JP2022027308A - Heat transfer member and manufacturing method of heat transfer member - Google Patents

Heat transfer member and manufacturing method of heat transfer member Download PDF

Info

Publication number
JP2022027308A
JP2022027308A JP2020131228A JP2020131228A JP2022027308A JP 2022027308 A JP2022027308 A JP 2022027308A JP 2020131228 A JP2020131228 A JP 2020131228A JP 2020131228 A JP2020131228 A JP 2020131228A JP 2022027308 A JP2022027308 A JP 2022027308A
Authority
JP
Japan
Prior art keywords
plate portion
conductive member
heat conductive
rod
pillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020131228A
Other languages
Japanese (ja)
Inventor
征志 高尾
Masashi Takao
清志 多田
Kiyoshi Tada
福蔭 王
fu yin Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Chaun Choung Technology Corp
Original Assignee
Chaun Choung Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chaun Choung Technology Corp filed Critical Chaun Choung Technology Corp
Priority to JP2020131228A priority Critical patent/JP2022027308A/en
Priority to CN202110869241.XA priority patent/CN114061345A/en
Publication of JP2022027308A publication Critical patent/JP2022027308A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a heat transfer member which lets a gasified working medium flow smoothly, whereby it is possible to enhance the heat conduction efficiency of the working medium.SOLUTION: A heat transfer member 100 includes a housing 101 with a working medium sealed inside thereof. The housing includes a first plate portion 1, a second plate portion 2 stacked above the first plate portion, and a plurality of pillar portions 3 extending downward from the second metal portion. Each pillar portion has a base portion 31 connected to the second plate portion and narrowing downward, and a stick-shaped portion 32 extending downward from an end portion 30 at a lower part of the base portion. At least the stick-shaped portion has an oval cross-sectional shape in a cross section taken orthogonal to a vertical direction.SELECTED DRAWING: Figure 3

Description

本発明は、熱伝導部材および熱伝導部材の製造方法に関する。 The present invention relates to a heat conductive member and a method for manufacturing the heat conductive member.

従来、発熱体を冷却する方法としてべーパーチャンバを用いる方法が知られている。べーパーチャンバは、一方の板状体と、一方の板状体と対向する他方の板状体とにより空洞部が形成されたコンテナを有する。そして、コンテナの内部に作動流体と、ウィック構造体とが収容される。そして、べーパーチャンバでは、他方の板状体の内面に減圧されている空洞部の内部空間を維持する機能を有する支柱部を有する(例えば、特開2019-82264号公報参照)。 Conventionally, a method using a vapor chamber is known as a method for cooling a heating element. The vapor chamber has a container in which a cavity is formed by one plate-shaped body and the other plate-shaped body facing the one plate-shaped body. Then, the working fluid and the wick structure are housed inside the container. The vapor chamber has a support column portion on the inner surface of the other plate-like body having a function of maintaining the internal space of the hollow portion under reduced pressure (see, for example, Japanese Patent Application Laid-Open No. 2019-82264).

特開2019-82264号公報Japanese Unexamined Patent Publication No. 2019-82264

従来のベーパーチャンバーにおいて、支柱部は、空洞部の内部空間を維持する目的がある。そのため、空洞部の内部空間の一定の範囲を占める必要があり、加熱により気相に変化した作動流体が流れるための空間が狭くなり、流れが妨げられる虞がある。また、支柱部は、その形状から気相の作動流体の流れの抵抗になる虞もある。 In the conventional vapor chamber, the strut portion has the purpose of maintaining the internal space of the cavity portion. Therefore, it is necessary to occupy a certain range of the internal space of the cavity, and the space for the working fluid changed to the gas phase due to heating to flow is narrowed, which may hinder the flow. Further, the support column portion may become a resistance to the flow of the working fluid in the gas phase due to its shape.

そこで、本発明は、気化した作動媒体を円滑に流すことで作動媒体による熱伝導効率を高めることができる熱伝導部材を提供することを目的とする。 Therefore, an object of the present invention is to provide a heat conductive member capable of increasing the heat conduction efficiency by the working medium by smoothly flowing the vaporized working medium.

本発明の例示的な熱伝導部材は、内部に作動媒体が封入された筐体を有する。記筐体は、第1板部と、前記第1板部の上部に重ねられた第2板部と、前記第2板部から下方に延びる複数の柱部と、を有する。各前記柱部は、前記第2板部と接続するとともに下方に向かうにつれて細くなる台座部と、前記台座部の下方の端部から下方に延びる棒状部と、を有し、少なくとも前記棒状部は、上下方向と直交する切断面の断面形状が扁平した円形である。 The exemplary heat conductive member of the present invention has a housing in which a working medium is enclosed. The housing has a first plate portion, a second plate portion overlapped on the upper portion of the first plate portion, and a plurality of pillar portions extending downward from the second plate portion. Each pillar portion has a pedestal portion that is connected to the second plate portion and becomes thinner toward the bottom, and a rod-shaped portion that extends downward from the lower end portion of the pedestal portion, and at least the rod-shaped portion has a rod-shaped portion. , The cross-sectional shape of the cut surface orthogonal to the vertical direction is a flat circular shape.

本発明の例示的な熱伝導部材の製造方法は、第2板部の下面から上方に凹む凹部および凹部の内部に配置されて上下方向に延びる複数の突出部をエッチングにて形成するエッチング工程と、複数の前記突出部の上下方向の下方の端部に治具を当てて前記治具で前記突出部を圧縮して、柱部を形成するプレス工程と、を有する。 An exemplary method for manufacturing a heat conductive member of the present invention includes an etching step of forming a recess recessed upward from the lower surface of the second plate portion and a plurality of protrusions arranged inside the recess and extending in the vertical direction by etching. The present invention includes a pressing step of applying a jig to the lower end portions of the plurality of the protrusions in the vertical direction and compressing the protrusions with the jig to form a pillar portion.

本発明の例示的な熱伝導部材によれば、気化した作動媒体を円滑に流すことで作動媒体による熱伝導効率を高めることができる。 According to the exemplary heat conduction member of the present invention, the heat conduction efficiency of the working medium can be increased by smoothly flowing the vaporized working medium.

図1は、本発明にかかる熱伝導部材の斜視図である。FIG. 1 is a perspective view of a heat conductive member according to the present invention. 図3は、図1に示す熱伝導部材の底面図である。FIG. 3 is a bottom view of the heat conductive member shown in FIG. 図2は、図1に示す熱伝導部材の断面図である。FIG. 2 is a cross-sectional view of the heat conductive member shown in FIG. 図4は、柱部の底面図である。FIG. 4 is a bottom view of the pillar portion. 図5は、図4に示す柱部のV-V線に沿う切断面の断面図である。FIG. 5 is a cross-sectional view of a cut surface of the pillar portion shown in FIG. 4 along the VV line. 図6は、図4に示す柱部のVI-VI線に沿う切断面の断面図である。FIG. 6 is a cross-sectional view of a cut surface of the pillar portion shown in FIG. 4 along the VI-VI line. 図7は、第2板部を拡大した底面図である。FIG. 7 is an enlarged bottom view of the second plate portion. 図8は、エッチング処理により、凹部および突出部を形成した板部形成板材の断面図である。FIG. 8 is a cross-sectional view of a plate portion forming plate material in which recesses and protrusions are formed by etching treatment. 図9は、プレス加工により形成された第2板部の断面図である。FIG. 9 is a cross-sectional view of the second plate portion formed by press working. 図10は、第1板部に第2板部を重ねる接合処理を示す断面図である。FIG. 10 is a cross-sectional view showing a joining process in which the second plate portion is overlapped with the first plate portion. 図11は、第1変形例の柱部の底面図である。FIG. 11 is a bottom view of the pillar portion of the first modification. 図12は、第2変形例の第2板部の底面図である。FIG. 12 is a bottom view of the second plate portion of the second modification. 図13は、第3変形例の第2板部の底面図である。FIG. 13 is a bottom view of the second plate portion of the third modification.

以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。本明細書において、熱伝導部材100は、平面視長方形状であり、第1板部1と第2板部2とが重力方向に重なる。そこで、第1板部1および第2板部2が重なる方向、すなわち、上下方向をZ方向とする。また、熱伝導部材100をZ方向から見たときの熱伝導部材100の短手方向をX方向、長手方向をY方向とする。なお、図中の寸法、形状および構成要素間の大小関係は、一例であり、実際の寸法、形状および構成要素間の大小関係と必ずしも同一ではない。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. In the present specification, the heat conductive member 100 has a rectangular shape in a plan view, and the first plate portion 1 and the second plate portion 2 overlap each other in the direction of gravity. Therefore, the direction in which the first plate portion 1 and the second plate portion 2 overlap, that is, the vertical direction is defined as the Z direction. Further, when the heat conductive member 100 is viewed from the Z direction, the lateral direction of the heat conductive member 100 is the X direction, and the longitudinal direction is the Y direction. The size relationship between the dimensions, shape, and components in the figure is an example, and is not necessarily the same as the actual size, shape, and size relationship between the components.

<熱伝導部材100>
図1は、本発明にかかる熱伝導部材100の斜視図である。図2は、熱伝導部材100の底面図である。図3は、図2に示す熱伝導部材100のZY平面と平行な面で切断した断面図である。
<Heat conduction member 100>
FIG. 1 is a perspective view of the heat conductive member 100 according to the present invention. FIG. 2 is a bottom view of the heat conductive member 100. FIG. 3 is a cross-sectional view of the heat conductive member 100 shown in FIG. 2 cut along a plane parallel to the ZY plane.

図1~図3に示すように、熱伝導部材100は筐体101を有する。図2、図3に示すように、筐体101は内部に空間102を有する。空間102の内部には、柱部3およびウィック構造体4が配置される。そして、空間102は、密閉されており、空間102の内部には、作動媒体Mdが封入される。すなわち、熱伝導部材100は、内部に作動媒体Mdが封入された筐体101を有する。 As shown in FIGS. 1 to 3, the heat conductive member 100 has a housing 101. As shown in FIGS. 2 and 3, the housing 101 has a space 102 inside. A pillar portion 3 and a wick structure 4 are arranged inside the space 102. The space 102 is hermetically sealed, and the working medium Md is enclosed inside the space 102. That is, the heat conductive member 100 has a housing 101 in which the working medium Md is enclosed.

熱伝導部材100は、封入された作動媒体Mdの状態変化、つまり、加熱による蒸発および冷却による凝縮を利用して、熱を運搬する、いわゆる、ベーパーチャンバーである。 The heat conductive member 100 is a so-called vapor chamber that carries heat by utilizing the state change of the enclosed working medium Md, that is, evaporation by heating and condensation by cooling.

熱伝導部材100は、発熱体Htと接触し、熱伝導部材100には発熱体Htからの熱が伝達される。図3に示すように、熱伝導部材100において、筐体101のY方向の一方側が被加熱領域103であり、他方側が放熱領域104である。発熱体Htは、被加熱領域103の下面と接触する。発熱体Htの熱は、熱伝導部材100の被加熱領域103に伝達される。 The heat conductive member 100 comes into contact with the heating element Ht, and heat from the heating element Ht is transferred to the heat conductive member 100. As shown in FIG. 3, in the heat conductive member 100, one side of the housing 101 in the Y direction is the heated region 103, and the other side is the heat dissipation region 104. The heating element Ht comes into contact with the lower surface of the heated region 103. The heat of the heating element Ht is transferred to the heated region 103 of the heat conductive member 100.

空間102の内部に封入された液体の作動媒体Mdは発熱体Htからの熱で昇温され、蒸発して、作動媒体の蒸気Vp(以下、単に蒸気Vpと称する)に状態変化する。蒸気Vpは、放熱領域104に流れる。放熱領域104において蒸気Vpの熱は筐体101に伝達される。これにより、蒸気Vpは凝縮されて液体の作動媒体Mdに戻る。液体の作動媒体Mdは、ウィック構造体4を伝って、被加熱領域103に流れる。液体の作動媒体Mdは、被加熱領域103で再度、加熱されて蒸発して、蒸気Vpに状態変化する。以上の動作を繰り返して、熱伝導部材100は、発熱体Htからの熱を運搬して、発熱体Htの温度を下げる。つまり、熱伝導部材100は、発熱体Htの放熱部材として用いられる。 The working medium Md of the liquid enclosed in the space 102 is heated by the heat from the heating element Ht, evaporated, and changed to the steam Vp (hereinafter, simply referred to as steam Vp) of the working medium. The steam Vp flows in the heat dissipation region 104. The heat of the steam Vp is transferred to the housing 101 in the heat dissipation region 104. As a result, the vapor Vp is condensed and returned to the liquid working medium Md. The liquid working medium Md flows through the wick structure 4 to the heated region 103. The liquid working medium Md is heated again in the heated region 103 and evaporated to change its state to vapor Vp. By repeating the above operation, the heat conductive member 100 carries the heat from the heating element Ht and lowers the temperature of the heating element Ht. That is, the heat conductive member 100 is used as a heat radiating member of the heating element Ht.

なお、本実施形態の熱伝導部材100において、作動媒体Mdとして、水を用いるが、これに限定されない。例えば、アルコール化合物、代替フロン、炭化水素化合物、フッ素化炭化水素化合物およびグリコール化合物等を挙げることができる。作動媒体Mdとしては、被加熱領域103で発熱体Htからの熱で蒸発(気化)し、放熱領域104で筐体101に熱を伝達することで凝縮(液化)される物質を広く採用することができる。 In the heat conductive member 100 of the present embodiment, water is used as the working medium Md, but the present invention is not limited to this. For example, alcohol compounds, CFC substitutes, hydrocarbon compounds, fluorinated hydrocarbon compounds, glycol compounds and the like can be mentioned. As the working medium Md, a substance that evaporates (vaporizes) with heat from the heating element Ht in the heated region 103 and is condensed (liquefied) by transferring heat to the housing 101 in the heat radiating region 104 is widely adopted. Can be done.

熱伝導部材100について、さらに詳しく説明する。図1~図3に示すように、熱伝導部材100の筐体101は、第1板部1と、第2板部2と、柱部3と、を有する。熱伝導部材100では、第1板部1と第2板部2とは、Z方向に重ねられ、X方向およびY方向の外縁部が接合される。第1板部1と第2板部2とを接合することで、筐体101が形成される。すなわち、筐体101は、第1板部1と、第1板部1の上部に重ねられた第2板部2とを有する。 The heat conductive member 100 will be described in more detail. As shown in FIGS. 1 to 3, the housing 101 of the heat conductive member 100 has a first plate portion 1, a second plate portion 2, and a pillar portion 3. In the heat conductive member 100, the first plate portion 1 and the second plate portion 2 are overlapped in the Z direction, and the outer edge portions in the X direction and the Y direction are joined. The housing 101 is formed by joining the first plate portion 1 and the second plate portion 2. That is, the housing 101 has a first plate portion 1 and a second plate portion 2 stacked on the upper portion of the first plate portion 1.

<第1板部1>
本実施形態において、第1板部1は、例えば、銅合金を含む材料で形成される。第1板部1を構成する材料としては、銅合金に限定されず、一定以上の強度(弾性係数)および一定以上の熱伝導率を有する金属等の材料を採用することができる。
<First plate part 1>
In the present embodiment, the first plate portion 1 is formed of, for example, a material containing a copper alloy. The material constituting the first plate portion 1 is not limited to the copper alloy, and a material such as a metal having a certain strength (elastic modulus) or more and a certain thermal conductivity or more can be adopted.

例えば、ステンレス鋼、チタンおよびチタン合金等の金属の材料の表面に、銅メッキ等の金属膜を形成する処理を施した材料で形成してもよい。ロウ材による接合が困難な材料であっても、銅メッキを形成することで、銅または銅合金を接合するためのロウ材で接合できる。そのため、ロウ材の選定が容易である。 For example, the surface of a metal material such as stainless steel, titanium, or a titanium alloy may be formed of a material that has been subjected to a treatment for forming a metal film such as copper plating. Even materials that are difficult to join with a brazing material can be joined with a brazing material for joining copper or a copper alloy by forming copper plating. Therefore, it is easy to select the brazing material.

上述のとおり、第1板部1は板材であり、Z方向から見たとき、Y方向が長手方向の長方形状である。Z方向から見て外縁部が後述する接合部22と接合される被接合部11である。 As described above, the first plate portion 1 is a plate material, and when viewed from the Z direction, the first plate portion 1 has a rectangular shape in the longitudinal direction in the Y direction. When viewed from the Z direction, the outer edge portion is the jointed portion 11 to be joined to the jointed portion 22 described later.

本実施形態において、上面が面一の第1板部1を用いることで、凹部を形成する工程を省略することができるが、これに限定されない。例えば、第1板部1が空間102を構成する凹部を備えていてもよい。このようにすることで、空間102を大きくできる。 In the present embodiment, by using the first plate portion 1 whose upper surface is flush with each other, the step of forming the recess can be omitted, but the present invention is not limited to this. For example, the first plate portion 1 may have a recess that constitutes the space 102. By doing so, the space 102 can be increased.

<第2板部2>
本実施形態において、第2板部2は、例えば、銅合金を含む材料で形成される。第2板部2を構成する材料としては、銅合金に限定されず、一定以上の強度(弾性係数)および一定以上の熱伝導率を有する金属等の材料を採用することができる。
<Second plate part 2>
In the present embodiment, the second plate portion 2 is formed of, for example, a material containing a copper alloy. The material constituting the second plate portion 2 is not limited to the copper alloy, and a material such as a metal having a certain strength (elastic modulus) or more and a certain thermal conductivity or more can be adopted.

例えば、ステンレス鋼、チタンおよびチタン合金等の金属の材料の表面に、銅メッキ等の金属膜を形成する処理を施した材料で形成してもよい。ロウ材による接合が困難な材料であっても、銅メッキを形成することで、銅または銅合金を接合するためのロウ材で接合できる。そのため、ロウ材の選定が容易である。 For example, the surface of a metal material such as stainless steel, titanium, or a titanium alloy may be formed of a material that has been subjected to a treatment for forming a metal film such as copper plating. Even materials that are difficult to join with a brazing material can be joined with a brazing material for joining copper or a copper alloy by forming copper plating. Therefore, it is easy to select the brazing material.

図2に示すように、第2板部2は、平板部21と、接合部22と、とを有する。平板部21は、Z方向から見て、長方形状である。接合部22は、平板部21の下面の外縁からZ方向下方に向かって延びる。Z方向から見たとき、接合部22は、閉じられた環状に形成されている。そして、第2板部2は、平板部21および接合部22で形成される凹部20を有する。凹部20は、第2板部2の下面からZ方向上方に凹む。すなわち、第2板部2は、第1板部1と対向する面から凹んだ凹部20を有する。第1板部1と第2板部2とを接合したとき、凹部20は空間102を形成する。 As shown in FIG. 2, the second plate portion 2 has a flat plate portion 21 and a joint portion 22. The flat plate portion 21 has a rectangular shape when viewed from the Z direction. The joint portion 22 extends downward in the Z direction from the outer edge of the lower surface of the flat plate portion 21. When viewed from the Z direction, the joint portion 22 is formed in a closed annular shape. The second plate portion 2 has a recess 20 formed by the flat plate portion 21 and the joint portion 22. The recess 20 is recessed upward in the Z direction from the lower surface of the second plate portion 2. That is, the second plate portion 2 has a recess 20 recessed from the surface facing the first plate portion 1. When the first plate portion 1 and the second plate portion 2 are joined, the recess 20 forms a space 102.

図1、図2に示すとおり、Z方向から見て、第1板部1および第2板部2は、同じ大きさの長方形状である。このとき、第1板部1の外縁と第2板部2の外縁とがZ方向に重なる。なお、第1板部1が第2板部2よりも大きくてもよい。この場合、Z方向から見たとき、第2板部2の外縁は第1板部1の外縁の内部に配置される。なお、第1板部1および第2板部2は、Z方向から見て、長方形状に限定されない。平面視正方形状であってもよいし、三角形、六角形等の多角形状であってもよいし、円形状であってもよい。また、これらの形状を組み合わせた形状であってもよい。 As shown in FIGS. 1 and 2, when viewed from the Z direction, the first plate portion 1 and the second plate portion 2 have a rectangular shape having the same size. At this time, the outer edge of the first plate portion 1 and the outer edge of the second plate portion 2 overlap in the Z direction. The first plate portion 1 may be larger than the second plate portion 2. In this case, when viewed from the Z direction, the outer edge of the second plate portion 2 is arranged inside the outer edge of the first plate portion 1. The first plate portion 1 and the second plate portion 2 are not limited to a rectangular shape when viewed from the Z direction. It may have a square shape in a plan view, a polygonal shape such as a triangle or a hexagon, or a circular shape. Further, the shape may be a combination of these shapes.

<柱部3>
柱部3の詳細について図面を参照して説明する。図4は、柱部の底面図である。図5は、図4に示す柱部のV-V線に沿う切断面の断面図である。図6は、図4に示す柱部のVI-VI線に沿う切断面の断面図である。図5、図6において、柱部3の台座部31と、棒状部32との境界を示しているが、実際の柱部3では、明確に境界を判別することができない場合がある。
<Pillar 3>
The details of the pillar portion 3 will be described with reference to the drawings. FIG. 4 is a bottom view of the pillar portion. FIG. 5 is a cross-sectional view of a cut surface of the pillar portion shown in FIG. 4 along the VV line. FIG. 6 is a cross-sectional view of a cut surface of the pillar portion shown in FIG. 4 along the VI-VI line. In FIGS. 5 and 6, the boundary between the pedestal portion 31 of the pillar portion 3 and the rod-shaped portion 32 is shown, but in the actual pillar portion 3, the boundary may not be clearly discriminated.

図3に示すように、柱部3は、台座部31と、棒状部32とを有する。柱部3は、第2板部2の平板部21の凹部20を形成する部分から下方に延びる。すなわち、複数の柱部3は第2板部から下方に延びる。台座部31は、第2板部2の下面よりZ方向下方に延びる。台座部31のZ方向と直交する切断面の断面形状は円形状である。台座部31は、Z方向下方に向かって細くなる。すなわち、台座部31は、第2板部2と接続するとともに下方に向かうにつれて細くなる。 As shown in FIG. 3, the pillar portion 3 has a pedestal portion 31 and a rod-shaped portion 32. The pillar portion 3 extends downward from the portion of the second plate portion 2 that forms the recess 20 of the flat plate portion 21. That is, the plurality of pillar portions 3 extend downward from the second plate portion. The pedestal portion 31 extends downward in the Z direction from the lower surface of the second plate portion 2. The cross-sectional shape of the cut surface of the pedestal portion 31 orthogonal to the Z direction is circular. The pedestal portion 31 becomes thinner toward the lower side in the Z direction. That is, the pedestal portion 31 is connected to the second plate portion 2 and becomes thinner toward the bottom.

図5、図6に示すように、台座部31のZ方向に沿う断面の断面形状は台形状であり、斜辺に当たる部分が曲線状である。しかしながら、これに限定されず、直線状であってもよいし、複数の直線をつなげた形状であってもよい。 As shown in FIGS. 5 and 6, the cross-sectional shape of the cross section of the pedestal portion 31 along the Z direction is trapezoidal, and the portion corresponding to the hypotenuse is curved. However, the present invention is not limited to this, and it may be a straight line or a shape in which a plurality of straight lines are connected.

棒状部32は、台座部31の下端部から下方に延びる。すなわち、棒状部32は、台座部31の下方の端部から下方に延びる。棒状部32は、Z方向に均一または略均一の断面形状を有する柱状体である。図4~図6等に示すように、柱部の棒状部32のZ方向と直交する切断面の断面形状は、Y方向に延びる長軸a1と、X方向に延びて長軸a1よりも短い短軸a2とを有する扁平した円形である。すなわち、少なくとも棒状部32は、上下方向と直交する切断面の断面形状が扁平した円形である。ここで、扁平した円形とは、交差する方向の外径が異なり、外周の少なくとも一部が曲線で形成された形状を広く示す。 The rod-shaped portion 32 extends downward from the lower end portion of the pedestal portion 31. That is, the rod-shaped portion 32 extends downward from the lower end portion of the pedestal portion 31. The rod-shaped portion 32 is a columnar body having a uniform or substantially uniform cross-sectional shape in the Z direction. As shown in FIGS. 4 to 6, the cross-sectional shape of the cut surface of the rod-shaped portion 32 of the pillar portion orthogonal to the Z direction is shorter than the long axis a1 extending in the Y direction and the long axis a1 extending in the X direction. It is a flat circular shape having a short axis a2. That is, at least the rod-shaped portion 32 is a circular shape having a flat cross-sectional shape of a cut surface orthogonal to the vertical direction. Here, the outer diameter in the intersecting direction is different from the flat circular shape, and a shape in which at least a part of the outer circumference is formed by a curved line is broadly shown.

例えば、数学的に定義された楕円、並んだ2個の円を共通の接線でつないだ形状の外周形状も扁平した円形である。そして、扁平した円形の外形上の距離が最も長い2点間を結んだ線分を長軸とし、長軸に直交する方向で最も長い線分を短軸とする。扁平した円形は、長軸および短軸を有する形状であればよく、点対称、線対称といった対称性を有しなくてもよい。 For example, a mathematically defined ellipse and an outer peripheral shape in which two side-by-side circles are connected by a common tangent are also flat circles. Then, the long axis is the line segment connecting two points having the longest external distance on the flat circular shape, and the longest line segment in the direction orthogonal to the long axis is the short axis. The flat circle may have a shape having a major axis and a minor axis, and may not have symmetry such as point symmetry or line symmetry.

図3~6等に示すように、柱部3において台座部31と棒状部32とは単一の部材で形成される。また、図3に示すように、柱部3は、第2板部2の凹部20の内部に配置され、平板部21と単一の部材で形成される。柱部3は、平板部21の下面からZ方向下方に延びる。図3に示すように、複数の柱部3のZ方向の長さL1は、凹部20のZ方向の深さD1よりも短い。 As shown in FIGS. 3 to 6 and the like, in the pillar portion 3, the pedestal portion 31 and the rod-shaped portion 32 are formed of a single member. Further, as shown in FIG. 3, the pillar portion 3 is arranged inside the recess 20 of the second plate portion 2, and is formed of the flat plate portion 21 and a single member. The pillar portion 3 extends downward in the Z direction from the lower surface of the flat plate portion 21. As shown in FIG. 3, the length L1 of the plurality of pillars 3 in the Z direction is shorter than the depth D1 of the recess 20 in the Z direction.

すなわち、柱部3の上下方向の長さL1は凹部20の上下方向の深さD1よりも短く、複数の柱部3が凹部20の内部に配置される。このように構成することで、第1板部1と柱部3との間に隙間が形成される。この隙間にウィック構造体4を配置できる。これにより、第1板部1に凹部を形成しなくてもよく、筐体101の製造工程を簡略化できる。 That is, the vertical length L1 of the pillar portion 3 is shorter than the vertical depth D1 of the recess 20, and a plurality of pillar portions 3 are arranged inside the recess 20. With this configuration, a gap is formed between the first plate portion 1 and the pillar portion 3. The wick structure 4 can be arranged in this gap. As a result, it is not necessary to form a recess in the first plate portion 1, and the manufacturing process of the housing 101 can be simplified.

次に柱部3の第2板部2の凹部20内における配列について図面を参照して説明する。図7は、第2板部2を拡大した底面図である。図2、図7等に示すように、第2板部2の凹部20内において、複数の柱部3は、X方向およびY方向にそれぞれ等間隔に配列される。つまり、複数の柱部3はX方向に等間隔で配列される。また、複数の柱部3は、Y方向にも等間隔で配列される。 Next, the arrangement of the second plate portion 2 of the pillar portion 3 in the recess 20 will be described with reference to the drawings. FIG. 7 is an enlarged bottom view of the second plate portion 2. As shown in FIGS. 2 and 7, in the recess 20 of the second plate portion 2, the plurality of pillar portions 3 are arranged at equal intervals in the X direction and the Y direction, respectively. That is, the plurality of pillar portions 3 are arranged at equal intervals in the X direction. Further, the plurality of pillar portions 3 are arranged at equal intervals in the Y direction as well.

第2板部2では、複数の柱部3のX方向の配列間隔とY方向の配列間隔とは同じ長さである。そのため、複数の柱部3のX方向の配列間隔およびY方向の配列間隔を共に配列ピッチP1とする。なお、X方向の間隔およびY方向の間隔が同じとしているが、これに限定されない。異なる間隔であってもよい。また、X方向およびY方向に対して傾いて配列されてもよい。 In the second plate portion 2, the arrangement spacing in the X direction and the arrangement spacing in the Y direction of the plurality of pillar portions 3 are the same length. Therefore, the arrangement spacing in the X direction and the arrangement spacing in the Y direction of the plurality of pillars 3 are both set as the arrangement pitch P1. The spacing in the X direction and the spacing in the Y direction are the same, but the limitation is not limited to this. It may be at different intervals. Further, they may be arranged at an angle with respect to the X direction and the Y direction.

図2、図7に示すように、Z方向から見たとき、各柱部3の棒状部32のZ方向と直交する断面の切断面の長軸a1は、Y方向に沿う。すなわち、複数の柱部3の棒状部32の上下方向と直交する断面の長軸a1は、互いに平行である。つまり、Z方向からみて、複数の柱部3は、棒状部32が同じ方向を向いた状態で、2次元配列される。 As shown in FIGS. 2 and 7, when viewed from the Z direction, the long axis a1 of the cut surface of the cross section orthogonal to the Z direction of the rod-shaped portion 32 of each pillar portion 3 is along the Y direction. That is, the long axes a1 of the cross sections orthogonal to the vertical direction of the rod-shaped portions 32 of the plurality of pillar portions 3 are parallel to each other. That is, when viewed from the Z direction, the plurality of pillar portions 3 are two-dimensionally arranged with the rod-shaped portions 32 facing in the same direction.

図7に示すように、X方向に配列された柱部3の棒状部32の外周面は隙間W1を介してX方向に対向する。隙間W1は、棒状部32の短軸a2に沿う方向であり、短軸a2よりも長い。すなわち、棒状部32の上下方向と直交する断面の短軸a2に沿う方向に隣り合う柱部3の棒状部32の外周面間の隙間W1が、短軸a2の長さよりも長い。 As shown in FIG. 7, the outer peripheral surfaces of the rod-shaped portions 32 of the pillar portions 3 arranged in the X direction face each other in the X direction via the gap W1. The gap W1 is in the direction along the short axis a2 of the rod-shaped portion 32, and is longer than the short axis a2. That is, the gap W1 between the outer peripheral surfaces of the rod-shaped portions 32 of the pillar portions 3 adjacent to each other in the direction along the short axis a2 of the cross section orthogonal to the vertical direction of the rod-shaped portion 32 is longer than the length of the short axis a2.

<ウィック構造体4>
筐体101は、第1板部1と第2板部2との間に配置されるウィック構造体4をさらに有する。ウィック構造体4は、柱部3の棒状部32の下方の端部30と接触する。ウィック構造体4は、例えば、ワイヤー、メッシュ、不織布、焼結体等の多孔質体を挙げることができる。ウィック構造体4の材質としては、第1板部1および第2板部2の材料と同じ銅合金とすることができるが、これに限定されない。例えば、銅、アルミニウム、ニッケル、鉄、チタンおよびこれらの合金、炭素繊維およびセラミックを挙げることができる。
<Wick structure 4>
The housing 101 further has a wick structure 4 arranged between the first plate portion 1 and the second plate portion 2. The wick structure 4 comes into contact with the lower end 30 of the rod-shaped portion 32 of the pillar portion 3. The wick structure 4 may be, for example, a porous body such as a wire, a mesh, a non-woven fabric, or a sintered body. The material of the wick structure 4 may be the same copper alloy as the materials of the first plate portion 1 and the second plate portion 2, but is not limited thereto. For example, copper, aluminum, nickel, iron, titanium and alloys thereof, carbon fiber and ceramics can be mentioned.

さらに説明すると、ウィック構造体4は、第1板部1の上面に配置される。なお、ウィック構造体4と第1板部1とは、単一部材で形成されてもよい。なお、上面に凹部を有する第1板部1を用いる場合、ウィック構造体4を、凹部に配置することができる。これにより、熱伝導部材100を製造するときのウィック構造体4の位置決めが容易である。 Further, the wick structure 4 is arranged on the upper surface of the first plate portion 1. The wick structure 4 and the first plate portion 1 may be formed of a single member. When the first plate portion 1 having a recess on the upper surface is used, the wick structure 4 can be arranged in the recess. This facilitates the positioning of the wick structure 4 when manufacturing the heat conductive member 100.

<熱伝導部材100の構成>
図3に示すとおり、筐体101では、第2板部2の接合部22が第1板部1の被接合部11に接合されて、第1板部1に第2板部2がZ方向に重ねられる。
<Structure of heat conductive member 100>
As shown in FIG. 3, in the housing 101, the joint portion 22 of the second plate portion 2 is joined to the bonded portion 11 of the first plate portion 1, and the second plate portion 2 is joined to the first plate portion 1 in the Z direction. It is layered on.

被接合部11と接合部22との接合は、例えば、加熱、加圧により行われる。具体的には、被接合部11および接合部22を所定の温度に昇温する。そして、被接合部11の上面と接合部22の下面とを接触させ、接触面の圧力を所定の圧力以上とする接合処理を行う。接合処理を行うことで、被接合部11と接合部22との接触面において、一部の粒子が被接合部11と接合部22の両方に跨って配置される。これにより、被接合部11と接合部22とが接合される。なお、接合の工程の詳細は後述する。 The bonding between the bonded portion 11 and the bonded portion 22 is performed, for example, by heating or pressurizing. Specifically, the temperature of the bonded portion 11 and the bonded portion 22 is raised to a predetermined temperature. Then, the upper surface of the bonded portion 11 and the lower surface of the bonded portion 22 are brought into contact with each other, and a bonding process is performed in which the pressure on the contact surface is set to a predetermined pressure or higher. By performing the bonding process, some particles are arranged across both the bonded portion 11 and the bonded portion 22 on the contact surface between the bonded portion 11 and the bonded portion 22. As a result, the bonded portion 11 and the bonded portion 22 are joined. The details of the joining process will be described later.

筐体101において、被接合部11と接合部22との接合は、接合部分で液体の作動媒体Mdおよび蒸気Vpの透過を抑制できる密閉性を有する。 In the housing 101, the joint between the joint portion 11 and the joint portion 22 has an airtightness capable of suppressing the permeation of the liquid working medium Md and the vapor Vp at the joint portion.

なお、被接合部11と接合部22との接合方法は、これに限定されない。例えば、被接合部11と接合部22との間に、ロウ材を配置し、加熱および加圧してロウ材で接合する、いわゆる、ロウ付けにて接合してもよい。ロウ付けを行う場合、被接合部11の上面および接合部22の下面の少なくとも一方に凹溝を形成して、ロウ材を配置してもよい。 The method of joining the joined portion 11 and the joined portion 22 is not limited to this. For example, a brazing material may be arranged between the bonded portion 11 and the bonding portion 22 and bonded by heating and pressurizing with the brazing material, so-called brazing. When brazing, a groove may be formed on at least one of the upper surface of the bonded portion 11 and the lower surface of the bonded portion 22, and the brazing material may be arranged.

本実施形態の熱伝導部材100の筐体101において、第1板部1の上面10は、平面状である。そのため、第1板部1の上部に第2板部2を重ねて接合したとき、第2板部2の凹部20が、第1板部1の上面に塞がれ、空間102が形成される。筐体101において、空間102のZ方向の高さは、凹部20の深さD1と略同じである。そのため、空間102の高さもD1で示す(図3参照)。 In the housing 101 of the heat conductive member 100 of the present embodiment, the upper surface 10 of the first plate portion 1 is planar. Therefore, when the second plate portion 2 is overlapped and joined on the upper portion of the first plate portion 1, the recess 20 of the second plate portion 2 is closed to the upper surface of the first plate portion 1 to form a space 102. .. In the housing 101, the height of the space 102 in the Z direction is substantially the same as the depth D1 of the recess 20. Therefore, the height of the space 102 is also indicated by D1 (see FIG. 3).

第1板部1と第2板部2とを接合するときに、ウィック構造体4は、第1板部1の上面10の被接合部11に囲まれた部分に配置される。これにより、ウィック構造体4は、空間102の内部に配置される。図3に示すとおり、柱部3のZ方向の長さL1は、空間102のZ方向の高さD1よりも短い。そのため、柱部3の下方の端部30と第1板部1の上面10との間には、隙間が形成される。熱伝導部材100において柱部3と第1板部1との隙間には、ウィック構造体4が配置される。さらに説明すると、熱伝導部材100において、柱部3の下方の端部30は、ウィック構造体4と接触する。熱伝導部材100は、以上示した構成を有する。 When joining the first plate portion 1 and the second plate portion 2, the wick structure 4 is arranged in a portion of the upper surface portion 10 of the first plate portion 1 surrounded by the joined portion 11. As a result, the wick structure 4 is arranged inside the space 102. As shown in FIG. 3, the length L1 of the pillar portion 3 in the Z direction is shorter than the height D1 of the space 102 in the Z direction. Therefore, a gap is formed between the lower end portion 30 of the pillar portion 3 and the upper surface 10 of the first plate portion 1. In the heat conductive member 100, the wick structure 4 is arranged in the gap between the pillar portion 3 and the first plate portion 1. More specifically, in the heat conductive member 100, the lower end portion 30 of the pillar portion 3 comes into contact with the wick structure 4. The heat conductive member 100 has the configuration shown above.

<熱伝導部材100の動作>
熱伝導部材100の動作の詳細について説明する。図3に示すとおり、筐体101の被加熱領域103に発熱体Htからの熱が伝達されると、液体の作動媒体Mdは加熱されて蒸発(気化)する。作動媒体Mdの蒸発によって発生した蒸気Vpは、空間102内を放熱領域104に向かって移動する。すなわち、熱が運搬される。そして、放熱領域104において、蒸気Vpの潜熱は筐体101に伝達される。これにより、蒸気Vpは、冷却されて凝縮(液化)し、液体の作動媒体Mdに戻る。なお、蒸気Vpから筐体101に伝達された熱は、筐体101よりも低温の外部に放熱される。
<Operation of heat conductive member 100>
The details of the operation of the heat conductive member 100 will be described. As shown in FIG. 3, when the heat from the heating element Ht is transferred to the heated region 103 of the housing 101, the liquid working medium Md is heated and evaporated (vaporized). The steam Vp generated by the evaporation of the working medium Md moves in the space 102 toward the heat dissipation region 104. That is, heat is carried. Then, in the heat dissipation region 104, the latent heat of the steam Vp is transmitted to the housing 101. As a result, the vapor Vp is cooled, condensed (liquefied), and returned to the liquid working medium Md. The heat transferred from the steam Vp to the housing 101 is dissipated to the outside at a lower temperature than the housing 101.

作動媒体Mdは、ウィック構造体4に吸着する。ウィック構造体4に吸着した作動媒体Mdは、毛細管現象によって空間102内の被加熱領域103に還流される。そして、作動媒体Mdは、被加熱領域103で再度蒸発する。以上の動作を繰り返すことで、熱伝導部材100は、被加熱領域103から放熱領域104に熱を運搬する。なお、熱伝導部材100において、筐体101の放熱領域104を被加熱領域103よりも大きくすることで、より多くの熱を運搬できる。これにより、発熱体Htからの熱を効率よく取り除くことができる。 The working medium Md is adsorbed on the wick structure 4. The working medium Md adsorbed on the wick structure 4 is refluxed to the heated region 103 in the space 102 by the capillary phenomenon. Then, the working medium Md evaporates again in the heated region 103. By repeating the above operation, the heat conductive member 100 transfers heat from the heated region 103 to the heat radiating region 104. In the heat conductive member 100, by making the heat dissipation region 104 of the housing 101 larger than the heated region 103, more heat can be carried. Thereby, the heat from the heating element Ht can be efficiently removed.

熱伝導部材100において、ウィック構造体を有することで、放熱領域104で凝縮した作動媒体Mdが毛管現象を利用して、素早く被加熱領域103に流すことができる。これにより、熱伝導部材100の熱伝導効率を高めることができる。なお、第1板部1の上面10に、放熱領域104から被加熱領域103に向かう勾配を形成する等により、液体の作動媒体を流すことができる構成であれば、ウィック構造体4を省略してもよい。この場合、柱部3は、第1板部1の上面10と接触する。 By having the wick structure in the heat conductive member 100, the working medium Md condensed in the heat radiation region 104 can be quickly flowed to the heated region 103 by utilizing the capillary phenomenon. This makes it possible to increase the heat conduction efficiency of the heat conduction member 100. The wick structure 4 is omitted if the structure allows the liquid working medium to flow by forming a gradient from the heat dissipation region 104 toward the heated region 103 on the upper surface 10 of the first plate portion 1. You may. In this case, the pillar portion 3 comes into contact with the upper surface 10 of the first plate portion 1.

上述したとおり、熱伝導部材100は発熱体Htで発生した熱を運搬して、発熱体Htの熱を放熱する。発熱体Htとしては、例えば、CPU、MPU、メモリ等の集積回路、ハードディスク、光ディスク等の回転体を有する機器、バッテリー、液晶パネル等、スマートフォン、タブレットPC、パソコン等の電子機器に用いられる機器を挙げることができるが、これに限定されない。熱伝導部材100は、動作に伴って発熱する機器の放熱に広く採用可能である。
As described above, the heat conductive member 100 carries the heat generated by the heating element Ht and dissipates the heat of the heating element Ht. Examples of the heating element Ht include integrated circuits such as CPUs, MPUs, and memories, devices having rotating bodies such as hard disks and optical disks, batteries, liquid crystal panels, and other devices used in electronic devices such as smartphones, tablet PCs, and personal computers. It can be mentioned, but it is not limited to this. The heat conductive member 100 can be widely used for heat dissipation of equipment that generates heat during operation.
Ru

空間102内部において、発熱体Htの熱で作動媒体Mdを蒸発させる。作動媒体Mdを蒸発しやすくするため、空間102の内部の圧力は、外部の圧力に比べて低い場合が多い。そのため、筐体101には、内外の圧力差による力が付与される。例えば、平板部21は、筐体101の内外の圧力差によって凹みやすい。 Inside the space 102, the working medium Md is evaporated by the heat of the heating element Ht. In order to facilitate evaporation of the working medium Md, the pressure inside the space 102 is often lower than the pressure outside. Therefore, a force due to the pressure difference between the inside and the outside is applied to the housing 101. For example, the flat plate portion 21 is likely to be dented due to the pressure difference between the inside and outside of the housing 101.

複数の柱部3が平板部21を支持することで、筐体101の空間102の内外の圧力差による変形を抑制する。また、柱部3の第2板部2との接続部分として、棒状部32との境界部分から第2板部2に向かって広がる形状とすることで、柱部3の接続部分での強度を高めることができる。例えば、柱部3に倒れる方向の外力が作用した場合であっても、柱部3が倒れる方向に変形することを抑制できる。このため、柱部3の変形が抑制され、空間102の変形を抑制できる。そして、空間102の変形を抑制することで、空間102内での蒸気Vpの移動が阻害されにくい。 By supporting the flat plate portion 21 by the plurality of pillar portions 3, deformation due to the pressure difference between the inside and outside of the space 102 of the housing 101 is suppressed. Further, the strength of the connecting portion of the pillar portion 3 is increased by forming the connecting portion of the pillar portion 3 with the second plate portion 2 so as to expand from the boundary portion with the rod-shaped portion 32 toward the second plate portion 2. Can be enhanced. For example, even when an external force in the direction of falling is applied to the pillar portion 3, it is possible to suppress the deformation of the pillar portion 3 in the direction of falling. Therefore, the deformation of the pillar portion 3 is suppressed, and the deformation of the space 102 can be suppressed. Then, by suppressing the deformation of the space 102, the movement of the steam Vp in the space 102 is less likely to be hindered.

第1板部1も内外の圧力差で変形する場合がある。第1板部1が凹むと、発熱体Htと第1板部1とが離間する虞がある。また、第1板部1が凹むことで、作動媒体Mdが移動しにくくなる虞もある。複数の柱部3およびウィック構造体4は、第1板部1の変形も抑制できる。これにより、発熱体Htと第1板部1とを接触させることができ、発熱体Htから第1板部1に安定して熱伝達させることができる。また、第1板部1の変形を抑制することで、空間102での作動媒体Mdの移動が阻害されにくい。以上のことから、本実施形態の熱伝導部材100では、発熱体Htからの放熱効率の低下を抑制できる。 The first plate portion 1 may also be deformed due to the pressure difference between the inside and outside. If the first plate portion 1 is recessed, the heating element Ht and the first plate portion 1 may be separated from each other. Further, the concave portion of the first plate portion 1 may make it difficult for the actuating medium Md to move. The plurality of pillar portions 3 and the wick structure 4 can also suppress deformation of the first plate portion 1. As a result, the heating element Ht and the first plate portion 1 can be brought into contact with each other, and heat can be stably transferred from the heating element Ht to the first plate portion 1. Further, by suppressing the deformation of the first plate portion 1, the movement of the working medium Md in the space 102 is less likely to be hindered. From the above, in the heat conductive member 100 of the present embodiment, it is possible to suppress a decrease in heat dissipation efficiency from the heating element Ht.

熱伝導部材100において、柱部3は、第2板部2の平板部21と接続する台座部31が上方に向かって広がる形状である。そのため、柱部3の平板部21と接続する部分の強度を高めることができる。そのため、空間102に占める柱部3の割合を減らすことができ、蒸気Vpが流れる領域を広くすることができる。これにより、作動媒体の蒸気を円滑に流すことで作動媒体による熱伝導効率を高めることができる。 In the heat conductive member 100, the pillar portion 3 has a shape in which the pedestal portion 31 connected to the flat plate portion 21 of the second plate portion 2 expands upward. Therefore, the strength of the portion of the pillar portion 3 connected to the flat plate portion 21 can be increased. Therefore, the ratio of the pillar portion 3 to the space 102 can be reduced, and the region where the steam Vp flows can be widened. As a result, the heat conduction efficiency of the working medium can be improved by smoothly flowing the steam of the working medium.

熱伝導部材100において、被加熱領域103と放熱領域104は、Y方向に並んで配置される。被加熱領域103で加熱されて蒸発した蒸気Vpは、Y方向に移動する。蒸気Vpは、X方向に隣り合う柱部3の間の隙間をY方向に移動する。Z方向からみて、複数の柱部3は、棒状部32が同じ方向を向いた状態で、X方向およびY方向に2次元配列される。これにより、蒸気Vpの流れ方向がY方向に均一化される。また、熱伝導部材100では、X方向に隣り合う柱部3の間の隙間W1が柱部3の棒状部32のX方向の幅である短軸a2よりも広い(図7参照)。そのため、蒸気Vpが流動しやすい。 In the heat conductive member 100, the heated region 103 and the heat radiating region 104 are arranged side by side in the Y direction. The steam Vp heated and evaporated in the heated region 103 moves in the Y direction. The steam Vp moves in the Y direction in the gap between the pillars 3 adjacent to each other in the X direction. Seen from the Z direction, the plurality of pillar portions 3 are two-dimensionally arranged in the X direction and the Y direction with the rod-shaped portions 32 facing the same direction. As a result, the flow direction of the steam Vp is made uniform in the Y direction. Further, in the heat conductive member 100, the gap W1 between the pillars 3 adjacent to each other in the X direction is wider than the short axis a2 which is the width of the rod-shaped portion 32 of the pillar 3 in the X direction (see FIG. 7). Therefore, the steam Vp tends to flow.

また、図2、図7等に示すように、複数の柱部3の棒状部32の上下方向と直交する断面の長軸a1は、気化した蒸気Vpの移動方向に沿う方向に延びる。そのため、棒状部32の周囲を流れる蒸気Vpは、棒状部32の断面形状が円形である場合に比べて、抵抗が小さくなる。以上のことより、複数の柱部3を棒状部32の長軸a1をY方向にそろえて配置することで、蒸気Vpを被加熱領域103から放熱領域104に円滑に流すことができる。以上のように、蒸気Vpの流れを均一化し、蒸気Vpを円滑に流動させることで、熱伝導部材100の熱伝導効率を高めることが可能である。 Further, as shown in FIGS. 2, 7, and the like, the long axis a1 of the cross section orthogonal to the vertical direction of the rod-shaped portions 32 of the plurality of pillar portions 3 extends in the direction along the moving direction of the vaporized steam Vp. Therefore, the resistance of the steam Vp flowing around the rod-shaped portion 32 is smaller than that in the case where the cross-sectional shape of the rod-shaped portion 32 is circular. From the above, by arranging the plurality of pillar portions 3 with the long axis a1 of the rod-shaped portion 32 aligned in the Y direction, steam Vp can be smoothly flowed from the heated region 103 to the heat dissipation region 104. As described above, by making the flow of steam Vp uniform and allowing the steam Vp to flow smoothly, it is possible to improve the heat conduction efficiency of the heat conduction member 100.

<筐体101の製造工程>
筐体101の製造工程について図面を参照して説明する。図8は、エッチング処理により、凹部20Pおよび突出部3Pを形成した板部形成板材2Pの断面図である。図9は、プレス加工により形成された第2板部2の断面図である。図10は、第1板部1に第2板部2を重ねる接合処理を示す断面図である。
<Manufacturing process of housing 101>
The manufacturing process of the housing 101 will be described with reference to the drawings. FIG. 8 is a cross-sectional view of a plate portion forming plate material 2P in which a concave portion 20P and a protruding portion 3P are formed by an etching process. FIG. 9 is a cross-sectional view of the second plate portion 2 formed by press working. FIG. 10 is a cross-sectional view showing a joining process in which the second plate portion 2 is superposed on the first plate portion 1.

筐体101の第2板部2は、板部形成板材2Pの底面にエッチング処理を施すことで、形成される。板部形成板材2Pは、第2板部2と同じ厚みを有するとともにZ方向から見た形状が第2板部2と同じ形状の板材である。 The second plate portion 2 of the housing 101 is formed by subjecting the bottom surface of the plate portion forming plate material 2P to an etching process. The plate portion forming plate material 2P is a plate material having the same thickness as the second plate portion 2 and having the same shape as the second plate portion 2 when viewed from the Z direction.

図8に示すとおり、板部形成板材2Pの底面にエッチング処理を施すことで、板部形成板材2Pの下面に凹部20Pおよび凹部20Pの内部に配置されてZ方向下方に突出する突出部3Pが形成される。このとき、凹部20Pは深さD1であるとともに、突出部3Pの長さもD1である。 As shown in FIG. 8, by etching the bottom surface of the plate portion forming plate material 2P, the concave portion 20P and the protruding portion 3P which is arranged inside the concave portion 20P and protrudes downward in the Z direction are formed on the lower surface of the plate portion forming plate material 2P. It is formed. At this time, the recess 20P has a depth D1 and the length of the protrusion 3P is also D1.

図8に示すとおり、突出部3Pは、下方に向かって細くなる第1部分31Pと、第1部分31Pの下端から下方に突出し、Z方向と直交する断面の形状が軸方向に均一または略均一な第2部分32Pと、を有する。なお、エッチング処理が終了した時点で、第1部分31Pおよび第2部分32PのZ方向と直交する切断面の断面形状は円形である。 As shown in FIG. 8, the protruding portion 3P protrudes downward from the lower end of the first portion 31P that narrows downward and the lower end of the first portion 31P, and the shape of the cross section orthogonal to the Z direction is uniform or substantially uniform in the axial direction. The second portion 32P and the like. When the etching process is completed, the cross-sectional shape of the cut surface orthogonal to the Z direction of the first portion 31P and the second portion 32P is circular.

図9に示すように、凹部20Pおよび突出部3Pが形成された板部形成板材2Pの下側から、全ての突出部3Pの下方の端部30Pに治具Jgを当てる。そして、治具Jgを上方に付勢して、突出部3Pを圧縮するプレス処理を行う。これにより、突出部3Pの長さがL1になるまで圧縮して、柱部3が形成される。なお、圧縮するときに、断面積が小さい第2部分32P、すなわち、棒状部32の方が、第1部分31P、すなわち、台座部31よりも変形しやすい。 As shown in FIG. 9, the jig Jg is applied to the lower end 30P of all the protruding portions 3P from the lower side of the plate portion forming plate material 2P in which the concave portion 20P and the protruding portion 3P are formed. Then, the jig Jg is urged upward to perform a pressing process for compressing the protruding portion 3P. As a result, the pillar portion 3 is formed by compressing until the length of the protruding portion 3P becomes L1. When compressed, the second portion 32P, that is, the rod-shaped portion 32, which has a small cross-sectional area, is more easily deformed than the first portion 31P, that is, the pedestal portion 31.

柱部3の棒状部32の切断面の断面形状は、圧縮により板部形成板材2Pの圧延方向に延びて、円形から扁平した円形に変形する。例えば、板部形成板材2Pの圧延方向を蒸気Vpが流れる方向とすることで、蒸気Vpの流れ方向が長軸a1の柱部3を形成できる。 The cross-sectional shape of the cut surface of the rod-shaped portion 32 of the pillar portion 3 extends in the rolling direction of the plate portion forming plate material 2P by compression, and is deformed from a circular shape to a flat circular shape. For example, by setting the rolling direction of the plate portion forming plate material 2P to the direction in which the steam Vp flows, the pillar portion 3 having the major axis a1 in the flow direction of the steam Vp can be formed.

そして、図10に示すように、別途製造された第1板部1の上面10の被接合部11に囲まれた領域にウィック構造体4を配置し、第2板部2を上方から第1板部1に重ねる。このとき、第2板部2の接合部22が第1板部1の被接合部11に接触させる。そして、第1板部1および第2板部2を加熱して所定温度に昇温させた後、第2板部2を第1板部1に押し付ける接合処理を施す。 Then, as shown in FIG. 10, the wick structure 4 is arranged in the region surrounded by the joined portion 11 of the upper surface 10 of the first plate portion 1 manufactured separately, and the second plate portion 2 is first from above. Overlay on the plate part 1. At this time, the joint portion 22 of the second plate portion 2 is brought into contact with the joint portion 11 of the first plate portion 1. Then, after heating the first plate portion 1 and the second plate portion 2 to raise the temperature to a predetermined temperature, a joining process is performed in which the second plate portion 2 is pressed against the first plate portion 1.

このとき、被接合部11と接合部22との接触面接触面の圧力は、所定の圧力以上となる。これにより、被接合部11と接合部22とが接合される。なお、接合処理を行うときの加熱時において、第1板部1および第2板部2の全体を加熱してもよいし、被接合部11と接合部22とを部分的に加熱してもよい。 At this time, the pressure on the contact surface between the bonded portion 11 and the bonded portion 22 becomes equal to or higher than a predetermined pressure. As a result, the bonded portion 11 and the bonded portion 22 are joined. In addition, at the time of heating at the time of performing a joining process, the whole of the 1st plate part 1 and the 2nd plate part 2 may be heated, or the joint part 11 and the joint part 22 may be partially heated. good.

筐体101を形成した後、空間102の内部を減圧するととともに、作動媒体を収容して、空間102を封止する。以上の製造方法で、熱伝導部材100が形成される。なお、上述の製造方法は、一例であり、この製造方法に限定されない。例えば、板部形成板材2Pの底面にエッチング処理を施すとき、エッチング処理で、断面が扁平した円形の柱部3を形成するようにしてもよい。 After forming the housing 101, the inside of the space 102 is depressurized, and the working medium is accommodated to seal the space 102. The heat conductive member 100 is formed by the above manufacturing method. The above-mentioned manufacturing method is an example, and is not limited to this manufacturing method. For example, when the bottom surface of the plate portion forming plate 2P is subjected to the etching treatment, the circular pillar portion 3 having a flat cross section may be formed by the etching treatment.

なお、第2板部2の製造方法としては、エッチングに限定されず、化学的または物理的な方法で、板を削ったり溶かしたりして、第2板部2の下面に凹部を形成し、柱部3を第2板部2と単一の部材として形成できる方法を広く採用できる。また、第1板部1が凹部を有する構成の場合も、凹部をエッチング処理にて製造してもよいし、化学的または物理的な方法で、形成してもよい。 The method for manufacturing the second plate portion 2 is not limited to etching, and the plate is scraped or melted by a chemical or physical method to form a recess on the lower surface of the second plate portion 2. A method in which the pillar portion 3 can be formed as a single member with the second plate portion 2 can be widely adopted. Further, even when the first plate portion 1 has a concave portion, the concave portion may be manufactured by an etching process, or may be formed by a chemical or physical method.

また、以上示した筐体101では、第2板部2と柱部3とが単一の部材で形成されているが、これに限定されない。例えば、第2板部2と別部材の柱部3を第2板部2の平板部21の凹部20を形成する部分に固定する構成であってもよい。 Further, in the housing 101 shown above, the second plate portion 2 and the pillar portion 3 are formed of a single member, but the present invention is not limited to this. For example, the second plate portion 2 and the pillar portion 3 of a separate member may be fixed to the portion forming the recess 20 of the flat plate portion 21 of the second plate portion 2.

<第1変形例>
第1変形例の柱部3aについて図面を参照して説明する。図11は、第1変形例の柱部3aの底面図である。図11に示す柱部3aは、台座部31aの形状が、柱部3の台座部31と異なる。これ以外の点について、柱部3aの構成は、柱部3と同じ構成である。そのため、柱部3aにおいて、図4等に示す柱部3と実質的に同じ部分には同じ符号を付すとともに、同じ部分の詳細な説明は省略する。
<First modification>
The pillar portion 3a of the first modification will be described with reference to the drawings. FIG. 11 is a bottom view of the pillar portion 3a of the first modification. The shape of the pedestal portion 31a of the pillar portion 3a shown in FIG. 11 is different from that of the pedestal portion 31 of the pillar portion 3. Other than this, the configuration of the pillar portion 3a is the same as that of the pillar portion 3. Therefore, in the pillar portion 3a, substantially the same parts as those of the pillar portion 3 shown in FIG. 4 and the like are designated by the same reference numerals, and detailed description of the same portions will be omitted.

図11に示す柱部3aの台座部31aは、Z方向と直交する切断面の断面形状が扁平した円形である。すなわち、台座部31aの上下方向と直交する切断面の断面形状が扁平した円形である。台座部31aは、台座部31と同様、下方に向かって細くなる形状を有する。そして、台座部31aは、第2板部2の平板部21と接続する。そして、台座部31aの平板部21と接続する部分は、長軸b1および短軸b2の扁平した円形である。台座部31aのZ方向と直交する切断面の断面形状の扁平率は、棒状部32のZ方向と直交する切断面の断面形状の扁平率よりも小さい。 The pedestal portion 31a of the pillar portion 3a shown in FIG. 11 is a circular shape having a flat cross-sectional shape of a cut surface orthogonal to the Z direction. That is, the cross-sectional shape of the cut surface orthogonal to the vertical direction of the pedestal portion 31a is a flat circular shape. Like the pedestal portion 31, the pedestal portion 31a has a shape that narrows downward. Then, the pedestal portion 31a is connected to the flat plate portion 21 of the second plate portion 2. The portion of the pedestal portion 31a connected to the flat plate portion 21 is a flat circular portion of the long axis b1 and the short axis b2. The flatness of the cross-sectional shape of the cut surface orthogonal to the Z direction of the pedestal portion 31a is smaller than the flatness of the cross-sectional shape of the cut surface orthogonal to the Z direction of the rod-shaped portion 32.

さらに説明すると、プレス処理にて柱部3aを形成する場合、棒状部32のZ方向と直交する切断面の断面形状は、Z方向で多少変化する場合がある。そのため、実際には、台座部31aのZ方向と直交する切断面の断面形状の扁平率の最大値が、棒状部32の上下方向と直交する切断面の断面形状の扁平率の最小値よりも小さい。 Further, when the pillar portion 3a is formed by the pressing process, the cross-sectional shape of the cut surface orthogonal to the Z direction of the rod-shaped portion 32 may change slightly in the Z direction. Therefore, in reality, the maximum value of the flatness of the cross-sectional shape of the cut surface orthogonal to the Z direction of the pedestal portion 31a is larger than the minimum value of the flatness of the cross-sectional shape of the cut surface orthogonal to the vertical direction of the rod-shaped portion 32. small.

このような構成とすることで、台座部31aは、円形断面を有する台座部31に比べて体積を小さくできる。これにより、台座部31aの空間102に占める割合を小さくでき、蒸気Vpの流れる領域を拡げることができる。そのため、蒸気Vpの流れを円滑にすることが可能であり、作動媒体による熱伝導効率をさらに向上できる。図11に示すように、長軸b1を蒸気Vpの流れる方向に一致させることで、台座部31aの周りを流れる蒸気Vpの抵抗をさらに低減できる。 With such a configuration, the volume of the pedestal portion 31a can be made smaller than that of the pedestal portion 31 having a circular cross section. As a result, the ratio of the pedestal portion 31a to the space 102 can be reduced, and the region where the steam Vp flows can be expanded. Therefore, the flow of steam Vp can be smoothed, and the heat conduction efficiency by the working medium can be further improved. As shown in FIG. 11, by aligning the long axis b1 with the flow direction of the steam Vp, the resistance of the steam Vp flowing around the pedestal portion 31a can be further reduced.

本実施形態において、台座部31aの長軸b1は、棒状部32の断面の長軸a1と同じ方向であるが、これに限定されず、傾いていてもよい。 In the present embodiment, the long axis b1 of the pedestal portion 31a is in the same direction as the long axis a1 of the cross section of the rod-shaped portion 32, but the direction is not limited to this, and the long axis b1 may be tilted.

<第2変形例>
第2変形例の第2板部2bについて図面を参照して説明する。図12は、第2変形例の第2板部2bの底面図である。図12に示す第2板部2bは、柱部3の棒状部32の長軸a1の方向が、第2板部2と異なる。これ以外の点について、第2板部2bの構成は、第2板部2と同じ構成である。そのため、第2板部2bにおいて、図2等に示す第2板部2と実質的に同じ部分には同じ符号を付すとともに、同じ部分の詳細な説明は省略する。
<Second modification>
The second plate portion 2b of the second modification will be described with reference to the drawings. FIG. 12 is a bottom view of the second plate portion 2b of the second modification. In the second plate portion 2b shown in FIG. 12, the direction of the long axis a1 of the rod-shaped portion 32 of the pillar portion 3 is different from that of the second plate portion 2. Other than this, the configuration of the second plate portion 2b is the same as that of the second plate portion 2. Therefore, in the second plate portion 2b, substantially the same parts as those of the second plate part 2 shown in FIG. 2 and the like are designated by the same reference numerals, and detailed description of the same parts will be omitted.

図12に示すように、第2板部2bの複数の柱部3の棒状部32の上下方向と直交する断面の長軸a1が延びる方向は、不均一である。このように構成することで、柱部3に作用する方向が均一ではない場合であても、長軸a1が力の作用する方向と同じ方向または略同じ方向の棒状部32を有する柱部3が存在する。第2板部2bを用いることで、筐体101に作用する力の向きにかかわらず、空間102の変形を抑制し、作動媒体の流れを円滑にして作動媒体による熱伝導効率を高めることができる。 As shown in FIG. 12, the direction in which the long axis a1 of the cross section orthogonal to the vertical direction of the rod-shaped portions 32 of the plurality of pillar portions 3 of the second plate portion 2b extends is non-uniform. With this configuration, even if the direction of action on the pillar portion 3 is not uniform, the pillar portion 3 having the rod-shaped portion 32 in the same direction as the direction in which the long axis a1 acts or substantially the same direction exist. By using the second plate portion 2b, it is possible to suppress the deformation of the space 102 regardless of the direction of the force acting on the housing 101, smooth the flow of the working medium, and increase the heat conduction efficiency by the working medium. ..

<第3変形例>
第3変形例の第2板部2cについて図面を参照して説明する。図13は、第3変形例の第2板部2cの底面図である。図13に示す第2板部2cは、Z方向から見て正方形状であるとともに、柱部3の棒状部32の長軸a1の方向が、第2板部2と異なる。これ以外の点について、第2板部2cの構成は、第2板部2と同じ構成である。そのため、第2板部2cにおいて、図2等に示す第2板部2と実質的に同じ部分には同じ符号を付すとともに、同じ部分の詳細な説明は省略する。
<Third modification example>
The second plate portion 2c of the third modification will be described with reference to the drawings. FIG. 13 is a bottom view of the second plate portion 2c of the third modification. The second plate portion 2c shown in FIG. 13 has a square shape when viewed from the Z direction, and the direction of the long axis a1 of the rod-shaped portion 32 of the pillar portion 3 is different from that of the second plate portion 2. Other than this, the configuration of the second plate portion 2c is the same as that of the second plate portion 2. Therefore, in the second plate portion 2c, substantially the same parts as those of the second plate part 2 shown in FIG. 2 and the like are designated by the same reference numerals, and detailed description of the same parts will be omitted.

第2板部2cは、Z方向から見て正方形状の平板部21cと、平板部21cの外縁部から下方に延びる接合部22cを有する。そして、第2板部2cは、接合部22cに囲まれた凹部20cを有し、複数の柱部3は、棒状部32の長軸a1が凹部20cのZ方向から見た中心点Spから放射状に広がる方向に延びる。すなわち、複数の柱部3の棒状部32の上下方向と直交する断面の長軸は、所定の位置Spから放射状に広がる方向に延びる。 The second plate portion 2c has a square flat plate portion 21c when viewed from the Z direction, and a joint portion 22c extending downward from the outer edge portion of the flat plate portion 21c. The second plate portion 2c has a recess 20c surrounded by the joint portion 22c, and the plurality of pillar portions 3 have the long axis a1 of the rod-shaped portion 32 radially from the center point Sp seen from the Z direction of the recess 20c. It extends in the direction of spreading. That is, the long axis of the cross section orthogonal to the vertical direction of the rod-shaped portion 32 of the plurality of pillar portions 3 extends in the direction extending radially from the predetermined position Sp.

上述のとおり、熱伝導部材100では、発熱体Htから伝達された熱を、発熱体Htから離れた部分に運搬して、発熱体Htを冷却する。発熱体Htが配置された部分の形状において、熱を放射状に運搬できる場合がある。このような場合において、発熱体Htを熱伝導部材100のZ方向から見て中央に配置し、棒状部32の長軸a1を発熱体Htが中心点Spから放射状に広がる方向に延びる位置に柱部3を配置する。これにより、発熱体Htからの熱で加熱されて気化した蒸気Vpが放射状に移動しやすくなり、作動媒体の流れを円滑にして作動媒体による熱伝導効率を高めることができる。 As described above, in the heat conductive member 100, the heat transferred from the heating element Ht is carried to a portion away from the heating element Ht to cool the heating element Ht. In the shape of the portion where the heating element Ht is arranged, heat may be transported radially. In such a case, the heating element Ht is arranged in the center of the heat conductive member 100 when viewed from the Z direction, and the long axis a1 of the rod-shaped portion 32 is positioned so that the heating element Ht extends radially from the center point Sp. The part 3 is arranged. As a result, the steam Vp heated and vaporized by the heat from the heating element Ht can easily move radially, the flow of the working medium can be smoothed, and the heat conduction efficiency by the working medium can be improved.

なお、Z方向から見て、発熱体Htを中央に配置した構成を例に説明しているが、これに限定されない。例えば、中央からずれる場合であっても、発熱体Htが接触している部分の中央を中心点Spとし、長軸a1が中心点Spから放射状に広がる方向に延びる位置に柱部3を配置してもよい。発熱体Htを備える機器において、発熱体Htおよび他の機器との位置によって、長軸a1の配置を調整してもよい。この場合、配置の形状は、放射状に限らず、平行でもよいし、両方を含む構成であってもよい。 Although the configuration in which the heating element Ht is arranged in the center when viewed from the Z direction is described as an example, the present invention is not limited to this. For example, even if it deviates from the center, the center of the portion in contact with the heating element Ht is set as the center point Sp, and the pillar portion 3 is arranged at a position where the long axis a1 extends radially from the center point Sp. You may. In a device provided with a heating element Ht, the arrangement of the major axis a1 may be adjusted depending on the position of the heating element Ht and other devices. In this case, the shape of the arrangement is not limited to radial, and may be parallel or may include both.

以上、本発明の実施形態について説明したが、本発明はこの内容に限定されるものではない。また本発明の実施形態は、発明の趣旨を逸脱しない限り、種々の改変を加えることが可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to this content. Further, the embodiments of the present invention can be modified in various ways as long as they do not deviate from the gist of the invention.

本発明の熱伝導部材は、例えば、スマートフォン、タブレットPC、ノート型PC等、薄型の電子機器に用いられて動作により発熱する機器からの放熱に利用可能である。また、これら以外にも、発熱する機器の放熱に利用可能である。 The heat conductive member of the present invention can be used for heat dissipation from devices that are used in thin electronic devices such as smartphones, tablet PCs, and notebook PCs and generate heat by operation. In addition to these, it can be used to dissipate heat from heat-generating equipment.

100 熱伝導部材
101 筐体
102 空間
103 被加熱領域
104 放熱領域
1 第1板部
10 上面
11 被接合部
2 第2板部
20 凹部
21 平板部
22 接合部
2b 第2板部
2c 第2板部
21c 平板部
22c 接続部
3 柱部
30 端部
31 台座部
32 棒状部
a1 長軸
a2 短軸
3a 柱部
31a 台座部
b1 長軸
b2 短軸
4 ウィック構造体
20c 凹部
2P 板部形成板材
20P 凹部
3P 突出部
30P 端部
31P 第1部分
32P 第2部分
Ht 発熱体
Jg 治具
100 Heat conductive member 101 Housing 102 Space 103 Heated area 104 Heat dissipation area 1 1st plate part 10 Top surface 11 Jointed part 2 2nd plate part 20 Recessed 21 Flat plate part 22 Joint part 2b 2nd plate part 2c 2nd plate part 21c Flat plate part 22c Connection part 3 Pillar part 30 End part 31 Pedestal part 32 Rod-shaped part a1 Long axis a2 Short axis 3a Pillar part 31a Pedestal part b1 Long axis b2 Short axis 4 Wick structure 20c Recess 2P Plate part forming plate material 20P Recess Projection 30P End 31P 1st part 32P 2nd part Ht Heat generator Jg jig

Claims (10)

内部に作動媒体が封入された筐体を有する熱伝導部材であって、
前記筐体は、
第1板部と、
前記第1板部の上部に重ねられた第2板部と、
前記第2板部から下方に延びる複数の柱部と、を有し、
各前記柱部は、
前記第2板部と接続するとともに下方に向かうにつれて細くなる台座部と、
前記台座部の下方の端部から下方に延びる棒状部と、を有し、
少なくとも前記棒状部は、上下方向と直交する切断面の断面形状が扁平した円形である熱伝導部材。
A heat conductive member having a housing in which a working medium is enclosed.
The housing is
The first plate part and
The second plate portion overlapped on the upper part of the first plate portion,
It has a plurality of pillars extending downward from the second plate, and has.
Each of the pillars
A pedestal portion that is connected to the second plate portion and becomes thinner toward the bottom,
It has a rod-shaped portion extending downward from the lower end portion of the pedestal portion, and has.
At least the rod-shaped portion is a heat conductive member having a flat circular cross-sectional shape of a cut surface orthogonal to the vertical direction.
前記台座部の上下方向と直交する切断面の断面形状が扁平した円形であり、
各前記柱部において、前記台座部の上下方向と直交する切断面の断面形状の扁平率の最大値が、前記棒状部の上下方向と直交する切断面の断面形状の扁平率の最小値よりも小さい請求項1に記載の熱伝導部材。
The cross-sectional shape of the cut surface orthogonal to the vertical direction of the pedestal portion is a flat circular shape.
In each pillar portion, the maximum value of the flatness of the cross-sectional shape of the cut surface orthogonal to the vertical direction of the pedestal portion is larger than the minimum value of the flatness of the cross-sectional shape of the cut surface orthogonal to the vertical direction of the rod-shaped portion. The small heat conductive member according to claim 1.
複数の前記棒状部の前記切断面の長軸は、互いに平行である請求項1または請求項2に記載の熱伝導部材。 The heat conductive member according to claim 1 or 2, wherein the long axes of the cut surfaces of the plurality of rod-shaped portions are parallel to each other. 前記棒状部の上下方向と直交する断面の短軸に沿う方向に隣り合う前記柱部の前記棒状部の外周面間の距離が、前記短軸の長さよりも長い請求項3に記載の熱伝導部材。 The heat conduction according to claim 3, wherein the distance between the outer peripheral surfaces of the rod-shaped portion of the pillar portion adjacent to each other along the short axis of the cross section orthogonal to the vertical direction of the rod-shaped portion is longer than the length of the short axis. Element. 複数の前記棒状部の上下方向と直交する断面の長軸は、所定の位置から放射状に延びる請求項1または請求項2に記載の熱伝導部材。 The heat conductive member according to claim 1 or 2, wherein the long axis of the cross section orthogonal to the vertical direction of the plurality of rod-shaped portions extends radially from a predetermined position. 複数の前記棒状部の上下方向と直交する断面の長軸は、気化した前記作動媒体の移動方向に沿う方向に延びる請求項1から請求項5のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 5, wherein the long axis of the cross section orthogonal to the vertical direction of the plurality of rod-shaped portions extends in a direction along the moving direction of the vaporized working medium. 複数の前記棒状部の上下方向と直交する断面の長軸が延びる方向は、不均一である請求項1または請求項2に記載の熱伝導部材。 The heat conductive member according to claim 1 or 2, wherein the direction in which the long axis of the cross section orthogonal to the vertical direction of the plurality of rod-shaped portions extends is non-uniform. 前記第2板部は、前記第1板部と対向する面から凹んだ凹部を有し、
前記柱部の上下方向の長さは前記凹部の上下方向の深さよりも短く、複数の前記柱部が前記凹部の内部に配置される請求項1から請求項7のいずれかに記載の熱伝導部材。
The second plate portion has a recess recessed from a surface facing the first plate portion.
The heat conduction according to any one of claims 1 to 7, wherein the vertical length of the pillar portion is shorter than the vertical depth of the recess, and a plurality of the pillar portions are arranged inside the recess. Element.
前記筐体は、前記第1板部と前記第2板部との間に配置されるウィック構造体をさらに有し、前記ウィック構造体は、前記柱部の前記棒状部の前記下方の端部と接触するウィック構造体をさらに有する請求項8に記載の熱伝導部材。 The housing further comprises a wick structure disposed between the first plate portion and the second plate portion, wherein the wick structure is a lower end portion of the rod-shaped portion of the pillar portion. The heat conductive member according to claim 8, further comprising a wick structure in contact with. 第1板部の上部に第2板部を重ねて形成した筐体の内部に作動媒体を封入して形成される熱伝導部材の製造方法であって、
前記第2板部の下面から上方に凹む凹部および凹部の内部に配置されて上下方向に延びる複数の突出部をエッチングにて形成するエッチング工程と、
複数の前記突出部の上下方向の下方の端部に治具を当てて前記治具で前記突出部を圧縮して、柱部を形成するプレス工程と、を有する熱伝導部材の製造方法。
It is a method of manufacturing a heat conductive member formed by enclosing a working medium inside a housing formed by superimposing a second plate portion on an upper portion of a first plate portion.
An etching step of forming a recess that is recessed upward from the lower surface of the second plate portion and a plurality of protrusions that are arranged inside the recess and extend in the vertical direction by etching.
A method for manufacturing a heat conductive member, comprising a pressing step of applying a jig to the lower end portions of a plurality of the protrusions in the vertical direction and compressing the protrusions with the jig to form a pillar portion.
JP2020131228A 2020-07-31 2020-07-31 Heat transfer member and manufacturing method of heat transfer member Pending JP2022027308A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020131228A JP2022027308A (en) 2020-07-31 2020-07-31 Heat transfer member and manufacturing method of heat transfer member
CN202110869241.XA CN114061345A (en) 2020-07-31 2021-07-30 Heat conduction member and method for manufacturing heat conduction member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020131228A JP2022027308A (en) 2020-07-31 2020-07-31 Heat transfer member and manufacturing method of heat transfer member

Publications (1)

Publication Number Publication Date
JP2022027308A true JP2022027308A (en) 2022-02-10

Family

ID=80233425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020131228A Pending JP2022027308A (en) 2020-07-31 2020-07-31 Heat transfer member and manufacturing method of heat transfer member

Country Status (2)

Country Link
JP (1) JP2022027308A (en)
CN (1) CN114061345A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102445227B1 (en) * 2022-05-18 2022-09-20 주식회사 어플라이드서멀 Vapor chamber using anodizing or die-casting metal, manufacturing method and application thereof
CN118695563A (en) * 2024-08-28 2024-09-24 日善电脑配件(嘉善)有限公司 Integrated heat dissipation middle plate, processing method thereof and shell for electronic equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183079A (en) * 1999-12-27 2001-07-06 Fujikura Ltd Flat type heat pipe and its manufacturing method
CN2786532Y (en) * 2005-04-08 2006-06-07 珍通科技股份有限公司 Board-shaped heat pipe
US8534348B2 (en) * 2005-09-01 2013-09-17 Molex Incorporated Heat pipe and method for manufacturing same
TW200923306A (en) * 2007-11-21 2009-06-01 Forcecon Technology Co Ltd Flat heat pipe having sintered multiple channel wick structure
CN102019543B (en) * 2009-09-18 2012-10-03 和硕联合科技股份有限公司 Temperature-equalizing plate and manufacture method thereof
TWI618907B (en) * 2016-01-15 2018-03-21 超眾科技股份有限公司 Thin? vapor chamber structure
JP6738193B2 (en) * 2016-05-09 2020-08-12 昭和電工株式会社 Heat transfer structure, insulating laminated material, insulating circuit board and power module base
JP2021036175A (en) * 2017-09-29 2021-03-04 株式会社村田製作所 Vapor chamber
JP2019186297A (en) * 2018-04-04 2019-10-24 株式会社フジクラ Cold plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102445227B1 (en) * 2022-05-18 2022-09-20 주식회사 어플라이드서멀 Vapor chamber using anodizing or die-casting metal, manufacturing method and application thereof
CN118695563A (en) * 2024-08-28 2024-09-24 日善电脑配件(嘉善)有限公司 Integrated heat dissipation middle plate, processing method thereof and shell for electronic equipment

Also Published As

Publication number Publication date
CN114061345A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
JP6741142B2 (en) Vapor chamber
US10973151B2 (en) Vapor chamber
TWI768335B (en) Vapor chamber and manufacturing method of the same
JP6747625B2 (en) Vapor chamber
Ju et al. Planar vapor chamber with hybrid evaporator wicks for the thermal management of high-heat-flux and high-power optoelectronic devices
CN110476033B (en) Vapor chamber
JP2022027308A (en) Heat transfer member and manufacturing method of heat transfer member
JP2016142416A (en) Loop heat pipe and process of manufacture of loop heat pipe
CN218744851U (en) Vapor chamber, heat sink device, and electronic device
CN220187503U (en) Vapor chamber and electronic equipment
JP2018004108A (en) Heat radiation module and method for manufacturing the same
JP7173402B2 (en) vapor chamber
WO2023238626A1 (en) Heat diffusion device and electronic appliance
TWI767402B (en) steam room
JP7120494B1 (en) heat spreading device
CN113465428A (en) Heat conduction member and method for manufacturing heat conduction member
WO2023238625A1 (en) Heat spreading device and electronic apparatus
JP7260062B2 (en) heat spreading device
WO2023145396A1 (en) Thermal diffusion device and electronic apparatus
CN113473792A (en) Heat conduction member and method for manufacturing heat conduction member
WO2022107479A1 (en) Heat spreading device
JP2022133171A (en) Heat conductive member
CN113465420A (en) Heat conduction member and joining device for joining heat conduction members
JP2023006705A (en) Heat conductive member
TW202323751A (en) Thermal diffusion device