき、過渡的にトルク変動が生じることを抑制できる。
実施の形態1に係る交流回転電機及び交流回転電機の制御装置の概略構成図である。 実施の形態1に係る交流回転電機の制御装置の概略ブロック図である。 実施の形態1に係る交流回転電機の制御装置のハードウェア構成図である。 実施の形態1に係る電流指令値算出部のブロック図である。 実施の形態1に係る切り替え時の処理を説明するためのフローチャートである。 比較例に係る制御挙動を示すタイムチャートである。 実施の形態1に係る制御挙動を示すタイムチャートである。 実施の形態2に係る電流指令値算出部のブロック図である。 実施の形態2に係る切り替え時の処理を説明するためのフローチャートである。 実施の形態2に係る制御挙動を示すタイムチャートである。 実施の形態2の効果を説明する図である。 実施の形態3に係る電流指令値算出部のブロック図である。
1.実施の形態1
実施の形態1に係る交流回転電機の制御装置1(以下、単に、制御装置1と称す)について図面を参照して説明する。図1は、本実施の形態に係る交流回転電機2及び制御装置1の概略構成図である。
1-1.交流回転電機
交流回転電機2は、複数相の巻線を設けたステータとロータと、を有している。本実施の形態では、U相、V相、W相の3相の巻線Cu、Cv、Cwが設けられている。3相巻線Cu、Cv、Cwは、スター結線とされている。なお、3相巻線は、デルタ結線とされてもよい。交流回転電機2は、永久磁石式の同期回転電機とされており、ロータに永久磁石が設けられている。
1-2.インバータ等
インバータ20は、直流電源10と3相巻線との間で電力変換を行う電力変換器であり、複数のスイッチング素子を有している。インバータ20は、直流電源10の正極側に接続される正極側のスイッチング素子23H(上アーム)と直流電源10の負極側に接続される負極側のスイッチング素子23L(下アーム)とが直列接続された直列回路(レッグ)を、3相各相の巻線に対応して3セット設けている。インバータ20は、3つの正極側のスイッチング素子23Hと、3つの負極側のスイッチング素子23Lとの、合計6つのスイッチング素子を備えている。そして、正極側のスイッチング素子23Hと負極側のスイッチング素子23Lとが直列接続されている接続点が、対応する相の巻線に接続されている。
具体的には、各相の直列回路において、正極側のスイッチング素子23Hのコレクタ端子は、正極側電線14に接続され、正極側のスイッチング素子23Hのエミッタ端子は、負極側のスイッチング素子23Lのコレクタ端子に接続され、負極側のスイッチング素子23Lのエミッタ端子は、負極側電線15に接続されている。正極側のスイッチング素子23Hと負極側のスイッチング素子23Lとの接続点は、対応する相の巻線に接続されている。スイッチング素子には、ダイオード22が逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)、又は逆並列接続されたダイオードの機能を有するMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等が用いられる。各スイッチング素子のゲート端子は、制御装置1に接続されている。各スイッチング素子は、制御装置1から出力される制御信号によりオン又はオフされる。
平滑コンデンサ12が、正極側電線14と負極側電線15との間に接続される。直流電源10からインバータ20に供給される電源電圧を検出する電源電圧センサ13が備えられている。電源電圧センサ13は、正極側電線14と負極側電線15との間に接続されている。電源電圧センサ13の出力信号は、制御装置1に入力される。
電流センサ17は、各相の巻線に流れる電流に応じた電気信号を出力する。電流センサ17は、スイッチング素子の直列回路と巻線とをつなぐ各相の電線上に備えられている。電流センサ17の出力信号は、制御装置1に入力される。なお、電流センサ17は、各相の直列回路に備えられてもよい。
直流電源10には、充放電可能な蓄電装置(例えば、リチウムイオン電池、ニッケル水素電池、電気二重層キャパシタ)が用いられる。なお、直流電源10には、直流電圧を昇圧したり降圧したりする直流電力変換器であるDC-DCコンバータが設けられてもよい。
1-3.制御装置
制御装置1は、インバータ20を介して交流回転電機2を制御する。図2に示すように、制御装置1は、後述する、電圧検出部31、電流検出部32、電流指令値算出部33、電圧指令値算出部34、インバータ制御部35、回転検出部36、及び切換制御部37等を備えている。制御装置1の各機能は、制御装置1が備えた処理回路により実現される。具体的には、制御装置1は、図3に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93等を備えている。
演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92は、電源電圧センサ13、電流センサ17等の各種のセンサ、スイッチが接続され、これらセンサ、スイッチの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、スイッチング素子をオンオフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。
そして、制御装置1が備える図2の各制御部31~37等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御装置1の他のハードウェアと協働することにより実現される。なお、各制御部31~37等が用いる各設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御装置1の各機能について詳細に説明する。
1-3-1.電圧検出部31
電圧検出部31は、直流電源10からインバータ20に供給される電源電圧VDCを検出する。本実施の形態では、電圧検出部31は、電源電圧センサ13の出力信号に基づいて、電源電圧VDCを検出する。
1-3-2.電流検出部32
電流検出部32は、3相の巻線に流れる電流Iur、Ivr、Iwrを検出する。本実施の形態では、電流検出部32は、電流センサ17の出力信号に基づいて、インバータ20から各相の巻線Cu、Cv、Cwに流れる電流Iur、Ivr、Iwrを検出する。ここで、Iurが、U相の電流検出値であり、Ivrが、V相の電流検出値であり、Iwrが、W相の電流検出値である。なお、電流センサ17が2相の巻線電流を検出するように構成され、残りの1相の巻線電流が、2相の巻線電流の検出値に基づいて算出されてもよい。例えば、電流センサ17が、V相及びW相の巻線電流Ivr、Iwrを検出し、U相の巻線電流Iurが、Iur=-Ivr-Iwrにより算出されてもよい。
電流検出部32は、3相の電流検出値Iur、Ivr、Iwrを、d軸及びq軸の回転座標系上のd軸の電流検出値Idr及びq軸の電流検出値Iqrに変換する。d軸及びq軸の回転座標系は、検出した磁極位置θの方向に定めたd軸及びd軸より電気角で90°進んだ方向に定めたq軸からなる2軸の回転座標であり、ロータの磁極位置の回転に同期して回転する。具体的には、電流検出部32は、3相の電流検出値Iur、Ivr、Iwrを、磁極位置θに基づいて3相2相変換及び回転座標変換を行って、d軸の電流検出値Idr及びq軸の電流検出値Iqrに変換する。
1-3-3.電圧指令値算出部34
電圧指令値算出部34は、電流指令値及び電流の検出値に基づいて、電圧指令値を算出する。本実施の形態では、電圧指令値算出部34は、電圧指令値として、3相の電圧指令値Vuo、Vvo、Vwoを算出する。
電圧指令値算出部34は、d軸の電流検出値Idrがd軸の電流指令値Idoに近づき、q軸の電流検出値Iqrがq軸の電流指令値Iqoに近づくように、d軸の電圧指令値Vdo及びq軸の電圧指令値Vqoを、PI制御等により変化させる電流フィードバック制御を行う。なお、d軸電流とq軸電流の非干渉化のため等のフィードフォワード制御が行われてもよい。
例えば、電圧指令値算出部34は、次式に示す演算を行って、d軸及びq軸の電圧指令値Vdo、Vqoを演算する。式(1)では、フィードバック制御とフィードフォワード制御とが行われている。
Figure 2022070855000002
ここで、Rは巻線抵抗であり、Ldは、d軸のインダクタンスであり、Lqはq軸のインダクタンスであり、ωは、回転角速度であり、Ψpは永久磁石による鎖交磁束であり、ωccは、電流制御の目標の応答角周波数であり、sはラプラス演算子である。
電圧指令値算出部34は、d軸及びq軸の電圧指令値Vdo、Vqoを、磁極位置θに基づいて、固定座標変換及び2相3相変換を行って、3相の電圧指令値Vuo、Vvo、Vwoに変換する。なお、3相の電圧指令値に対して3次高調波などの零相成分が加えられてもよい。
1-3-4.インバータ制御部35
インバータ制御部35は、電圧指令値に基づいて、インバータが有する複数のスイッチング素子をPWM(Pulse Width Modulation)制御によりオンオフして、3相の巻線に電圧を印加するスイッチング制御と、3相の巻線が相互に短絡するように複数のスイッチング素子をオンオフする全相短絡制御と、を切り替えて実行する。
本実施の形態では、インバータ制御部35は、スイッチング制御部35a、全相短絡制御部35b、及び出力切換部35cを備えている。
スイッチング制御部35aは、3相の電圧指令値Vuo、Vvo、Vwoに基づいて、PWM制御により複数のスイッチング素子をオンオフする。スイッチング制御部35aは、3相の電圧指令値のそれぞれとキャリア波とを比較することにより、各相のスイッチング素子をオンオフするスイッチング信号を生成する。キャリア波は、キャリア周波数で0を中心に電源電圧VDC/2の振幅で振動する三角波とされている。インバータ制御部35は、電圧指令値がキャリア波を上回った場合は、スイッチング信号をオンし、電圧指令値がキャリア波を下回った場合は、スイッチング信号をオフする。正極側のスイッチング素子には、スイッチング信号がそのまま伝達され、負極側のスイッチング素子には、スイッチング信号を反転させたスイッチング信号が伝達される。
全相短絡制御部35bは、3相全相の正極側のスイッチング素子をオンすると共に3相全相の負極側のスイッチング素子をオフする各スイッチング信号を生成し、或いは、3相全相の正極側のスイッチング素子をオフすると共に、3相全相の負極側のスイッチング素子をオンする各スイッチング信号を生成する。これにより、3相の巻線の端子が相互に短絡される。
出力切換部35cは、後述する切換制御部37によりスイッチング制御を実行すると判定されている場合(切換信号STAT=1)は、スイッチング制御部35aの各スイッチング信号を、ゲート駆動回路を介して、インバータ20の各スイッチング素子のゲート端子に入力させ、各スイッチング素子をオン又はオフさせる。出力切換部35cは、切換制御部37により全相短絡制御を実行すると判定されている場合(切換信号STAT=0)は、全相短絡制御部35bの各スイッチング信号を、ゲート駆動回路を介して、インバータ20の各スイッチング素子のゲート端子に入力させ、各スイッチング素子をオン又はオフさせる。
1)STAT=1のとき:スイッチング制御部35aの信号を、インバータに出力
2)STAT=0のとき:全相短絡制御部35bの信号を、インバータに出力
1-3-5.電流指令値算出部33
電流指令値算出部33は、電流指令値を算出する。本実施の形態では、電流指令値算出部33は、電流指令値として、d軸の電流指令値Ido及びq軸の電流指令値Iqoを算出する。
図4に示すように、電流指令値算出部33は、変調率の目標値Moを算出する。本実施の形態では、変調率の目標値Moは、一定値(例えば、1.2)に設定されている。なお、変調率の目標値Moは、トルク指令値To及び回転角速度ω等の運転状態に基づいて変化されてもよい。変調率は、電源電圧VDC/2に対する、3相巻線の印加電圧の基本波成分の振幅の割合である。
電流指令値算出部33は、変調率の目標値Moに基づいて、鎖交磁束指令値Ψoを算出する。鎖交磁束指令値Ψoは、電機子鎖交磁束の指令値である。電流指令値算出部33は、変調率の目標値Moに、電源電圧VDCを乗算し、回転角速度ωで除算して、鎖交磁束指令値Ψoを算出する。詳細には、図4及び次式に示すように、電流指令値算出部33は、変調率の目標値Moに1/2×√(3/2)及び電源電圧VDCを乗算し、回転角速度ωで除算して、鎖交磁束指令値Ψoを算出する。
Figure 2022070855000003
なお、鎖交磁束指令値Ψoは、変調率の目標値Moと実際の変調率Mrとの差が小さくなるようにフィードバック制御により補正されてもよい。実際の変調率Mrは、例えば、dq軸の電圧指令値Vdo、Vqoに基づいて算出される。
電流指令値算出部33は、鎖交磁束指令値Ψo及びトルク指令値Toに基づいて、通常のd軸の電流指令値IdoD及びq軸の電流指令値IqoDを算出する。電流指令値算出部33は、鎖交磁束指令値Ψo及びトルク指令値Toとd軸の電流指令値IdoDとの関係が予め設定されたd軸電流設定データを参照し、算出された鎖交磁束指令値Ψo及びトルク指令値Toに対応する通常のd軸の電流指令値IdoDを算出する。電流指令値算出部33は、鎖交磁束指令値Ψo及びトルク指令値Toとq軸の電流指令値IqoDとの関係が予め設定されたq軸電流設定データを参照し、算出された鎖交磁束指令値Ψo及びトルク指令値Toに対応する通常のq軸の電流指令値IqoDを算出する。
なお、トルク指令値Toは、制御装置1内で演算されてもよいし、外部の装置から伝達されてもよい。
<切り替え時の電流指令値の設定>
全相短絡制御からスイッチング制御に切り替えたときに、全相短絡制御の実行時の電流値と、スイッチング制御の電流指令値との偏差が大きくなるため、過渡的に操作量が過大になり、トルク変動が生じる場合がある。そのため、全相短絡制御からスイッチング制御への切り替え時に、電流偏差が大きくなり、過渡的にトルク変動が生じないようにすることが望まれる。
そこで、電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたときに、電流指令値を、全相短絡制御の実行時に流れる電流に相当する値である切換電流値に設定する。本実施の形態では、電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたときに、d軸及びq軸の電流指令値Ido、Iqoを、全相短絡制御の実行時に流れる電流に相当する値であるd軸の切換電流値IdPS及びq軸の切換電流値IqPSに設定する。
この構成によれば、全相短絡制御からスイッチング制御への切り替え時に、全相短絡制御の実行時の電流値と、スイッチング制御の電流指令値との偏差を小さくすることができる。そのため、切り替え時に、電流指令値と電流検出値との電流偏差を小さくすることができ、過渡的に操作量が過大になり、電流値が大きく変動することを抑制でき、過渡的にトルク変動が生じることを抑制できる。
<切換電流値の設定>
全相短絡制御の実行時のd軸及びq軸の電流値を導出する。d軸及びq軸の回転座標系上の電圧方程式は、式(3)となる。
Figure 2022070855000004
全相短絡制御では、3相巻線が短絡され、3相巻線に電圧が印加されないので、式(3)において、d軸電圧Vd=0、q軸電圧Vq=0に設定する。また、定常状態であると仮定して、d軸電流の微分値dId/dt=0、q軸電流の微分値dIq/dt=0に設定する。そして、d軸電流Id及びq軸電流Iqについて、連立方程式を解くと、式(4)が得られる。式(4)のd軸電流Id及びq軸電流Iqを、全相短絡制御の実行時に流れる電流に相当する値であるd軸の切換電流値IdPS及びq軸の切換電流値IqPSに設定することができる。
Figure 2022070855000005
そこで、本実施の形態では、電流指令値算出部33は、式(4)を用い、回転角速度ωに基づいて、d軸の切換電流値IdPS及びq軸の切換電流値IqPSを設定する。式(4)のd軸インダクタンスLd、q軸インダクタンスLq、磁石の鎖交磁束Ψp、及び巻線の抵抗値Rには、予め設定された値が用いられる。式(4)の代わりに、回転角速度ωとd軸の切換電流値IdPSとの関係が予め設定されたd軸切換値の設定データ、及び回転角速度ωとq軸の切換電流値IqPSとの関係が予め設定されたq軸切換値の設定データが用いられてもよい。
電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたときに、d軸及びq軸の電流指令値Ido、Iqoをd軸及びq軸の切換電流値IdPS、IqPSに設定した後、d軸及びq軸の電流指令値Ido、Iqoを、d軸及びq軸の切換電流値IdPS、IqPSから、スイッチング制御において通常設定される通常のd軸及びq軸の電流指令値IdoD、IqoDに次第に変化させる。
この構成よれば、電流検出値とスイッチング制御の電流指令値との偏差が大きくなることを抑制し、過渡的にトルク変動が生じることを抑制しつつ、通常の電流指令値を用いたスイッチング制御に円滑に切り替えることができる。
電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたときに、d軸及びq軸の電流指令値Ido、Iqoをd軸及びq軸の切換電流値IdPS、IqPSに設定し、待機時間Tdlyが経過した後、d軸及びq軸の電流指令値Ido、Iqoを、d軸及びq軸の切換電流値IdPS、IqPSから、スイッチング制御において通常設定される通常のd軸及びq軸の電流指令値IdoD、IqoDに次第に変化させる。
この構成よれば、電流指令値が切換電流値に設定され、スイッチング制御が開始された後、待機時間Tdlyが設けられるので、各制御値が安定してから、電流指令値の漸次変化を開始することができ、より安定的に、通常の電流指令値を用いたスイッチング制御に切り替えることができる。
待機時間Tdlyは、スイッチング制御への切換後、電流が切換電流値に安定するまでの期間に対応して設定されるとよい。
1-3-6.回転検出部36
回転検出部36は、電気角でのロータの回転角度θ(ロータの磁極位置θ)及び回転角速度ωを検出する。本実施の形態では、回転検出部36は、電流検出値に基づいて、回転角度θ及び回転角速度ωを推定する。回転検出部36は、全相短絡制御の実行時とスイッチング制御の実行時とで、推定方法を切り替える。
図2に示すように、回転検出部36は、全相短絡時の推定部36a、スイッチング制御時の推定部36b、及び推定値切換部36cを備えている。
<全相短絡制御時の推定>
全相短絡時の推定部36aは、全相短絡制御の実行時に、特許文献1と同様の推定方法を用いて、次式を用い、第1の回転角度θ1及び第1の回転角速度ω1を推定する。
Figure 2022070855000006
式(5)の第1式の右辺第1項について、全相短絡時の推定部36aは、3相の電流検出値Iur、Ivr、Iwrを、3相2相変換を行って、α軸の電流値Iα及びβ軸の電流値Iβを算出する。式(5)の第1式の右辺第2項について、Iq/Idは、第1の回転角速度ω1を入力としたテーブルデータ又は関数により算出される。なお、ソフトウェアにより構成したPLL(Phase Locked Loop)に、θ1を入力とし、制御器の出力として積分器に入力される値をω1として用いてもよい。
特に、巻線の抵抗値Rが、巻線のインダクタンスによるインピーダンスよりも十分小さいと仮定し、式(4)においてR=0とすると、全相短絡時のd軸の電流値Id及びq軸の電流値Iqは、次式で表され、電流ベクトルは、負側のd軸上近傍に位置し、電流ベクトルの位相は、-πになる
Figure 2022070855000007
よって、式(5)の第1式の右辺第2項に-πを代入した、次式により、簡易的に、第1の回転角度θ1が推定されてもよい。この場合は、上述したテーブルデータは不要になる。
Figure 2022070855000008
全相短絡時の推定部36aによる推定は、推定値が真値近傍であるという条件が不要であるので、万一モータの回転角速度が過大となってフェイルセーフのために3相短絡となった場合でも、後述のスイッチング制御時の推定部36bよりも安定的に角度の推定が行える。
<スイッチング制御時の推定>
スイッチング制御時の推定部36bは、スイッチング制御の実行時に、公知の推定方法(例えば、特許文献4)を用いて、第2の回転角度θ2及び第1の回転角速度ω2を推定する。例えば、適応オブザーバを用いた角度推定では、d軸及びq軸の電流検出値Idr、Iqrとd軸及びq軸の電圧指令値Vdo、Vqoを適応オブザーバに入力し、適応オブザーバから第2の回転角度θ2及び第1の回転角速度ω2が出力される。推定方法は、公知の技術であるため、詳細な説明を省略する。
スイッチング制御時の推定部36bは、全相短絡制御からスイッチング制御に切り替えられたときに、第2の回転角度θ2及び第2の回転角速度ω2の初期値として、切換の直前に推定された第1の回転角度θ1及び第1の回転角速度ω1を設定する。
<推定値切換部36c>
推定値切換部36cは、切換制御部37によりスイッチング制御を実行すると判定されている場合(切換信号STAT=1)は、スイッチング制御時の推定部36bにより推定された第2の回転角度θ2及び第2の回転角速度ω2を、最終的な回転角度θ及び回転角速度ωとして出力する。一方、推定値切換部36cは、切換制御部37により全相短絡制御を実行すると判定されている場合(切換信号STAT=0)は、全相短絡時の推定部36aにより推定された第1の回転角度θ1及び第1の回転角速度ω1を、最終的な回転角度θ及び回転角速度ωとして出力する。
1)STAT=1のとき:θ=θ2、ω=ω2
2)STAT=0のとき:θ=θ1、ω=ω1
1-3-7.切換制御部37
切換制御部37は、スイッチング制御と全相短絡制御とのいずれを実行するかを切り替える。切換制御部37は、スイッチング制御を実行する場合は、切換信号STAT=1に設定し、全相短絡制御を実行する場合は、切換信号STAT=0に設定する。切換制御部37は、図示しない上位の制御部又は外部の制御装置から伝達された、スイッチング制御の実行指令又は全相短絡制御の実行指令に従って、切り替えを行う。例えば、交流回転電機2の動作が停止されるときに、全相短絡制御の実行が指令される。
1)スイッチング制御の実行時:STAT=1
2)全相短絡制御の実行時:STAT=0
1-3-8.切り替え時のフローチャート
以上で説明した全相短絡制御とスイッチング制御との切り替えに係る制御装置の処理について、図5のフローチャートを用いて説明する。図5の処理は、例えば、所定の演算周期毎に実行される。
ステップS01で、切換制御部37は、全相短絡制御の実行指令及びスイッチング制御の実行指令のいずれが伝達されているかを判定し、スイッチング制御の実行指令が伝達されている場合は、ステップS02に進み、全相短絡制御の実行指令が伝達されている場合は、ステップS03に進む。
ステップS02で、切換制御部37は、切換信号STAT=1に設定し、電流指令値算出部33、電圧指令値算出部34、及びインバータ制御部35等にスイッチング制御を実行させると共に、回転検出部36にスイッチング制御時の回転角度及び回転角速度の推定を行わせる。
一方、ステップS03で、切換制御部37は、切換信号STAT=0に設定し、インバータ制御部35に全相短絡制御を実行させると共に、回転検出部36に全相短絡制御時の回転角度及び回転角速度の推定を行わせる。
ステップS04で、電流指令値算出部33は、切換信号STATが0から1に変化した時点であるか否かを判定し、変化時点である場合は、ステップS05に進み、変化時点でない場合は、ステップS07に進む。ステップS05で、回転検出部36は、スイッチング制御時の第2の回転角度θ2及び第2の回転角速度ω2の初期値として、切換の直前に推定された全相短絡時の第1の回転角度θ1及び第1の回転角速度ω1を設定する。
また、ステップS06で、電流指令値算出部33は、d軸及びq軸の電流指令値Ido、Iqoを、d軸及びq軸の切換電流値IdPS、IqPSに設定する。なお、d軸及びq軸の電流指令値Ido、Iqoを算出する過程で、一次遅れフィルタ処理が行われる場合は、全相短絡制御からスイッチング制御に切り替えられたとき(切換信号STATが0から1に変化した時点)に、d軸及びq軸の電流指令値Ido、Iqoが、d軸及びq軸の切換電流値IdPS、IqPSになるように、電流指令値算出部33は、全相短絡制御の実行中に、d軸及びq軸の電流指令値Ido、Iqoをd軸及びq軸の切換電流値IdPS、IqPSに設定してもよい。或いは、電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたとき(切換信号STATが0から1に変化した時点)に、d軸及びq軸の電流指令値Ido、Iqoが、d軸及びq軸の切換電流値IdPS、IqPSになるように、一次遅れフィルタ処理の前回演算値等の内部演算値を、d軸及びq軸の切換電流値IdPS、IqPSにリセットしてもよい。
ステップS07で、電流指令値算出部33は、切換信号STATが0から1に変化されてから待機時間Tdly経過したか否かを判定し、経過していない場合は、ステップS06に進み、経過している場合は、ステップS08に進む。ステップS06で、電流指令値算出部33は、d軸及びq軸の電流指令値Ido、Iqoを、d軸及びq軸の切換電流値IdPS、IqPSに設定する。
一方、ステップS08で、電流指令値算出部33は、待機時間Tdly経過後に実行される、切換電流値から通常の電流指令値への電流指令値の漸進的な変化が完了しているか否かを判定し、完了していない場合は、ステップS09に進み、完了している場合は、ステップS10に進む。
ステップS09で、電流指令値算出部33は、d軸及びq軸の電流指令値Ido、Iqoを、d軸及びq軸の切換電流値IdPS、IqPSから、通常のd軸及びq軸の電流指令値IdoD、IqoDに次第に変化させる処理を実行する。
一方、ステップS10で、電流指令値算出部33は、d軸及びq軸の電流指令値Ido、Iqoを、通常のd軸及びq軸の電流指令値IdoD、IqoDに設定する。
1-3-9.制御挙動及び効果
次に、本実施の形態に係る制御挙動及び効果を説明する。電圧方程式をラプラス変換すると次式を得る。全相短絡状態で電流が流れているため、右辺第3項が現れる。
Figure 2022070855000009
電流指令値を切換電流値に設定し、スイッチング制御を開始した後、十分に時間が経過していれば、電流値は電流指令値(切換電流値)に安定するため、次式に示すように、式(1)の電流制御器の伝達関数における目標値応答の伝達関数は、1に近似できる。
Figure 2022070855000010
式(1)に式(9)を代入し、式(1)においてVdo=Vd、Vqo=Vqであるものとし、式(8)の右辺と式(1)の右辺とを等号で結ぶと、次式を得る。
Figure 2022070855000011
d軸及びq軸の電流指令値Ido、Iqoが、d軸及びq軸の切換電流値IdPS、IqPSに設定される場合、次式が成立する。
Figure 2022070855000012
式(11)を、式(10)に代入し、整理すると、次式を得る。
Figure 2022070855000013
式(12)は、電流指令値を切換電流値に設定すれば、スイッチング制御を開始した後のd軸及びq軸の電流値Id、Iqが、全相短絡電流に相当するd軸及びq軸の切換電流値IdPS、IqPSの一定値となることを意味する。d軸及びq軸の電流値が一定値になるので、トルク変動は生じない。
一方、従来の方法では、トルク指令値Toが0に設定されると、d軸及びq軸の電流指令値Ido、Iqoは、通常、次式に示すように、0に設定される。
Figure 2022070855000014
式(13)を式(10)に代入しても、d軸及びq軸の電流値Id、Iqが、全相短絡電流に相当するd軸及びq軸の切換電流値IdPS、IqPSで一定にならない。
<比較例の制御挙動>
図6に、比較例に係る制御挙動を示す。時刻t01より以前は、全相短絡制御が実行されており、時刻t01の時点では、d軸及びq軸の電流値Id、Iqは、式(4)で表されるd軸及びq軸の切換電流値IdPS、IqPS付近に安定している。また、全相短絡時に推定される第1の回転角度θ1及び第1の回転角速度ω1も、安定している。
時刻t02で、スイッチング制御の実行指令が伝達され、切換信号STATが0から1に変化している。そのため、全相短絡制御の実行が終了され、スイッチング制御の実行が開始されると共に、スイッチング制御時の回転角度及び回転角速度の推定が開始される。
比較例では、スイッチング制御の開始以降(時刻t02以降)、電流指令値算出部33は、d軸及びq軸の電流指令値Ido、Iqoを、トルク指令値Toに基づいて設定された通常のd軸及びq軸の電流指令値IdoD、IqoDに設定している。図6の例では、IdoD=0、IqoD=0である。
そのため、時刻t02で、全相短絡状態の電流値と電流指令値との偏差が大きくなるため、電流フィードバック制御による操作量が過渡的に過大になり、特に、q軸の電流検出値Iqrが、q軸の電流指令値Iqoから大幅に逸脱し、変動している。q軸の電流検出値Iqrの変動に比例して、トルクTが変動している。また、電流指令値に対する電流検出値の変動により、回転角度θ及び回転角速度ωの推定値の変動が大きくなっている。
<本実施の形態の制御挙動>
図7に、本実施の形態に係る制御挙動を示す。時刻t11より以前は、全相短絡制御が実行されており、時刻t11の時点では、d軸及びq軸の電流値Id、Iqは、式(4)で表されるd軸及びq軸の切換電流値IdPS、IqPS付近に安定している。また、全相短絡時に推定される第1の回転角度θ1及び第1の回転角速度ω1も、安定している。
時刻t12で、スイッチング制御の実行指令が伝達され、切換信号STATが0から1に変化している。そのため、全相短絡制御の実行が終了され、スイッチング制御の実行が開始されると共に、スイッチング制御時の回転角度及び回転角速度の推定が開始される。
全相短絡制御からスイッチング制御への切換時(時刻t12)に、電流指令値算出部33は、d軸及びq軸の電流指令値Ido、Iqoを、d軸及びq軸の切換電流値IdPS、IqPSに設定する。なお、図7の例では、d軸及びq軸の電流指令値Ido、Iqoを算出する過程で、一次遅れフィルタ処理が行われることを考慮し、全相短絡制御からスイッチング制御に切り替えられたとき(切換信号STATが0から1に変化した時点)に、d軸及びq軸の電流指令値Ido、Iqoが、d軸及びq軸の切換電流値IdPS、IqPSになるように、電流指令値算出部33は、時刻t12の以前の全相短絡制御の実行中から、d軸及びq軸の電流指令値Ido、Iqoをd軸及びq軸の切換電流値IdPS、IqPSに設定している。
本実施の形態では、スイッチング制御を開始してから待機時間Tdlyが経過するまでの期間(時刻t12から時刻t13まで)、電流指令値算出部33は、d軸及びq軸の電流指令値Ido、Iqoを、d軸及びq軸の切換電流値IdPS、IqPSに設定する。
また、全相短絡制御からスイッチング制御への切換時(時刻t12)に、スイッチング制御時の第2の回転角度θ2及び第2の回転角速度ω2の初期値が、直前に推定された全相短絡時の第1の回転角度θ1及び第1の回転角速度ω1に設定される。
そのため、スイッチング制御への切換後、d軸及びq軸の電流検出値とd軸及びq軸の電流指令値との偏差が小さくなっており、d軸及びq軸の電流検出値が、d軸及びq軸の電流指令値から変動せずに、良好に追従している。その結果、トルクの変動も抑制されている。
初期値の設定に加えて、電流指令値に対する電流検出値の追従性がよいので、スイッチング制御への切換後の第1の回転角度θ1及び第1の回転角速度ω1の推定精度がよくなっている。
待機時間Tdlyの間に、電流値の変動、回転角度θ及び回転角速度ωの推定値の変動が収まっている。待機時間Tdlyが経過した時刻t13で、電流指令値算出部33は、d軸及びq軸の電流指令値Ido、Iqoを、d軸及びq軸の切換電流値IdPS、IqPSから、通常のd軸及びq軸の電流指令値IdoD、IqoDに次第に変化させ始めている。
電流指令値が次第に変化されるので、電流検出値は、電流指令値から大幅に逸脱することなく、所定の制御応答で良好に追従している。よって、トルクの変動、回転角度θ及び回転角速度ωの推定値の変動が抑制されている。
そして、時刻t14で、電流指令値の漸進的な変化が完了し、時刻t14以降は、d軸及びq軸の電流指令値Ido、Iqoが、通常のd軸及びq軸の電流指令値IdoD、IqoDに設定された状態で、スイッチング制御が行われる。
2.実施の形態2
実施の形態2に係る制御装置1について図面を参照して説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る交流回転電機2及び制御装置1の基本的な構成は実施の形態1と同様であるが、全相短絡制御からスイッチング制御への切換時の電流指令値の設定方法が実施の形態1と異なる。
式(6)を用いて説明したように、巻線の抵抗値Rが、巻線のインダクタンスによるインピーダンスよりも十分小さいと仮定し、式(4)においてR=0とすると、全相短絡時のd軸の電流値Id及びq軸の電流値は、次式で表される。次式のd軸及びq軸電流は、3相巻線に鎖交する電機子鎖交磁束が最小になる(例えば、0)になる電流値であり、本実施の形態では、d軸の切換電流値IdPS及びq軸の切換電流値IqPSに設定される。
Figure 2022070855000015
すなわち、本実施の形態では、電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたときに、電流指令値を、3相巻線に鎖交する電機子鎖交磁束の大きさが最小となる値である切換電流値に設定する。具体的には、電流指令値算出部33は、切換電流値として、式(14)により設定されるd軸の切換電流値IdPS及びq軸の切換電流値IqPSを設定する。
この構成によれば、電機子鎖交磁束が最小になる電流値は、全相短絡状態の電流値に近いので、切り替え時に、電流検出値とスイッチング制御の電流指令値との偏差が大きくなることを抑制できる。そのため、切り替え時に、電流指令値と電流検出値との電流偏差を小さくすることができ、過渡的に操作量が過大になり、電流値が大きく変動することを抑制でき、過渡的にトルク変動が生じることを抑制できる。
本実施の形態でも、電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたときに、d軸及びq軸の電流指令値Ido、Iqoをd軸及びq軸の切換電流値IdPS、IqPSに設定した後、d軸及びq軸の電流指令値Ido、Iqoを、d軸及びq軸の切換電流値IdPS、IqPSから、スイッチング制御において通常設定される通常のd軸及びq軸の電流指令値IdoD、IqoDに次第に変化させる。
また、電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたときに、d軸及びq軸の電流指令値Ido、Iqoをd軸及びq軸の切換電流値IdPS、IqPSに設定し、待機時間Tdlyが経過した後、d軸及びq軸の電流指令値Ido、Iqoを、d軸及びq軸の切換電流値IdPS、IqPSから、スイッチング制御において通常設定される通常のd軸及びq軸の電流指令値IdoD、IqoDに次第に変化させる。
<変調率の目標値Mo=0による、切換電流値の設定>
図8に示すように、実施の形態1と同様に、電流指令値算出部33は、変調率の目標値Moを設定する。
本実施の形態では、電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたときに、変調率の目標値Moを0に設定することにより、電流指令値を、電機子鎖交磁束の大きさが最小となる値である切換電流値に設定する。
電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたときに、変調率の目標値Moを0に設定した後、変調率の目標値Moを、0から、スイッチング制御において通常設定される通常の変調率の目標値MoDに次第に変化させる。
電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたときに、変調率の目標値Moを0に設定し、待機時間Tdlyが経過した後、変調率の目標値Moを、0から、通常の変調率の目標値MoDに次第に変化させる。
通常の変調率の目標値MoDは、0よりも大きい一定値(例えば、1.2)に設定されている。なお、通常の変調率の目標値MoDは、トルク指令値To及び回転角速度ω等の運転状態に基づいて変化されてもよい。
実施の形態1と同様に、電流指令値算出部33は、変調率の目標値Moに基づいて、鎖交磁束指令値Ψoを算出する。電流指令値算出部33は、鎖交磁束指令値Ψo及びトルク指令値Toに基づいて、d軸の電流指令値Ido及びq軸の電流指令値Iqoを算出する。d軸及びq軸の電流指令値Ido、Iqoの算出方法は、実施の形態1の通常のd軸及びq軸の電流指令値IdoD、IqoDの算出方法と同様である。
変調率の目標値Moを0に設定することにより、鎖交磁束指令値Ψoは0に設定され、電機子鎖交磁束が0になる、切換電流値に対応する電流指令値が設定される。なお、変調率の目標値Moを介さずに、直接、鎖交磁束指令値Ψoが0に設定されてもよい。また、変調率の目標値Mo及び鎖交磁束指令値Ψoを介さずに、直接、電流指令値が切換電流値に設定されてもよい。
<フローチャート>
以上で説明した全相短絡制御とスイッチング制御との切り替えに係る制御装置の処理について、図9のフローチャートを用いて説明する。図9の処理は、例えば、所定の演算周期毎に実行される。
ステップS21で、切換制御部37は、全相短絡制御の実行指令及びスイッチング制御の実行指令のいずれが伝達されているかを判定し、スイッチング制御の実行指令が伝達されている場合は、ステップS22に進み、全相短絡制御の実行指令が伝達されている場合は、ステップS23に進む。
ステップS22で、切換制御部37は、切換信号STAT=1に設定し、電流指令値算出部33、電圧指令値算出部34、及びインバータ制御部35等にスイッチング制御を実行させると共に、回転検出部36にスイッチング制御時の回転角度及び回転角速度の推定を行わせる。
ステップS23で、切換制御部37は、切換信号STAT=0に設定し、インバータ制御部35に全相短絡制御を実行させると共に、回転検出部36に全相短絡制御時の回転角度及び回転角速度の推定を行わせる。
ステップS24で、電流指令値算出部33は、切換信号STATが0から1に変化した時点であるか否かを判定し、変化時点である場合は、ステップS25に進み、変化時点でない場合は、ステップS27に進む。ステップS25で、回転検出部36は、スイッチング制御時の第2の回転角度θ2及び第2の回転角速度ω2の初期値として、切換の直前に推定された全相短絡時の第1の回転角度θ1及び第1の回転角速度ω1を設定する。
また、ステップS26で、電流指令値算出部33は、変調率の目標値Moを0に設定する。なお、変調率の目標値Moからd軸及びq軸の電流指令値Ido、Iqoを算出する過程で、一次遅れフィルタ処理が行われる場合は、全相短絡制御からスイッチング制御に切り替えられたとき(切換信号STATが0から1に変化した時点)に、d軸及びq軸の電流指令値Ido、Iqoが、Mo=0に対応する値(本例では、d軸及びq軸の切換電流値IdPS、IqPS)になるように、電流指令値算出部33は、全相短絡制御の実行中に、変調率の目標値Moを0に設定してもよい。或いは、電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたとき(切換信号STATが0から1に変化した時点)に、d軸及びq軸の電流指令値Ido、Iqoが、Mo=0に対応する値(本例では、d軸及びq軸の切換電流値IdPS、IqPS)になるように、一次遅れフィルタ処理の前回演算値等の内部演算値を、Mo=0に対応する値にリセットしてもよい。
ステップS27で、電流指令値算出部33は、切換信号STATが0から1に変化されてから待機時間Tdly経過したか否かを判定し、経過していない場合は、ステップS26に進み、経過している場合は、ステップS28に進む。ステップS26で、電流指令値算出部33は、変調率の目標値Moを0に設定する。
一方、ステップS28で、電流指令値算出部33は、待機時間Tdly経過後に実行される、0から通常の変調率の目標値MoDへの変調率の目標値Moの漸進的な変化が完了しているか否かを判定し、完了していない場合は、ステップS29に進み、完了している場合は、ステップS30に進む。
ステップS29で、電流指令値算出部33は、変調率の目標値Moを、0から通常の変調率の目標値MoDに次第に変化させる処理を実行する。
一方、ステップS30で、電流指令値算出部33は、変調率の目標値Moを、通常の変調率の目標値MoDに設定する。
<制御挙動>
図10に、本実施の形態1に係る制御挙動を示す。時刻t31より以前は、全相短絡制御が実行されており、時刻t31の時点では、d軸及びq軸の電流値Id、Iqは、式(4)で表される全相短絡状態のd軸及びq軸の電流値付近に安定している。また、全相短絡時に推定される第1の回転角度θ1及び第1の回転角速度ω1も、安定している。
時刻t32で、スイッチング制御の実行指令が伝達され、切換信号STATが0から1に変化している。そのため、全相短絡制御の実行が終了され、スイッチング制御の実行が開始されると共に、スイッチング制御時の回転角度及び回転角速度の推定が開始される。
全相短絡制御からスイッチング制御への切換時(時刻t32)に、電流指令値算出部33は、変調率の目標値Moを0に設定して、d軸及びq軸の電流指令値Ido、Iqoを、式(14)で表せられる、電機子鎖交磁束が0になるd軸及びq軸の切換電流値IdPS、IqPSに設定する。なお、図10の例では、変調率の目標値Moからd軸及びq軸の電流指令値Ido、Iqoを算出する過程で、一次遅れフィルタ処理が行われることを考慮し、全相短絡制御からスイッチング制御に切り替えられたとき(切換信号STATが0から1に変化した時点)に、d軸及びq軸の電流指令値Ido、Iqoが、Mo=0に対応するd軸及びq軸の切換電流値IdPS、IqPSになるように、電流指令値算出部33は、時刻t32の以前の全相短絡制御の実行中から、変調率の目標値Moを0に設定している。
本実施の形態では、スイッチング制御を開始してから待機時間Tdlyが経過するまでの期間(時刻t32から時刻t33まで)、電流指令値算出部33は、変調率の目標値Moを0に設定し、d軸及びq軸の電流指令値Ido、Iqoを、d軸及びq軸の切換電流値IdPS、IqPSに設定する。
また、全相短絡制御からスイッチング制御への切換時(時刻t32)に、スイッチング制御時の第2の回転角度θ2及び第2の回転角速度ω2の初期値が、直前に推定された全相短絡時の第1の回転角度θ1及び第1の回転角速度ω1に設定される。
d軸及びq軸の電流指令値Ido、Iqo(特に、d軸の電流指令値Ido)は、全相短絡状態のd軸及びq軸の電流値の近傍に設定されており、スイッチング制御への切換後、d軸及びq軸の電流検出値とd軸及びq軸の電流指令値との偏差が小さくなっており、d軸及びq軸の電流検出値が、d軸及びq軸の電流指令値から変動せずに、良好に追従している。その結果、トルクの変動も抑制されている。
また、スイッチング制御への切換後、トルクが0になっており、実施の形態1よりもトルク指令値Toに近づいている。
初期値の設定に加えて、電流指令値に対する電流検出値の追従性がよいので、スイッチング制御への切換後の第1の回転角度θ1及び第1の回転角速度ω1の推定精度がよくなっている。
待機時間Tdlyの間に、電流値の変動、回転角度θ及び回転角速度ωの推定値の変動が収まっている。待機時間Tdlyが経過した時刻t33で、電流指令値算出部33は、変調率の目標値Moを、0から通常の変調率の目標値MoDに次第に変化させ始めている。その結果、d軸及びq軸の電流指令値Ido、Iqoが、Mo=0に対応する値から、Mo=Modに対応する値に次第に変化している。
電流指令値が次第に変化されるので、電流検出値は電流指令値から大幅に逸脱することなく、所定の制御応答で良好に追従している。よって、トルクの変動、回転角度θ及び回転角速度ωの推定値の変動が抑制されている。
そして、時刻t34で、変調率の目標値Moの漸進的な変化が完了し、時刻t34以降は、変調率の目標値Moが、通常の変調率の目標値MoDに設定された状態で、スイッチング制御が行われる。
<電機子鎖交磁束を最小になる電流指令値に設定することの追加的な効果>
続いて、電機子鎖交磁束を最小になる電流指令値に設定することによる追加的な効果について説明する。図11は、制御装置1が用いるq軸インダクタンスLqに誤差がある場合の、全相短絡制御からスイッチング制御に切り替えた後の、回転角速度ωの推定値の変動の大きさ(以下、切り替え後の角速度推定値の変動量と称す)を示す例である。図11には、q軸インダクタンスLqの誤差を変化させた場合に、各誤差における、実施の形態1のように電流指令値を全相短絡状態の電流値に設定する場合(以下、全相短絡電流値の場合と称す)における切り替え後の角速度推定値の変動量と、本実施の形態のように電流指令値を電機子鎖交磁束が最小になる電流値に設定する場合(以下、鎖交磁束最小電流値の場合と称す)における切り替え後の角速度推定値の変動量と、を示している。
この図から分かるように、q軸インダクタンスLqに誤差がない、又はプラス方向の誤差がある場合は、鎖交磁束最小電流値の場合の切り替え後の角速度推定値の変動量よりも、全相短絡電流値の場合の切り替え後の角速度推定値の変動量の方が小さい。一方、q軸インダクタンスLqにマイナス方向の誤差がある場合は、全相短絡電流値の場合の切り替え後の角速度推定値の変動量よりも、鎖交磁束最小電流値の場合の切り替え後の角速度推定値の変動量の方が小さい。
これは、電流指令値を鎖交磁束最小電流値に設定することで、電流指令値が全相短絡電流値からずれ、角速度推定値の変動が比較的に大きくなる影響がある。一方、電流指令値を鎖交磁束最小電流値に設定することで、q軸インダクタンスLqのマイナス方向の誤差により生じる適応オブザーバのq軸電流の推定誤差が比較的に小さくなり、角速度推定値の変動も比較的に小さくなるためである。
プラス方向の誤差及びマイナス方向の誤差の全体で見れば、電流指令値を鎖交磁束最小電流値に設定する方が、角速度推定値の変動が小さくなる可能性が高いため、実施の形態2は、q軸インダクタンスLqが正確に得られない場合においても、適用しやすいという利点がある。
3.実施の形態3
実施の形態3に係る制御装置1について図面を参照して説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る交流回転電機2及び制御装置1の基本的な構成は実施の形態1と同様であるが、切換電流値の設定方法が実施の形態1と異なる。
本実施の形態では、電流指令値算出部33は、全相短絡制御の実行中の電流の検出値に基づいて、切換電流値を設定する。
この構成によれば、経年変化、生産バラツキ、温度特性等の変動要因により、交流回転電機2の特性が変動した場合でも、全相短絡制御の実行中の電流の検出値に基づいて、切換電流値を精度よく設定することができる。
本実施の形態では、図12に示すように、電流指令値算出部33は、全相短絡制御の実行中のd軸の電流検出値Idr及びq軸の電流検出値Iqrを学習する。例えば、電流指令値算出部33は、全相短絡制御の実行中のd軸の電流検出値Idr及びq軸の電流検出値Iqrに対して、統計処理を行って、全相短絡制御の実行中のd軸の電流学習値IdL及びq軸の電流学習値IqLを算出する。d軸の電流学習値IdL及びq軸の電流学習値IqLが、d軸及びq軸の切換電流値IdPS、IqPSに対応する。統計処理には、平均化処理、ローパスフィルタ処理、最小二乗法等が用いられる。学習値は、RAM等の記憶装置に記憶される。そして、電流指令値算出部33は、全相短絡制御からスイッチング制御に切り替えられたとき(切換信号STATが0から1に変化した時点)に、d軸及びq軸の電流指令値Ido、Iqoを、切換電流値としてのd軸の電流学習値IdL及びq軸の電流学習値IqLに設定する。
なお、本実施の形態に係るフローチャートの図示は省略するが、実施の形態1の図5のステップS06において、電流指令値算出部33は、d軸及びq軸の電流指令値Ido、Iqoを、d軸及びq軸の切換電流値IdPS、IqPSとしてのd軸の電流学習値IdL及びq軸の電流学習値IqLに設定する。また、図5のステップS03において、電流指令値算出部33は、全相短絡制御の実行中のd軸の電流検出値Idr及びq軸の電流検出値Iqrに対して、統計処理を行って、全相短絡制御の実行中のd軸の電流学習値IdL及びq軸の電流学習値IqLを算出する。
<転用例>
(1)上記の各実施の形態では、交流回転電機の用途を特に特定していなかった。例えば、交流回転電機は、車両の車輪の駆動力源に用いられると好適である。本願では、全相短絡制御からスイッチング制御への切換時のトルク変動を抑制できるので、運転者が感じるショックを低減でき、運転者の快適性を向上できる。なお、交流回転電機は、車両の車輪以外の各種の装置の駆動力源に用いられてもよい。
(2)上記の各実施の形態では、永久磁石式の交流回転電機を例として説明した。しかし、界磁巻線式などの、回転した時に誘起電圧が発生する交流回転電機であれば、どのような構成の交流回転電機が用いられてもよい。
(3)上記の各実施の形態では、3相の巻線が設けられる場合を例として説明した。しかし、巻線の相数は、複数相であれば、2相、4相等の任意の数に設定されてもよい。
(4)上記の各実施の形態では、1組の3相の巻線及びインバータが設けられる場合を例として説明した。しかし、2組以上の複数相巻線及びインバータが設けられ、各組の複数相巻線及びインバータに対して、各実施の形態と同様の制御が行われてもよい。
(5)上記の各実施の形態では、電流指令値算出部33は、中間パラメータとして鎖交磁束指令値Ψoを用い、変調率の目標値Mo等に基づいて鎖交磁束指令値Ψoを変化させ、鎖交磁束指令値Ψoに基づいて電流指令値を設定している場合を例として説明した。しかし、電流指令値算出部33は、鎖交磁束指令値Ψoを用いずに、電流指令値を設定してもよい。例えば、電流指令値算出部33は、特開2012-200073号公報に開示されているように、中間パラメータとして、電圧不足割合を用い、変調率の目標値Mo等に基づいて電圧不足割合を変化させ、電圧不足割合に基づいて電流指令値を設定してもよい。
また、電流指令値算出部33は、公知の各種の電流ベクトル制御を用い、通常の電流指令値を設定してもよい。例えば、電流指令値算出部33は、最大トルク電流制御又は弱め磁束制御等により、トルク指令値To、回転角速度ω、及び電源電圧VDC等に基づいて、通常のd軸及びq軸の電流指令値IdoD、IqoDを設定し、全相短絡制御からスイッチング制御に切り替えられたときに、d軸及びq軸の電流指令値Ido、Iqoを、上記の各実施の形態で説明したd軸及びq軸の切換電流値IdPS、IqPSに設定してもよい。
(6)上記の各実施の形態では、回転角度を検出する角度センサを用いずに、電流検出値等に基づいて、回転角度θ及び回転角速度ωが推定される場合を例に説明した。しかし、ホール素子、エンコーダ、又はレゾルバ等の角度センサが設けられ、角度センサの出力信号に基づいて、回転角度θ及び回転角速度ωが推定されてもよい。この場合は、待機時間Tdlyが0に設定されてもよい。
本願は、例示的な実施の形態が記載されているが、実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものとする。
1 交流回転電機の制御装置、2 交流回転電機、20 インバータ、32 電流検出部、33 電流指令値算出部、34 電圧指令値算出部、35 インバータ制御部、IdPS d軸の切換電流値、IqPS q軸の切換電流値、IdoD 通常のd軸の電流指令値、IqoD 通常のq軸の電流指令値、Ido d軸の電流指令値、Iqo q軸の電流指令値、Idr d軸の電流検出値、Iqr q軸の電流検出値、Ld d軸インダクタンス、Lq q軸インダクタンス、Mo 変調率の目標値、MoD 通常の変調率の目標値、Tdly 待機時間、To トルク指令値、Ψo 鎖交磁束指令値、θ 回転角度、ω 回転角速度

Claims (8)

  1. 複数相の巻線を設けたステータとロータとを有する交流回転電機を、インバータを介して制御する交流回転電機の制御装置であって、
    前記複数相の巻線に流れる電流を検出する電流検出部と、
    電流指令値を設定する電流指令値算出部と、
    前記電流指令値及び電流の検出値に基づいて、電圧指令値を算出する電圧指令値算出部と、
    前記電圧指令値に基づいて、前記インバータが有する複数のスイッチング素子をオンオフして、前記複数相の巻線に電圧を印加するスイッチング制御と、前記複数相の巻線が相互に短絡するように前記複数のスイッチング素子をオンオフする全相短絡制御と、を切り替えて実行するインバータ制御部と、を備え、
    前記電流指令値算出部は、前記全相短絡制御から前記スイッチング制御に切り替えられたときに、前記電流指令値を、前記複数相の巻線に鎖交する電機子鎖交磁束の大きさが最小となる値である切換電流値に設定する交流回転電機の制御装置。
  2. 前記電流指令値算出部は、前記電流指令値として、d軸の電流指令値及びq軸の電流指令値を設定し、
    前記電圧指令値算出部は、前記d軸の電流指令値、前記q軸の電流指令値、d軸の電流検出値、q軸の電流検出値に基づいて、前記電圧指令値を算出し、
    前記電流指令値算出部は、d軸のインダクタンスをLdとし、前記ロータの磁石の鎖交磁束をΨpとし、d軸の切換電流値をIdPSとし、q軸の切換電流値をIqPSとし、
    Figure 2022070855000016
    の式により設定される前記d軸の電流切換値及び前記q軸の電流切換値を、前記切換電流値として設定する請求項1に記載の交流回転電機の制御装置。
  3. 前記電流指令値算出部は、鎖交磁束指令値とトルク指令値に基づいて、前記電流指令値を算出し、
    前記全相短絡制御から前記スイッチング制御に切り替えられたときに、前記鎖交磁束指令値を0に設定することにより、前記電流指令値を、前記電機子鎖交磁束の大きさが最小となる値である前記切換電流値に設定する請求項1又は2に記載の交流回転電機の制御装置。
  4. 前記電流指令値算出部は、変調率目標値に基づいて、鎖交磁束指令値を算出し、前記鎖交磁束指令値とトルク指令値に基づいて、前記電流指令値を算出し、
    前記全相短絡制御から前記スイッチング制御に切り替えられたときに、前記変調率目標値を0に設定することにより、前記鎖交磁束指令値を0に設定し、前記電流指令値を、前記電機子鎖交磁束の大きさが最小となる値である前記切換電流値に設定する請求項1から3のいずれか一項に記載の交流回転電機の制御装置。
  5. 前記電流指令値算出部は、前記全相短絡制御から前記スイッチング制御に切り替えられたときに、前記電流指令値を前記切換電流値に設定した後、前記電流指令値を、前記切換電流値から、前記スイッチング制御において通常設定される通常の電流指令値に次第に変化させる請求項1から4のいずれか一項に記載の交流回転電機の制御装置。
  6. 前記電流指令値算出部は、前記全相短絡制御から前記スイッチング制御に切り替えられたときに、前記電流指令値を前記切換電流値に設定し、待機時間が経過した後、前記電流指令値を、前記切換電流値から、前記スイッチング制御において通常設定される通常の電流指令値に次第に変化させる請求項1から5のいずれか一項に記載の交流回転電機の制御装置。
  7. 前記待機時間は、前記スイッチング制御の開始後、電流が前記切換電流値に安定するまでの期間に対応して設定される請求項6に記載の交流回転電機の制御装置。
  8. 前記交流回転電機は、車両の車輪の駆動力源である請求項1から7のいずれか一項に記載の交流回転電機の制御装置。
JP2022003453A 2020-10-27 2022-01-13 交流回転電機の制御装置 Active JP7271735B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022003453A JP7271735B2 (ja) 2020-10-27 2022-01-13 交流回転電機の制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020179445A JP2022070399A (ja) 2020-10-27 2020-10-27 交流回転電機の制御装置
JP2022003453A JP7271735B2 (ja) 2020-10-27 2022-01-13 交流回転電機の制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020179445A Division JP2022070399A (ja) 2020-10-27 2020-10-27 交流回転電機の制御装置

Publications (2)

Publication Number Publication Date
JP2022070855A true JP2022070855A (ja) 2022-05-13
JP7271735B2 JP7271735B2 (ja) 2023-05-11

Family

ID=87852690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022003453A Active JP7271735B2 (ja) 2020-10-27 2022-01-13 交流回転電機の制御装置

Country Status (1)

Country Link
JP (1) JP7271735B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036008A (ja) * 2009-07-31 2011-02-17 Hitachi Automotive Systems Ltd モータの制御装置及びそれを備えたモータシステム
JPWO2016181448A1 (ja) * 2015-05-11 2017-08-03 三菱電機株式会社 交流回転電機の制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181448A (ja) 2015-03-24 2016-10-13 富士フイルム株式会社 硫化物系固体電解質組成物、電池用電極シートおよびその製造方法、並びに、全固体二次電池およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036008A (ja) * 2009-07-31 2011-02-17 Hitachi Automotive Systems Ltd モータの制御装置及びそれを備えたモータシステム
JPWO2016181448A1 (ja) * 2015-05-11 2017-08-03 三菱電機株式会社 交流回転電機の制御装置

Also Published As

Publication number Publication date
JP7271735B2 (ja) 2023-05-11

Similar Documents

Publication Publication Date Title
JP5803559B2 (ja) 回転電機制御装置
CN113422564B (zh) 交流旋转机控制装置
JP7086505B1 (ja) 交流回転電機の制御装置
CN108322104B (zh) 控制装置和无刷电机
JP6685452B1 (ja) 回転電機の制御装置
JP6687228B1 (ja) 交流回転電機の制御装置
JP2019097341A (ja) モータ制御装置およびモータシステム
JP6233428B2 (ja) モータ制御装置およびモータ制御方法
US10224853B2 (en) AC rotary machine controller
US20200366228A1 (en) Motor control apparatus
JP2019208329A (ja) センサレスベクトル制御装置及びセンサレスベクトル制御方法
JP6433387B2 (ja) 交流回転機の制御装置及び交流回転機の慣性モーメント演算方法
US11646686B2 (en) Controller for AC rotary electric machine
JP7271735B2 (ja) 交流回転電機の制御装置
JP2022070399A (ja) 交流回転電機の制御装置
JP6910418B2 (ja) 交流回転電機の制御装置
WO2019220484A1 (ja) 交流回転電機の制御装置
JP6818929B1 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP6945673B2 (ja) 交流回転電機の制御装置
JP2023183491A (ja) 交流回転機の制御装置、及び車両用発電電動機装置
WO2022113317A1 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP2018137869A (ja) モータ駆動装置
JP2023183492A (ja) 交流回転機の制御装置、及び車両用発電電動機装置
JP2022109070A (ja) 制御装置、磁束推定装置及び磁束推定方法
JP2023128632A (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230426

R151 Written notification of patent or utility model registration

Ref document number: 7271735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151