JP2022063157A - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP2022063157A
JP2022063157A JP2020171558A JP2020171558A JP2022063157A JP 2022063157 A JP2022063157 A JP 2022063157A JP 2020171558 A JP2020171558 A JP 2020171558A JP 2020171558 A JP2020171558 A JP 2020171558A JP 2022063157 A JP2022063157 A JP 2022063157A
Authority
JP
Japan
Prior art keywords
torque
control
vehicle
phase compensation
torque phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020171558A
Other languages
English (en)
Inventor
晋一 笹出
Shinichi Sasaide
亨 松原
Toru Matsubara
宏真 達城
Hiromasa Tatsushiro
隆志 向野
Takashi Kohno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020171558A priority Critical patent/JP2022063157A/ja
Publication of JP2022063157A publication Critical patent/JP2022063157A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

【課題】トルク相補償制御の実施に拘らず変速時の油圧の学習制御が適切に行なわれるようにする。【解決手段】有段変速部のアップ変速時に、出力トルクの低下を抑制するトルク相補償制御および定圧待機圧αの学習制御が共に行なわれる場合には、トルク相におけるAT入力トルクTinの増大幅が一定の目標補償値Tcom1に維持されるように第2回転機のトルクTm を制御する。このため、トルク相における出力トルクの低下を抑制しつつ、そのトルク相補償制御に起因するAT入力トルクTinの変動が抑制されて変速が比較的安定して進行するようになり、学習パラメータであるイナーシャ相開始までの所要時間tineのばらつきが抑制される。これにより、トルク相補償制御の実施に拘らず、所要時間tineに基づく係合側油圧指示値Papp の定圧待機圧αの学習制御を適切に行なうことができるようになる。【選択図】図6

Description

本発明は車両の制御装置に係り、特に、機械式有段変速部の変速時にトルク相で入力トルクを増大させるトルク相補償制御に関するものである。
(a) 回転機と、(b) 前記回転機と駆動輪との間の動力伝達経路に配設され、複数の油圧式摩擦係合装置の係合解放状態に応じてギヤ段が切り替えられる機械式有段変速部と、を有する車両に備えられ、(c) 前記機械式有段変速部の前記ギヤ段を切り替える変速時にトルク相で出力トルクが低下することを抑制するために、そのトルク相で前記機械式有段変速部の入力トルクを増大させるように前記回転機のトルクを制御するトルク相補償制御を行なうトルク相補償制御部と、(d) 前記機械式有段変速部を変速するために前記油圧式摩擦係合装置の油圧を変化させて係合解放状態を切り替える変速制御が行なわれた場合に、その油圧式摩擦係合装置の油圧に関する所定の制御要素を予め定められた学習パラメータに基づいて学習制御し、その学習制御された前記制御要素を用いて以後の変速制御が行なわれるようにする学習制御部と、を有する車両の制御装置が知られている。特許文献1に記載の装置はその一例で、例えば図9のパワーOFFダウン変速時にトルク相補償制御として回転機(第2電動機MG2)の回生トルクを低減する制御を行なっている。また、変速時の学習制御に関し、学習パラメータとしてイナーシャ相開始までの所要時間Aおよびアンダーシュート時間Bを求め、それ等の時間A、Bに基づいて制御要素であるアプライ油圧およびドレン油圧を学習制御し、油圧学習値マップを逐次書き替えて(補正して)以後の変速制御を行なうようになっている。
特開2015-229410号公報
しかしながら、トルク相補償制御が実行された変速時に油圧の学習制御が行なわれると、トルク相補償制御による入力トルクの変動に起因して変速の進行状況が変化し、例えば前記所要時間Aやアンダーシュート時間B等の学習パラメータがばらつくため、その学習パラメータに基づいて実施される油圧の学習制御の精度が損なわれる可能性がある。
本発明は以上の事情を背景として為されたもので、その目的とするところは、トルク相補償制御の実施に拘らず変速時の油圧の学習制御が適切に行なわれるようにすることにある。
かかる目的を達成するために、本発明は、(a) 回転機と、(b) 前記回転機と駆動輪との間の動力伝達経路に配設され、複数の油圧式摩擦係合装置の係合解放状態に応じてギヤ段が切り替えられる機械式有段変速部と、を有する車両に備えられ、(c) 前記機械式有段変速部の前記ギヤ段を切り替える変速時にトルク相で出力トルクが低下することを抑制するために、そのトルク相で前記機械式有段変速部の入力トルクを増大させるように前記回転機のトルクを制御するトルク相補償制御を行なうトルク相補償制御部と、(d) 前記機械式有段変速部を変速するために前記油圧式摩擦係合装置の油圧を変化させて係合解放状態を切り替える変速制御が行なわれた場合に、その油圧式摩擦係合装置の油圧に関する所定の制御要素を予め定められた学習パラメータに基づいて学習制御し、その学習制御された前記制御要素を用いて以後の変速制御が行なわれるようにする学習制御部と、を有する車両の制御装置において、(e) 前記機械式有段変速部の前記変速時に前記トルク相補償制御部による前記トルク相補償制御および前記学習制御部による前記学習制御が共に行なわれる場合には、前記トルク相補償制御部は、前記トルク相における前記入力トルクの増大幅が一定に維持されるように前記回転機のトルクを制御することを特徴とする。
このような車両の制御装置においては、機械式有段変速部の変速時にトルク相補償制御部によるトルク相補償制御および学習制御部による学習制御が共に行なわれる場合には、トルク相補償制御部は、トルク相における入力トルクの増大幅が一定に維持されるように回転機のトルクを制御する。このため、トルク相における出力トルクの低下を抑制しつつ、そのトルク相補償制御に起因する入力トルクの変動が抑制されて変速が比較的安定して進行するようになり、学習制御に用いられる学習パラメータのばらつきが抑制されて、その学習パラメータに基づいて変速時の油圧に関する学習制御を適切に行なうことができるようになる。
本発明の一実施例である制御装置を備えている車両の概略構成を説明する図であると共に、車両における各種制御の為の制御機能及び制御系統の要部を説明する図である。 図1の機械式有段変速部によって成立させられる複数のATギヤ段と、そのATギヤ段を成立させる係合装置との関係を説明する作動図表である。 図1の電気式無段変速部と機械式有段変速部とにおける複数の回転要素の回転速度の相対的関係を表す共線図である。 図1の機械式有段変速部の変速制御に用いられるATギヤ段変速マップと、走行モードの切替制御に用いられる走行モード切替マップと、の一例を示す図であって、それぞれの関係を示す図でもある。 図1の機械式有段変速部のアップ変速時に油圧に関する学習制御が行なわれる場合に、トルク相補償制御部によって実行されるトルク相補償制御を具体的に説明するフローチャートである。 図5のフローチャートに従ってトルク相補償制御が行なわれた場合の各部の作動状態の変化を説明するタイムチャートの一例である。 本発明が適用される車両の概略構成を説明する図であって、図1の車両とは別の実施例である。
本発明は、走行用の駆動力源として少なくとも回転機を備える電動車両に好適に適用される。電動車両は、例えば走行用の駆動力源として回転機のみを備える電気自動車や、回転機の他にエンジン(内燃機関)を備えるハイブリッド車両である。回転機は、回転電気機械とも言われるもので、電動モータでも良いが、発電機としても用いることができるモータジェネレータが望ましい。また、例えば(a) 差動用回転機のトルク制御でエンジンの回転速度を無段階に変速して中間伝達部材に伝達することができる電気式無段変速部と、(b) 前記中間伝達部材と駆動輪との間に配設された前記機械式有段変速部と、を有するハイブリッド車両に適用することも可能で、差動用回転機およびエンジンのトルク制御でトルク相補償制御を行なうこともできる。機械式有段変速部としては、例えば遊星歯車式変速機が好適に用いられるが、一対の入力軸を切り替えて変速する常時噛合式変速機を用いることもできる。
学習制御部は、例えば一対の油圧式摩擦係合装置の一方を係合させるとともに他方を解放して変速するクラッチツゥクラッチ変速の場合、係合側の油圧式摩擦係合装置の油圧に関する制御要素を学習制御しても良いし、解放側の油圧式摩擦係合装置の油圧に関する制御要素を学習制御しても良く、その両方の学習制御を行なうことも可能である。学習制御を行なう制御要素は、例えば油圧を漸増または漸減する前の定圧待機圧や、その定圧待機圧に保持する時間である待機時間、漸増または漸減時の変化率などである。学習制御を行なう際の学習パラメータは、変速の進行状況に応じて変化するものが適当で、例えばイナーシャ相開始までの所要時間、イナーシャ相開始時の油圧、イナーシャ相前の入力回転速度のオーバーシュート量やオーバーシュート時間、イナーシャ相前の入力回転速度のアンダーシュート量やアンダーシュート時間などで、実際の値と目標値とを比較して制御要素を増減変化させる。
トルク相補償制御部は、例えば前記クラッチツゥクラッチ変速の場合、解放側の油圧式摩擦係合装置の係合油圧の低下による伝達トルク容量の低下に伴って出力トルクが低下することから、その解放側の油圧式摩擦係合装置の油圧指示値等に基づいて入力トルクを増大させるように回転機のトルクを制御するように構成されるが、車両の前後加速度の変化に基づいて入力トルクを増大させるように回転機のトルクを制御しても良いなど、種々の態様が可能である。学習制御が行なわれる変速時には、例えば変速の種類や車両の運転状態、車両状態等に応じて予め定められた目標補償値だけ入力トルクを増大させるように回転機のトルクを制御し、入力トルクの増大幅を一定の目標補償値に維持するように構成される。入力トルクの増大幅だけでなく、要求駆動トルク等の変化に拘らず入力トルクそのものの値を一定に維持するようにしても良い。このトルク相補償制御は、例えばアップ変速時に行なわれるが、ダウン変速時に行なうこともできる。
以下、本発明の実施例を、図面を参照して詳細に説明する。尚、以下の実施例において、図は説明のために適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
図1は、本発明の一実施例である制御装置を備えている車両10の概略構成を説明する図であると共に、車両10における各種制御の為の制御系統の要部を説明する図である。図1において、車両10は、エンジン12と第1回転機MG1と第2回転機MG2とを備えている。又、車両10は、駆動輪14と、エンジン12と駆動輪14との間の動力伝達経路に設けられた動力伝達装置16と、を備えている。
エンジン12は、駆動力を発生することが可能な駆動力源であって、例えばガソリンエンジンやディーゼルエンジン等の公知の内燃機関である。エンジン12は、電子制御装置90によって、車両10に備えられたスロットルアクチュエータや燃料噴射装置や点火装置等を含むエンジン制御装置50が制御されることにより、エンジン12の出力トルクであるエンジントルクTe が制御される。
第1回転機MG1及び第2回転機MG2は、電動機(モータ)としての機能及び発電機 (ジェネレータ)としての機能を有する回転電気機械であって、所謂モータジェネレータである。第1回転機MG1及び第2回転機MG2は、各々、車両10に備えられたインバータ52を介して、車両10に備えられたバッテリ54に接続されている。第1回転機MG1及び第2回転機MG2は、各々、電子制御装置90によってインバータ52が制御されることにより、第1回転機MG1の出力トルクであるMG1トルクTg 及び第2回転機MG2の出力トルクであるMG2トルクTm が制御される。これ等の回転機MG1、MG2の出力トルクTg 、Tm は、エンジン12の運転時と同じ回転方向である正回転の場合、加速側となる正トルクでは力行トルクであり、減速側となる負トルクでは回生トルクである。バッテリ54は、第1回転機MG1及び第2回転機MG2の各々に対して電力を授受する蓄電装置である。第1回転機MG1及び第2回転機MG2は、車体に取り付けられる非回転部材としてのケース18内に設けられている。
動力伝達装置16は、ケース18内において共通の軸心上に直列に配設された、電気式無段変速部20及び機械式有段変速部22等を備えている。電気式無段変速部20は、直接的に或いは図示しないダンパーなどを介して間接的にエンジン12に連結されている。機械式有段変速部22は、電気式無段変速部20の出力側に連結されている。又、動力伝達装置16は、機械式有段変速部22の出力回転部材である出力軸24に連結された差動歯車装置26、差動歯車装置26に連結された一対の車軸28等を備えている。車軸28は、駆動輪14と連結されている。以下、電気式無段変速部20を無段変速部20、機械式有段変速部22を有段変速部22という。又、無段変速部20や有段変速部22等は上記共通の軸心に対して略対称的に構成されており、図1ではその軸心の下半分が省略されている。上記共通の軸心は、エンジン12のクランク軸、そのクランク軸に連結された無段変速部20の入力回転部材である連結軸30などの軸心である。
無段変速部20は、第1回転機MG1と、エンジン12の動力を第1回転機MG1及び無段変速部20の出力回転部材である中間伝達部材32に機械的に分割する動力分割機構としての差動機構34と、を備えている。中間伝達部材32には、第2回転機MG2が動力伝達可能に連結されている。無段変速部20は、第1回転機MG1の運転状態が制御されることにより差動機構34の差動状態が制御される電気式無段変速機である。無段変速部20は、変速比(ギヤ比ともいう)γ0(=エンジン回転速度Ne /MG2回転速度Nm )が変化させられる電気的な無段変速機として作動させられる。エンジン回転速度Ne は、エンジン12の回転速度であり、無段変速部20の入力回転速度すなわち連結軸30の回転速度と同値である。MG2回転速度Nm は、第2回転機MG2の回転速度であり、無段変速部20の出力回転速度すなわち中間伝達部材32の回転速度と同値である。第1回転機MG1は、エンジン回転速度Ne を制御可能な回転機であって、差動用回転機に相当する。
差動機構34は、シングルピニオン型の遊星歯車装置にて構成されており、サンギヤS0、キャリアCA0、及びリングギヤR0を備えている。キャリアCA0には連結軸30を介してエンジン12が動力伝達可能に連結され、サンギヤS0には第1回転機MG1が動力伝達可能に連結され、リングギヤR0には第2回転機MG2が動力伝達可能に連結されている。差動機構34において、キャリアCA0は入力要素として機能し、サンギヤS0は反力要素として機能し、リングギヤR0は出力要素として機能する。
有段変速部22は、中間伝達部材32と駆動輪14との間の動力伝達経路の一部を構成する、つまり無段変速部20と駆動輪14との間の動力伝達経路の一部を構成する、有段変速機としての機械式変速機構である。中間伝達部材32は、有段変速部22の入力回転部材としても機能する。中間伝達部材32には第2回転機MG2が一体回転するように連結されている。第2回転機MG2は、駆動力を発生することが可能な駆動力源として機能する回転機であって、走行駆動用回転機に相当する。第2回転機MG2は、エンジン12と駆動輪14との間の動力伝達経路に動力伝達可能に連結された回転機である。つまり、第2回転機MG2は、有段変速部22を介して駆動輪14に動力伝達可能に連結された回転機である。有段変速部22は、第1遊星歯車装置36及び第2遊星歯車装置38の2組の遊星歯車装置と、ワンウェイクラッチF1を含む、クラッチC1、クラッチC2、ブレーキB1、ブレーキB2の複数の係合装置と、を備えている、公知の遊星歯車式の自動変速機である。以下、クラッチC1、クラッチC2、ブレーキB1、及びブレーキB2については、特に区別しない場合は単に係合装置CBという。
係合装置CBは、油圧アクチュエータにより押圧される多板式或いは単板式のクラッチやブレーキ、油圧アクチュエータによって引き締められるバンドブレーキなどにより構成される、油圧式の摩擦係合装置である。係合装置CBは、車両10に備えられた油圧制御回路56内のソレノイドバルブSL1-SL4から出力される調圧された各係合油圧Pcbによりそれぞれのトルク容量Tcbが変化させられることで、各々、係合や解放などの制御状態すなわち作動状態が切り替えられる。
有段変速部22は、第1遊星歯車装置36及び第2遊星歯車装置38の複数の回転要素が、直接的に或いは係合装置CBやワンウェイクラッチF1を介して間接的に、一部が互いに連結されたり、中間伝達部材32、ケース18、或いは出力軸24に連結されている。第1遊星歯車装置36の回転要素は、サンギヤS1、キャリアCA1、リングギヤR1であり、第2遊星歯車装置38の回転要素は、サンギヤS2、キャリアCA2、リングギヤR2である。
有段変速部22は、複数の係合装置CBのうちの何れかの係合装置である例えば所定の係合装置の係合によって、変速比γat(=AT入力回転速度Ni /出力回転速度No )が異なる複数の変速段(ギヤ段ともいう)のうちの何れかのギヤ段が形成される有段変速機である。つまり、有段変速部22は、複数の係合装置CBの何れかが係合させられることで、ギヤ段が切り替えられるすなわち変速が実行される。本実施例では、有段変速部22にて形成されるギヤ段をATギヤ段と称する。AT入力回転速度Ni は、有段変速部22の入力回転速度すなわち中間伝達部材32の回転速度であり、MG2回転速度Nm と同値である。出力回転速度No は、有段変速部22の出力回転速度すなわち出力軸24の回転速度である。出力回転速度No は、無段変速部20と有段変速部22とを合わせた全体の変速機である複合変速機40の出力回転速度でもある。複合変速機40は、エンジン12と駆動輪14との間の動力伝達経路の一部を構成する自動変速機である。尚、エンジン回転速度Ne は、複合変速機40の入力回転速度でもある。
有段変速部22は、例えば図2の係合作動表に示すように、複数のATギヤ段として、AT1速ギヤ段(図中の「1st」)-AT4速ギヤ段(図中の「4th」)の4段の前進用のATギヤ段が形成される。AT1速ギヤ段の変速比γatが最も大きく、ハイ側のAT4速ギヤ段程、変速比γatが小さくなる。又、後進用のATギヤ段(図中の「Rev」)は、例えばクラッチC1の係合且つブレーキB2の係合によって形成される。つまり、後進走行を行う際には、例えばAT1速ギヤ段が形成される。図2の係合作動表は、各ATギヤ段と複数の係合装置CBの各作動状態との関係をまとめたものである。すなわち、図2の係合作動表は、各ATギヤ段と、各ATギヤ段において各々係合させられる係合装置CBである所定の係合装置との関係をまとめたものである。図2において、「○」は係合、「△」はエンジンブレーキ時や有段変速部22のコーストダウンシフト時に係合、空欄は解放をそれぞれ表している。
有段変速部22は、電子制御装置90によって、ドライバー(=運転者)のアクセル操作や車速V等に応じて形成されるATギヤ段が切り替えられる、すなわち複数のATギヤ段が選択的に形成される。例えば、有段変速部22の変速制御においては、係合装置CBの何れかの掴み替えにより変速が実行される、すなわち係合装置CBの係合と解放との切替えにより変速が実行される、所謂クラッチツゥクラッチ変速が実行される。
車両10は、更に、機械式のオイルポンプであるMOP58、不図示の電動式のオイルポンプ等を備えている。MOP58は、連結軸30に連結されており、エンジン12の回転と共に回転させられて動力伝達装置16にて用いられる作動油OIL を吐出する。又、不図示の電動式のオイルポンプは、例えばエンジン12の停止時すなわちMOP58の非駆動時に駆動させられて作動油OIL を吐出する。MOP58や不図示の電動式のオイルポンプが吐出した作動油OIL は、油圧制御回路56へ供給される。係合装置CBは、作動油OIL を元にして油圧制御回路56により調圧された各係合油圧Pcbによって作動状態が切り替えられる。
図3は、無段変速部20と有段変速部22とにおける複数の回転要素の回転速度の相対的関係を表す共線図である。図3において、無段変速部20を構成する差動機構34の3つの回転要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素RE2に対応するサンギヤS0の回転速度を表すg軸であり、第1回転要素RE1に対応するキャリアCA0の回転速度を表すe軸であり、第3回転要素RE3に対応するリングギヤR0の回転速度(すなわち有段変速部22の入力回転速度)を表すm軸である。又、有段変速部22の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素RE4に対応するサンギヤS2の回転速度、第5回転要素RE5に対応する相互に連結されたリングギヤR1及びキャリアCA2の回転速度(すなわち出力軸24の回転速度)、第6回転要素RE6に対応する相互に連結されたキャリアCA1及びリングギヤR2の回転速度、第7回転要素RE7に対応するサンギヤS1の回転速度をそれぞれ表す軸である。縦線Y1、Y2、Y3の相互の間隔は、差動機構34の歯車比ρ0に応じて定められている。又、縦線Y4、Y5、Y6、Y7の相互の間隔は、第1遊星歯車装置36の歯車比ρ1と第2遊星歯車装置38の歯車比ρ2とに応じて定められている。共線図の縦軸間の関係においてサンギヤとキャリアとの間が「1」に対応する間隔とされると、キャリアとリングギヤとの間が遊星歯車装置の歯車比ρ (=サンギヤの歯数/リングギヤの歯数)に対応する間隔とされる。
図3の共線図を用いて表現すれば、無段変速部20の差動機構34において、第1回転要素RE1にエンジン12(図中の「ENG」参照)が連結され、第2回転要素RE2に第1回転機MG1(図中の「MG1」参照)が連結され、中間伝達部材32と一体回転する第3回転要素RE3に第2回転機MG2(図中の「MG2」参照)が連結されて、エンジン12の回転を中間伝達部材32を介して有段変速部22へ伝達するように構成されている。無段変速部20では、縦線Y2を横切る各直線L0e、L0m、L0Rにより、サンギヤS0の回転速度とリングギヤR0の回転速度との関係が示される。
又、有段変速部22において、第4回転要素RE4はクラッチC1を介して中間伝達部材32に選択的に連結され、第5回転要素RE5は出力軸24に連結され、第6回転要素RE6はクラッチC2を介して中間伝達部材32に選択的に連結されると共にブレーキB2を介してケース18に選択的に連結され、第7回転要素RE7はブレーキB1を介してケース18に選択的に連結される。有段変速部22では、係合装置CBの係合解放制御によって縦線Y5を横切る各直線L1、L2、L3、L4、LRにより、出力軸24における「1st」、「2nd」、「3rd」、「4th」、「Rev」の各回転速度が示される。
図3中に実線で示す、直線L0e及び直線L1、L2、L3、L4は、少なくともエンジン12を駆動力源として走行するハイブリッド走行(=HV走行)が可能なHV走行モードでの前進走行における各回転要素の相対速度を示している。HV走行は、エンジン12からの駆動力を少なくとも用いて走行するエンジン走行である。このHV走行モードでは、差動機構34において、キャリアCA0に入力される正トルクのエンジントルクTe に対して、第1回転機MG1による負トルクの反力トルクとなるMG1トルクTg がサンギヤS0に入力されると、リングギヤR0には正回転にて正トルクとなるエンジン直達トルクTd (=Te /(1+ρ0)=-(1/ρ0)×Tg )が現れる。そして、要求駆動力Frdemに応じて、エンジン直達トルクTd とMG2トルクTm との合算トルクが車両10の前進方向の駆動トルクとして、AT1速ギヤ段-AT4速ギヤ段のうちの何れかのATギヤ段が形成された有段変速部22を介して駆動輪14へ伝達される。第1回転機MG1は、正回転にて負トルクを発生する場合には発電機として機能する。第1回転機MG1の発電電力Wg は、バッテリ54に充電されたり、第2回転機MG2にて消費される。第2回転機MG2は、発電電力Wg の全部又は一部を用いて、或いは発電電力Wg に加えてバッテリ54からの電力を用いて、MG2トルクTm を出力する。
図3中に一点鎖線で示す直線L0m及び図3中に実線で示す直線L1、L2、L3、L4は、エンジン12の運転を停止した状態で第2回転機MG2を駆動力源として走行するモータ走行(=EV走行)が可能なEV走行モードでの前進走行における各回転要素の相対速度を示している。EV走行は、第2回転機MG2からの駆動力のみを用いて走行するモータ走行である。EV走行モードでの前進走行におけるEV走行では、キャリアCA0はゼロ回転とされ、リングギヤR0には正回転にて正トルクとなるMG2トルクTm が入力される。このとき、サンギヤS0に連結された第1回転機MG1は、無負荷状態とされて負回転にて空転させられる。つまり、EV走行モードでの前進走行では、エンジン12は駆動されず、エンジン回転速度Ne はゼロとされ、MG2トルクTm が車両10の前進方向の駆動トルクとして、AT1速ギヤ段-AT4速ギヤ段のうちの何れかのATギヤ段が形成された有段変速部22を介して駆動輪14へ伝達される。ここでのMG2トルクTm は、正回転且つ正トルクの力行トルクである。
図3中に破線で示す、直線L0R及び直線LRは、EV走行モードでの後進走行における各回転要素の相対速度を示している。このEV走行モードでの後進走行では、リングギヤR0には負回転にて負トルクとなるMG2トルクTm が入力され、そのMG2トルクTm が車両10の後進方向の駆動トルクとして、AT1速ギヤ段が形成された有段変速部22を介して駆動輪14へ伝達される。車両10では、電子制御装置90によって、複数のATギヤ段のうちの前進用のロー側のATギヤ段である例えばAT1速ギヤ段が形成された状態で、前進走行時における前進用のMG2トルクTm とは正負が反対となる後進用のMG2トルクTm が第2回転機MG2から出力させられることで、後進走行を行うことができる。ここでのMG2トルクTm は、負回転且つ負トルクの力行トルクである。尚、HV走行モードにおいても、直線L0Rのように第2回転機MG2を負回転とすることが可能であるので、エンジン12を所定の回転速度Ne で作動させた状態で、EV走行モードと同様に第2回転機MG2を逆回転(負回転)させて後進走行を行うことが可能である。
車両10は、走行用の駆動力源として、エンジン12及び第2回転機MG2を備えたハイブリッド車両である。動力伝達装置16において、エンジン12や第2回転機MG2から出力される動力は、有段変速部22へ伝達され、その有段変速部22から差動歯車装置26等を介して駆動輪14へ伝達される。このように、動力伝達装置16は、駆動力源(エンジン12、第2回転機MG2)からの駆動力を駆動輪14へ伝達する。尚、動力は、特に区別しない場合にはトルクや力も同意である。
図1に戻り、車両10は、エンジン12、無段変速部20、及び有段変速部22などの制御に関連する車両10の制御装置を含むコントローラとしての電子制御装置90を備えている。図1は、電子制御装置90の入出力系統を示す図であり、又、電子制御装置90による制御機能の要部を説明する機能ブロック図である。電子制御装置90は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を行う。電子制御装置90は、必要に応じてエンジン制御用、回転機制御用、油圧制御用等の各コンピュータを含んで構成される。
電子制御装置90には、車両10に備えられた各種センサ等(例えばエンジン回転速度センサ60、出力回転速度センサ62、MG1回転速度センサ64、MG2回転速度センサ66、アクセル開度センサ68、スロットル弁開度センサ70、ブレーキペダルセンサ71、ステアリングセンサ72、ドライバ状態センサ73、Gセンサ74、ヨーレートセンサ76、バッテリセンサ78、油温センサ79、車両周辺情報センサ80、車両位置センサ81、外部ネットワーク通信用アンテナ82、ナビゲーションシステム83、運転支援設定スイッチ群84、シフトポジションセンサ85など)による検出値に基づく各種信号等(例えばエンジン回転速度Ne 、車速Vに対応する出力回転速度No 、第1回転機MG1の回転速度であるMG1回転速度Ng 、AT入力回転速度Ni と同値であるMG2回転速度Nm 、運転者の加速操作の大きさを表す運転者のアクセル操作量であるアクセル開度θacc 、電子スロットル弁の開度であるスロットル弁開度θth、ホイールブレーキを作動させる為のブレーキペダルが運転者によって操作されている状態を示す信号であるブレーキオン信号Bon、運転者によるブレーキペダルの踏込操作の大きさを表すブレーキ操作量Bra、車両10に備えられたステアリングホイールの操舵角θsw及び操舵方向Dsw、ステアリングホイールが運転者によって握られている状態を示す信号であるステアリングオン信号SWon、運転者の状態を示す信号であるドライバ状態信号Drv、車両10の前後加速度Gx 及び左右加速度Gy 、車両10の鉛直軸まわりの回転角速度であるヨーレートRyaw 、バッテリ54のバッテリ温度THbat やバッテリ充放電電流Ibat やバッテリ電圧Vbat 、作動油OIL の温度である作動油温度THoil 、車両周辺情報Iard 、位置情報Ivp、通信信号Scom 、ナビ情報Inavi、自動運転制御やクルーズ制御等の運転支援制御に対する運転者による設定を示す信号である運転支援設定信号Sset 、車両10に備えられたシフトレバーの操作ポジションPOSsh など)が、それぞれ供給される。
運転者のアクセル操作量は、例えばアクセルペダルなどのアクセル操作部材の操作量である加速操作量であって、車両10に対する運転者の出力要求量である。運転者の出力要求量としては、アクセル開度θacc の他に、スロットル弁開度θthなどを用いることもできる。
ドライバ状態センサ73は、例えば運転者の表情や瞳孔などを撮影するカメラ、運転者の生体情報を検出する生体情報センサなどのうちの少なくとも一つを含んでおり、運転者の視線や顔の向き、眼球や顔の動き、心拍の状態等の運転者の状態を取得する。
車両周辺情報センサ80は、例えばライダー、レーダー、及び車載カメラなどのうちの少なくとも一つを含んでおり、車両10の周辺情報である車両周辺情報Iard を直接的に取得する。車両周辺情報Iard は、走行中の道路に関する情報や車両周辺に存在する物体に関する情報である。前記ライダーは、例えば車両10の前方の物体、側方の物体、後方の物体などを各々検出する複数のライダー、又は、車両10の全周囲の物体を検出する一つのライダーであり、検出した物体に関する物体情報を車両周辺情報Iard として出力する。前記レーダーは、例えば車両10の前方の物体、前方近傍の物体、後方近傍の物体などを各々検出する複数のレーダーなどであり、検出した物体に関する物体情報を車両周辺情報Iard として出力する。前記ライダーやレーダーによる物体情報には、検出した物体の車両10からの距離と方向とが含まれる。前記車載カメラは、例えば車両10の前方や後方を撮像する単眼カメラ又はステレオカメラであり、撮像情報を車両周辺情報Iard として出力する。この撮像情報には、走行路の車線、走行路における標識、駐車スペース、及び走行路における他車両や歩行者や障害物などの情報が含まれる。
車両位置センサ81は、GPS(Global Positioning System )アンテナなどを含んでいる。位置情報Ivpは、GPS衛星が発信するGPS信号(軌道信号)などに基づく地表又は地図上における車両10の現在位置を示す情報である自車位置情報を含んでいる。
ナビゲーションシステム83は、ディスプレイやスピーカ等を有する公知のナビゲーションシステムである。ナビゲーションシステム83は、位置情報Ivpに基づいて、予め記憶された地図データ上に自車位置を特定する。ナビゲーションシステム83は、ディスプレイに表示した地図上に自車位置を表示する。ナビゲーションシステム83は、目的地が入力されると、出発地から目的地までの走行経路を演算し、ディスプレイやスピーカ等で運転者に走行経路などの指示を行う。ナビ情報Inaviは、例えばナビゲーションシステム83に予め記憶された地図データに基づく道路情報や施設情報などの地図情報などを含んでいる。前記道路情報には、市街地道路、郊外道路、山岳道路、高速自動車道路すなわち高速道路などの道路の種類、道路の分岐や合流、道路の勾配、制限速度などの情報が含まれる。前記施設情報には、スーパー、商店、レストラン、駐車場、公園、車両10の故障対応業者、自宅、高速道路におけるサービスエリアなどの拠点の種類、所在位置、名称などの情報が含まれる。上記サービスエリアは、例えば高速道路で、駐車、食事、給油などの設備のある拠点である。尚、ナビ情報Inaviにおける道路情報等は、車両周辺情報Iard にもなり得る。
運転支援設定スイッチ群84は、自動運転制御を実行させる為の自動運転選択スイッチ、クルーズ制御を実行させる為のクルーズスイッチ、クルーズ制御における車速を設定するスイッチ、クルーズ制御における先行車との車間距離を設定するスイッチ、設定された車線を維持して走行するレーンキープ制御を実行させる為のスイッチなどを含んでいる。
通信信号Scom は、例えば道路交通情報通信システムなどの車外装置であるセンターとの間で送受信された道路交通情報など、及び/又は、前記センターを介さずに車両10の近傍にいる他車両との間で直接的に送受信された車車間通信情報などを含んでいる。前記道路交通情報には、例えば道路の渋滞、事故、工事、所要時間、駐車場などの情報が含まれる。前記車車間通信情報は、例えば車両情報、走行情報、交通環境情報などを含んでいる。前記車両情報には、例えば乗用車、トラック、二輪車などの車種を示す情報が含まれる。前記走行情報には、例えば車速V、位置情報、ブレーキペダルの操作情報、ターンシグナルランプの点滅情報、ハザードランプの点滅情報などの情報が含まれる。前記交通環境情報には、例えば道路の渋滞、工事などの情報が含まれる。
電子制御装置90からは、車両10に備えられた各装置(例えばエンジン制御装置50、インバータ52、油圧制御回路56、外部ネットワーク通信用アンテナ82、ホイールブレーキ装置86、操舵装置88、情報周知装置89など)に各種指令信号(例えばエンジン12を制御する為のエンジン制御指令信号Se 、第1回転機MG1及び第2回転機MG2を各々制御する為の回転機制御指令信号Smg、係合装置CBの作動状態を制御する為の油圧制御指令信号Sat、通信信号Scom 、ホイールブレーキによる制動トルクTb を制御する為のブレーキ制御指令信号Sbra 、車輪(特には前輪)の操舵を制御する為の操舵制御指令信号Sste 、運転者に警告や報知を行う為の情報周知制御指令信号Sinf など)が、それぞれ出力される。
ホイールブレーキ装置86は、車輪にホイールブレーキによる制動トルクTb を付与するブレーキ装置である。制動トルクTb は、駆動トルクTr のうちの制動側となる負トルクである。ホイールブレーキ装置86は、運転者による例えばブレーキペダルの踏込操作などに応じて、ホイールブレーキに設けられたホイールシリンダへブレーキ油圧を供給する。ホイールブレーキ装置86では、通常時には、ブレーキマスタシリンダから発生させられる、ブレーキ操作量Braに対応した大きさのマスタシリンダ油圧がブレーキ油圧としてホイールシリンダへ供給される。一方で、ホイールブレーキ装置86では、例えばABS制御時、横滑り抑制制御時、自動車速制御時、自動運転制御時などには、ホイールブレーキによる制動トルクTb の発生の為に、各制御で必要なブレーキ油圧がホイールシリンダへ供給される。上記車輪は、駆動輪14及び不図示の従動輪である。
操舵装置88は、例えば車速V、操舵角θsw及び操舵方向Dsw、ヨーレートRyaw などに応じたアシストトルクを車両10の操舵系に付与する。操舵装置88では、例えば自動運転制御時などには、前輪の操舵を制御するトルクを車両10の操舵系に付与する。
情報周知装置89は、例えば車両10の走行に関わる何らかの故障が発生したり、車両10の走行に関わる機能が低下した場合などに、運転者に対して警告や報知を行う装置である。情報周知装置89は、例えばモニタやディスプレイやアラームランプ等の表示装置、及び/又はスピーカやブザー等の音出力装置などである。前記表示装置は、運転者に対して視覚的な警告や報知を行う装置である。音出力装置は、運転者に対して聴覚的な警告や報知を行う装置である。
電子制御装置90は、車両10における各種制御を実行するために、ハイブリッド制御手段として機能するハイブリッド制御部92、及びAT変速制御手段として機能するAT変速制御部94を備えている。
ハイブリッド制御部92は、エンジン12の作動を制御するエンジン制御手段すなわちエンジン制御部としての機能と、インバータ52を介して第1回転機MG1及び第2回転機MG2の作動を制御する回転機制御手段すなわち回転機制御部としての機能と、を含んでおり、それらの制御機能によりエンジン12、第1回転機MG1、及び第2回転機MG2によるハイブリッド駆動制御等を実行する。
ハイブリッド制御部92は、予め定められた関係である例えば駆動要求量マップにアクセル開度θacc 及び車速Vを適用することで駆動要求量としての駆動輪14における要求駆動力Frdemを算出する。前記駆動要求量としては、要求駆動力Frdem[N]の他に、駆動輪14における要求駆動トルクTrdem[Nm]、駆動輪14における要求駆動パワーPrdem[W]、出力軸24における要求AT出力トルク等を用いることもできる。ハイブリッド制御部92は、バッテリ54の充電可能電力Winや放電可能電力Wout 等を考慮して、要求駆動トルクTrdemと車速Vとに基づく要求駆動パワーPrdemを実現するように、エンジン12を制御する指令信号であるエンジン制御指令信号Se と、第1回転機MG1及び第2回転機MG2を制御する指令信号である回転機制御指令信号Smgと、を出力する。エンジン制御指令信号Se は、例えばそのときのエンジン回転速度Ne におけるエンジントルクTe を出力するエンジン12のパワーであるエンジンパワーPe の指令値である。回転機制御指令信号Smgは、例えばエンジントルクTe の反力トルクとしての指令出力時のMG1回転速度Ng におけるMG1トルクTg を出力する第1回転機MG1の発電電力Wg の指令値であり、又、指令出力時のMG2回転速度Nm におけるMG2トルクTm を出力する第2回転機MG2の消費電力Wm の指令値である。
バッテリ54の充電可能電力Winは、バッテリ54の入力電力の制限を規定する入力可能電力であり、バッテリ54の放電可能電力Wout は、バッテリ54の出力電力の制限を規定する出力可能電力である。バッテリ54の充電可能電力Winや放電可能電力Wout は、例えばバッテリ温度THbat 及びバッテリ54の充電量に相当する充電状態値SOC[%]に基づいて電子制御装置90により算出される。バッテリ54の充電状態値SOCは、バッテリ54の充電状態を示す値であり、例えばバッテリ充放電電流Ibat 及びバッテリ電圧Vbat などに基づいて電子制御装置90により算出される。
ハイブリッド制御部92は、例えば無段変速部20を無段変速機として作動させて複合変速機40全体として無段変速機として作動させる場合、最適エンジン動作点等を考慮して、要求駆動パワーPrdemを実現するエンジンパワーPe が得られるエンジン回転速度Ne とエンジントルクTe となるように、エンジン12を制御すると共に第1回転機MG1の発電電力Wg を制御することで、無段変速部20の無段変速制御を実行して無段変速部20の変速比γ0を変化させる。この制御の結果として、無段変速機として作動させる場合の複合変速機40の変速比γt(=Ne /No )が制御される。最適エンジン動作点は、例えば要求エンジンパワーPedemを実現するときに、エンジン12単体の燃費にバッテリ54における充放電効率等を考慮した車両10におけるトータル燃費が最も良くなるエンジン動作点として予め定められている。このエンジン動作点は、エンジン回転速度Ne とエンジントルクTe とで表されるエンジン12の運転点である。このように、動力伝達装置16では、ATギヤ段が形成された有段変速部22と無段変速機として作動させられる無段変速部20とで、無段変速部20と有段変速部22とが直列に配置された複合変速機40全体として無段変速機を構成することができる。
又は、無段変速部20を有段変速機のように変速させることも可能であるので、動力伝達装置16では、ATギヤ段が形成される有段変速部22と有段変速機のように変速させる無段変速部20とで、複合変速機40全体として有段変速機のように変速させることができる。つまり、複合変速機40では、エンジン回転速度Ne の出力回転速度No に対する比の値を表す変速比γtが異なる複数のギヤ段を選択的に成立させるように、有段変速部22と無段変速部20とを制御することが可能である。本実施例では、複合変速機40にて成立させられるギヤ段を模擬ギヤ段と称する。変速比γtは、直列に配置された、無段変速部20と有段変速部22とで形成されるトータル変速比であって、無段変速部20の変速比γ0と有段変速部22の変速比γatとを乗算した値(γt=γ0×γat)となる。
模擬ギヤ段は、例えば有段変速部22の各ATギヤ段と1又は複数種類の無段変速部20の変速比γ0との組合せによって、有段変速部22の各ATギヤ段に対してそれぞれ1又は複数種類を成立させるように割り当てられる。例えば、AT1速ギヤ段に対して模擬1速ギヤ段-模擬3速ギヤ段が成立させられ、AT2速ギヤ段に対して模擬4速ギヤ段-模擬6速ギヤ段が成立させられ、AT3速ギヤ段に対して模擬7速ギヤ段-模擬9速ギヤ段が成立させられ、AT4速ギヤ段に対して模擬10速ギヤ段が成立させられるように予め定められている。複合変速機40では、出力回転速度No に対して所定の変速比γtを実現するエンジン回転速度Ne となるように無段変速部20が制御されることによって、あるATギヤ段において異なる模擬ギヤ段が成立させられる。又、複合変速機40では、ATギヤ段の切替えに合わせて無段変速部20が制御されることによって、模擬ギヤ段が切り替えられる。
ハイブリッド制御部92は、例えば無段変速部20を有段変速機のように変速させて複合変速機40全体として有段変速機のように変速させる場合、予め定められた関係である例えば模擬ギヤ段変速マップを用いて複合変速機40の変速判断を行い、AT変速制御部94による有段変速部22のATギヤ段の変速制御と協調して、複数の模擬ギヤ段を選択的に成立させるように無段変速部20の変速制御を実行する。複数の模擬ギヤ段は、それぞれの変速比γtを維持できるように出力回転速度No に応じて第1回転機MG1によりエンジン回転速度Ne を制御することによって成立させることができる。各模擬ギヤ段の変速比γtは、出力回転速度No の全域に亘って必ずしも一定値である必要はなく、所定領域で変化させても良いし、各部の回転速度の上限や下限等によって制限が加えられても良い。このように、ハイブリッド制御部92は、エンジン回転速度Ne を有段変速のように変化させる変速制御が可能である。複合変速機40全体として有段変速機のように変速させる模擬有段変速制御は、例えば運転者によってスポーツ走行モード等の走行性能重視の走行モードが選択された場合や要求駆動トルクTrdemが比較的大きい場合に、複合変速機40全体として無段変速機として作動させる無段変速制御に優先して実行するだけでも良いが、所定の実行制限時を除いて基本的に模擬有段変速制御が実行されても良い。
ハイブリッド制御部92は、走行モードとして、EV走行モード又はHV走行モードを走行状態に応じて選択的に成立させる。例えば、ハイブリッド制御部92は、予め定められた関係である例えば図4に示すような走行モード切替マップを用いて、要求駆動力Frdemが比較的小さなEV走行領域にある場合には、第2回転機MG2のみで走行するEV走行モードを成立させる一方で、要求駆動力Frdemが比較的大きなHV走行領域にある場合にはHV走行モードを成立させる。
図4において、走行モード切替マップは、例えば車速V及び要求駆動力Frdemを変数とする二次元座標上に、HV走行モードとEV走行モードとを切り替える為のHV走行領域とEV走行領域との境界線を有する所定の関係である。上記境界線は、例えば一点鎖線に示すような、EV走行モードとHV走行モードとの切替えが判断される為の予め定められた走行モード切替線CFである。走行モードの切替えでは走行に用いられる駆動力源が切り替えられることから、走行モード切替線CFは駆動力源切替線でもある。尚、図4では、便宜上、この走行モード切替マップをATギヤ段変速マップと共に示している。
AT変速制御部94は、予め実験的に或いは設計的に求められて記憶された変速マップに従って有段変速部22の変速判断を行い、必要に応じて有段変速部22の変速制御を実行する。具体的には、有段変速部22のATギヤ段を自動的に切り替えるように、ソレノイドバルブSL1~SL4により係合装置CBの係合解放状態を切り替える為の油圧制御指令信号Satを油圧制御回路56へ出力する。上記変速マップは変速条件で、例えば図4に示した変速線にて定められており、実線はアップ変速線で破線はダウン変速線であり、所定のヒステリシスが設けられている。この変速マップは、車速V(ここでは出力回転速度No なども同意) 及び要求駆動力Frdem(ここでは要求駆動パワーPrdemやアクセル開度θacc 、スロットル弁開度θthなども同意) を変数とする二次元座標上に定められており、車速Vが高くなるに従って変速比γatが小さい高車速側(ハイ側)のATギヤ段に切り替えるアップ変速が行なわれ、要求駆動力Frdemが大きくなるに従って変速比γatが大きい低車速側(ロー側)のATギヤ段に切り替えるダウン変速が行なわれるように設定されている。図4における「1→2」はAT1速ギヤ段からAT2速ギヤ段へのアップ変速を意味し、「2→3」、「3→4」はそれぞれAT2速ギヤ段からAT3速ギヤ段、AT3速ギヤ段からAT4速ギヤ段へのアップ変速を意味している。また、「1←2」はAT2速ギヤ段からAT1速ギヤ段へのダウン変速を意味しており、「2←3」、「3←4」はそれぞれAT3速ギヤ段からAT2速ギヤ段、AT4速ギヤ段からAT3速ギヤ段へのダウン変速を意味している。AT変速制御部94はまた、例えばシフトレバーやパドルレバー等による運転者のアップ変速要求或いはダウン変速要求に従ってATギヤ段をアップダウン変速する。
有段変速部22のATギヤ段を切り替える変速は、図2の係合作動表から明らかなように、一対の係合装置CBの一方を係合させるとともに他方を解放するクラッチツゥクラッチ変速によって行なわれる。図6は、アクセルペダルが踏込み操作されて所定の駆動力を発生するパワーON時に、有段変速部22のATギヤ段をハイ側へ切り替えるアップ変速時における各部の作動状態の変化を示したタイムチャートの一例である。図6の時間t1は、アップ変速の変速指令が出力された時間で、解放側の係合装置CBの油圧指示値Pdra は、定圧待機圧βに所定の待機時間だけ保持された後漸減させられる。また、係合側の係合装置CBの油圧指示値Papp は、ファーストフィルに続いて定圧待機圧αに保持され、所定のタイミングで漸増させられるが、この定圧待機圧αは予め油圧記憶部98に記憶されているとともに、学習制御部96によって学習制御されるようになっている。すなわち、パワーONのアップ変速では、解放側の係合装置CBを解放しつつ、係合側の係合装置CBの係合トルクによりAT入力回転速度Ni (=Nm )を引き下げて変速を進行させる必要があり、各部の個体差や経時変化に拘らず、係合側油圧指示値Papp の漸増開始(時間t2)からイナーシャ相開始(時間t4)までの所要時間tineが予め定められた目標値になるように、定圧待機圧αが学習制御部96によって学習制御され、変速が行なわれる毎に必要に応じて書き替えられる。具体的には、所要時間tineが目標値よりも長い場合は定圧待機圧αが上昇させられ、所要時間tineが目標値よりも短い場合は定圧待機圧αが低下させられる。この定圧待機圧αは、例えばアップ変速の種類毎に記憶されるが、更に要求駆動トルクTrdemや作動油温度THoil などの車両状態に応じて場合分けして記憶しても良い。油圧記憶部98は学習値記憶部に相当する。
本実施例では、変速時の油圧に関する制御要素として係合側油圧指示値Papp の定圧待機圧αを学習制御しているが、その定圧待機圧αに保持する時間である待機時間や、その後の漸増時の変化率などを学習制御することもできる。また、学習制御を行なう際の学習パラメータとして、係合側油圧指示値Papp の漸増開始からイナーシャ相開始までの所要時間tineが用いられているが、変速指令出力(時間t1)からイナーシャ相開始(時間t4)までの所要時間や、イナーシャ相開始時の係合油圧Pcb或いは油圧指示値Papp 、イナーシャ相前のAT入力回転速度Ni のオーバーシュート量やオーバーシュート時間などを用いて学習制御することもできる。また、係合側油圧指示値Papp の学習制御に加えて、或いは係合側油圧指示値Papp の学習制御の代わりに、解放側の係合装置CBの油圧指示値Pdra の定圧待機圧βや待機時間、漸減時の変化率等を学習制御することも可能である。
一方、このようなクラッチツゥクラッチ変速では、解放側の係合装置CBの係合油圧Pcbの低下による伝達トルク容量Tcbの低下に伴い、有段変速部22の出力トルクTout が低下する。例えば前記図6における時間t2以後の車両前後加速度Gx の欄に破線で示す低下は、この出力トルクTout の低下に起因するものであり、AT入力回転速度Ni が変化するイナーシャ相が開始する前に出力トルクTout が低下する時間帯がトルク相である。この出力トルクTout の低下を抑制するために、本実施例では前記AT変速制御部94にトルク相補償制御部100が設けられ、トルク相補償制御を行なうようになっている。トルク相補償制御は、例えば解放側油圧指示値Pdra に基づいて解放側係合装置CBの伝達トルク容量Tcbや出力トルクTout などを求め、要求駆動トルクTrdemを得るために必要なAT入力トルクTinの不足分を補償値(増大量)Tcom として逐次算出する。そして、その補償値Tcom だけAT入力トルクTinを増大させるための指令を前記ハイブリッド制御部92に出力し、第2回転機MG2のトルクTm をその補償値Tcom だけ増大させる。第2回転機MG2は、トルク相補償制御に用いられる回転機である。尚、第1回転機MG1のトルクTg およびエンジン12のトルクTe を制御して、補償値Tcom だけAT入力トルクTinを増大させることもできる。また、例えば車両前後加速度Gx の低下が抑制されるようにMG2トルクTm をフィードバック制御することもできるなど、種々のトルク相補償制御を採用することが可能で、ハイブリッド制御部92にトルク相補償制御部100が設けられても良い。
ここで、上記トルク相補償制御部100によるトルク相補償制御が実行された変速時に前記学習制御部96による定圧待機圧αの学習制御が行なわれると、トルク相補償制御によるAT入力トルクTinの変化に起因して変速の進行状況が変化し、学習パラメータである前記所要時間tineがばらつくため、その所要時間tineに基づいて実施される定圧待機圧αの学習制御の精度が損なわれる。このため、本実施例のトルク相補償制御部100は、図5に示すフローチャートのステップS1~S7(以下、ステップを省略して単にS1~S7という。)に従って信号処理を実行し、学習制御部96による定圧待機圧αの学習制御が行なわれる場合には、上述した通常のトルク相補償制御とは異なるトルク相補償制御を実施する。図6は、トルク相補償制御部100によるトルク相補償制御および学習制御部96による定圧待機圧αの学習制御が共に実施される場合に、図5のフローチャートに従ってトルク相補償制御が行なわれた場合のタイムチャートの一例である。
図5のS1では、アップ変速制御が開始されたか否か、具体的には有段変速部22をアップ変速する変速指令が出力されたか否かを判断し、アップ変速の変速指令が出力されない場合はそのまま終了するが、アップ変速の変速指令が出力された場合はS2を実行する。図6の時間t1は、アップ変速の変速指令が出力された時間である。S2では、トルク相補償制御部100によるトルク相補償制御の実行条件、および学習制御部96による定圧待機圧αの学習制御の実行条件が、何れも成立しているか否かを判断する。そして、何れか一方でも成立しない場合はそのまま終了するが、何れの実行条件も成立している場合、すなわちトルク相補償制御部100によるトルク相補償制御および学習制御部96による定圧待機圧αの学習制御が共に行なわれる場合には、S3以下を実行する。
S3では、解放側の係合装置CBの係合油圧Pcbの低下による伝達トルク容量Tcbの低下に伴い、有段変速部22の出力トルクTout が低下することを抑制するために、第2回転機MG2のトルクTm を増大させるトルク相補償制御を実施する。具体的には、出力トルクTout が低下するトルク相が開始したか否かを、例えば車両前後加速度Gx が低下したか否か等によって判断し、トルク相が開始したらトルク相補償制御を開始する。トルク相の開始を判断する代わりに、変速指令が出力された後の経過時間が、変速の種類等に応じて予め定められたトルク相補償制御開始時間に達したか否かを判断し、トルク相補償制御開始時間に達したらトルク相補償制御を開始するようにしても良い。図6の時間t2は、トルク相補償制御が開始された時間で、その時間t2以後の実線はトルク相補償制御が行なわれた場合のグラフで、破線はトルク相補償制御を実施しない場合のグラフである。
この場合のトルク相補償制御は、先ず、予め定められた所定時間tcでAT入力トルクTinが目標補償値Tcom1だけ増大するように、MG2トルクTm を一定の変化率で漸増させる。目標補償値Tcom1は、トルク相における出力トルクTout の低下が抑制されるように、例えば変速の種類毎に予め一定値が定められるが、更に作動油温度THoil や要求駆動トルクTrdemなどの車両状態に応じて場合分けして定めることもできる。所定時間tcは、係合側油圧指示値Papp が増大してイナーシャ相が開始する前にMG2トルクTm の増大幅が目標補償値Tcom1に達するように、例えば変速の種類毎に予め一定値が定められるが、更に作動油温度THoil や要求駆動トルクTrdemなどの車両状態に応じて場合分けして定めることもできる。例えば作動油温度THoil が低いと油圧の応答が遅くなるため、その油圧変化に合わせてAT入力トルクTinを変化させるようにする。本実施例では、このトルク相補償制御の実行に伴って、係合側油圧指示値Papp も所定量だけ増大させられるようになっている。
次のS4では、トルク相補償制御の開始から所定時間tcが経過したか否かを判断し、所定時間tcが経過するまでS3を繰り返してMG2トルクTm を漸増させる。そして、所定時間tcが経過したら、言い換えればMG2トルクTm やAT入力トルクTinが目標補償値Tcom1だけ増大させられたら、S5を実行し、そのMG2トルクTm やAT入力トルクTinの増大幅を目標補償値Tcom1に維持する。図6の時間t3は、トルク相補償制御の開始から所定時間tcが経過した時間で、AT入力トルクTinの増大幅が目標補償値Tcom1になった時間であり、この後はAT入力トルクTinの増大幅が一定の目標補償値Tcom1に維持される。このトルク相補償制御は、AT入力トルクTinの増大幅を一定の目標補償値Tcom1に維持するだけで、要求駆動トルクTrdem等の変化に伴うAT入力トルクTinの変化まで制限するものではないが、その要求駆動トルクTrdem等の変化に拘らずAT入力トルクTinそのものを、例えば時間t3における一定のトルク値に維持するようにしても良い。このようにAT入力トルクTinの増大幅が一定の目標補償値Tcom1に維持されるため、アップ変速の進行状況が安定するとともに学習制御部96による学習制御で用いられる所要時間tineのばらつきが抑制され、トルク相補償制御の実施に拘らず定圧待機圧αの学習制御を適切に行なうことができる。
S6では、イナーシャ相が開始したか否かを、例えばAT入力回転速度Ni が変速前のATギヤ段の変速比および車速Vに応じて定まる変速前同期回転速度よりも低下したか否かによって判断する。そして、イナーシャ相が開始するまではS5を繰り返してトルク増大幅を一定の目標補償値Tcom1に維持し、イナーシャ相が開始したらS7を実行して一連のトルク相補償制御を終了する。図6の時間t4は、イナーシャ相が開始してS6の判断がYES(肯定)になった時間であり、トルク相補償制御の終了処理によりMG2トルクTm が速やかに漸減させられ、それに伴ってAT入力トルクTinも漸減させられる。また、係合側油圧指示値Papp も、トルク相補償制御が無い場合の値まで漸減させられる。このようなトルク相補償制御が実施されることにより、トルク相における出力トルクTout の低下が抑制され、車両前後加速度Gx の落ち込みが実線で示されるように小さくなる。尚、図6の時間t5は、AT入力回転速度Ni が変速後同期回転速度に達した時間で、実質的に有段変速部22のアップ変速が終了した時間であり、その後の時間t6では係合側油圧指示値Papp が最大油圧まで増大させられ、これにより一連の変速制御が終了する。
このように、本実施例の車両10の電子制御装置90においては、有段変速部22のアップ変速時にトルク相補償制御部100によるトルク相補償制御および学習制御部96による学習制御が共に行なわれる場合(S2の判断がYES)には、トルク相補償制御部100は、トルク相におけるAT入力トルクTinの増大幅が一定の目標補償値Tcom1に維持されるように第2回転機MG2のトルクTm を制御する(S5)。このため、トルク相における出力トルクTout の低下を抑制しつつ、そのトルク相補償制御に起因するAT入力トルクTinの変動が抑制されて変速が比較的安定して進行するようになり、学習パラメータであるイナーシャ相開始までの所要時間tineのばらつきが抑制される。これにより、トルク相補償制御部100によるトルク相補償制御の実施に拘らず、所要時間tineに基づく係合側油圧指示値Papp の定圧待機圧αの学習制御を適切に行なうことができるようになる。
次に、本発明の他の実施例を説明する。尚、以下の実施例において前記実施例と実質的に共通する部分には同一の符号を付して詳しい説明を省略する。
図7は、本発明が適用される車両110の概略構成を説明する図である。この車両110は、前記車両10と別の実施例であり、車両110の電気式無段変速部112は、車両10の無段変速部20と比べて、更に、ブレーキB0とクラッチC0とを備えている点が相違する。ブレーキB0はサンギヤS0とケース18との間に設けられ、クラッチC0はサンギヤS0とキャリアCA0との間に設けられている。
電気式無段変速部112は、クラッチC0及びブレーキB0が共に解放されると、無段変速部20と同様に電気式無段変速機とされる。一方で、電気式無段変速部112は、クラッチC0又はブレーキB0が係合させられると、差動作用が不能な非差動状態となる。クラッチC0が係合させられた非差動状態では、電気式無段変速部112は変速比γ0が「1」に固定された変速機として機能する有段変速状態となる。ブレーキB0が係合させられた非差動状態では、電気式無段変速部112は変速比γ0が「1」より小さい値に固定された増速変速機として機能する有段変速状態となる。
車両110の機械式有段変速部114は、第1遊星歯車装置118、第2遊星歯車装置120、及び第3遊星歯車装置122の3組の遊星歯車装置と、クラッチC1、クラッチC2、ブレーキB1、ブレーキB2、ブレーキB3の複数の油圧式摩擦係合装置と、を備えている、公知の遊星歯車式の自動変速機である。
電気式無段変速部112と機械式有段変速部114とを合わせた全体の変速機である複合変速機116は、車両10の複合変速機40と同様に、エンジン12と駆動輪14との間の動力伝達経路の一部を構成する自動変速機である。複合変速機116では、クラッチC0及びブレーキB0の何れも係合させないことで、複合変速機40と同様の作動をさせることができる。複合変速機116では、クラッチC0及びブレーキB0の何れかを係合させることで、複合変速機116全体の変速比γtが異なる複数のギヤ段が形成される有段変速機として作動させることができる。
このような車両110においても、機械式有段変速部114のアップ変速時に前記トルク相補償制御部100によるトルク相補償制御および前記学習制御部96による学習制御が共に行なわれる場合に、トルク相補償制御部100により図5のフローチャートに従ってトルク相補償制御が行なわれ、トルク相におけるAT入力トルクTinの増大幅が一定の目標補償値Tcom1に維持されるように第2回転機MG2のトルクTm が制御されることにより、前記実施例と同様の作用効果が得られる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前記実施例の電気式無段変速部20、112は、キャリアCA0を回転不能に固定することができるロック機構を備えていても良い。このロック機構は、例えば連結軸30をケース18に対して固定することができるワンウェイクラッチである。又は、このロック機構は、例えば連結軸30とケース18とを選択的に連結することができる、噛合式クラッチ、クラッチやブレーキなどの油圧式摩擦係合装置、乾式の係合装置、電磁式摩擦係合装置、磁粉式クラッチなどの係合装置である。又、差動機構34は、ダブルピニオン型の遊星歯車装置であっても良い。又、差動機構34は、複数の遊星歯車装置が相互に連結されることで4つ以上の回転要素を有する差動機構であっても良い。又、差動機構34は、エンジン12によって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車に第1回転機MG1及び中間伝達部材32が各々連結された差動歯車装置であっても良い。又、差動機構34は、2以上の遊星歯車装置がそれを構成する一部の回転要素で相互に連結された構成において、その遊星歯車装置の回転要素にそれぞれエンジン、回転機、駆動輪が動力伝達可能に連結される機構であっても良い。
また、前述の実施例では、4種類のATギヤ段に対して10種類の模擬ギヤ段を割り当てる実施態様を例示したが、この態様に限らない。好適には、模擬ギヤ段の段数はATギヤ段の段数以上であれば良く、ATギヤ段の段数と同じであっても良いが、ATギヤ段の段数よりも多いことが望ましく、例えば2倍以上が適当である。ATギヤ段の変速は、中間伝達部材32やその中間伝達部材32に連結される第2回転機MG2の回転速度が所定の回転速度範囲内に保持されるように行なうものであり、又、模擬ギヤ段の変速は、エンジン回転速度Ne が所定の回転速度範囲内に保持されるように行なうものであり、それら各々の段数は適宜定められる。
また、前述の実施例では、本発明が適用される車両として、複合変速機40を備える車両10や複合変速機116を備える車両110を例示したが、車両10や車両110に限らず、有段変速部22、114等の機械式有段変速部を単独で備える車両であっても、本発明を適用することができる。要は、回転機と、前記回転機と駆動輪との間の動力伝達経路に配設された機械式有段変速部と、を備えた車両であれば、本発明を適用することができる。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10、110:車両 14:駆動輪 22、114:機械式有段変速部 90:電子制御装置(制御装置) 96:学習制御部 100:トルク相補償制御部 MG2:第2回転機(回転機) C1、C2:クラッチ(油圧式摩擦係合装置) B1、B2、B3:ブレーキ(油圧式摩擦係合装置) Tin:AT入トルク(入力トルク) Tm :MG2トルク(回転機のトルク) Tcom1:目標補償値(増大幅) Papp :係合側油圧指示値 α:定圧待機圧(制御要素) tine:所要時間(学習パラメータ)

Claims (1)

  1. 回転機と、前記回転機と駆動輪との間の動力伝達経路に配設され、複数の油圧式摩擦係合装置の係合解放状態に応じてギヤ段が切り替えられる機械式有段変速部と、を有する車両に備えられ、
    前記機械式有段変速部の前記ギヤ段を切り替える変速時にトルク相で出力トルクが低下することを抑制するために、該トルク相で前記機械式有段変速部の入力トルクを増大させるように前記回転機のトルクを制御するトルク相補償制御を行なうトルク相補償制御部と、
    前記機械式有段変速部を変速するために前記油圧式摩擦係合装置の油圧を変化させて係合解放状態を切り替える変速制御が行なわれた場合に、該油圧式摩擦係合装置の油圧に関する所定の制御要素を予め定められた学習パラメータに基づいて学習制御し、該学習制御された前記制御要素を用いて以後の変速制御が行なわれるようにする学習制御部と、
    を有する車両の制御装置において、
    前記機械式有段変速部の前記変速時に前記トルク相補償制御部による前記トルク相補償制御および前記学習制御部による前記学習制御が共に行なわれる場合には、前記トルク相補償制御部は、前記トルク相における前記入力トルクの増大幅が一定に維持されるように前記回転機のトルクを制御する
    ことを特徴とする車両の制御装置。
JP2020171558A 2020-10-09 2020-10-09 車両の制御装置 Pending JP2022063157A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020171558A JP2022063157A (ja) 2020-10-09 2020-10-09 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020171558A JP2022063157A (ja) 2020-10-09 2020-10-09 車両の制御装置

Publications (1)

Publication Number Publication Date
JP2022063157A true JP2022063157A (ja) 2022-04-21

Family

ID=81255037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020171558A Pending JP2022063157A (ja) 2020-10-09 2020-10-09 車両の制御装置

Country Status (1)

Country Link
JP (1) JP2022063157A (ja)

Similar Documents

Publication Publication Date Title
US10962107B2 (en) Control device for vehicle
EP3812203A1 (en) Control apparatus for vehicle
CN111137304B (zh) 车辆的控制装置
CN114103846A (zh) 车载系统
JP7294217B2 (ja) 車両用プログラム更新システム
JP6717419B1 (ja) 車両用故障原因特定装置
CN114379536B (zh) 车辆的控制装置
JP2020140407A (ja) 車両の制御装置
JP7087995B2 (ja) 車両の制御装置
JP7243589B2 (ja) 車両の制御装置
JP2022063157A (ja) 車両の制御装置
JP7388331B2 (ja) 車両の制御装置
JP2020143973A (ja) 車両用の制御装置
JP2021047641A (ja) 車両用ソフトウェア更新システム
JP7172924B2 (ja) 車両用ソフトウェア更新システム
JP2022024287A (ja) 車両用制御装置
JP2022018031A (ja) 車両用制御装置
JP2022018032A (ja) 車両用制御装置
JP2020084853A (ja) 車両の制御装置
JP2020192925A (ja) 車両用故障解析装置