WO2022107479A1 - Heat spreading device - Google Patents

Heat spreading device Download PDF

Info

Publication number
WO2022107479A1
WO2022107479A1 PCT/JP2021/037157 JP2021037157W WO2022107479A1 WO 2022107479 A1 WO2022107479 A1 WO 2022107479A1 JP 2021037157 W JP2021037157 W JP 2021037157W WO 2022107479 A1 WO2022107479 A1 WO 2022107479A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
housing
wall surface
bent
cross
Prior art date
Application number
PCT/JP2021/037157
Other languages
French (fr)
Japanese (ja)
Inventor
慶次郎 小島
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202190000771.4U priority Critical patent/CN220189635U/en
Priority to JP2022563619A priority patent/JP7222448B2/en
Publication of WO2022107479A1 publication Critical patent/WO2022107479A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes

Definitions

  • the present invention relates to a heat diffusion device.
  • the vapor chamber has a structure in which a working medium and a wick that transports the working medium by capillary force are enclosed inside the housing.
  • the working medium absorbs heat from the heat generating element in the evaporation unit that absorbs heat from the heat generating element and evaporates in the vapor chamber, then moves in the vapor chamber, is cooled, and returns to the liquid phase.
  • the working medium that has returned to the liquid phase moves to the evaporation part on the heat generating element side again by the capillary force of the wick, and cools the heat generating element.
  • the vapor chamber operates independently without having external power, and can diffuse heat two-dimensionally at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the working medium.
  • the vapor chamber is also required to be thinner in order to support the thinner mobile terminals such as smartphones and tablets. In such a thin vapor chamber, it becomes difficult to secure mechanical strength and heat transfer efficiency.
  • Patent No. 6442594 Japanese Unexamined Patent Publication No. 2019-11370 (Patent No. 6442594)
  • the wick placed inside the housing may also be bent.
  • coarse defects such as cracks are likely to occur.
  • the capillary force of the wick cannot be maintained, and the heat transport capacity may decrease.
  • the above problem is not limited to the vapor chamber, but is a problem common to heat diffusion devices capable of diffusing heat by the same configuration as the vapor chamber.
  • An object of the present invention is to provide a heat diffusion device in which the capillary force of the wick is maintained and a high heat transfer capacity is obtained when the housing is bent. It is also an object of the present invention to provide an electronic device provided with the heat diffusion device.
  • the heat diffusion device of the present invention has a housing having a first inner wall surface and a second inner wall surface facing each other in the thickness direction, an actuating medium enclosed in the internal space of the housing, and the internal space of the housing. Equipped with a placed wick.
  • the wick includes a first porous body and a second porous body that support the first inner wall surface and the second inner wall surface of the housing from the inside.
  • the first porous body extends along a direction perpendicular to the thickness direction, and is divided through the first dividing region in the extending direction.
  • the second porous body is arranged with a gap from the first porous body so as to fit in the first divided region.
  • the electronic device of the present invention includes the heat diffusion device of the present invention.
  • FIG. 1 is a perspective view schematically showing an example of a vapor chamber according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of the vapor chamber shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of the vapor chamber shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of the vapor chamber shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing a state in which the vapor chamber shown in FIG. 4 is bent.
  • FIG. 6 is a modification of FIG.
  • FIG. 7 is a modification of FIG. 4.
  • FIG. 8 is a plan view schematically showing an example of the first porous body and the third porous body formed on the first sheet.
  • FIG. 9 is a cross-sectional view of the first porous body as seen from the direction indicated by the arrow IX in FIG.
  • FIG. 10 is a cross-sectional view of the first porous body seen from the direction indicated by the arrow X in FIG.
  • FIG. 11 is a plan view schematically showing an example of the second porous body and the fourth porous body formed on the second sheet.
  • FIG. 12 is a cross-sectional view of the second porous body as seen from the direction indicated by the arrow XII in FIG.
  • FIG. 13 is a cross-sectional view of the second porous body as seen from the direction indicated by the arrow XIII in FIG.
  • FIG. 14 is a cross-sectional view schematically showing an example of a vapor chamber according to a second embodiment of the present invention.
  • FIG. 15 is a cross-sectional view schematically showing an example of a vapor chamber according to a third embodiment of the present invention.
  • FIG. 16 is a cross-sectional view schematically showing an example of a vapor chamber according to a fourth embodiment of the present invention.
  • FIG. 17 is a cross-sectional view schematically showing an example of a vapor chamber according to a fifth embodiment of the present invention.
  • FIG. 18 is a cross-sectional view schematically showing an example of a vapor chamber according to a sixth embodiment of the present invention.
  • FIG. 19 is a cross-sectional view taken along the line XIX-XIX of the vapor chamber shown in FIG.
  • the present invention is not limited to the following embodiments, and can be appropriately modified and applied without changing the gist of the present invention. It should be noted that a combination of two or more of the individual preferable configurations described below is also the present invention.
  • heat diffusion device of the present invention when each embodiment is not particularly distinguished, it is simply referred to as "heat diffusion device of the present invention".
  • a vapor chamber will be described as an example of an embodiment of the heat diffusion device of the present invention.
  • the heat diffusion device of the present invention can also be applied to a heat diffusion device such as a heat pipe.
  • FIG. 1 is a perspective view schematically showing an example of a vapor chamber according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of the vapor chamber shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of the vapor chamber shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of the vapor chamber shown in FIG.
  • the vapor chamber 1 shown in FIG. 1 includes a hollow housing 10 that is hermetically sealed. As shown in FIGS. 3 and 4, the housing 10 has a first inner wall surface 11a and a second inner wall surface 12a facing each other in the thickness direction Z. As shown in FIG. 2, the vapor chamber 1 further includes a working medium 20 enclosed in the internal space of the housing 10 and a wick 30 arranged in the internal space of the housing 10.
  • the housing 10 is provided with an evaporation unit EP that evaporates the enclosed working medium 20. Further, the housing 10 may be set with a condensation portion CP for condensing the evaporated working medium 20.
  • a heat source HS which is a heat generating element, is arranged on the outer wall surface of the housing 10. Examples of the heat source HS include electronic components of electronic devices, such as a central processing unit (CPU).
  • CPU central processing unit
  • the portion near the heat source HS and heated by the heat source HS corresponds to the evaporation portion EP.
  • the portion away from the evaporation portion EP corresponds to the condensation portion CP.
  • the evaporated working medium 20 can be condensed other than the condensed portion CP. In the present embodiment, a portion where the evaporated working medium 20 is particularly easy to condense is expressed as a condensing portion CP.
  • the vapor chamber 1 is planar as a whole. That is, the housing 10 is planar as a whole.
  • the "plane” includes a plate shape and a sheet shape, and the dimension in the width direction X (hereinafter referred to as "width") and the dimension in the length direction Y (hereinafter referred to as “length”) are in the thickness direction Z. It means a shape that is considerably larger than a dimension (hereinafter referred to as thickness or height), for example, a shape having a width and a length of 10 times or more, preferably 100 times or more the thickness.
  • the size of the vapor chamber 1, that is, the size of the housing 10 is not particularly limited.
  • the width and length of the vapor chamber 1 can be appropriately set according to the intended use.
  • the width and length of the vapor chamber 1 are, for example, 5 mm or more and 500 mm or less, 20 mm or more and 300 mm or less, or 50 mm or more and 200 mm or less, respectively.
  • the width and length of the vapor chamber 1 may be the same or different.
  • the housing 10 is composed of the first sheet 11 and the second sheet 12 facing each other to which the outer edges are joined.
  • the materials constituting the first sheet 11 and the second sheet 12 are not particularly limited as long as they have properties suitable for use as a vapor chamber, such as thermal conductivity, strength, flexibility, and flexibility.
  • the material constituting the first sheet 11 and the second sheet 12 is preferably a metal, for example, copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing them as a main component, and particularly preferably copper. Is.
  • the materials constituting the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
  • the housing 10 is composed of the first sheet 11 and the second sheet 12
  • the first sheet 11 and the second sheet 12 are joined to each other at their outer edges.
  • the joining method is not particularly limited, and for example, laser welding, resistance welding, diffusion welding, brazing, TIG welding (tungsten-inert gas welding), ultrasonic welding, or resin encapsulation can be used, and is preferable.
  • TIG welding tungsten-inert gas welding
  • ultrasonic welding or resin encapsulation
  • resin encapsulation can be used, and is preferable.
  • the thicknesses of the first sheet 11 and the second sheet 12 are not particularly limited, but are preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 30 ⁇ m or more and 100 ⁇ m or less, and further preferably 40 ⁇ m or more and 60 ⁇ m or less, respectively.
  • the thicknesses of the first sheet 11 and the second sheet 12 may be the same or different. Further, the thickness of each of the first sheet 11 and the second sheet 12 may be the same throughout, or a part thereof may be thin.
  • the shapes of the first sheet 11 and the second sheet 12 are not particularly limited.
  • the first sheet 11 has a flat plate shape having a constant thickness
  • the second sheet 12 has a shape in which the outer edge portion is thicker than the portion other than the outer edge portion.
  • the first sheet 11 has a flat plate shape having a constant thickness and the second sheet 12 has a constant thickness and a portion other than the outer edge portion is convex outward with respect to the outer edge portion.
  • a dent is formed on the outer edge of the housing 10. Therefore, the dent on the outer edge can be used when mounting the vapor chamber. Further, other parts and the like can be arranged in the recess of the outer edge portion.
  • the thickness of the entire vapor chamber 1 is not particularly limited, but is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the housing 10, and for example, water, alcohols, CFC substitutes, or the like can be used.
  • the working medium is an aqueous compound, preferably water.
  • the wick 30 includes a first porous body 41, a second porous body 42, a third porous body 43, and a fourth porous body 44. These porous bodies function as wicks that transport the working medium 20 by capillary force. Further, by using a porous body as a support of the housing 10, the weight of the vapor chamber 1 can be reduced.
  • the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 each support the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside.
  • the first porous body 41 is in contact with the first inner wall surface 11a and the second inner wall surface 12a, and similarly, the third porous body 43 is in contact with the first inner wall surface 11a and the second inner wall surface 12a. It is in contact with 12a.
  • the second porous body 42 is in contact with the first inner wall surface 11a and the second inner wall surface 12a.
  • the fourth porous body 44 is in contact with the first inner wall surface 11a and the second inner wall surface 12a, as in the example shown in FIG.
  • the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 may be in contact with either the first inner wall surface 11a or the second inner wall surface 12a, and may be in contact with either one of the first inner wall surface 11a and the second inner wall surface 12a. It does not have to be in contact with the wall surface 11a and the second inner wall surface 12a.
  • the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 are composed of, for example, a metal porous body, a ceramic porous body, or a resin porous body. Even if the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 are composed of a sintered body such as a metal porous sintered body or a ceramic porous sintered body, for example. good.
  • the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 are preferably composed of a metal porous sintered body of copper or nickel.
  • the materials constituting the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 may be the same or different, but are preferably the same.
  • the first porous body 41 extends along a direction perpendicular to the thickness direction Z (in the present embodiment, the length direction Y). As shown in FIGS. 2 and 4, the first porous body 41 is divided in the extending direction via the first dividing region R1.
  • the third porous body 43 extends along the direction in which the first porous body 41 extends (in the present embodiment, the length direction Y). As shown in FIG. 2, the third porous body 43 is divided through the second divided region R2 in the extending direction thereof.
  • a steam flow path 50 through which a gas phase operating medium 20 flows is formed between adjacent wicks 30.
  • the first porous body 41 and the third porous body 43 extend between the first porous body 41 and the third porous body 43 (in the present embodiment, the length direction Y).
  • the liquid flow path 51 is formed by providing an interval along the line.
  • the liquid flow path 51 can be used as a liquid flow path through which the working medium 20 of the liquid phase flows.
  • the width of the steam flow path 50 is larger than the width of the liquid flow path 51.
  • the width of the steam flow path 50 is preferably 1000 ⁇ m or more and 3000 ⁇ m or less, and more preferably 1000 ⁇ m or more and 2000 ⁇ m or less.
  • the width of the liquid flow path 51 is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the width of the widest portion is defined as the width of the steam flow path 50.
  • the width of the widest portion is defined as the width of the liquid flow path 51.
  • the second porous body 42 is arranged with a gap from the first porous body 41 so as to fit in the first divided region R1.
  • the fourth porous body 44 is arranged with a gap from the third porous body 43 so as to fit in the second divided region R2.
  • the housing 10 can be bent at a bending line L (see FIG. 2) connecting a set of adjacent first dividing regions R1 and second dividing regions R2.
  • FIG. 5 is a cross-sectional view schematically showing a bent state of the vapor chamber shown in FIG.
  • the first porous body 41 does not exist in the portion that becomes the starting point of the bending, so that the bending is performed. No stress is applied to the first porous body 41. Therefore, it is possible to prevent coarse defects such as cracks that occur in the first porous body 41.
  • the capillary force of the wick 30 decreases. Therefore, by arranging the second porous body 42 so as to fit in the first divided region R1, the capillary force of the wick 30 can be maintained. Further, by arranging the second porous body 42, the steam flow path 50 is less likely to be crushed when the housing 10 is bent, so that high heat equalization can be maintained.
  • the housing 10 when the housing 10 is bent with respect to the bending line L located in the second dividing region R2, it is possible to prevent coarse defects such as cracks generated in the third porous body 43. can. Further, by arranging the fourth porous body 44 so as to fit in the second divided region R2, the capillary force of the wick 30 can be maintained. Further, by arranging the fourth porous body 44, the steam flow path 50 is less likely to be crushed when the housing 10 is bent, so that high heat equalization can be maintained.
  • the wick 30 includes the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44, when the housing 10 is bent. , The capillary force of the wick 30 is maintained, and high heat transport capacity is maintained.
  • the dimension of the porous body in the direction orthogonal to the direction in which the first porous body 41 extends is defined as the width.
  • the width of the second porous body 42 may be the same as the width of the first porous body 41, may be smaller than the width of the first porous body 41, but may be larger than the width of the first porous body 41. preferable.
  • the steam flow path 50 is less likely to be crushed when the housing 10 is bent.
  • the width of the second porous body 42 is larger than the width of the first porous body 41, the width of the second porous body 42 is preferably 120% or more and 300% or less of the width of the first porous body 41.
  • the width of the fourth porous body 44 may be the same as the width of the third porous body 43, may be smaller than the width of the third porous body 43, but may be smaller than the width of the third porous body 43. Larger is preferred. Further, the width of the fourth porous body 44 may be the same as or different from the width of the second porous body 42.
  • the width of the 4th porous body 44 is larger than the width of the 3rd porous body 43
  • the width of the 4th porous body 44 is preferably 120% or more and 300% or less of the width of the 3rd porous body 43.
  • the distance between the first porous body 41 and the second porous body 42 sandwiching the bending line L is preferably 0 mm or more and 0.1 mm or less, and more preferably 0 mm or more and 0.05 mm or less.
  • the distance between the first porous body 41 sandwiching the bending line L and the second porous body 42 may be 0 mm, that is, the first porous body 41 and the second porous body 42 sandwiching the bending line L may be separated from each other. It may be in contact.
  • the third porous body 43 and the third porous body 43 sandwiching the bending line L are in a bent state.
  • the distance from the 4 porous body 44 is preferably 0 mm or more and 0.1 mm or less, and more preferably 0 mm or more and 0.05 mm or less.
  • the distance between the third porous body 43 sandwiching the bending line L and the fourth porous body 44 may be 0 mm, that is, the third porous body 43 and the fourth porous body 44 sandwiching the bending line L may be separated from each other. It may be in contact.
  • the distance between the third porous body 43 and the fourth porous body 44 sandwiching the bending line L may be the same as or different from the distance between the first porous body 41 and the second porous body 42 sandwiching the bending line L. good.
  • the distance between the first porous body 41 and the second porous body 42 sandwiching the bending line L means the distance of the widest portion in the above cross section. The same applies to the distance between the third porous body 43 and the fourth porous body 44 sandwiching the bending line L.
  • the shape of the second porous body 42 arranged in the first divided region R1 may be different from the shape of the fourth porous body 44 arranged in the second divided region R2, but it is preferable that the shape is the same.
  • the shape of the second porous body 42 is not particularly limited as long as the second porous body 42 is arranged with a gap from the first porous body 41 so as to fit in the first divided region R1, but as shown in FIG.
  • the second porous body 42 has one or more acute angles.
  • the acute angle of the second porous body 42 can be used to adjust the bending angle of the housing 10.
  • the housing 10 is bent so that the outer wall surface corresponding to the inner wall surface of the housing 10 that is not in contact with the acute angle is inside.
  • the second porous body 42 when looking at the cross section along the direction orthogonal to the extending direction of the first porous body 41 and the thickness direction Z, the second porous body 42 may have one or more acute angles, and has an acute angle. It does not have to be.
  • the cross-sectional shape of the second porous body 42 may be rectangular or the like.
  • the cross-sectional shape of the second porous body 42 is a trapezoid having two acute angles.
  • the acute angles of the second porous body 42 are both in contact with the first inner wall surface 11a of the housing 10. Therefore, as shown in FIG. 5, the outer wall surface corresponding to the second inner wall surface 12a of the housing 10 that is not in contact with the acute angle of the second porous body 42, that is, the outer wall surface of the second sheet 12 is on the inner side.
  • the housing 10 is bent.
  • the second porous body 42 has one or more acute angles and the housing 10 is bent.
  • the relationship between the bending angle ⁇ 1 of the outer wall surface (see FIG. 5) and the acute angle angle ⁇ 2 (see FIG. 4) of the second porous body 42 satisfies 0 ° ⁇ 1 ⁇ 90 ° ⁇ ⁇ 2 . Is preferable.
  • FIG. 6 is a modification of FIG. As shown in FIG. 6, when the second porous body 42 has two acute angles, the housing 10 may be bent in two steps. In FIG. 6, the housing 10 is bent with the bending lines L1 and L2 as boundaries.
  • FIG. 7 is a modification of FIG. 4.
  • the cross-sectional shape of the second porous body 42A is a trapezoid having one acute angle.
  • the cross-sectional shape of the second porous body 42 may be a shape other than a trapezoid. Further, in the above-mentioned cross section, the second porous body 42 does not have to have an acute angle, and for example, the cross-sectional shape of the second porous body 42 may be a rectangle or the like.
  • the shape of the fourth porous body 44 is not particularly limited as long as the fourth porous body 44 is arranged with a gap from the third porous body 43 so as to fit in the second divided region R2. Similarly, when looking at the cross section along the direction in which the third porous body 43 extends and the thickness direction Z, it is preferable that the fourth porous body 44 has one or more acute angles. In this case, the acute angle of the fourth porous body 44 can be used to adjust the bending angle of the housing 10.
  • the fourth porous body 44 when looking at the cross section along the direction orthogonal to the extending direction of the third porous body 43 and the thickness direction Z, the fourth porous body 44 may have one or more acute angles, and has an acute angle. It does not have to be.
  • the cross-sectional shape of the fourth porous body 44 may be rectangular or the like.
  • the fourth porous body 44 has one or more acute angles and the housing 10 In the bent state, the housing in which the fourth porous body 44 closest to the third porous body 43 is arranged with respect to the outer wall surface of the housing 10 in which the third porous body 43 closest to the bending line L is arranged.
  • the relationship between the bending angle ⁇ 3 (not shown) of the outer wall surface of 10 and the acute angle angle ⁇ 4 (not shown) of the fourth porous body 44 is 0 ° ⁇ 3 ⁇ 90 ° ⁇ 4 . It is preferable to meet.
  • the angle ⁇ 3 is preferably the same as the angle ⁇ 1
  • the angle ⁇ 4 is preferably the same as the angle ⁇ 2 .
  • the housing 10 may be bent in two steps.
  • the cross-sectional shape of the fourth porous body 44 may be a shape other than a trapezoid. Further, in the above cross section, the fourth porous body 44 does not have to have an acute angle, and for example, the cross-sectional shape of the fourth porous body 44 may be a rectangle or the like.
  • the second porous body 42 When looking at the cross section along the direction in which the first porous body 41 extends and the thickness direction Z, instead of the second porous body 42 having one or more acute angles, or the second porous body 42 has an acute angle of 1.
  • the first porous body 41 may have one or more acute angles. In this case, the acute angle of the first porous body 41 can be used to adjust the bending angle of the housing 10.
  • the first porous body 41 when looking at the cross section along the direction orthogonal to the extending direction of the first porous body 41 and the thickness direction Z, the first porous body 41 may have one or more acute angles, and has an acute angle. It does not have to be.
  • the cross-sectional shape of the first porous body 41 may be rectangular or the like.
  • the bending line is in a state where the first porous body 41 has one or more acute angles and the housing 10 is bent.
  • the first porous body 41 has one or more acute angles
  • the second porous body 42 has one or more acute angles.
  • the second porous body 42 closest to the first porous body 41 is attached to the outer wall surface of the housing 10 in which the first porous body 41 closest to the bending line L is arranged.
  • the bending angle ⁇ 1 (see FIG. 5) of the outer wall surface of the arranged housing 10, the acute angle angle ⁇ 1 (not shown) of the first porous body 41, and the acute angle angle of the second porous body 42.
  • the relationship with ⁇ 2 (see FIG. 4) satisfies 0 ° ⁇ 1 ⁇ 90 ° ⁇ ⁇ 1 ⁇ ⁇ 2 .
  • the angle ⁇ 2 may be the same as or different from the angle ⁇ 1 .
  • the housing 10 may be bent in two steps.
  • the cross-sectional shape of the first porous body 41 may be a shape other than a trapezoid. Further, in the above-mentioned cross section, the first porous body 41 does not have to have an acute angle, and for example, the cross-sectional shape of the first porous body 41 may be a rectangle or the like.
  • the fourth porous body 44 When looking at the cross section along the direction in which the third porous body 43 extends and the thickness direction Z, instead of the fourth porous body 44 having one or more acute angles, or the fourth porous body 44 has an acute angle of 1.
  • the third porous body 43 may have one or more acute angles. In this case, the acute angle of the third porous body 43 can be used to adjust the bending angle of the housing 10.
  • the third porous body 43 when looking at the cross section along the direction orthogonal to the extending direction of the third porous body 43 and the thickness direction Z, the third porous body 43 may have one or more acute angles, and has an acute angle. It does not have to be.
  • the cross-sectional shape of the third porous body 43 may be rectangular or the like.
  • the bending line is in a state where the third porous body 43 has one or more acute angles and the housing 10 is bent.
  • the relationship between (not shown) and the acute angle angle ⁇ 3 (not shown) of the third porous body 43 satisfies 0 ° ⁇ 3 ⁇ 90 ° ⁇ 3 .
  • the angle ⁇ 3 is preferably the same as the angle ⁇ 1
  • the angle ⁇ 3 is preferably the same as the angle ⁇ 1 .
  • the third porous body 43 has one or more acute angles
  • the fourth porous body 44 has one or more acute angles. Further, in a state where the housing 10 is bent, the fourth porous body 44 closest to the third porous body 43 is attached to the outer wall surface of the housing 10 in which the third porous body 43 closest to the bending line L is arranged.
  • the angle ⁇ 4 may be the same as or different from the angle ⁇ 3 .
  • the angle ⁇ 3 is preferably the same as the angle ⁇ 1
  • the angle ⁇ 3 is preferably the same as the angle ⁇ 1
  • the angle ⁇ 4 is preferably the same as the angle ⁇ 2 .
  • the housing 10 may be bent in two steps.
  • the cross-sectional shape of the third porous body 43 may be a shape other than a trapezoid. Further, in the above-mentioned cross section, the third porous body 43 does not have to have an acute angle, and for example, the cross-sectional shape of the third porous body 43 may be a rectangle or the like.
  • the bending angle ⁇ 1 of the outer wall surface of the housing 10 in which the second porous body 42 closest to the first porous body 41 is arranged with respect to the outer wall surface of the housing 10 is preferably 10 ° or more and 45 ° or less, preferably 10 °. It is more preferably 30 ° or less.
  • the bending angle ⁇ 3 of the outer wall surface of the housing 10 in which the fourth porous body 44 closest to the third porous body 43 is arranged with respect to the outer wall surface of the housing 10 is preferably 10 ° or more and 45 ° or less, preferably 10 °. It is more preferably 30 ° or less.
  • the angle ⁇ 3 is preferably the same as the angle ⁇ 1 .
  • the width of the first porous body 41 and the third when looking at the cross section perpendicular to the thickness direction Z and defining the dimension of the porous body in the direction orthogonal to the direction in which the first porous body 41 extends as the width, the width of the first porous body 41 and the third.
  • the width of each of the porous bodies 43 is preferably 50 ⁇ m or more and 300 ⁇ m or less. This makes it possible to obtain a high capillary force.
  • the width of the first porous body 41 may be the same as or different from the width of the third porous body 43.
  • the width of the first porous body 41 and the width of the third porous body 43 may or may not be constant in the thickness direction Z. Further, a porous body having a constant width in the thickness direction Z and a porous body having a non-constant width in the thickness direction Z may coexist.
  • the width of the second porous body 42 and the width of the fourth porous body 44 are preferably 60 ⁇ m or more and 500 ⁇ m or less, respectively.
  • the width of the second porous body 42 may be the same as or different from the width of the fourth porous body 44.
  • the width of the second porous body 42 and the width of the fourth porous body 44 may or may not be constant in the thickness direction Z. Further, a porous body having a constant width in the thickness direction Z and a porous body having a non-constant width in the thickness direction Z may coexist.
  • the height of the first porous body 41 and the height of the third porous body 43 are preferably 20 ⁇ m or more and 300 ⁇ m or less, and more preferably 50 ⁇ m or more and 200 ⁇ m or less, respectively.
  • the height of the first porous body 41 may be the same as or different from the height of the third porous body 43.
  • the height of the second porous body 42 and the height of the fourth porous body 44 are preferably 20 ⁇ m or more and 300 ⁇ m or less, and more preferably 50 ⁇ m or more and 200 ⁇ m or less, respectively.
  • the height of the second porous body 42 may be the same as or different from the height of the fourth porous body 44. Further, the height of the second porous body 42 may be the same as or different from the height of the first porous body 41. Similarly, the height of the fourth porous body 44 may be the same as or different from the height of the third porous body 43.
  • the working medium 20 of the liquid phase located on the surfaces of the first porous body 41 and the third porous body 43 is heated and evaporated through the inner wall surface of the housing 10.
  • the pressure of the gas in the steam flow path 50 in the vicinity of the evaporation unit EP increases.
  • the working medium 20 of the gas phase moves in the steam flow path 50 toward the condensed portion CP side.
  • the gas phase working medium 20 that has reached the condensing portion CP is deprived of heat through the inner wall surface of the housing 10 and is condensed into droplets.
  • the working medium 20 of the gas phase can be condensed other than the condensed portion CP.
  • the droplets of the working medium 20 permeate into the pores of the first porous body 41 and the pores of the third porous body 43 by the capillary force. Further, a part of the working medium 20 of the liquid phase that has penetrated into the pores of the first porous body 41 and the pores of the third porous body 43 flows into the liquid flow path 51. Therefore, the liquid flow path is formed by the first porous body 41, the third porous body 43, and the liquid flow path 51.
  • the working medium 20 of the liquid phase in the pores of the first porous body 41, in the pores of the third porous body 43, and in the liquid flow path 51 moves to the evaporation part EP side by the capillary force.
  • the working medium 20 of the liquid phase passed from the first porous body 41 on the CP side of the condensed portion to the second porous body 42 by the capillary force. It moves to the first porous body 41 on the EP side of the evaporation part.
  • the working medium 20 of the liquid phase passes through the third porous body 43 to the fourth porous body 44 on the CP side of the condensing portion by the capillary force. , Moves to the third porous body 43 on the EP side of the evaporation part. Then, the working medium 20 of the liquid phase is supplied from the pores of the first porous body 41, the pores of the third porous body 43, and the liquid flow path 51 to the evaporation section EP. The working medium 20 of the liquid phase that has reached the evaporation unit EP evaporates again from the surfaces of the first porous body 41 and the third porous body 43 in the evaporation unit EP.
  • the liquid flow path 51 reaches the evaporation unit EP.
  • the evaporating unit EP may include the liquid flow path 51 and the wick 30, or may include only the wick 30 without the liquid flow path 51, or may include the liquid flow path 51 and the wick 30. It does not have to be.
  • the bending line L is not arranged in the evaporation portion EP. That is, it is preferable that the second porous body 42 and the fourth porous body 44 are not arranged in the evaporation unit EP.
  • the working medium 20 that has evaporated and becomes a gas phase moves to the condensed portion CP side again through the steam flow path 50.
  • the vapor chamber 1 can repeatedly transport the heat recovered on the evaporation unit EP side to the condensation unit CP side by repeatedly utilizing the gas-liquid phase change of the working medium 20.
  • the pore diameters of the first porous body 41 and the third porous body 43 are preferably 50 ⁇ m or less, respectively. By reducing the pore diameter, high capillary force can be obtained.
  • the pore diameters of the first porous body 41 and the third porous body 43 may be the same or different.
  • the shape of the hole is not particularly limited.
  • the pore diameters of the second porous body 42 and the fourth porous body 44 are preferably 50 ⁇ m or less, respectively. By reducing the pore diameter, high capillary force can be obtained.
  • the pore diameters of the second porous body 42 and the fourth porous body 44 may be the same or different. Further, the pore diameter of the second porous body 42 may be the same as or different from the pore diameter of the first porous body 41. Similarly, the pore diameter of the fourth porous body 44 may be the same as or different from the pore diameter of the third porous body 43.
  • the shape of the hole is not particularly limited.
  • the ends of at least one set of adjacent wicks 30 on the EP side of the evaporation portion may be connected to each other, and the liquid flow paths 51 may communicate with each other.
  • at least one set of adjacent wicks 30 may be connected to each other at the ends opposite to the evaporation portion EP, for example, the ends on the condensing portion CP side, and the liquid flow paths 51 may communicate with each other.
  • the vapor flow path 50 and the liquid flow path 51 are formed between the wicks 30.
  • the density of the flow path in the evaporation part EP is higher than the density of the flow path in the portion away from the evaporation part EP, for example, the density of the flow path in the condensation part CP.
  • the vapor chamber 1 is manufactured by, for example, the following method.
  • the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 are composed of a metal porous sintered body such as copper.
  • the method for manufacturing the vapor chamber 1 is not particularly limited as long as the above configuration can be obtained.
  • the surface to be the first inner wall surface 11a is coated with a metal paste such as a copper paste for forming the first porous body 41 and the third porous body 43.
  • a metal paste such as a copper paste for forming the first porous body 41 and the third porous body 43.
  • Examples of the method of applying the metal paste include printing such as screen printing.
  • the metal paste By heating the first sheet 11 coated with the metal paste, the metal paste becomes a metal porous sintered body. As a result, the first porous body 41 and the third porous body 43 are formed on the first sheet 11.
  • FIG. 8 is a plan view schematically showing an example of the first porous body and the third porous body formed on the first sheet.
  • FIG. 9 is a cross-sectional view of the first porous body as seen from the direction indicated by the arrow IX in FIG.
  • FIG. 10 is a cross-sectional view of the first porous body seen from the direction indicated by the arrow X in FIG.
  • the metal paste is applied onto the first sheet 11 along the length direction Y by a method such as printing.
  • the first porous body 41 and the third porous body 43 are formed on the first sheet 11 along the length direction Y.
  • the first divided region R1 is formed in the first porous body 41
  • the second divided region R2 is formed in the third porous body 43.
  • the cross-sectional shape of the first porous body 41 is rectangular.
  • the cross-sectional shape of the third porous body 43 is also rectangular.
  • the cross-sectional shape of the first porous body 41 is trapezoidal.
  • the cross-sectional shape of the third porous body 43 is also trapezoidal.
  • a metal paste such as a copper paste for forming the second porous body 42 and the fourth porous body 44 is applied to the surface to be the second inner wall surface 12a.
  • Examples of the method of applying the metal paste include printing such as screen printing.
  • the metal paste for forming the second porous body 42 and the fourth porous body 44 may be the same as or different from the metal paste for forming the first porous body 41 and the third porous body 43.
  • the metal paste becomes a metal porous sintered body.
  • the second porous body 42 and the fourth porous body 44 are formed on the second sheet 12.
  • FIG. 11 is a plan view schematically showing an example of the second porous body and the fourth porous body formed on the second sheet.
  • FIG. 12 is a cross-sectional view of the second porous body as seen from the direction indicated by the arrow XII in FIG.
  • FIG. 13 is a cross-sectional view of the second porous body as seen from the direction indicated by the arrow XIII in FIG.
  • the metal paste is applied onto the second sheet 12 along the width direction X by a method such as printing.
  • the second porous body 42 and the fourth porous body 44 are formed on the second sheet 12 along the width direction X.
  • the cross-sectional shape of the second porous body 42 is trapezoidal in the cross-sectional view seen from the direction parallel to the application direction of the metal paste.
  • the cross-sectional shape of the fourth porous body 44 is also trapezoidal.
  • the cross-sectional shape of the second porous body 42 is rectangular in the cross section viewed from the direction perpendicular to the application direction of the metal paste.
  • the cross-sectional shape of the fourth porous body 44 is also rectangular.
  • the order in which the first sheet 11 and the second sheet 12 are heated is not particularly limited, and may be, for example, after the first sheet 11 and the second sheet 12 are joined.
  • the first sheet 11 is fitted so that the second porous body 42 is fitted in the first divided region R1 of the first porous body 41 and the fourth porous body 44 is fitted in the second divided region R2 of the third porous body 43.
  • the second sheet 12 are overlapped with each other, and the outer edge portion is joined.
  • an encapsulation port for encapsulating the working medium 20 of the liquid phase is formed.
  • the housing 10 having an internal space is manufactured.
  • the encapsulation port After injecting the working medium 20 of the liquid phase from the encapsulation port of the housing 10, the encapsulation port is closed.
  • the vapor chamber 1 is manufactured through the above steps.
  • the vapor chamber 1 may be manufactured by a method other than the above.
  • the direction of applying the metal paste for forming the second porous body 42 and the fourth porous body 44 is the same as the direction of applying the metal paste for forming the first porous body 41 and the third porous body 43. But it may be.
  • the metal paste for forming the first porous body 41 and the third porous body 43 is applied onto the first sheet 11, and the metal paste for forming the second porous body 42 and the fourth porous body 44 is also the first. It may be applied on 1 sheet 11.
  • the metal paste for forming the first porous body 41 and the third porous body 43 is applied onto the second sheet 12, and the metal paste for forming the second porous body 42 and the fourth porous body 44 is also the first. 2 It may be applied on the sheet 12.
  • a plurality of second porous bodies are arranged in the direction in which the first porous body extends in the first divided region, and the third porous body is arranged in the second divided region.
  • a plurality of fourth porous bodies are arranged in the extending direction.
  • FIG. 14 is a cross-sectional view schematically showing an example of a vapor chamber according to a second embodiment of the present invention.
  • a plurality of second porous bodies 42 are arranged in the first divided region R1 in the direction in which the first porous body 41 extends.
  • a plurality of fourth porous bodies 44 are arranged in the second divided region R2 in the direction in which the third porous body 43 extends.
  • five second porous bodies 42 are arranged in the first divided region R1, but if two or more second porous bodies 42 are arranged in the first divided region R1. good.
  • two or more fourth porous bodies 44 may be arranged in the second divided region R2.
  • a plurality of second porous bodies 42 are arranged in the first divided region R1, and a plurality of fourth porous bodies 44 are arranged in the second divided region R2, whereby the second porous body 42 or the fourth porous body 44 is arranged.
  • the housing 10 can be bent at the place where the housing 10 is arranged. Therefore, the housing 10 can be bent at an angle larger than the bending angles ⁇ 1 and ⁇ 3 described in the first embodiment.
  • the number of the second porous bodies 42 arranged in the first divided region R1 may be different from the number of the fourth porous bodies 44 arranged in the second divided region R2, but it is preferable that they are the same.
  • the shape of the second porous body 42 arranged in the first divided region R1 may be different from the shape of the fourth porous body 44 arranged in the second divided region R2, but is preferably the same.
  • the shape of the second porous body 42 may be the same or different in the cross section along the direction in which the first porous body 41 extends and the thickness direction Z.
  • the shape of the fourth porous body 44 may be the same or different.
  • the first porous body has a plurality of first divided regions
  • the third porous body has a plurality of second divided regions.
  • the orientation of the housing that can be bent with at least one bending line as the boundary is the orientation of the housing that can be bent with another bending line as the boundary. It is the same as the orientation.
  • FIG. 15 is a cross-sectional view schematically showing an example of a vapor chamber according to a third embodiment of the present invention.
  • the first porous body 41 has a plurality of first divided regions R1.
  • the third porous body 43 has a plurality of second divided regions R2.
  • the first porous body 41 has two first divided regions R1, but may have three or more first divided regions R1.
  • the third porous body 43 may have two second divided regions R2, or may have three or more second divided regions R2.
  • the direction of the housing 10 that can be bent with one bending line L1 as a boundary is different from the bending line L2. It is the same as the orientation of the housing 10 that can be bent at the boundary.
  • the housing 10 can be bent according to the shape of the space.
  • the first porous body 41 has three or more first divided regions R1 and the third porous body 43 has three or more second divided regions R2, a set of adjacent first divided regions R1 and a first. If the orientation of the housing 10 that can be bent with at least one bending line L1 as the boundary among the bending lines connecting the two divided regions R2 is the same as the orientation of the housing 10 that can be bent with another bending line L2 as the boundary. good.
  • the number of the first divided regions of the first porous body 41 may be different from the number of the second divided regions R2 of the third porous body 43, but is preferably the same.
  • the number of the second porous bodies 42 arranged in each of the first divided regions R1 may be the same or different.
  • the number of the fourth porous bodies 44 arranged in each of the second divided regions R2 may be the same or different.
  • the first porous body has a plurality of first divided regions
  • the third porous body has a plurality of second divided regions.
  • the orientation of the housing that can be bent with at least one bending line as the boundary is the orientation of the housing that can be bent with another bending line as the boundary. The orientation is different.
  • FIG. 16 is a cross-sectional view schematically showing an example of a vapor chamber according to a fourth embodiment of the present invention.
  • the first porous body 41 has a plurality of first divided regions R1.
  • the third porous body 43 has a plurality of second divided regions R2.
  • the first porous body 41 has two first divided regions R1, but may have three or more first divided regions R1.
  • the third porous body 43 may have two second divided regions R2, or may have three or more second divided regions R2.
  • the direction of the housing 10 that can be bent with one bending line L1 as a boundary is different from the bending line L2. It is different from the orientation of the housing 10 that can be bent at the boundary.
  • the housing 10 can be bent according to the shape of the space.
  • the first porous body 41 has three or more first divided regions R1 and the third porous body 43 has three or more second divided regions R2, a set of adjacent first divided regions R1 and a first. If the orientation of the housing 10 that can be bent with at least one bending line L1 as a boundary among the bending lines connecting the two divided regions R2 is different from the orientation of the housing 10 that can be bent with another bending line L2 as a boundary. good.
  • the number of the first divided regions of the first porous body 41 may be different from the number of the second divided regions R2 of the third porous body 43, but is preferably the same.
  • the number of the second porous bodies 42 arranged in each of the first divided regions R1 may be the same or different.
  • the number of the fourth porous bodies 44 arranged in each of the second divided regions R2 may be the same or different.
  • the bending line connecting one set of adjacent first division regions and second division regions is the contour line of the housing. Is tilted against.
  • FIG. 17 is a cross-sectional view schematically showing an example of a vapor chamber according to a fifth embodiment of the present invention.
  • the bending line L connecting the pair of adjacent first dividing regions R1 and the second dividing region R2 is the contour of the housing 10. It is inclined with respect to the line.
  • the housing 10 Since the bending line L connecting one set of adjacent first dividing regions R1 and the second dividing region R2 is inclined with respect to the contour line of the housing 10, the housing 10 is bent according to the shape of the space. Can be done.
  • the sixth embodiment is different from the first to fifth embodiments in that the wick contains the first porous body and the second porous body, and does not include the third porous body and the fourth porous body.
  • FIG. 18 is a cross-sectional view schematically showing an example of a vapor chamber according to a sixth embodiment of the present invention.
  • FIG. 19 is a cross-sectional view taken along the line XIX-XIX of the vapor chamber shown in FIG.
  • the wick 30A includes the first porous body 41 and the second porous body 42. Unlike the vapor chamber 1 shown in FIG. 2, the wick 30A does not include the third porous body 43 and the fourth porous body 44. Therefore, in the vapor chamber 6, the liquid flow path 51 is not formed, but the liquid flow path is formed by the first porous body 41 and the second porous body 42.
  • the first porous body 41 extends along a direction perpendicular to the thickness direction Z (in the present embodiment, the length direction Y). As shown in FIG. 18, the first porous body 41 is divided through the first divided region R1 in the extending direction thereof.
  • a steam flow path 50 is formed between adjacent wicks 30.
  • the second porous body 42 is arranged with a gap from the first porous body 41 so as to fit in the first divided region R1.
  • the housing 10 can be bent with a bending line L (see FIG. 18) including the first dividing region R1 as a boundary.
  • the vapor chamber 6 in which the wick 30A does not include the third porous body 43 and the fourth porous body 44 but includes the first porous body 41 and the second porous body 42 is similar to the vapor chamber 1. The effect can be expected.
  • the vapor chamber according to the sixth embodiment of the present invention has the same configuration as the first embodiment of the present invention except that the wick does not contain the third porous body and the fourth porous body.
  • a plurality of second porous bodies are arranged in the first divided region in the direction in which the first porous body extends. May be good.
  • the first porous body has a plurality of first dividing regions, and a bending line including each first dividing region.
  • the orientation of the housing that can be bent with at least one bending line as a boundary may be the same as the orientation of the housing that can be bent with another bending line as a boundary.
  • the first porous body has a plurality of first dividing regions, and a bending line including each first dividing region.
  • the orientation of the housing that can be bent with at least one bending line as a boundary may be different from the orientation of the housing that can be bent with another bending line as a boundary.
  • the bending line including the first dividing region is the contour of the housing. It may be inclined with respect to the line.
  • the heat diffusion device of the present invention is not limited to the above embodiment, and various applications and modifications can be added within the scope of the present invention regarding the configuration of the heat diffusion device, manufacturing conditions, and the like.
  • the planar shape of the housing 10 when viewed from the thickness direction Z is not particularly limited, and examples thereof include polygons such as triangles and rectangles, circles, ellipses, and combinations thereof. Be done. Further, the planar shape of the housing 10 may be L-shaped, C-shaped (U-shaped), or the like. Further, a through hole may be provided inside the housing 10. The planar shape of the housing 10 may be a shape corresponding to the application of the heat diffusion device, the shape of the place where the heat diffusion device is incorporated, and other parts existing in the vicinity.
  • the wick 30 including the first porous body 41 and the second porous body 42 is arranged in the entire internal space of the housing 10 in a plan view of the housing 10 from the thickness direction Z. As shown, it may be placed locally. For example, in a plan view of the housing 10 from the thickness direction Z, the wick 30 may be arranged only along the edge of the internal space of the housing 10, or near the central portion of the housing 10 in the lateral direction. The wick 30 may be placed only in.
  • the housing 10 when the housing 10 is composed of the first sheet 11 and the second sheet 12, the first sheet 11 and the second sheet 12 are overlapped so that their ends coincide with each other. Alternatively, the ends may be offset and overlapped.
  • the material constituting the first sheet 11 and the material constituting the second sheet 12 are different. May be good.
  • the stress applied to the housing 10 can be dispersed.
  • one sheet can obtain one function and the other sheet can obtain another function.
  • the above-mentioned functions are not particularly limited, and examples thereof include a heat conduction function and an electromagnetic wave shielding function.
  • the width of the first porous body 41 in the cross section perpendicular to the direction in which the first porous body 41 extends, may be constant in the thickness direction Z, and the width may be constant in the thickness direction Z. It does not have to be constant.
  • the width of the end portion on the second inner wall surface 12a side of the first porous body 41 is narrower than the width of the end portion on the first inner wall surface 11a side. May be good. In this case, a portion having a constant width may be included.
  • the third porous body 43 has a thickness in a cross section perpendicular to the direction in which the third porous body 43 extends.
  • the width may be constant in the direction Z, and the width may not be constant in the thickness direction Z.
  • the width of the end portion on the second inner wall surface 12a side of the third porous body 43 is narrower than the width of the end portion on the first inner wall surface 11a side. May be good. In this case, a portion having a constant width may be included.
  • the housing 10 may have a plurality of evaporation units EP.
  • a wick 30 extending along an oblique direction with respect to the width direction X and the length direction Y may exist.
  • the wick 30 may extend radially from the evaporation unit EP.
  • a plurality of columns that support the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside may be arranged in the steam flow path 50.
  • the steam flow path 50 is divided between the columns.
  • the columns support the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside.
  • the number of liquid flow paths 51 is small, it is possible to support the housing 10 by arranging columns in the steam flow path 50.
  • the columns are arranged in all the steam flow paths 50, but there may be a steam flow path 50 in which the columns are not arranged.
  • the column may be in contact with both the first inner wall surface 11a and the second inner wall surface 12a, may be in contact with either the first inner wall surface 11a or the second inner wall surface 12a, and may be in contact with either one of the first inner wall surface 11a and the second inner wall surface 12a. And it does not have to be in contact with both the second inner wall surface 12a.
  • the material forming the column is not particularly limited, and examples thereof include resin, metal, ceramics, a mixture thereof, and a laminate. Further, the support column may be integrated with the housing 10, and may be formed by, for example, etching the inner wall surface of the first sheet 11 or the second sheet 12.
  • the shape of the strut is not particularly limited as long as it can support the housing 10, but examples of the shape of the cross section perpendicular to the height direction of the strut include polygons such as rectangles, circles, and ellipses. ..
  • the height of the columns is not particularly limited, and may be the same as or different from the height of the wick 30.
  • the height of the columns may be the same or different in one heat diffusion device.
  • the height of the stanchions in one area may be different from the height of the stanchions in another area.
  • the width of the strut is not particularly limited as long as it gives strength that can suppress the deformation of the housing of the heat diffusion device, but the equivalent circle diameter of the cross section perpendicular to the height direction of the end of the strut is, for example, 100 ⁇ m or more and 2000 ⁇ m. It is less than or equal to, preferably 300 ⁇ m or more and 1000 ⁇ m or less.
  • the diameter equivalent to the circle of the support column it is possible to further suppress the deformation of the housing of the heat diffusion device.
  • by reducing the diameter equivalent to the circle of the column it is possible to secure a wider space for the steam of the working medium to move.
  • the arrangement of the columns is not particularly limited, but is preferably arranged evenly in a predetermined area, more preferably evenly over the entire area, for example, so that the distance between the columns is constant. By arranging the columns evenly, uniform strength can be ensured throughout the heat diffusion device.
  • the heat diffusion device of the present invention may further include a wick other than the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44.
  • the heat diffusion device of the present invention may further include at least one of the wicks arranged along the first inner wall surface and the wicks arranged along the second inner wall surface.
  • the wick arranged along the first inner wall surface and the wick arranged along the second inner wall surface are not particularly limited as long as they have a capillary structure capable of moving the working medium by a capillary force.
  • the capillary structure of the wick may be a known structure used in conventional heat diffusion devices. Examples of the capillary structure include microstructures having irregularities such as pores, grooves, and protrusions, such as a porous structure, a fiber structure, a groove structure, and a mesh structure.
  • the material of the wick arranged along the first inner wall surface and the material of the wick arranged along the second inner wall surface are not particularly limited, and for example, a metal porous film formed by etching or metal processing, a mesh, a non-woven fabric, and the like.
  • a sintered body, a porous body, or the like is used.
  • the mesh used as the material of the wick may be composed of, for example, a metal mesh, a resin mesh, or a surface-coated mesh thereof, and is preferably composed of a copper mesh, a stainless (SUS) mesh, or a polyester mesh. ..
  • the sintered body used as the material of the wick may be composed of, for example, a metal porous sintered body and a ceramic porous sintered body, and is preferably composed of a copper or nickel porous sintered body. ..
  • the porous body used as the material of the wick may be, for example, a porous body made of a metal porous body, a ceramic porous body, a resin porous body, or the like.
  • the size and shape of the wick arranged along the first inner wall surface and the wick arranged along the second inner wall surface are not particularly limited, but are, for example, continuous from the evaporation part to the condensing part inside the housing. It is preferable to have a size and a shape that can be installed.
  • the thickness of the wick arranged along the first inner wall surface and the thickness of the wick arranged along the second inner wall surface are not particularly limited, but are, for example, 2 ⁇ m or more and 200 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less, respectively. More preferably, it is 10 ⁇ m or more and 40 ⁇ m or less.
  • the thickness of the wicks arranged along the first inner wall surface and the wicks arranged along the second inner wall surface may be partially different.
  • the thickness of the wick arranged along the first inner wall surface may be the same as or different from the thickness of the wick arranged along the second inner wall surface.
  • the heat diffusion device of the present invention can be mounted on an electronic device for the purpose of heat dissipation. Therefore, an electronic device provided with the heat diffusion device of the present invention is also one of the present inventions. Examples of the electronic device of the present invention include smartphones, tablet terminals, notebook computers, game devices, wearable devices and the like. As described above, the heat diffusion device of the present invention operates independently without the need for external power, and can diffuse heat in two dimensions at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the working medium. Therefore, the electronic device provided with the heat diffusion device of the present invention can effectively dissipate heat in the limited space inside the electronic device.
  • the heat diffusion device of the present invention can be used for a wide range of applications in the field of portable information terminals and the like. For example, it can be used to lower the temperature of a heat source such as a CPU and extend the usage time of an electronic device, and can be used for a smartphone, a tablet terminal, a notebook computer, or the like.
  • Vapor chamber (heat diffusion device) 10 Housing 11 1st sheet 11a 1st inner wall surface 12 2nd sheet 12a 2nd inner wall surface 20 Working medium 30, 30A Wick 41 1st porous body 42, 42A 2nd porous body 43 3rd porous body 44 4th porous body 50 Steam flow path 51 Liquid flow path CP Condensing part EP Evaporation part HS Heat source L, L1, L2 Bending line R1 First dividing region R2 Second dividing region X Width direction Y Length direction Z Thickness direction ⁇ 2 Second porous body Angle of sharp angle ⁇ 1 Bending angle of the outer wall surface of the housing in which the second porous body closest to the first porous body is arranged with respect to the outer wall surface of the housing in which the first porous body closest to the bending line is arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A vapor chamber 1, which is an embodiment of a heat spreading device, comprises a housing 10, a working medium 20, and a wick 30. The wick 30 includes a first porous body 41 and a second porous body 42 which support a first inner wall surface 11a and a second inner wall surface 12a of the housing 10 from inside. The first porous body 41 extends along a direction perpendicular to a thickness direction Z, and is split via a first split region R1 in the extending direction. The second porous body 42 is disposed with a gap from the first porous body 41 so as to be fitted in the first split region R1.

Description

熱拡散デバイスHeat diffusion device
 本発明は、熱拡散デバイスに関する。 The present invention relates to a heat diffusion device.
 近年、素子の高集積化および高性能化による発熱量が増加している。また、製品の小型化が進むことで、発熱密度が増加するため、放熱対策が重要となっている。この状況はスマートフォンおよびタブレットなどのモバイル端末の分野において特に顕著である。熱対策部材としては、グラファイトシートなどが用いられることが多いが、その熱輸送量は十分ではないため、様々な熱対策部材の使用が検討されている。中でも、非常に効果的に熱を拡散させることが可能である熱拡散デバイスとして、面状のヒートパイプであるベーパーチャンバーの使用の検討が進んでいる。 In recent years, the amount of heat generated has increased due to the high integration and high performance of elements. In addition, as the miniaturization of products progresses, the heat generation density increases, so heat dissipation measures are important. This situation is especially noticeable in the field of mobile terminals such as smartphones and tablets. As the heat countermeasure member, a graphite sheet or the like is often used, but since the heat transport amount is not sufficient, the use of various heat countermeasure members is being considered. In particular, the use of a vapor chamber, which is a planar heat pipe, is being studied as a heat diffusion device capable of diffusing heat very effectively.
 ベーパーチャンバーは、筐体の内部に、作動媒体と、毛細管力によって作動媒体を輸送するウィックとが封入された構造を有する。上記作動媒体は、発熱素子からの熱を吸収する蒸発部において発熱素子からの熱を吸収してベーパーチャンバー内で蒸発した後、ベーパーチャンバー内を移動し、冷却されて液相に戻る。液相に戻った作動媒体は、ウィックの毛細管力によって再び発熱素子側の蒸発部に移動し、発熱素子を冷却する。これを繰り返すことにより、ベーパーチャンバーは外部動力を有することなく自立的に作動し、作動媒体の蒸発潜熱および凝縮潜熱を利用して、二次元的に高速で熱を拡散することができる。 The vapor chamber has a structure in which a working medium and a wick that transports the working medium by capillary force are enclosed inside the housing. The working medium absorbs heat from the heat generating element in the evaporation unit that absorbs heat from the heat generating element and evaporates in the vapor chamber, then moves in the vapor chamber, is cooled, and returns to the liquid phase. The working medium that has returned to the liquid phase moves to the evaporation part on the heat generating element side again by the capillary force of the wick, and cools the heat generating element. By repeating this, the vapor chamber operates independently without having external power, and can diffuse heat two-dimensionally at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the working medium.
 スマートフォンおよびタブレットなどのモバイル端末の薄型化に対応するため、ベーパーチャンバーにも薄型化が求められている。このような薄型のベーパーチャンバーでは、機械的強度および熱輸送効率の確保が難しくなる。 The vapor chamber is also required to be thinner in order to support the thinner mobile terminals such as smartphones and tablets. In such a thin vapor chamber, it becomes difficult to secure mechanical strength and heat transfer efficiency.
 そこで、特許文献1に記載されているように、ベーパーチャンバーを構成する筐体の機械的強度を確保するために、筐体の内部に配置されるウィックを、筐体の形状を保つための支持体として利用することが提案されている。 Therefore, as described in Patent Document 1, in order to secure the mechanical strength of the housing constituting the vapor chamber, the wick arranged inside the housing is supported to maintain the shape of the housing. It has been proposed to be used as a body.
 特許文献1に記載されたベーパーチャンバーでは、筐体の対向する一対の内壁面、上記一対の内壁面に接触しないウィックの側面、および、上記ウィックの側面と隙間をあけて形成された対向面によって囲まれた空間に、凝縮した作動流体の液溜まり流路が形成されている。特許文献1によれば、ウィックと液溜まり流路を組み合わせることによって、ウィックに常に液体が供給される状態を作ることができるため、液体流路の全体としての液体の圧力損失を低減し、その結果、ベーパーチャンバーの最大熱輸送量を大きくすることができるとされている。 In the vapor chamber described in Patent Document 1, a pair of inner wall surfaces facing each other of the housing, a side surface of the wick that does not contact the pair of inner wall surfaces, and a facing surface formed with a gap from the side surface of the wick. In the enclosed space, a liquid pool flow path of condensed working fluid is formed. According to Patent Document 1, by combining the wick and the liquid pool flow path, it is possible to create a state in which the liquid is always supplied to the wick, so that the pressure loss of the liquid as a whole of the liquid flow path can be reduced, and the pressure loss of the liquid can be reduced. As a result, it is said that the maximum heat transport amount of the vapor chamber can be increased.
特開2019-113270号公報(特許第6442594号公報)Japanese Unexamined Patent Publication No. 2019-11370 (Patent No. 6442594)
 薄型のベーパーチャンバーでは、ベーパーチャンバーの組み入れ箇所の形状に合わせて、筐体を曲げて配置することも想定される。 In a thin vapor chamber, it is assumed that the housing is bent and arranged according to the shape of the place where the vapor chamber is incorporated.
 しかしながら、筐体を曲げる方向によっては、筐体の内部に配置されているウィックも曲げられる場合がある。その場合、ウィックには、曲げの起点となる部分に大きな応力がかかるため、クラック等の粗大な欠陥が生じやすくなる。その結果、ウィックの毛細管力が保持できなくなり、熱輸送能力が低下するおそれがある。 However, depending on the bending direction of the housing, the wick placed inside the housing may also be bent. In that case, since a large stress is applied to the portion of the wick that is the starting point of bending, coarse defects such as cracks are likely to occur. As a result, the capillary force of the wick cannot be maintained, and the heat transport capacity may decrease.
 なお、上記の問題は、ベーパーチャンバーに限らず、ベーパーチャンバーと同様の構成によって熱を拡散させることが可能な熱拡散デバイスに共通する問題である。 The above problem is not limited to the vapor chamber, but is a problem common to heat diffusion devices capable of diffusing heat by the same configuration as the vapor chamber.
 本発明は、筐体が曲げられた場合において、ウィックの毛細管力が保持され、高い熱輸送能力を有する熱拡散デバイスを提供することを目的とする。本発明はまた、上記熱拡散デバイスを備える電子機器を提供することを目的とする。 An object of the present invention is to provide a heat diffusion device in which the capillary force of the wick is maintained and a high heat transfer capacity is obtained when the housing is bent. It is also an object of the present invention to provide an electronic device provided with the heat diffusion device.
 本発明の熱拡散デバイスは、厚さ方向に対向する第1内壁面および第2内壁面を有する筐体と、上記筐体の内部空間に封入された作動媒体と、上記筐体の内部空間に配置されたウィックと、を備える。上記ウィックは、上記筐体の上記第1内壁面および上記第2内壁面を内側から支持する、第1多孔体と第2多孔体とを含む。上記第1多孔体は、上記厚さ方向に垂直な方向に沿って延び、かつ、その延びる方向において第1分断領域を介して分断されている。上記第2多孔体は、上記第1分断領域に嵌まるように、上記第1多孔体と隙間を空けて配置されている。 The heat diffusion device of the present invention has a housing having a first inner wall surface and a second inner wall surface facing each other in the thickness direction, an actuating medium enclosed in the internal space of the housing, and the internal space of the housing. Equipped with a placed wick. The wick includes a first porous body and a second porous body that support the first inner wall surface and the second inner wall surface of the housing from the inside. The first porous body extends along a direction perpendicular to the thickness direction, and is divided through the first dividing region in the extending direction. The second porous body is arranged with a gap from the first porous body so as to fit in the first divided region.
 本発明の電子機器は、本発明の熱拡散デバイスを備える。 The electronic device of the present invention includes the heat diffusion device of the present invention.
 本発明によれば、筐体が曲げられた場合において、ウィックの毛細管力が保持され、高い熱輸送能力を有する熱拡散デバイスを提供することができる。 According to the present invention, it is possible to provide a heat diffusion device having a high heat transport capacity by maintaining the capillary force of the wick when the housing is bent.
図1は、本発明の第1実施形態に係るベーパーチャンバーの一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of a vapor chamber according to the first embodiment of the present invention. 図2は、図1に示すベーパーチャンバーのII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of the vapor chamber shown in FIG. 図3は、図2に示すベーパーチャンバーのIII-III線に沿った断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of the vapor chamber shown in FIG. 図4は、図2に示すベーパーチャンバーのIV-IV線に沿った断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV of the vapor chamber shown in FIG. 図5は、図4に示すベーパーチャンバーが曲げられた状態を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a state in which the vapor chamber shown in FIG. 4 is bent. 図6は、図5の変形例である。FIG. 6 is a modification of FIG. 図7は、図4の変形例である。FIG. 7 is a modification of FIG. 4. 図8は、第1シート上に形成された第1多孔体および第3多孔体の一例を模式的に示す平面図である。FIG. 8 is a plan view schematically showing an example of the first porous body and the third porous body formed on the first sheet. 図9は、図8中の矢印IXに示す方向から見た第1多孔体の断面図である。FIG. 9 is a cross-sectional view of the first porous body as seen from the direction indicated by the arrow IX in FIG. 図10は、図8中の矢印Xに示す方向から見た第1多孔体の断面図である。FIG. 10 is a cross-sectional view of the first porous body seen from the direction indicated by the arrow X in FIG. 図11は、第2シート上に形成された第2多孔体および第4多孔体の一例を模式的に示す平面図である。FIG. 11 is a plan view schematically showing an example of the second porous body and the fourth porous body formed on the second sheet. 図12は、図11中の矢印XIIに示す方向から見た第2多孔体の断面図である。FIG. 12 is a cross-sectional view of the second porous body as seen from the direction indicated by the arrow XII in FIG. 図13は、図11中の矢印XIIIに示す方向から見た第2多孔体の断面図である。FIG. 13 is a cross-sectional view of the second porous body as seen from the direction indicated by the arrow XIII in FIG. 図14は、本発明の第2実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 14 is a cross-sectional view schematically showing an example of a vapor chamber according to a second embodiment of the present invention. 図15は、本発明の第3実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 15 is a cross-sectional view schematically showing an example of a vapor chamber according to a third embodiment of the present invention. 図16は、本発明の第4実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 16 is a cross-sectional view schematically showing an example of a vapor chamber according to a fourth embodiment of the present invention. 図17は、本発明の第5実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 17 is a cross-sectional view schematically showing an example of a vapor chamber according to a fifth embodiment of the present invention. 図18は、本発明の第6実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。FIG. 18 is a cross-sectional view schematically showing an example of a vapor chamber according to a sixth embodiment of the present invention. 図19は、図18に示すベーパーチャンバーのXIX-XIX線に沿った断面図である。FIG. 19 is a cross-sectional view taken along the line XIX-XIX of the vapor chamber shown in FIG.
 以下、本発明の熱拡散デバイスについて説明する。
 しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する個々の好ましい構成を2つ以上組み合わせたものもまた本発明である。
Hereinafter, the heat diffusion device of the present invention will be described.
However, the present invention is not limited to the following embodiments, and can be appropriately modified and applied without changing the gist of the present invention. It should be noted that a combination of two or more of the individual preferable configurations described below is also the present invention.
 以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。第2実施形態以降では、第1実施形態と共通の事項についての記述は省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態毎には逐次言及しない。 It goes without saying that each embodiment shown below is an example, and partial replacement or combination of the configurations shown in different embodiments is possible. In the second and subsequent embodiments, the description of the matters common to the first embodiment will be omitted, and only the differences will be described. In particular, the same action and effect due to the same configuration will not be mentioned sequentially for each embodiment.
 以下の説明において、各実施形態を特に区別しない場合、単に「本発明の熱拡散デバイス」という。 In the following description, when each embodiment is not particularly distinguished, it is simply referred to as "heat diffusion device of the present invention".
 以下では、本発明の熱拡散デバイスの一実施形態として、ベーパーチャンバーを例にとって説明する。本発明の熱拡散デバイスは、ヒートパイプなどの熱拡散デバイスなどにも適用可能である。 Hereinafter, a vapor chamber will be described as an example of an embodiment of the heat diffusion device of the present invention. The heat diffusion device of the present invention can also be applied to a heat diffusion device such as a heat pipe.
 以下に示す図面は模式的なものであり、その寸法や縦横比の縮尺などは実際の製品とは異なる場合がある。 The drawings shown below are schematic, and their dimensions and aspect ratio scale may differ from the actual product.
[第1実施形態]
 図1は、本発明の第1実施形態に係るベーパーチャンバーの一例を模式的に示す斜視図である。図2は、図1に示すベーパーチャンバーのII-II線に沿った断面図である。図3は、図2に示すベーパーチャンバーのIII-III線に沿った断面図である。図4は、図2に示すベーパーチャンバーのIV-IV線に沿った断面図である。
[First Embodiment]
FIG. 1 is a perspective view schematically showing an example of a vapor chamber according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line II-II of the vapor chamber shown in FIG. FIG. 3 is a cross-sectional view taken along the line III-III of the vapor chamber shown in FIG. FIG. 4 is a cross-sectional view taken along the line IV-IV of the vapor chamber shown in FIG.
 図1に示すベーパーチャンバー1は、気密状態に密閉された中空の筐体10を備える。筐体10は、図3および図4に示すように、厚さ方向Zに対向する第1内壁面11aおよび第2内壁面12aを有する。図2に示すように、ベーパーチャンバー1は、さらに、筐体10の内部空間に封入された作動媒体20と、筐体10の内部空間に配置されたウィック30と、を備える。 The vapor chamber 1 shown in FIG. 1 includes a hollow housing 10 that is hermetically sealed. As shown in FIGS. 3 and 4, the housing 10 has a first inner wall surface 11a and a second inner wall surface 12a facing each other in the thickness direction Z. As shown in FIG. 2, the vapor chamber 1 further includes a working medium 20 enclosed in the internal space of the housing 10 and a wick 30 arranged in the internal space of the housing 10.
 筐体10には、図2に示すように、封入した作動媒体20を蒸発させる蒸発部(evaporation portion)EPが設定されている。筐体10には、さらに、蒸発した作動媒体20を凝縮させる凝縮部(condensation portion)CPが設定されていてもよい。図1に示すように、筐体10の外壁面には、発熱素子である熱源(heat source)HSが配置される。熱源HSとしては、電子機器の電子部品、例えば中央処理装置(CPU)等が挙げられる。筐体10の内部空間のうち、熱源HSの近傍であって熱源HSによって加熱される部分が、蒸発部EPに相当する。一方、蒸発部EPから離れた部分が、凝縮部CPに相当する。また、蒸発した作動媒体20は凝縮部CP以外でも凝縮され得る。本実施形態では、蒸発した作動媒体20を特に凝縮させやすい部分を凝縮部CPとして表現する。 As shown in FIG. 2, the housing 10 is provided with an evaporation unit EP that evaporates the enclosed working medium 20. Further, the housing 10 may be set with a condensation portion CP for condensing the evaporated working medium 20. As shown in FIG. 1, a heat source HS, which is a heat generating element, is arranged on the outer wall surface of the housing 10. Examples of the heat source HS include electronic components of electronic devices, such as a central processing unit (CPU). In the internal space of the housing 10, the portion near the heat source HS and heated by the heat source HS corresponds to the evaporation portion EP. On the other hand, the portion away from the evaporation portion EP corresponds to the condensation portion CP. Further, the evaporated working medium 20 can be condensed other than the condensed portion CP. In the present embodiment, a portion where the evaporated working medium 20 is particularly easy to condense is expressed as a condensing portion CP.
 ベーパーチャンバー1は、全体として面状である。すなわち、筐体10は、全体として面状である。ここで、「面状」とは、板状およびシート状を包含し、幅方向Xの寸法(以下、幅という)および長さ方向Yの寸法(以下、長さという)が厚さ方向Zの寸法(以下、厚さまたは高さという)に対して相当に大きい形状、例えば幅および長さが、厚さの10倍以上、好ましくは100倍以上である形状を意味する。 The vapor chamber 1 is planar as a whole. That is, the housing 10 is planar as a whole. Here, the "plane" includes a plate shape and a sheet shape, and the dimension in the width direction X (hereinafter referred to as "width") and the dimension in the length direction Y (hereinafter referred to as "length") are in the thickness direction Z. It means a shape that is considerably larger than a dimension (hereinafter referred to as thickness or height), for example, a shape having a width and a length of 10 times or more, preferably 100 times or more the thickness.
 ベーパーチャンバー1の大きさ、すなわち、筐体10の大きさは、特に限定されない。ベーパーチャンバー1の幅および長さは、用途に応じて適宜設定することができる。ベーパーチャンバー1の幅および長さは、各々、例えば、5mm以上500mm以下、20mm以上300mm以下または50mm以上200mm以下である。ベーパーチャンバー1の幅および長さは、同じであっても、異なっていてもよい。 The size of the vapor chamber 1, that is, the size of the housing 10 is not particularly limited. The width and length of the vapor chamber 1 can be appropriately set according to the intended use. The width and length of the vapor chamber 1 are, for example, 5 mm or more and 500 mm or less, 20 mm or more and 300 mm or less, or 50 mm or more and 200 mm or less, respectively. The width and length of the vapor chamber 1 may be the same or different.
 筐体10は、外縁部が接合された対向する第1シート11および第2シート12から構成されることが好ましい。第1シート11および第2シート12を構成する材料は、ベーパーチャンバーとして用いるのに適した特性、例えば熱伝導性、強度、柔軟性、可撓性等を有するものであれば、特に限定されない。第1シート11および第2シート12を構成する材料は、好ましくは金属であり、例えば銅、ニッケル、アルミニウム、マグネシウム、チタン、鉄、またはそれらを主成分とする合金等であり、特に好ましくは銅である。第1シート11および第2シート12を構成する材料は、同じであっても、異なっていてもよいが、好ましくは同じである。 It is preferable that the housing 10 is composed of the first sheet 11 and the second sheet 12 facing each other to which the outer edges are joined. The materials constituting the first sheet 11 and the second sheet 12 are not particularly limited as long as they have properties suitable for use as a vapor chamber, such as thermal conductivity, strength, flexibility, and flexibility. The material constituting the first sheet 11 and the second sheet 12 is preferably a metal, for example, copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing them as a main component, and particularly preferably copper. Is. The materials constituting the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
 筐体10が第1シート11および第2シート12から構成される場合、第1シート11および第2シート12は、これらの外縁部において互いに接合される。かかる接合の方法は、特に限定されないが、例えば、レーザー溶接、抵抗溶接、拡散接合、ロウ接、TIG溶接(タングステン-不活性ガス溶接)、超音波接合または樹脂封止を用いることができ、好ましくはレーザー溶接、抵抗溶接またはロウ接を用いることができる。 When the housing 10 is composed of the first sheet 11 and the second sheet 12, the first sheet 11 and the second sheet 12 are joined to each other at their outer edges. The joining method is not particularly limited, and for example, laser welding, resistance welding, diffusion welding, brazing, TIG welding (tungsten-inert gas welding), ultrasonic welding, or resin encapsulation can be used, and is preferable. Can use laser welding, resistance welding or low welding.
 第1シート11および第2シート12の厚さは、特に限定されないが、各々、好ましくは10μm以上200μm以下、より好ましくは30μm以上100μm以下、さらに好ましくは40μm以上60μm以下である。第1シート11および第2シート12の厚さは、同じであっても、異なっていてもよい。また、第1シート11および第2シート12の各シートの厚さは、全体にわたって同じであってもよく、一部が薄くてもよい。 The thicknesses of the first sheet 11 and the second sheet 12 are not particularly limited, but are preferably 10 μm or more and 200 μm or less, more preferably 30 μm or more and 100 μm or less, and further preferably 40 μm or more and 60 μm or less, respectively. The thicknesses of the first sheet 11 and the second sheet 12 may be the same or different. Further, the thickness of each of the first sheet 11 and the second sheet 12 may be the same throughout, or a part thereof may be thin.
 第1シート11および第2シート12の形状は、特に限定されない。例えば、図3および図4に示す例では、第1シート11は、厚みが一定の平板形状であり、第2シート12は、外縁部が外縁部以外の部分よりも厚い形状である。 The shapes of the first sheet 11 and the second sheet 12 are not particularly limited. For example, in the examples shown in FIGS. 3 and 4, the first sheet 11 has a flat plate shape having a constant thickness, and the second sheet 12 has a shape in which the outer edge portion is thicker than the portion other than the outer edge portion.
 あるいは、第1シート11は、厚みが一定の平板形状であり、第2シート12は、厚みが一定で、かつ、外縁部に対して外縁部以外の部分が外側に凸の形状であってもよい。この場合、筐体10の外縁部に凹みが形成される。そのため、ベーパーチャンバーを搭載する際などに外縁部の凹みを利用することができる。また、外縁部の凹みに他の部品などを配置することができる。 Alternatively, even if the first sheet 11 has a flat plate shape having a constant thickness and the second sheet 12 has a constant thickness and a portion other than the outer edge portion is convex outward with respect to the outer edge portion. good. In this case, a dent is formed on the outer edge of the housing 10. Therefore, the dent on the outer edge can be used when mounting the vapor chamber. Further, other parts and the like can be arranged in the recess of the outer edge portion.
 ベーパーチャンバー1全体の厚さは、特に限定されないが、好ましくは50μm以上500μm以下である。 The thickness of the entire vapor chamber 1 is not particularly limited, but is preferably 50 μm or more and 500 μm or less.
 作動媒体20は、筐体10内の環境下において気-液の相変化を生じ得るものであれば特に限定されず、例えば、水、アルコール類、代替フロン等を用いることができる。例えば、作動媒体は水性化合物であり、好ましくは水である。 The working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the housing 10, and for example, water, alcohols, CFC substitutes, or the like can be used. For example, the working medium is an aqueous compound, preferably water.
 ウィック30は、第1多孔体41と第2多孔体42と第3多孔体43と第4多孔体44とを含む。これらの多孔体は、毛細管力によって作動媒体20を輸送するウィックとして機能する。さらに、筐体10の支持体として多孔体を利用することにより、ベーパーチャンバー1の軽量化を図ることができる。 The wick 30 includes a first porous body 41, a second porous body 42, a third porous body 43, and a fourth porous body 44. These porous bodies function as wicks that transport the working medium 20 by capillary force. Further, by using a porous body as a support of the housing 10, the weight of the vapor chamber 1 can be reduced.
 第1多孔体41、第2多孔体42、第3多孔体43および第4多孔体44は、各々、筐体10の第1内壁面11aおよび第2内壁面12aを内側から支持している。これらの多孔体を筐体10の内部空間に配置することにより、筐体10の機械的強度を確保しつつ、筐体10外部からの衝撃を吸収することができる。 The first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 each support the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside. By arranging these porous bodies in the internal space of the housing 10, it is possible to absorb the impact from the outside of the housing 10 while ensuring the mechanical strength of the housing 10.
 図3に示す例では、第1多孔体41は、第1内壁面11aおよび第2内壁面12aに接しており、同様に、第3多孔体43は、第1内壁面11aおよび第2内壁面12aに接している。また、図4に示す例では、第2多孔体42は、第1内壁面11aおよび第2内壁面12aに接している。図示されていないが、図4に示す例と同様に、第4多孔体44は、第1内壁面11aおよび第2内壁面12aに接している。第1多孔体41、第2多孔体42、第3多孔体43および第4多孔体44は、第1内壁面11aおよび第2内壁面12aのいずれか一方に接していてもよく、第1内壁面11aおよび第2内壁面12aに接していなくてもよい。 In the example shown in FIG. 3, the first porous body 41 is in contact with the first inner wall surface 11a and the second inner wall surface 12a, and similarly, the third porous body 43 is in contact with the first inner wall surface 11a and the second inner wall surface 12a. It is in contact with 12a. Further, in the example shown in FIG. 4, the second porous body 42 is in contact with the first inner wall surface 11a and the second inner wall surface 12a. Although not shown, the fourth porous body 44 is in contact with the first inner wall surface 11a and the second inner wall surface 12a, as in the example shown in FIG. The first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 may be in contact with either the first inner wall surface 11a or the second inner wall surface 12a, and may be in contact with either one of the first inner wall surface 11a and the second inner wall surface 12a. It does not have to be in contact with the wall surface 11a and the second inner wall surface 12a.
 第1多孔体41、第2多孔体42、第3多孔体43および第4多孔体44は、例えば、金属多孔体、セラミックス多孔体または樹脂多孔体から構成される。第1多孔体41、第2多孔体42、第3多孔体43および第4多孔体44は、例えば、金属多孔質焼結体、セラミックス多孔質焼結体等の焼結体から構成されてもよい。第1多孔体41、第2多孔体42、第3多孔体43および第4多孔体44は、銅またはニッケルの金属多孔質焼結体から構成されることが好ましい。第1多孔体41、第2多孔体42、第3多孔体43および第4多孔体44を構成する材料は、同じであっても、異なっていてもよいが、好ましくは同じである。 The first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 are composed of, for example, a metal porous body, a ceramic porous body, or a resin porous body. Even if the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 are composed of a sintered body such as a metal porous sintered body or a ceramic porous sintered body, for example. good. The first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 are preferably composed of a metal porous sintered body of copper or nickel. The materials constituting the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 may be the same or different, but are preferably the same.
 図2に示すように、第1多孔体41は、厚さ方向Zに垂直な方向(本実施形態では長さ方向Y)に沿って延びている。図2および図4に示すように、第1多孔体41は、その延びる方向において第1分断領域(dividing region)R1を介して分断されている。 As shown in FIG. 2, the first porous body 41 extends along a direction perpendicular to the thickness direction Z (in the present embodiment, the length direction Y). As shown in FIGS. 2 and 4, the first porous body 41 is divided in the extending direction via the first dividing region R1.
 図2に示すように、第3多孔体43は、第1多孔体41が延びる方向(本実施形態では長さ方向Y)に沿って延びている。図2に示すように、第3多孔体43は、その延びる方向において第2分断領域R2を介して分断されている。 As shown in FIG. 2, the third porous body 43 extends along the direction in which the first porous body 41 extends (in the present embodiment, the length direction Y). As shown in FIG. 2, the third porous body 43 is divided through the second divided region R2 in the extending direction thereof.
 図2に示すように、隣り合うウィック30の間には、気相の作動媒体20が流通する蒸気流路50が形成されている。 As shown in FIG. 2, a steam flow path 50 through which a gas phase operating medium 20 flows is formed between adjacent wicks 30.
 一方、各々のウィック30において、第1多孔体41と第3多孔体43との間には、第1多孔体41および第3多孔体43が延びる方向(本実施形態では長さ方向Y)に沿って間隔が設けられることにより液体流路51が形成されている。液体流路51は、液相の作動媒体20が流通する液体流路として利用することができる。第1多孔体41または第3多孔体43を挟んで蒸気流路50と液体流路51とを交互に配置することにより、熱輸送効率を向上させることができる。 On the other hand, in each wick 30, the first porous body 41 and the third porous body 43 extend between the first porous body 41 and the third porous body 43 (in the present embodiment, the length direction Y). The liquid flow path 51 is formed by providing an interval along the line. The liquid flow path 51 can be used as a liquid flow path through which the working medium 20 of the liquid phase flows. By alternately arranging the vapor flow path 50 and the liquid flow path 51 with the first porous body 41 or the third porous body 43 interposed therebetween, the heat transport efficiency can be improved.
 蒸気流路50の幅は、液体流路51の幅よりも大きい。蒸気流路50の幅は、1000μm以上3000μm以下であることが好ましく、1000μm以上2000μm以下であることがより好ましい。液体流路51の幅は、50μm以上500μm以下であることが好ましい。なお、上記断面において、厚さ方向Zで蒸気流路50の幅が異なる場合には、最も広い部分の幅を蒸気流路50の幅と定義する。同様に、厚さ方向Zで液体流路51の幅が異なる場合には、最も広い部分の幅を液体流路51の幅と定義する。 The width of the steam flow path 50 is larger than the width of the liquid flow path 51. The width of the steam flow path 50 is preferably 1000 μm or more and 3000 μm or less, and more preferably 1000 μm or more and 2000 μm or less. The width of the liquid flow path 51 is preferably 50 μm or more and 500 μm or less. In the above cross section, when the width of the steam flow path 50 is different in the thickness direction Z, the width of the widest portion is defined as the width of the steam flow path 50. Similarly, when the width of the liquid flow path 51 is different in the thickness direction Z, the width of the widest portion is defined as the width of the liquid flow path 51.
 図2および図4に示すように、第2多孔体42は、第1分断領域R1に嵌まるように、第1多孔体41と隙間を空けて配置されている。 As shown in FIGS. 2 and 4, the second porous body 42 is arranged with a gap from the first porous body 41 so as to fit in the first divided region R1.
 図2に示すように、第4多孔体44は、第2分断領域R2に嵌まるように、第3多孔体43と隙間を空けて配置されている。 As shown in FIG. 2, the fourth porous body 44 is arranged with a gap from the third porous body 43 so as to fit in the second divided region R2.
 ベーパーチャンバー1において、筐体10は、1組の隣り合う第1分断領域R1および第2分断領域R2を結ぶ曲げ線L(図2参照)を境に曲げることが可能である。 In the vapor chamber 1, the housing 10 can be bent at a bending line L (see FIG. 2) connecting a set of adjacent first dividing regions R1 and second dividing regions R2.
 図5は、図4に示すベーパーチャンバーが曲げられた状態を模式的に示す断面図である。 FIG. 5 is a cross-sectional view schematically showing a bent state of the vapor chamber shown in FIG.
 図5に示すように、第1分断領域R1に位置する曲げ線Lを境に筐体10が曲げられた場合、曲げの起点となる部分には第1多孔体41が存在しないため、曲げの応力が第1多孔体41にかかることがない。したがって、第1多孔体41に生じるクラック等の粗大な欠陥を防ぐことができる。 As shown in FIG. 5, when the housing 10 is bent with the bending line L located in the first dividing region R1 as a boundary, the first porous body 41 does not exist in the portion that becomes the starting point of the bending, so that the bending is performed. No stress is applied to the first porous body 41. Therefore, it is possible to prevent coarse defects such as cracks that occur in the first porous body 41.
 その一方で、第1多孔体41が分断されていると、ウィック30の毛細管力が低下する。そこで、第1分断領域R1に嵌まるように第2多孔体42が配置されることで、ウィック30の毛細管力を保持することができる。また、第2多孔体42が配置されることで、筐体10が曲げられた際に蒸気流路50が潰れにくくなるため、高い均熱性を維持することができる。 On the other hand, if the first porous body 41 is divided, the capillary force of the wick 30 decreases. Therefore, by arranging the second porous body 42 so as to fit in the first divided region R1, the capillary force of the wick 30 can be maintained. Further, by arranging the second porous body 42, the steam flow path 50 is less likely to be crushed when the housing 10 is bent, so that high heat equalization can be maintained.
 図示されていないが、上記と同様、第2分断領域R2に位置する曲げ線Lを境に筐体10が曲げられた場合、第3多孔体43に生じるクラック等の粗大な欠陥を防ぐことができる。さらに、第2分断領域R2に嵌まるように第4多孔体44が配置されることで、ウィック30の毛細管力を保持することができる。また、第4多孔体44が配置されることで、筐体10が曲げられた際に蒸気流路50が潰れにくくなるため、高い均熱性を維持することができる。 Although not shown, similarly to the above, when the housing 10 is bent with respect to the bending line L located in the second dividing region R2, it is possible to prevent coarse defects such as cracks generated in the third porous body 43. can. Further, by arranging the fourth porous body 44 so as to fit in the second divided region R2, the capillary force of the wick 30 can be maintained. Further, by arranging the fourth porous body 44, the steam flow path 50 is less likely to be crushed when the housing 10 is bent, so that high heat equalization can be maintained.
 以上のように、ベーパーチャンバー1においては、ウィック30が第1多孔体41、第2多孔体42、第3多孔体43および第4多孔体44を含むため、筐体10が曲げられた場合において、ウィック30の毛細管力が保持され、高い熱輸送能力が維持される。 As described above, in the vapor chamber 1, since the wick 30 includes the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44, when the housing 10 is bent. , The capillary force of the wick 30 is maintained, and high heat transport capacity is maintained.
 図2に示すように、厚さ方向Zに垂直な断面を見て、第1多孔体41が延びる方向と直交する方向(本実施形態では幅方向X)における多孔体の寸法を幅と定義したとき、第2多孔体42の幅は、第1多孔体41の幅と同じでもよく、第1多孔体41の幅よりも小さくてもよいが、第1多孔体41の幅よりも大きいことが好ましい。この場合、曲げの起点となる部分のウィック30の幅が周囲のウィック30幅よりも大きくなるため、筐体10が曲げられた際に蒸気流路50がより潰れにくくなる。 As shown in FIG. 2, looking at the cross section perpendicular to the thickness direction Z, the dimension of the porous body in the direction orthogonal to the direction in which the first porous body 41 extends (the width direction X in the present embodiment) is defined as the width. When, the width of the second porous body 42 may be the same as the width of the first porous body 41, may be smaller than the width of the first porous body 41, but may be larger than the width of the first porous body 41. preferable. In this case, since the width of the wick 30 at the starting point of bending is larger than the width of the surrounding wick 30, the steam flow path 50 is less likely to be crushed when the housing 10 is bent.
 第2多孔体42の幅が第1多孔体41の幅よりも大きい場合、第2多孔体42の幅は、第1多孔体41の幅の120%以上300%以下であることが好ましい。 When the width of the second porous body 42 is larger than the width of the first porous body 41, the width of the second porous body 42 is preferably 120% or more and 300% or less of the width of the first porous body 41.
 同様の理由により、第4多孔体44の幅は、第3多孔体43の幅と同じでもよく、第3多孔体43の幅よりも小さくてもよいが、第3多孔体43の幅よりも大きいことが好ましい。また、第4多孔体44の幅は、第2多孔体42の幅と同じでもよく、異なってもよい。 For the same reason, the width of the fourth porous body 44 may be the same as the width of the third porous body 43, may be smaller than the width of the third porous body 43, but may be smaller than the width of the third porous body 43. Larger is preferred. Further, the width of the fourth porous body 44 may be the same as or different from the width of the second porous body 42.
 第4多孔体44の幅が第3多孔体43の幅よりも大きい場合、第4多孔体44の幅は、第3多孔体43の幅の120%以上300%以下であることが好ましい。 When the width of the 4th porous body 44 is larger than the width of the 3rd porous body 43, the width of the 4th porous body 44 is preferably 120% or more and 300% or less of the width of the 3rd porous body 43.
 ウィック30の毛細管力を保持する観点からは、図5に示すように、第1多孔体41が延びる方向および厚さ方向Zに沿った断面を見たとき、筐体10が曲げられた状態において、曲げ線Lを挟んだ第1多孔体41と第2多孔体42との間隔が、0mm以上0.1mm以下であることが好ましく、0mm以上0.05mm以下であることがより好ましい。上記のとおり、曲げ線Lを挟んだ第1多孔体41と第2多孔体42との間隔は0mmでもよく、すなわち、曲げ線Lを挟んだ第1多孔体41と第2多孔体42とが接していてもよい。 From the viewpoint of maintaining the capillary force of the wick 30, as shown in FIG. 5, when the cross section of the first porous body 41 along the extending direction and the thickness direction Z is viewed, the housing 10 is in a bent state. The distance between the first porous body 41 and the second porous body 42 sandwiching the bending line L is preferably 0 mm or more and 0.1 mm or less, and more preferably 0 mm or more and 0.05 mm or less. As described above, the distance between the first porous body 41 sandwiching the bending line L and the second porous body 42 may be 0 mm, that is, the first porous body 41 and the second porous body 42 sandwiching the bending line L may be separated from each other. It may be in contact.
 同様の理由により、第3多孔体43が延びる方向および厚さ方向Zに沿った断面を見たとき、筐体10が曲げられた状態において、曲げ線Lを挟んだ第3多孔体43と第4多孔体44との間隔が、0mm以上0.1mm以下であることが好ましく、0mm以上0.05mm以下であることがより好ましい。上記のとおり、曲げ線Lを挟んだ第3多孔体43と第4多孔体44との間隔は0mmでもよく、すなわち、曲げ線Lを挟んだ第3多孔体43と第4多孔体44とが接していてもよい。曲げ線Lを挟んだ第3多孔体43と第4多孔体44との間隔は、曲げ線Lを挟んだ第1多孔体41と第2多孔体42との間隔と同じでもよく、異なってもよい。 For the same reason, when the cross section along the extending direction and the thickness direction Z of the third porous body 43 is viewed, the third porous body 43 and the third porous body 43 sandwiching the bending line L are in a bent state. The distance from the 4 porous body 44 is preferably 0 mm or more and 0.1 mm or less, and more preferably 0 mm or more and 0.05 mm or less. As described above, the distance between the third porous body 43 sandwiching the bending line L and the fourth porous body 44 may be 0 mm, that is, the third porous body 43 and the fourth porous body 44 sandwiching the bending line L may be separated from each other. It may be in contact. The distance between the third porous body 43 and the fourth porous body 44 sandwiching the bending line L may be the same as or different from the distance between the first porous body 41 and the second porous body 42 sandwiching the bending line L. good.
 なお、曲げ線Lを挟んだ第1多孔体41と第2多孔体42との間隔とは、上記断面において、最も広い部分の間隔を意味する。曲げ線Lを挟んだ第3多孔体43と第4多孔体44との間隔も同様である。 The distance between the first porous body 41 and the second porous body 42 sandwiching the bending line L means the distance of the widest portion in the above cross section. The same applies to the distance between the third porous body 43 and the fourth porous body 44 sandwiching the bending line L.
 第1分断領域R1に配置される第2多孔体42の形状は、第2分断領域R2に配置される第4多孔体44の形状と異なってもよいが、同じであることが好ましい。 The shape of the second porous body 42 arranged in the first divided region R1 may be different from the shape of the fourth porous body 44 arranged in the second divided region R2, but it is preferable that the shape is the same.
 第1分断領域R1に嵌まるように第1多孔体41と隙間を空けて第2多孔体42が配置される限り、第2多孔体42の形状は特に限定されないが、図4に示すように、第1多孔体41が延びる方向および厚さ方向Zに沿った断面を見たとき、第2多孔体42が鋭角を1点以上有することが好ましい。この場合、第2多孔体42の鋭角を利用して、筐体10の曲がる角度を調整することができる。具体的には、鋭角と接していない筐体10の内壁面に対応する外壁面が内側になるように筐体10が曲げられることが好ましい。 The shape of the second porous body 42 is not particularly limited as long as the second porous body 42 is arranged with a gap from the first porous body 41 so as to fit in the first divided region R1, but as shown in FIG. When looking at the cross section along the direction in which the first porous body 41 extends and the thickness direction Z, it is preferable that the second porous body 42 has one or more acute angles. In this case, the acute angle of the second porous body 42 can be used to adjust the bending angle of the housing 10. Specifically, it is preferable that the housing 10 is bent so that the outer wall surface corresponding to the inner wall surface of the housing 10 that is not in contact with the acute angle is inside.
 一方、第1多孔体41が延びる方向と直交する方向および厚さ方向Zに沿った断面を見たとき、第2多孔体42は、鋭角を1点以上有してもよく、鋭角を有しなくてもよい。例えば、第2多孔体42の断面形状は長方形等でもよい。 On the other hand, when looking at the cross section along the direction orthogonal to the extending direction of the first porous body 41 and the thickness direction Z, the second porous body 42 may have one or more acute angles, and has an acute angle. It does not have to be. For example, the cross-sectional shape of the second porous body 42 may be rectangular or the like.
 図4に示す例では、第2多孔体42の断面形状は、鋭角を2点有する台形である。本実施形態では、第2多孔体42の鋭角は、どちらも筐体10の第1内壁面11aと接している。そのため、図5に示すように、第2多孔体42の鋭角と接していない筐体10の第2内壁面12aに対応する外壁面、すなわち、第2シート12の外壁面が内側になるように筐体10が曲げられる。 In the example shown in FIG. 4, the cross-sectional shape of the second porous body 42 is a trapezoid having two acute angles. In the present embodiment, the acute angles of the second porous body 42 are both in contact with the first inner wall surface 11a of the housing 10. Therefore, as shown in FIG. 5, the outer wall surface corresponding to the second inner wall surface 12a of the housing 10 that is not in contact with the acute angle of the second porous body 42, that is, the outer wall surface of the second sheet 12 is on the inner side. The housing 10 is bent.
 図4に示すように、第1多孔体41が延びる方向および厚さ方向Zに沿った断面を見たとき、第2多孔体42が鋭角を1点以上有し、かつ、筐体10が曲げられた状態において、曲げ線Lに最も近い第1多孔体41が配置された筐体10の外壁面に対する、その第1多孔体41に最も近い第2多孔体42が配置された筐体10の外壁面の曲げ角度θ(図5参照)と、その第2多孔体42の鋭角の角度α(図4参照)との関係が、0°<θ≦90°-αを満たすことが好ましい。 As shown in FIG. 4, when the cross section of the first porous body 41 along the extending direction and the thickness direction Z is viewed, the second porous body 42 has one or more acute angles and the housing 10 is bent. In the folded state, the housing 10 in which the second porous body 42 closest to the first porous body 41 is arranged with respect to the outer wall surface of the housing 10 in which the first porous body 41 closest to the bending line L is arranged. The relationship between the bending angle θ 1 of the outer wall surface (see FIG. 5) and the acute angle angle α 2 (see FIG. 4) of the second porous body 42 satisfies 0 ° <θ 1 ≤ 90 ° − α 2 . Is preferable.
 図6は、図5の変形例である。
 図6に示すように、第2多孔体42が鋭角を2点有する場合、筐体10が2段階で曲げられてもよい。図6では、曲げ線L1およびL2を境に筐体10が曲げられている。
FIG. 6 is a modification of FIG.
As shown in FIG. 6, when the second porous body 42 has two acute angles, the housing 10 may be bent in two steps. In FIG. 6, the housing 10 is bent with the bending lines L1 and L2 as boundaries.
 図7は、図4の変形例である。
 図7に示すベーパーチャンバー1Aでは、第2多孔体42Aの断面形状は、鋭角を1点有する台形である。
FIG. 7 is a modification of FIG. 4.
In the vapor chamber 1A shown in FIG. 7, the cross-sectional shape of the second porous body 42A is a trapezoid having one acute angle.
 第1多孔体41が延びる方向および厚さ方向Zに沿った断面において、第2多孔体42が鋭角を1点以上有する場合、第2多孔体42の断面形状は台形以外の形状でもよい。また、上記断面において、第2多孔体42は鋭角を有しなくてもよく、例えば、第2多孔体42の断面形状は長方形等でもよい。 When the second porous body 42 has one or more acute angles in the cross section along the extending direction and the thickness direction Z of the first porous body 41, the cross-sectional shape of the second porous body 42 may be a shape other than a trapezoid. Further, in the above-mentioned cross section, the second porous body 42 does not have to have an acute angle, and for example, the cross-sectional shape of the second porous body 42 may be a rectangle or the like.
 第2分断領域R2に嵌まるように第3多孔体43と隙間を空けて第4多孔体44が配置される限り、第4多孔体44の形状は特に限定されないが、図4に示す例と同様に、第3多孔体43が延びる方向および厚さ方向Zに沿った断面を見たとき、第4多孔体44が鋭角を1点以上有することが好ましい。この場合、第4多孔体44の鋭角を利用して、筐体10の曲がる角度を調整することができる。 The shape of the fourth porous body 44 is not particularly limited as long as the fourth porous body 44 is arranged with a gap from the third porous body 43 so as to fit in the second divided region R2. Similarly, when looking at the cross section along the direction in which the third porous body 43 extends and the thickness direction Z, it is preferable that the fourth porous body 44 has one or more acute angles. In this case, the acute angle of the fourth porous body 44 can be used to adjust the bending angle of the housing 10.
 一方、第3多孔体43が延びる方向と直交する方向および厚さ方向Zに沿った断面を見たとき、第4多孔体44は、鋭角を1点以上有してもよく、鋭角を有しなくてもよい。例えば、第4多孔体44の断面形状は長方形等でもよい。 On the other hand, when looking at the cross section along the direction orthogonal to the extending direction of the third porous body 43 and the thickness direction Z, the fourth porous body 44 may have one or more acute angles, and has an acute angle. It does not have to be. For example, the cross-sectional shape of the fourth porous body 44 may be rectangular or the like.
 図2に示す例と同様に、第3多孔体43が延びる方向および厚さ方向Zに沿った断面を見たとき、第4多孔体44が鋭角を1点以上有し、かつ、筐体10が曲げられた状態において、曲げ線Lに最も近い第3多孔体43が配置された筐体10の外壁面に対する、その第3多孔体43に最も近い第4多孔体44が配置された筐体10の外壁面の曲げ角度θ(図示せず)と、その第4多孔体44の鋭角の角度α(図示せず)との関係が、0°<θ≦90°-αを満たすことが好ましい。角度θは角度θと同じであることが好ましく、角度αは角度αと同じであることが好ましい。 Similar to the example shown in FIG. 2, when the cross section of the third porous body 43 along the extending direction and the thickness direction Z is viewed, the fourth porous body 44 has one or more acute angles and the housing 10 In the bent state, the housing in which the fourth porous body 44 closest to the third porous body 43 is arranged with respect to the outer wall surface of the housing 10 in which the third porous body 43 closest to the bending line L is arranged. The relationship between the bending angle θ 3 (not shown) of the outer wall surface of 10 and the acute angle angle α 4 (not shown) of the fourth porous body 44 is 0 ° <θ 3 ≤ 90 ° −α 4 . It is preferable to meet. The angle θ 3 is preferably the same as the angle θ 1 , and the angle α 4 is preferably the same as the angle α 2 .
 第3多孔体43が延びる方向および厚さ方向Zに沿った断面において、第4多孔体44が鋭角を2点有する場合、筐体10が2段階で曲げられてもよい。 When the fourth porous body 44 has two acute angles in the cross section along the extending direction and the thickness direction Z of the third porous body 43, the housing 10 may be bent in two steps.
 第3多孔体43が延びる方向および厚さ方向Zに沿った断面において、第4多孔体44が鋭角を1点以上有する場合、第4多孔体44の断面形状は台形以外の形状でもよい。また、上記断面において、第4多孔体44は鋭角を有しなくてもよく、例えば、第4多孔体44の断面形状は長方形等でもよい。 When the fourth porous body 44 has one or more acute angles in the cross section along the extending direction and the thickness direction Z of the third porous body 43, the cross-sectional shape of the fourth porous body 44 may be a shape other than a trapezoid. Further, in the above cross section, the fourth porous body 44 does not have to have an acute angle, and for example, the cross-sectional shape of the fourth porous body 44 may be a rectangle or the like.
 第1多孔体41が延びる方向および厚さ方向Zに沿った断面を見たとき、第2多孔体42が鋭角を1点以上有することに代えて、または、第2多孔体42が鋭角を1点以上有することに加えて、第1多孔体41が鋭角を1点以上有してもよい。この場合、第1多孔体41の鋭角を利用して、筐体10の曲がる角度を調整することができる。 When looking at the cross section along the direction in which the first porous body 41 extends and the thickness direction Z, instead of the second porous body 42 having one or more acute angles, or the second porous body 42 has an acute angle of 1. In addition to having one or more points, the first porous body 41 may have one or more acute angles. In this case, the acute angle of the first porous body 41 can be used to adjust the bending angle of the housing 10.
 一方、第1多孔体41が延びる方向と直交する方向および厚さ方向Zに沿った断面を見たとき、第1多孔体41は、鋭角を1点以上有してもよく、鋭角を有しなくてもよい。例えば、第1多孔体41の断面形状は長方形等でもよい。 On the other hand, when looking at the cross section along the direction orthogonal to the extending direction of the first porous body 41 and the thickness direction Z, the first porous body 41 may have one or more acute angles, and has an acute angle. It does not have to be. For example, the cross-sectional shape of the first porous body 41 may be rectangular or the like.
 第1多孔体41が延びる方向および厚さ方向Zに沿った断面を見たとき、第1多孔体41が鋭角を1点以上有し、かつ、筐体10が曲げられた状態において、曲げ線Lに最も近い第1多孔体41が配置された筐体10の外壁面に対する、その第1多孔体41に最も近い第2多孔体42が配置された筐体10の外壁面の曲げ角度θ(図5参照)と、その第1多孔体41の鋭角の角度α(図示せず)との関係が、0°<θ≦90°-αを満たすことが好ましい。 When the cross section along the extending direction and the thickness direction Z of the first porous body 41 is viewed, the bending line is in a state where the first porous body 41 has one or more acute angles and the housing 10 is bent. Bending angle θ 1 of the outer wall surface of the housing 10 in which the second porous body 42 closest to the first porous body 41 is arranged with respect to the outer wall surface of the housing 10 in which the first porous body 41 closest to L is arranged. It is preferable that the relationship between (see FIG. 5) and the acute angle angle α 1 (not shown) of the first porous body 41 satisfies 0 ° <θ 1 ≤ 90 ° − α 1 .
 第1多孔体41が延びる方向および厚さ方向Zに沿った断面を見たとき、第1多孔体41が鋭角を1点以上有し、第2多孔体42が鋭角を1点以上有し、かつ、筐体10が曲げられた状態において、曲げ線Lに最も近い第1多孔体41が配置された筐体10の外壁面に対する、その第1多孔体41に最も近い第2多孔体42が配置された筐体10の外壁面の曲げ角度θ(図5参照)と、その第1多孔体41の鋭角の角度α(図示せず)と、その第2多孔体42の鋭角の角度α(図4参照)との関係が、0°<θ≦90°-α-αを満たすことが好ましい。角度αは角度αと同じでもよく、異なっていてもよい。 When the cross section along the extending direction and the thickness direction Z of the first porous body 41 is viewed, the first porous body 41 has one or more acute angles, and the second porous body 42 has one or more acute angles. In addition, when the housing 10 is bent, the second porous body 42 closest to the first porous body 41 is attached to the outer wall surface of the housing 10 in which the first porous body 41 closest to the bending line L is arranged. The bending angle θ 1 (see FIG. 5) of the outer wall surface of the arranged housing 10, the acute angle angle α 1 (not shown) of the first porous body 41, and the acute angle angle of the second porous body 42. It is preferable that the relationship with α 2 (see FIG. 4) satisfies 0 ° <θ 1 ≦ 90 ° − α 1 − α 2 . The angle α 2 may be the same as or different from the angle α 1 .
 第1多孔体41が延びる方向および厚さ方向Zに沿った断面において、第1多孔体41が鋭角を2点有する場合、筐体10が2段階で曲げられてもよい。 When the first porous body 41 has two acute angles in the cross section along the extending direction and the thickness direction Z of the first porous body 41, the housing 10 may be bent in two steps.
 第1多孔体41が延びる方向および厚さ方向Zに沿った断面において、第1多孔体41が鋭角を1点以上有する場合、第1多孔体41の断面形状は台形以外の形状でもよい。また、上記断面において、第1多孔体41は鋭角を有しなくてもよく、例えば、第1多孔体41の断面形状は長方形等でもよい。 When the first porous body 41 has one or more acute angles in the cross section along the extending direction and the thickness direction Z of the first porous body 41, the cross-sectional shape of the first porous body 41 may be a shape other than a trapezoid. Further, in the above-mentioned cross section, the first porous body 41 does not have to have an acute angle, and for example, the cross-sectional shape of the first porous body 41 may be a rectangle or the like.
 第3多孔体43が延びる方向および厚さ方向Zに沿った断面を見たとき、第4多孔体44が鋭角を1点以上有することに代えて、または、第4多孔体44が鋭角を1点以上有することに加えて、第3多孔体43が鋭角を1点以上有してもよい。この場合、第3多孔体43の鋭角を利用して、筐体10の曲がる角度を調整することができる。 When looking at the cross section along the direction in which the third porous body 43 extends and the thickness direction Z, instead of the fourth porous body 44 having one or more acute angles, or the fourth porous body 44 has an acute angle of 1. In addition to having one or more points, the third porous body 43 may have one or more acute angles. In this case, the acute angle of the third porous body 43 can be used to adjust the bending angle of the housing 10.
 一方、第3多孔体43が延びる方向と直交する方向および厚さ方向Zに沿った断面を見たとき、第3多孔体43は、鋭角を1点以上有してもよく、鋭角を有しなくてもよい。例えば、第3多孔体43の断面形状は長方形等でもよい。 On the other hand, when looking at the cross section along the direction orthogonal to the extending direction of the third porous body 43 and the thickness direction Z, the third porous body 43 may have one or more acute angles, and has an acute angle. It does not have to be. For example, the cross-sectional shape of the third porous body 43 may be rectangular or the like.
 第3多孔体43が延びる方向および厚さ方向Zに沿った断面を見たとき、第3多孔体43が鋭角を1点以上有し、かつ、筐体10が曲げられた状態において、曲げ線Lに最も近い第3多孔体43が配置された筐体10の外壁面に対する、その第3多孔体43に最も近い第4多孔体44が配置された筐体10の外壁面の曲げ角度θ(図示せず)と、その第3多孔体43の鋭角の角度α(図示せず)との関係が、0°<θ≦90°-αを満たすことが好ましい。角度θは角度θと同じであることが好ましく、角度αは角度αと同じであることが好ましい。 When the cross section along the extending direction and the thickness direction Z of the third porous body 43 is viewed, the bending line is in a state where the third porous body 43 has one or more acute angles and the housing 10 is bent. Bending angle θ 3 of the outer wall surface of the housing 10 in which the fourth porous body 44 closest to the third porous body 43 is arranged with respect to the outer wall surface of the housing 10 in which the third porous body 43 closest to L is arranged. It is preferable that the relationship between (not shown) and the acute angle angle α 3 (not shown) of the third porous body 43 satisfies 0 ° <θ 3 ≤ 90 ° −α 3 . The angle θ 3 is preferably the same as the angle θ 1 , and the angle α 3 is preferably the same as the angle α 1 .
 第3多孔体43が延びる方向および厚さ方向Zに沿った断面を見たとき、第3多孔体43が鋭角を1点以上有し、第4多孔体44が鋭角を1点以上有し、かつ、筐体10が曲げられた状態において、曲げ線Lに最も近い第3多孔体43が配置された筐体10の外壁面に対する、その第3多孔体43に最も近い第4多孔体44が配置された筐体10の外壁面の曲げ角度θ(図示せず)と、その第3多孔体43の鋭角の角度α(図示せず)と、その第4多孔体44の鋭角の角度α(図示せず)との関係が、0°<θ≦90°-α-αを満たすことが好ましい。角度αは角度αと同じでもよく、異なっていてもよい。角度θは角度θと同じであることが好ましく、角度αは角度αと同じであることが好ましく、角度αは角度αと同じであることが好ましい。 When the cross section along the extending direction and the thickness direction Z of the third porous body 43 is viewed, the third porous body 43 has one or more acute angles, and the fourth porous body 44 has one or more acute angles. Further, in a state where the housing 10 is bent, the fourth porous body 44 closest to the third porous body 43 is attached to the outer wall surface of the housing 10 in which the third porous body 43 closest to the bending line L is arranged. The bending angle θ 3 (not shown) of the outer wall surface of the arranged housing 10, the acute angle angle α 3 (not shown) of the third porous body 43, and the acute angle angle of the fourth porous body 44. It is preferable that the relationship with α 4 (not shown) satisfies 0 ° <θ 3 ≤ 90 ° − α 3 − α 4 . The angle α 4 may be the same as or different from the angle α 3 . The angle θ 3 is preferably the same as the angle θ 1 , the angle α 3 is preferably the same as the angle α 1 , and the angle α 4 is preferably the same as the angle α 2 .
 第3多孔体43が延びる方向および厚さ方向Zに沿った断面において、第3多孔体43が鋭角を2点有する場合、筐体10が2段階で曲げられてもよい。 When the third porous body 43 has two acute angles in the cross section along the extending direction and the thickness direction Z of the third porous body 43, the housing 10 may be bent in two steps.
 第3多孔体43が延びる方向および厚さ方向Zに沿った断面において、第3多孔体43が鋭角を1点以上有する場合、第3多孔体43の断面形状は台形以外の形状でもよい。また、上記断面において、第3多孔体43は鋭角を有しなくてもよく、例えば、第3多孔体43の断面形状は長方形等でもよい。 When the third porous body 43 has one or more acute angles in the cross section along the extending direction and the thickness direction Z of the third porous body 43, the cross-sectional shape of the third porous body 43 may be a shape other than a trapezoid. Further, in the above-mentioned cross section, the third porous body 43 does not have to have an acute angle, and for example, the cross-sectional shape of the third porous body 43 may be a rectangle or the like.
 第1多孔体41が延びる方向および厚さ方向Zに沿った断面を見たとき、筐体10が曲げられた状態において、曲げ線Lに最も近い第1多孔体41が配置された筐体10の外壁面に対する、その第1多孔体41に最も近い第2多孔体42が配置された筐体10の外壁面の曲げ角度θは、10°以上45°以下であることが好ましく、10°以上30°以下であることがより好ましい。 When looking at the cross section along the direction in which the first porous body 41 extends and the thickness direction Z, the housing 10 in which the first porous body 41 closest to the bending line L is arranged in a state where the housing 10 is bent. The bending angle θ 1 of the outer wall surface of the housing 10 in which the second porous body 42 closest to the first porous body 41 is arranged with respect to the outer wall surface of the housing 10 is preferably 10 ° or more and 45 ° or less, preferably 10 °. It is more preferably 30 ° or less.
 第3多孔体43が延びる方向および厚さ方向Zに沿った断面を見たとき、筐体10が曲げられた状態において、曲げ線Lに最も近い第3多孔体43が配置された筐体10の外壁面に対する、その第3多孔体43に最も近い第4多孔体44が配置された筐体10の外壁面の曲げ角度θは、10°以上45°以下であることが好ましく、10°以上30°以下であることがより好ましい。角度θは角度θと同じであることが好ましい。 When the cross section of the third porous body 43 along the extending direction and the thickness direction Z is viewed, the housing 10 in which the third porous body 43 closest to the bending line L is arranged in the bent state of the housing 10. The bending angle θ 3 of the outer wall surface of the housing 10 in which the fourth porous body 44 closest to the third porous body 43 is arranged with respect to the outer wall surface of the housing 10 is preferably 10 ° or more and 45 ° or less, preferably 10 °. It is more preferably 30 ° or less. The angle θ 3 is preferably the same as the angle θ 1 .
 上述のとおり、厚さ方向Zに垂直な断面を見て、第1多孔体41が延びる方向と直交する方向における多孔体の寸法を幅と定義したとき、第1多孔体41の幅および第3多孔体43の幅は、各々、50μm以上300μm以下であることが好ましい。これにより、高い毛細管力を得ることができる。第1多孔体41の幅は、第3多孔体43の幅と同じでもよく、異なっていてもよい。第1多孔体41の幅および第3多孔体43の幅は、厚さ方向Zで一定でもよく、一定でなくてもよい。また、厚さ方向Zで幅が一定である多孔体と、厚さ方向Zで幅が一定でない多孔体とが混在してもよい。 As described above, when looking at the cross section perpendicular to the thickness direction Z and defining the dimension of the porous body in the direction orthogonal to the direction in which the first porous body 41 extends as the width, the width of the first porous body 41 and the third. The width of each of the porous bodies 43 is preferably 50 μm or more and 300 μm or less. This makes it possible to obtain a high capillary force. The width of the first porous body 41 may be the same as or different from the width of the third porous body 43. The width of the first porous body 41 and the width of the third porous body 43 may or may not be constant in the thickness direction Z. Further, a porous body having a constant width in the thickness direction Z and a porous body having a non-constant width in the thickness direction Z may coexist.
 第2多孔体42の幅および第4多孔体44の幅は、各々、60μm以上500μm以下であることが好ましい。第2多孔体42の幅は、第4多孔体44の幅と同じでもよく、異なっていてもよい。第2多孔体42の幅および第4多孔体44の幅は、厚さ方向Zで一定でもよく、一定でなくてもよい。また、厚さ方向Zで幅が一定である多孔体と、厚さ方向Zで幅が一定でない多孔体とが混在してもよい。 The width of the second porous body 42 and the width of the fourth porous body 44 are preferably 60 μm or more and 500 μm or less, respectively. The width of the second porous body 42 may be the same as or different from the width of the fourth porous body 44. The width of the second porous body 42 and the width of the fourth porous body 44 may or may not be constant in the thickness direction Z. Further, a porous body having a constant width in the thickness direction Z and a porous body having a non-constant width in the thickness direction Z may coexist.
 第1多孔体41の高さおよび第3多孔体43の高さは、各々、20μm以上300μm以下であることが好ましく、50μm以上200μm以下であることがより好ましい。第1多孔体41の高さは、第3多孔体43の高さと同じでもよく、異なっていてもよい。 The height of the first porous body 41 and the height of the third porous body 43 are preferably 20 μm or more and 300 μm or less, and more preferably 50 μm or more and 200 μm or less, respectively. The height of the first porous body 41 may be the same as or different from the height of the third porous body 43.
 第2多孔体42の高さおよび第4多孔体44の高さは、各々、20μm以上300μm以下であることが好ましく、50μm以上200μm以下であることがより好ましい。第2多孔体42の高さは、第4多孔体44の高さと同じでもよく、異なっていてもよい。また、第2多孔体42の高さは、第1多孔体41の高さと同じでもよく、異なっていてもよい。同様に、第4多孔体44の高さは、第3多孔体43の高さと同じでもよく、異なっていてもよい。 The height of the second porous body 42 and the height of the fourth porous body 44 are preferably 20 μm or more and 300 μm or less, and more preferably 50 μm or more and 200 μm or less, respectively. The height of the second porous body 42 may be the same as or different from the height of the fourth porous body 44. Further, the height of the second porous body 42 may be the same as or different from the height of the first porous body 41. Similarly, the height of the fourth porous body 44 may be the same as or different from the height of the third porous body 43.
 次に、以上のように構成されたベーパーチャンバー1の作用について説明する。 Next, the operation of the vapor chamber 1 configured as described above will be described.
 蒸発部EPでは、第1多孔体41および第3多孔体43の表面に位置する液相の作動媒体20が、筐体10の内壁面を介して加熱されて蒸発する。作動媒体20が蒸発することで、蒸発部EP近傍における蒸気流路50内の気体の圧力が高まる。これにより、気相の作動媒体20が、蒸気流路50内を凝縮部CP側に向かって移動する。 In the evaporation unit EP, the working medium 20 of the liquid phase located on the surfaces of the first porous body 41 and the third porous body 43 is heated and evaporated through the inner wall surface of the housing 10. As the working medium 20 evaporates, the pressure of the gas in the steam flow path 50 in the vicinity of the evaporation unit EP increases. As a result, the working medium 20 of the gas phase moves in the steam flow path 50 toward the condensed portion CP side.
 凝縮部CPに到達した気相の作動媒体20は、筐体10の内壁面を介して熱を奪われて凝縮し、液滴となる。上述のとおり、気相の作動媒体20は凝縮部CP以外でも凝縮され得る。作動媒体20の液滴は、毛細管力によって第1多孔体41の細孔内および第3多孔体43の細孔内に浸み込む。また、第1多孔体41の細孔内および第3多孔体43の細孔内に浸み込んだ液相の作動媒体20の一部は、液体流路51内に流入する。したがって、第1多孔体41、第3多孔体43および液体流路51によって液体流路が形成される。 The gas phase working medium 20 that has reached the condensing portion CP is deprived of heat through the inner wall surface of the housing 10 and is condensed into droplets. As described above, the working medium 20 of the gas phase can be condensed other than the condensed portion CP. The droplets of the working medium 20 permeate into the pores of the first porous body 41 and the pores of the third porous body 43 by the capillary force. Further, a part of the working medium 20 of the liquid phase that has penetrated into the pores of the first porous body 41 and the pores of the third porous body 43 flows into the liquid flow path 51. Therefore, the liquid flow path is formed by the first porous body 41, the third porous body 43, and the liquid flow path 51.
 第1多孔体41の細孔内と第3多孔体43の細孔内と液体流路51内との液相の作動媒体20は、毛細管力によって蒸発部EP側に移動する。途中、第1多孔体41が分断された第1分断領域R1において、液相の作動媒体20は、毛細管力によって、凝縮部CP側の第1多孔体41から第2多孔体42を通って、蒸発部EP側の第1多孔体41に移動する。同様に、第3多孔体43が分断された第2分断領域R2において、液相の作動媒体20は、毛細管力によって、凝縮部CP側の第3多孔体43から第4多孔体44を通って、蒸発部EP側の第3多孔体43に移動する。そして、第1多孔体41の細孔と第3多孔体43の細孔と液体流路51とから蒸発部EPへと、液相の作動媒体20が供給される。蒸発部EPに到達した液相の作動媒体20は、再び蒸発部EPにおける第1多孔体41および第3多孔体43の表面から蒸発する。 The working medium 20 of the liquid phase in the pores of the first porous body 41, in the pores of the third porous body 43, and in the liquid flow path 51 moves to the evaporation part EP side by the capillary force. On the way, in the first divided region R1 where the first porous body 41 was divided, the working medium 20 of the liquid phase passed from the first porous body 41 on the CP side of the condensed portion to the second porous body 42 by the capillary force. It moves to the first porous body 41 on the EP side of the evaporation part. Similarly, in the second divided region R2 in which the third porous body 43 is divided, the working medium 20 of the liquid phase passes through the third porous body 43 to the fourth porous body 44 on the CP side of the condensing portion by the capillary force. , Moves to the third porous body 43 on the EP side of the evaporation part. Then, the working medium 20 of the liquid phase is supplied from the pores of the first porous body 41, the pores of the third porous body 43, and the liquid flow path 51 to the evaporation section EP. The working medium 20 of the liquid phase that has reached the evaporation unit EP evaporates again from the surfaces of the first porous body 41 and the third porous body 43 in the evaporation unit EP.
 なお、図2に示すように、蒸発部EP内に液体流路51が到達していることが好ましい。蒸発部EP内には、液体流路51およびウィック30が含まれてもよいし、液体流路51が含まれずにウィック30のみが含まれてもよいし、液体流路51およびウィック30が含まれなくてもよい。 As shown in FIG. 2, it is preferable that the liquid flow path 51 reaches the evaporation unit EP. The evaporating unit EP may include the liquid flow path 51 and the wick 30, or may include only the wick 30 without the liquid flow path 51, or may include the liquid flow path 51 and the wick 30. It does not have to be.
 また、蒸発部EP内には、曲げ線Lが配置されないことが好ましい。すなわち、蒸発部EP内には、第2多孔体42および第4多孔体44が配置されないことが好ましい。 Further, it is preferable that the bending line L is not arranged in the evaporation portion EP. That is, it is preferable that the second porous body 42 and the fourth porous body 44 are not arranged in the evaporation unit EP.
 蒸発して気相となった作動媒体20は、再び蒸気流路50を通って凝縮部CP側へと移動する。このように、ベーパーチャンバー1は、作動媒体20の気-液の相変化を繰り返し利用して、蒸発部EP側で回収した熱を凝縮部CP側に繰り返し輸送することができる。 The working medium 20 that has evaporated and becomes a gas phase moves to the condensed portion CP side again through the steam flow path 50. In this way, the vapor chamber 1 can repeatedly transport the heat recovered on the evaporation unit EP side to the condensation unit CP side by repeatedly utilizing the gas-liquid phase change of the working medium 20.
 第1多孔体41および第3多孔体43の孔径は、各々、50μm以下であることが好ましい。孔径を小さくすることで、高い毛細管力を得ることができる。第1多孔体41および第3多孔体43の孔径は、同じでもよく、異なっていてもよい。なお、孔の形状は特に限定されない。 The pore diameters of the first porous body 41 and the third porous body 43 are preferably 50 μm or less, respectively. By reducing the pore diameter, high capillary force can be obtained. The pore diameters of the first porous body 41 and the third porous body 43 may be the same or different. The shape of the hole is not particularly limited.
 第2多孔体42および第4多孔体44の孔径は、各々、50μm以下であることが好ましい。孔径を小さくすることで、高い毛細管力を得ることができる。第2多孔体42および第4多孔体44の孔径は、同じでもよく、異なっていてもよい。また、第2多孔体42の孔径は、第1多孔体41の孔径と同じでもよく、異なっていてもよい。同様に、第4多孔体44の孔径は、第3多孔体43の孔径と同じでもよく、異なっていてもよい。なお、孔の形状は特に限定されない。 The pore diameters of the second porous body 42 and the fourth porous body 44 are preferably 50 μm or less, respectively. By reducing the pore diameter, high capillary force can be obtained. The pore diameters of the second porous body 42 and the fourth porous body 44 may be the same or different. Further, the pore diameter of the second porous body 42 may be the same as or different from the pore diameter of the first porous body 41. Similarly, the pore diameter of the fourth porous body 44 may be the same as or different from the pore diameter of the third porous body 43. The shape of the hole is not particularly limited.
 図2に示すように、少なくとも1組の隣り合うウィック30の蒸発部EP側の端部同士が接続され、液体流路51同士が連通していてもよい。また、少なくとも1組の隣り合うウィック30の蒸発部EPと反対側の端部同士、例えば、凝縮部CP側の端部同士が接続され、液体流路51同士が連通していてもよい。 As shown in FIG. 2, the ends of at least one set of adjacent wicks 30 on the EP side of the evaporation portion may be connected to each other, and the liquid flow paths 51 may communicate with each other. Further, at least one set of adjacent wicks 30 may be connected to each other at the ends opposite to the evaporation portion EP, for example, the ends on the condensing portion CP side, and the liquid flow paths 51 may communicate with each other.
 上記のとおり、ベーパーチャンバー1では、ウィック30間に蒸気流路50および液体流路51が形成される。中でも、図2に示すように、蒸発部EPにおける流路の密度が、蒸発部EPから離れた部分における流路の密度、例えば、凝縮部CPにおける流路の密度よりも高いことが好ましい。これにより、最大熱輸送量を向上させることができる。 As described above, in the vapor chamber 1, the vapor flow path 50 and the liquid flow path 51 are formed between the wicks 30. Above all, as shown in FIG. 2, it is preferable that the density of the flow path in the evaporation part EP is higher than the density of the flow path in the portion away from the evaporation part EP, for example, the density of the flow path in the condensation part CP. Thereby, the maximum heat transport amount can be improved.
 ベーパーチャンバー1は、例えば、以下の方法により製造される。以下の例では、第1多孔体41、第2多孔体42、第3多孔体43および第4多孔体44は、銅などの金属多孔質焼結体から構成される。なお、ベーパーチャンバー1を製造する方法は、上記の構成を得られる方法であれば特に限定されない。 The vapor chamber 1 is manufactured by, for example, the following method. In the following example, the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44 are composed of a metal porous sintered body such as copper. The method for manufacturing the vapor chamber 1 is not particularly limited as long as the above configuration can be obtained.
 まず、第1シート11の表面のうち、第1内壁面11aとなる表面に、第1多孔体41および第3多孔体43を形成するための銅ペーストなどの金属ペーストを塗布する。金属ペーストを塗布する方法としては、例えば、スクリーン印刷などの印刷が挙げられる。 First, of the surface of the first sheet 11, the surface to be the first inner wall surface 11a is coated with a metal paste such as a copper paste for forming the first porous body 41 and the third porous body 43. Examples of the method of applying the metal paste include printing such as screen printing.
 金属ペーストが塗布された第1シート11を加熱することにより、金属ペーストが金属多孔質焼結体になる。その結果、第1シート11上に第1多孔体41および第3多孔体43が形成される。 By heating the first sheet 11 coated with the metal paste, the metal paste becomes a metal porous sintered body. As a result, the first porous body 41 and the third porous body 43 are formed on the first sheet 11.
 図8は、第1シート上に形成された第1多孔体および第3多孔体の一例を模式的に示す平面図である。図9は、図8中の矢印IXに示す方向から見た第1多孔体の断面図である。図10は、図8中の矢印Xに示す方向から見た第1多孔体の断面図である。 FIG. 8 is a plan view schematically showing an example of the first porous body and the third porous body formed on the first sheet. FIG. 9 is a cross-sectional view of the first porous body as seen from the direction indicated by the arrow IX in FIG. FIG. 10 is a cross-sectional view of the first porous body seen from the direction indicated by the arrow X in FIG.
 図8に示す例では、印刷などの方法により、長さ方向Yに沿って金属ペーストが第1シート11上に塗布される。その結果、長さ方向Yに沿って第1多孔体41および第3多孔体43が第1シート11上に形成される。第1多孔体41には第1分断領域R1が形成され、第3多孔体43には第2分断領域R2が形成される。図9に示すように、金属ペーストの塗布方向に垂直な方向から見た断面においては、第1多孔体41の断面形状が長方形となる。同様に、第3多孔体43の断面形状も長方形となる。一方、図10に示すように、金属ペーストの塗布方向に平行な方向から見た断面においては、第1多孔体41の断面形状が台形となる。同様に、第3多孔体43の断面形状も台形となる。 In the example shown in FIG. 8, the metal paste is applied onto the first sheet 11 along the length direction Y by a method such as printing. As a result, the first porous body 41 and the third porous body 43 are formed on the first sheet 11 along the length direction Y. The first divided region R1 is formed in the first porous body 41, and the second divided region R2 is formed in the third porous body 43. As shown in FIG. 9, in the cross section viewed from the direction perpendicular to the application direction of the metal paste, the cross-sectional shape of the first porous body 41 is rectangular. Similarly, the cross-sectional shape of the third porous body 43 is also rectangular. On the other hand, as shown in FIG. 10, in the cross section viewed from the direction parallel to the coating direction of the metal paste, the cross-sectional shape of the first porous body 41 is trapezoidal. Similarly, the cross-sectional shape of the third porous body 43 is also trapezoidal.
 別途、第2シート12の表面のうち、第2内壁面12aとなる表面に、第2多孔体42および第4多孔体44を形成するための銅ペーストなどの金属ペーストを塗布する。金属ペーストを塗布する方法としては、例えば、スクリーン印刷などの印刷が挙げられる。第2多孔体42および第4多孔体44を形成するための金属ペーストは、第1多孔体41および第3多孔体43を形成するための金属ペーストと同じでもよく、異なっていてもよい。 Separately, of the surface of the second sheet 12, a metal paste such as a copper paste for forming the second porous body 42 and the fourth porous body 44 is applied to the surface to be the second inner wall surface 12a. Examples of the method of applying the metal paste include printing such as screen printing. The metal paste for forming the second porous body 42 and the fourth porous body 44 may be the same as or different from the metal paste for forming the first porous body 41 and the third porous body 43.
 金属ペーストが塗布された第2シート12を加熱することにより、金属ペーストが金属多孔質焼結体になる。その結果、第2シート12上に第2多孔体42および第4多孔体44が形成される。 By heating the second sheet 12 coated with the metal paste, the metal paste becomes a metal porous sintered body. As a result, the second porous body 42 and the fourth porous body 44 are formed on the second sheet 12.
 図11は、第2シート上に形成された第2多孔体および第4多孔体の一例を模式的に示す平面図である。図12は、図11中の矢印XIIに示す方向から見た第2多孔体の断面図である。図13は、図11中の矢印XIIIに示す方向から見た第2多孔体の断面図である。 FIG. 11 is a plan view schematically showing an example of the second porous body and the fourth porous body formed on the second sheet. FIG. 12 is a cross-sectional view of the second porous body as seen from the direction indicated by the arrow XII in FIG. FIG. 13 is a cross-sectional view of the second porous body as seen from the direction indicated by the arrow XIII in FIG.
 図11に示す例では、印刷などの方法により、幅方向Xに沿って金属ペーストが第2シート12上に塗布される。その結果、幅方向Xに沿って第2多孔体42および第4多孔体44が第2シート12上に形成される。図12に示すように、金属ペーストの塗布方向に平行な方向から見た断面においては、第2多孔体42の断面形状が台形となる。同様に、第4多孔体44の断面形状も台形となる。一方、図13に示すように、金属ペーストの塗布方向に垂直な方向から見た断面においては、第2多孔体42の断面形状が長方形となる。同様に、第4多孔体44の断面形状も長方形となる。 In the example shown in FIG. 11, the metal paste is applied onto the second sheet 12 along the width direction X by a method such as printing. As a result, the second porous body 42 and the fourth porous body 44 are formed on the second sheet 12 along the width direction X. As shown in FIG. 12, the cross-sectional shape of the second porous body 42 is trapezoidal in the cross-sectional view seen from the direction parallel to the application direction of the metal paste. Similarly, the cross-sectional shape of the fourth porous body 44 is also trapezoidal. On the other hand, as shown in FIG. 13, the cross-sectional shape of the second porous body 42 is rectangular in the cross section viewed from the direction perpendicular to the application direction of the metal paste. Similarly, the cross-sectional shape of the fourth porous body 44 is also rectangular.
 なお、第1シート11および第2シート12を加熱する順序は特に限定されず、例えば、第1シート11と第2シート12とを接合した後でもよい。 The order in which the first sheet 11 and the second sheet 12 are heated is not particularly limited, and may be, for example, after the first sheet 11 and the second sheet 12 are joined.
 その後、第1多孔体41の第1分断領域R1に第2多孔体42が嵌まり、第3多孔体43の第2分断領域R2に第4多孔体44が嵌まるように、第1シート11と第2シート12とを重ね合わせ、外縁部を接合する。この際、液相の作動媒体20を封入するための封入口を形成しておく。これにより、内部空間を有する筐体10が作製される。 After that, the first sheet 11 is fitted so that the second porous body 42 is fitted in the first divided region R1 of the first porous body 41 and the fourth porous body 44 is fitted in the second divided region R2 of the third porous body 43. And the second sheet 12 are overlapped with each other, and the outer edge portion is joined. At this time, an encapsulation port for encapsulating the working medium 20 of the liquid phase is formed. As a result, the housing 10 having an internal space is manufactured.
 筐体10の封入口から液相の作動媒体20を注入した後、封入口を塞ぐ。 After injecting the working medium 20 of the liquid phase from the encapsulation port of the housing 10, the encapsulation port is closed.
 以上の工程を経て、ベーパーチャンバー1が製造される。 The vapor chamber 1 is manufactured through the above steps.
 ベーパーチャンバー1は、上記以外の方法により製造されてもよい。例えば、第2多孔体42および第4多孔体44を形成するための金属ペーストを塗布する方向は、第1多孔体41および第3多孔体43を形成するための金属ペーストを塗布する方向と同じでもよい。また、第1多孔体41および第3多孔体43を形成するための金属ペーストを第1シート11上に塗布し、第2多孔体42および第4多孔体44を形成するための金属ペーストも第1シート11上に塗布してもよい。あるいは、第1多孔体41および第3多孔体43を形成するための金属ペーストを第2シート12上に塗布し、第2多孔体42および第4多孔体44を形成するための金属ペーストも第2シート12上に塗布してもよい。 The vapor chamber 1 may be manufactured by a method other than the above. For example, the direction of applying the metal paste for forming the second porous body 42 and the fourth porous body 44 is the same as the direction of applying the metal paste for forming the first porous body 41 and the third porous body 43. But it may be. Further, the metal paste for forming the first porous body 41 and the third porous body 43 is applied onto the first sheet 11, and the metal paste for forming the second porous body 42 and the fourth porous body 44 is also the first. It may be applied on 1 sheet 11. Alternatively, the metal paste for forming the first porous body 41 and the third porous body 43 is applied onto the second sheet 12, and the metal paste for forming the second porous body 42 and the fourth porous body 44 is also the first. 2 It may be applied on the sheet 12.
[第2実施形態]
 本発明の第2実施形態に係るベーパーチャンバーでは、第1分断領域には、第1多孔体が延びる方向に複数の第2多孔体が配置され、第2分断領域には、第3多孔体が延びる方向に複数の第4多孔体が配置されている。
[Second Embodiment]
In the vapor chamber according to the second embodiment of the present invention, a plurality of second porous bodies are arranged in the direction in which the first porous body extends in the first divided region, and the third porous body is arranged in the second divided region. A plurality of fourth porous bodies are arranged in the extending direction.
 図14は、本発明の第2実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 14 is a cross-sectional view schematically showing an example of a vapor chamber according to a second embodiment of the present invention.
 図14に示すベーパーチャンバー2では、第1分断領域R1には、第1多孔体41が延びる方向に複数の第2多孔体42が配置されている。図示されていないが、第2分断領域R2には、第3多孔体43が延びる方向に複数の第4多孔体44が配置されている。図14に示す例では、第1分断領域R1に5つの第2多孔体42が配置されているが、第1分断領域R1には、2つ以上の第2多孔体42が配置されていればよい。同様に、第2分断領域R2には、2つ以上の第4多孔体44が配置されていればよい。 In the vapor chamber 2 shown in FIG. 14, a plurality of second porous bodies 42 are arranged in the first divided region R1 in the direction in which the first porous body 41 extends. Although not shown, a plurality of fourth porous bodies 44 are arranged in the second divided region R2 in the direction in which the third porous body 43 extends. In the example shown in FIG. 14, five second porous bodies 42 are arranged in the first divided region R1, but if two or more second porous bodies 42 are arranged in the first divided region R1. good. Similarly, two or more fourth porous bodies 44 may be arranged in the second divided region R2.
 第1分断領域R1に複数の第2多孔体42が配置され、第2分断領域R2に複数の第4多孔体44が配置されることで、各々の第2多孔体42または第4多孔体44が配置されている箇所で筐体10を曲げることができる。そのため、第1実施形態で説明した曲げ角度θおよびθよりも大きな角度で筐体10を曲げることができる。 A plurality of second porous bodies 42 are arranged in the first divided region R1, and a plurality of fourth porous bodies 44 are arranged in the second divided region R2, whereby the second porous body 42 or the fourth porous body 44 is arranged. The housing 10 can be bent at the place where the housing 10 is arranged. Therefore, the housing 10 can be bent at an angle larger than the bending angles θ 1 and θ 3 described in the first embodiment.
 第1分断領域R1に配置される第2多孔体42の数は、第2分断領域R2に配置される第4多孔体44の数と異なってもよいが、同じであることが好ましい。第1分断領域R1に配置される第2多孔体42の形状は、第2分断領域R2に配置される第4多孔体44の形状と異なってもよいが、同じであることが好ましい。 The number of the second porous bodies 42 arranged in the first divided region R1 may be different from the number of the fourth porous bodies 44 arranged in the second divided region R2, but it is preferable that they are the same. The shape of the second porous body 42 arranged in the first divided region R1 may be different from the shape of the fourth porous body 44 arranged in the second divided region R2, but is preferably the same.
 第1多孔体41が延びる方向および厚さ方向Zに沿った断面において、第2多孔体42の形状は、それぞれ同じでもよく、異なるものが含まれてもよい。同様に、第3多孔体43が延びる方向および厚さ方向Zに沿った断面において、第4多孔体44の形状は、それぞれ同じでもよく、異なるものが含まれてもよい。 The shape of the second porous body 42 may be the same or different in the cross section along the direction in which the first porous body 41 extends and the thickness direction Z. Similarly, in the cross section along the direction in which the third porous body 43 extends and the thickness direction Z, the shape of the fourth porous body 44 may be the same or different.
[第3実施形態]
 本発明の第3実施形態に係るベーパーチャンバーでは、第1多孔体は、複数の第1分断領域を有し、第3多孔体は、複数の第2分断領域を有する。1組の隣り合う第1分断領域および第2分断領域を結ぶ曲げ線のうち、少なくとも1本の曲げ線を境に曲げられる筐体の向きは、別の曲げ線を境に曲げられる筐体の向きと同じである。
[Third Embodiment]
In the vapor chamber according to the third embodiment of the present invention, the first porous body has a plurality of first divided regions, and the third porous body has a plurality of second divided regions. Of the bending lines connecting one set of adjacent first and second dividing regions, the orientation of the housing that can be bent with at least one bending line as the boundary is the orientation of the housing that can be bent with another bending line as the boundary. It is the same as the orientation.
 図15は、本発明の第3実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 15 is a cross-sectional view schematically showing an example of a vapor chamber according to a third embodiment of the present invention.
 図15に示すベーパーチャンバー3では、第1多孔体41は、複数の第1分断領域R1を有する。図示されていないが、第3多孔体43は、複数の第2分断領域R2を有する。図15に示す例では、第1多孔体41は、2つの第1分断領域R1を有しているが、3つ以上の第1分断領域R1を有してもよい。同様に、第3多孔体43は、2つの第2分断領域R2を有してもよく、3つ以上の第2分断領域R2を有してもよい。 In the vapor chamber 3 shown in FIG. 15, the first porous body 41 has a plurality of first divided regions R1. Although not shown, the third porous body 43 has a plurality of second divided regions R2. In the example shown in FIG. 15, the first porous body 41 has two first divided regions R1, but may have three or more first divided regions R1. Similarly, the third porous body 43 may have two second divided regions R2, or may have three or more second divided regions R2.
 1組の隣り合う第1分断領域R1および第2分断領域R2を結ぶ曲げ線L1およびL2のうち、1本の曲げ線L1を境に曲げられる筐体10の向きは、別の曲げ線L2を境に曲げられる筐体10の向きと同じである。 Of the bending lines L1 and L2 connecting one set of adjacent first dividing regions R1 and the second dividing region R2, the direction of the housing 10 that can be bent with one bending line L1 as a boundary is different from the bending line L2. It is the same as the orientation of the housing 10 that can be bent at the boundary.
 第1多孔体41が複数の第1分断領域R1を有し、第3多孔体43が複数の第2分断領域R2を有することで、曲げ部と直線部とを組み合わせることができる。そのため、空間の形状に合わせて筐体10を曲げることができる。 Since the first porous body 41 has a plurality of first divided regions R1 and the third porous body 43 has a plurality of second divided regions R2, the bent portion and the straight portion can be combined. Therefore, the housing 10 can be bent according to the shape of the space.
 第1多孔体41が3つ以上の第1分断領域R1を有し、第3多孔体43が3つ以上の第2分断領域R2を有する場合、1組の隣り合う第1分断領域R1および第2分断領域R2を結ぶ曲げ線のうち、少なくとも1本の曲げ線L1を境に曲げられる筐体10の向きが、別の曲げ線L2を境に曲げられる筐体10の向きと同じであればよい。 When the first porous body 41 has three or more first divided regions R1 and the third porous body 43 has three or more second divided regions R2, a set of adjacent first divided regions R1 and a first. If the orientation of the housing 10 that can be bent with at least one bending line L1 as the boundary among the bending lines connecting the two divided regions R2 is the same as the orientation of the housing 10 that can be bent with another bending line L2 as the boundary. good.
 第1多孔体41が有する第1分断領域の数は、第3多孔体43が有する第2分断領域R2の数と異なってもよいが、同じであることが好ましい。 The number of the first divided regions of the first porous body 41 may be different from the number of the second divided regions R2 of the third porous body 43, but is preferably the same.
 それぞれの第1分断領域R1に配置される第2多孔体42の数は、同じでもよく、異なっていてもよい。同様に、それぞれの第2分断領域R2に配置される第4多孔体44の数は、同じでもよく、異なっていてもよい。 The number of the second porous bodies 42 arranged in each of the first divided regions R1 may be the same or different. Similarly, the number of the fourth porous bodies 44 arranged in each of the second divided regions R2 may be the same or different.
[第4実施形態]
 本発明の第4実施形態に係るベーパーチャンバーでは、第1多孔体は、複数の第1分断領域を有し、第3多孔体は、複数の第2分断領域を有する。1組の隣り合う第1分断領域および第2分断領域を結ぶ曲げ線のうち、少なくとも1本の曲げ線を境に曲げられる筐体の向きは、別の曲げ線を境に曲げられる筐体の向きと異なる。
[Fourth Embodiment]
In the vapor chamber according to the fourth embodiment of the present invention, the first porous body has a plurality of first divided regions, and the third porous body has a plurality of second divided regions. Of the bending lines connecting one set of adjacent first and second dividing regions, the orientation of the housing that can be bent with at least one bending line as the boundary is the orientation of the housing that can be bent with another bending line as the boundary. The orientation is different.
 図16は、本発明の第4実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 16 is a cross-sectional view schematically showing an example of a vapor chamber according to a fourth embodiment of the present invention.
 図16に示すベーパーチャンバー4では、第1多孔体41は、複数の第1分断領域R1を有する。図示されていないが、第3多孔体43は、複数の第2分断領域R2を有する。図16に示す例では、第1多孔体41は、2つの第1分断領域R1を有しているが、3つ以上の第1分断領域R1を有してもよい。同様に、第3多孔体43は、2つの第2分断領域R2を有してもよく、3つ以上の第2分断領域R2を有してもよい。 In the vapor chamber 4 shown in FIG. 16, the first porous body 41 has a plurality of first divided regions R1. Although not shown, the third porous body 43 has a plurality of second divided regions R2. In the example shown in FIG. 16, the first porous body 41 has two first divided regions R1, but may have three or more first divided regions R1. Similarly, the third porous body 43 may have two second divided regions R2, or may have three or more second divided regions R2.
 1組の隣り合う第1分断領域R1および第2分断領域R2を結ぶ曲げ線L1およびL2のうち、1本の曲げ線L1を境に曲げられる筐体10の向きは、別の曲げ線L2を境に曲げられる筐体10の向きと異なる。 Of the bending lines L1 and L2 connecting one set of adjacent first dividing regions R1 and the second dividing region R2, the direction of the housing 10 that can be bent with one bending line L1 as a boundary is different from the bending line L2. It is different from the orientation of the housing 10 that can be bent at the boundary.
 第1多孔体41が複数の第1分断領域R1を有し、第3多孔体43が複数の第2分断領域R2を有することで、曲げ部と直線部とを組み合わせることができる。そのため、第3実施形態と同様、空間の形状に合わせて筐体10を曲げることができる。 Since the first porous body 41 has a plurality of first divided regions R1 and the third porous body 43 has a plurality of second divided regions R2, the bent portion and the straight portion can be combined. Therefore, as in the third embodiment, the housing 10 can be bent according to the shape of the space.
 第1多孔体41が3つ以上の第1分断領域R1を有し、第3多孔体43が3つ以上の第2分断領域R2を有する場合、1組の隣り合う第1分断領域R1および第2分断領域R2を結ぶ曲げ線のうち、少なくとも1本の曲げ線L1を境に曲げられる筐体10の向きが、別の曲げ線L2を境に曲げられる筐体10の向きと異なっていればよい。 When the first porous body 41 has three or more first divided regions R1 and the third porous body 43 has three or more second divided regions R2, a set of adjacent first divided regions R1 and a first. If the orientation of the housing 10 that can be bent with at least one bending line L1 as a boundary among the bending lines connecting the two divided regions R2 is different from the orientation of the housing 10 that can be bent with another bending line L2 as a boundary. good.
 第1多孔体41が有する第1分断領域の数は、第3多孔体43が有する第2分断領域R2の数と異なってもよいが、同じであることが好ましい。 The number of the first divided regions of the first porous body 41 may be different from the number of the second divided regions R2 of the third porous body 43, but is preferably the same.
 それぞれの第1分断領域R1に配置される第2多孔体42の数は、同じでもよく、異なっていてもよい。同様に、それぞれの第2分断領域R2に配置される第4多孔体44の数は、同じでもよく、異なっていてもよい。 The number of the second porous bodies 42 arranged in each of the first divided regions R1 may be the same or different. Similarly, the number of the fourth porous bodies 44 arranged in each of the second divided regions R2 may be the same or different.
[第5実施形態]
 本発明の第5実施形態に係るベーパーチャンバーでは、厚さ方向に垂直な断面を見たとき、1組の隣り合う第1分断領域および第2分断領域を結ぶ曲げ線は、筐体の輪郭線に対して傾斜している。
[Fifth Embodiment]
In the vapor chamber according to the fifth embodiment of the present invention, when a cross section perpendicular to the thickness direction is viewed, the bending line connecting one set of adjacent first division regions and second division regions is the contour line of the housing. Is tilted against.
 図17は、本発明の第5実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。 FIG. 17 is a cross-sectional view schematically showing an example of a vapor chamber according to a fifth embodiment of the present invention.
 図17に示すベーパーチャンバー5では、厚さ方向Zに垂直な断面を見たとき、1組の隣り合う第1分断領域R1および第2分断領域R2を結ぶ曲げ線Lは、筐体10の輪郭線に対して傾斜している。 In the vapor chamber 5 shown in FIG. 17, when the cross section perpendicular to the thickness direction Z is viewed, the bending line L connecting the pair of adjacent first dividing regions R1 and the second dividing region R2 is the contour of the housing 10. It is inclined with respect to the line.
 1組の隣り合う第1分断領域R1および第2分断領域R2を結ぶ曲げ線Lが筐体10の輪郭線に対して傾斜していることで、空間の形状に合わせて筐体10を曲げることができる。 Since the bending line L connecting one set of adjacent first dividing regions R1 and the second dividing region R2 is inclined with respect to the contour line of the housing 10, the housing 10 is bent according to the shape of the space. Can be done.
[第6実施形態]
 第6実施形態では、ウィックが第1多孔体と第2多孔体とを含み、第3多孔体と第4多孔体とを含まない点が第1実施形態~第5実施形態と異なる。
[Sixth Embodiment]
The sixth embodiment is different from the first to fifth embodiments in that the wick contains the first porous body and the second porous body, and does not include the third porous body and the fourth porous body.
 図18は、本発明の第6実施形態に係るベーパーチャンバーの一例を模式的に示す断面図である。図19は、図18に示すベーパーチャンバーのXIX-XIX線に沿った断面図である。 FIG. 18 is a cross-sectional view schematically showing an example of a vapor chamber according to a sixth embodiment of the present invention. FIG. 19 is a cross-sectional view taken along the line XIX-XIX of the vapor chamber shown in FIG.
 図18に示すベーパーチャンバー6では、ウィック30Aは、第1多孔体41と第2多孔体42とを含む。図2に示すベーパーチャンバー1と異なり、ウィック30Aは、第3多孔体43と第4多孔体44とを含まない。そのため、ベーパーチャンバー6では、液体流路51は形成されないが、第1多孔体41および第2多孔体42によって液体流路が形成される。 In the vapor chamber 6 shown in FIG. 18, the wick 30A includes the first porous body 41 and the second porous body 42. Unlike the vapor chamber 1 shown in FIG. 2, the wick 30A does not include the third porous body 43 and the fourth porous body 44. Therefore, in the vapor chamber 6, the liquid flow path 51 is not formed, but the liquid flow path is formed by the first porous body 41 and the second porous body 42.
 図18に示すように、第1多孔体41は、厚さ方向Zに垂直な方向(本実施形態では長さ方向Y)に沿って延びている。図18に示すように、第1多孔体41は、その延びる方向において第1分断領域R1を介して分断されている。 As shown in FIG. 18, the first porous body 41 extends along a direction perpendicular to the thickness direction Z (in the present embodiment, the length direction Y). As shown in FIG. 18, the first porous body 41 is divided through the first divided region R1 in the extending direction thereof.
 図18および図19に示すように、隣り合うウィック30の間には、蒸気流路50が形成されている。 As shown in FIGS. 18 and 19, a steam flow path 50 is formed between adjacent wicks 30.
 図18に示すように、第2多孔体42は、第1分断領域R1に嵌まるように、第1多孔体41と隙間を空けて配置されている。 As shown in FIG. 18, the second porous body 42 is arranged with a gap from the first porous body 41 so as to fit in the first divided region R1.
 ベーパーチャンバー6において、筐体10は、第1分断領域R1を含む曲げ線L(図18参照)を境に曲げることが可能である。 In the vapor chamber 6, the housing 10 can be bent with a bending line L (see FIG. 18) including the first dividing region R1 as a boundary.
 以上のように、ウィック30Aが第3多孔体43と第4多孔体44とを含まず、第1多孔体41と第2多孔体42とを含むベーパーチャンバー6においても、ベーパーチャンバー1と同様の効果が期待できる。 As described above, the vapor chamber 6 in which the wick 30A does not include the third porous body 43 and the fourth porous body 44 but includes the first porous body 41 and the second porous body 42 is similar to the vapor chamber 1. The effect can be expected.
 本発明の第6実施形態に係るベーパーチャンバーは、ウィックが第3多孔体と第4多孔体とを含まない点を除いて、本発明の第1実施形態と同様の構成を有する。 The vapor chamber according to the sixth embodiment of the present invention has the same configuration as the first embodiment of the present invention except that the wick does not contain the third porous body and the fourth porous body.
 本発明の第6実施形態に係るベーパーチャンバーでは、本発明の第2実施形態と同様に、第1分断領域には、第1多孔体が延びる方向に複数の第2多孔体が配置されていてもよい。 In the vapor chamber according to the sixth embodiment of the present invention, as in the second embodiment of the present invention, a plurality of second porous bodies are arranged in the first divided region in the direction in which the first porous body extends. May be good.
 本発明の第6実施形態に係るベーパーチャンバーでは、本発明の第3実施形態と同様に、第1多孔体は、複数の第1分断領域を有し、それぞれの第1分断領域を含む曲げ線のうち、少なくとも1本の曲げ線を境に曲げられる筐体の向きは、別の曲げ線を境に曲げられる筐体の向きと同じであってもよい。 In the vapor chamber according to the sixth embodiment of the present invention, as in the third embodiment of the present invention, the first porous body has a plurality of first dividing regions, and a bending line including each first dividing region. Of these, the orientation of the housing that can be bent with at least one bending line as a boundary may be the same as the orientation of the housing that can be bent with another bending line as a boundary.
 本発明の第6実施形態に係るベーパーチャンバーでは、本発明の第4実施形態と同様に、第1多孔体は、複数の第1分断領域を有し、それぞれの第1分断領域を含む曲げ線のうち、少なくとも1本の曲げ線を境に曲げられる筐体の向きは、別の曲げ線を境に曲げられる筐体の向きと異なっていてもよい。 In the vapor chamber according to the sixth embodiment of the present invention, as in the fourth embodiment of the present invention, the first porous body has a plurality of first dividing regions, and a bending line including each first dividing region. Of these, the orientation of the housing that can be bent with at least one bending line as a boundary may be different from the orientation of the housing that can be bent with another bending line as a boundary.
 本発明の第6実施形態に係るベーパーチャンバーでは、本発明の第5実施形態と同様に、厚さ方向に垂直な断面を見たとき、第1分断領域を含む曲げ線は、筐体の輪郭線に対して傾斜していてもよい。 In the vapor chamber according to the sixth embodiment of the present invention, as in the fifth embodiment of the present invention, when the cross section perpendicular to the thickness direction is viewed, the bending line including the first dividing region is the contour of the housing. It may be inclined with respect to the line.
[その他の実施形態]
 本発明の熱拡散デバイスは、上記実施形態に限定されるものではなく、熱拡散デバイスの構成、製造条件等に関し、本発明の範囲内において、種々の応用、変形を加えることが可能である。
[Other embodiments]
The heat diffusion device of the present invention is not limited to the above embodiment, and various applications and modifications can be added within the scope of the present invention regarding the configuration of the heat diffusion device, manufacturing conditions, and the like.
 本発明の熱拡散デバイスにおいて、厚さ方向Zから見た筐体10の平面形状は特に限定されず、例えば、三角形または矩形などの多角形、円形、楕円形、これらを組み合わせた形状などが挙げられる。また、筐体10の平面形状は、L字型、C字型(コの字型)などであってもよい。また、筐体10の内部に貫通口を有していてもよい。筐体10の平面形状は、熱拡散デバイスの用途、熱拡散デバイスの組み入れ箇所の形状、近傍に存在する他の部品に応じた形状であってもよい。 In the heat diffusion device of the present invention, the planar shape of the housing 10 when viewed from the thickness direction Z is not particularly limited, and examples thereof include polygons such as triangles and rectangles, circles, ellipses, and combinations thereof. Be done. Further, the planar shape of the housing 10 may be L-shaped, C-shaped (U-shaped), or the like. Further, a through hole may be provided inside the housing 10. The planar shape of the housing 10 may be a shape corresponding to the application of the heat diffusion device, the shape of the place where the heat diffusion device is incorporated, and other parts existing in the vicinity.
 上記実施形態では、第1多孔体41および第2多孔体42を含むウィック30は、厚さ方向Zからの筐体10の平面視で、筐体10の内部空間の全体に配置される例を示したが、局所的に配置されてもよい。例えば、厚さ方向Zからの筐体10の平面視で、筐体10の内部空間の縁端に沿ってのみウィック30が配置されてもよいし、筐体10の短手方向の中央部付近にのみウィック30が配置されてもよい。 In the above embodiment, the wick 30 including the first porous body 41 and the second porous body 42 is arranged in the entire internal space of the housing 10 in a plan view of the housing 10 from the thickness direction Z. As shown, it may be placed locally. For example, in a plan view of the housing 10 from the thickness direction Z, the wick 30 may be arranged only along the edge of the internal space of the housing 10, or near the central portion of the housing 10 in the lateral direction. The wick 30 may be placed only in.
 本発明の熱拡散デバイスにおいて、筐体10が第1シート11および第2シート12から構成される場合、第1シート11と第2シート12とは、端部が一致するように重なっていてもよいし、端部がずれて重なっていてもよい。 In the heat diffusion device of the present invention, when the housing 10 is composed of the first sheet 11 and the second sheet 12, the first sheet 11 and the second sheet 12 are overlapped so that their ends coincide with each other. Alternatively, the ends may be offset and overlapped.
 本発明の熱拡散デバイスにおいて、筐体10が第1シート11および第2シート12から構成される場合、第1シート11を構成する材料と、第2シート12を構成する材料とは異なっていてもよい。例えば、強度の高い材料を第1シート11に用いることにより、筐体10にかかる応力を分散させることができる。また、両者の材料を異なるものとすることにより、一方のシートで一の機能を得、他方のシートで他の機能を得ることができる。上記の機能としては、特に限定されないが、例えば、熱伝導機能、電磁波シールド機能等が挙げられる。 In the heat diffusion device of the present invention, when the housing 10 is composed of the first sheet 11 and the second sheet 12, the material constituting the first sheet 11 and the material constituting the second sheet 12 are different. May be good. For example, by using a high-strength material for the first sheet 11, the stress applied to the housing 10 can be dispersed. Further, by using different materials for both, one sheet can obtain one function and the other sheet can obtain another function. The above-mentioned functions are not particularly limited, and examples thereof include a heat conduction function and an electromagnetic wave shielding function.
 本発明の熱拡散デバイスでは、第1多孔体41が延びる方向に垂直な断面において、第1多孔体41は、厚さ方向Zで幅が一定であってもよく、厚さ方向Zで幅が一定でなくてもよい。例えば、第1多孔体41が延びる方向に垂直な断面において、第1多孔体41は、第1内壁面11a側の端部の幅よりも第2内壁面12a側の端部の幅が狭くてもよい。この場合、幅が一定である部分が含まれてもよい。 In the heat diffusion device of the present invention, in the cross section perpendicular to the direction in which the first porous body 41 extends, the width of the first porous body 41 may be constant in the thickness direction Z, and the width may be constant in the thickness direction Z. It does not have to be constant. For example, in the cross section perpendicular to the direction in which the first porous body 41 extends, the width of the end portion on the second inner wall surface 12a side of the first porous body 41 is narrower than the width of the end portion on the first inner wall surface 11a side. May be good. In this case, a portion having a constant width may be included.
 本発明の熱拡散デバイスでは、ウィック30が第3多孔体43と第4多孔体44とを含む場合、第3多孔体43が延びる方向に垂直な断面において、第3多孔体43は、厚さ方向Zで幅が一定であってもよく、厚さ方向Zで幅が一定でなくてもよい。例えば、第3多孔体43が延びる方向に垂直な断面において、第3多孔体43は、第1内壁面11a側の端部の幅よりも第2内壁面12a側の端部の幅が狭くてもよい。この場合、幅が一定である部分が含まれてもよい。 In the heat diffusion device of the present invention, when the wick 30 includes the third porous body 43 and the fourth porous body 44, the third porous body 43 has a thickness in a cross section perpendicular to the direction in which the third porous body 43 extends. The width may be constant in the direction Z, and the width may not be constant in the thickness direction Z. For example, in the cross section perpendicular to the direction in which the third porous body 43 extends, the width of the end portion on the second inner wall surface 12a side of the third porous body 43 is narrower than the width of the end portion on the first inner wall surface 11a side. May be good. In this case, a portion having a constant width may be included.
 本発明の熱拡散デバイスにおいて、筐体10は、複数の蒸発部EPを有してもよい。 In the heat diffusion device of the present invention, the housing 10 may have a plurality of evaporation units EP.
 本発明の熱拡散デバイスでは、図2に示すベーパーチャンバー1と異なり、幅方向Xおよび長さ方向Yに対して斜めの方向に沿って延びるウィック30が存在してもよい。例えば、ウィック30は、蒸発部EPから放射状に延びてもよい。 In the heat diffusion device of the present invention, unlike the vapor chamber 1 shown in FIG. 2, a wick 30 extending along an oblique direction with respect to the width direction X and the length direction Y may exist. For example, the wick 30 may extend radially from the evaporation unit EP.
 本発明の熱拡散デバイスでは、蒸気流路50内に、筐体10の第1内壁面11aおよび第2内壁面12aを内側から支持する複数の支柱が配置されていてもよい。 In the heat diffusion device of the present invention, a plurality of columns that support the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside may be arranged in the steam flow path 50.
 蒸気流路50内に複数の支柱が配置される場合、支柱間は、蒸気流路50が分断される。支柱は、筐体10の第1内壁面11aおよび第2内壁面12aを内側から支持する。液体流路51の本数が少ない場合には、蒸気流路50内に支柱を配置することによって筐体10を支持することが可能である。 When a plurality of columns are arranged in the steam flow path 50, the steam flow path 50 is divided between the columns. The columns support the first inner wall surface 11a and the second inner wall surface 12a of the housing 10 from the inside. When the number of liquid flow paths 51 is small, it is possible to support the housing 10 by arranging columns in the steam flow path 50.
 蒸気流路50内に複数の支柱が配置される場合、全ての蒸気流路50内に支柱が配置されることが好ましいが、支柱が配置されない蒸気流路50が存在してもよい。 When a plurality of columns are arranged in the steam flow path 50, it is preferable that the columns are arranged in all the steam flow paths 50, but there may be a steam flow path 50 in which the columns are not arranged.
 支柱は、第1内壁面11aおよび第2内壁面12aの両方に接していてもよく、第1内壁面11aおよび第2内壁面12aのいずれか一方に接していてもよく、第1内壁面11aおよび第2内壁面12aの両方に接していなくてもよい。 The column may be in contact with both the first inner wall surface 11a and the second inner wall surface 12a, may be in contact with either the first inner wall surface 11a or the second inner wall surface 12a, and may be in contact with either one of the first inner wall surface 11a and the second inner wall surface 12a. And it does not have to be in contact with both the second inner wall surface 12a.
 支柱を形成する材料は、特に限定されないが、例えば、樹脂、金属、セラミックス、またはそれらの混合物、積層物等が挙げられる。また、支柱は、筐体10と一体であってもよく、例えば、第1シート11または第2シート12の内壁面をエッチング加工すること等により形成されていてもよい。 The material forming the column is not particularly limited, and examples thereof include resin, metal, ceramics, a mixture thereof, and a laminate. Further, the support column may be integrated with the housing 10, and may be formed by, for example, etching the inner wall surface of the first sheet 11 or the second sheet 12.
 支柱の形状は、筐体10を支持できる形状であれば特に限定されないが、支柱の高さ方向に垂直な断面の形状としては、例えば、矩形等の多角形、円形、楕円形等が挙げられる。 The shape of the strut is not particularly limited as long as it can support the housing 10, but examples of the shape of the cross section perpendicular to the height direction of the strut include polygons such as rectangles, circles, and ellipses. ..
 支柱の高さは、特に限定されず、ウィック30の高さと同じでもよく、異なっていてもよい。 The height of the columns is not particularly limited, and may be the same as or different from the height of the wick 30.
 支柱の高さは、一の熱拡散デバイスにおいて、同じであってもよく、異なっていてもよい。例えば、ある領域における支柱の高さと、別の領域における支柱の高さが異なっていてもよい。 The height of the columns may be the same or different in one heat diffusion device. For example, the height of the stanchions in one area may be different from the height of the stanchions in another area.
 支柱の幅は、熱拡散デバイスの筐体の変形を抑制できる強度を与えるものであれば特に限定されないが、支柱の端部の高さ方向に垂直な断面の円相当径は、例えば100μm以上2000μm以下であり、好ましくは300μm以上1000μm以下である。支柱の円相当径を大きくすることにより、熱拡散デバイスの筐体の変形をより抑制することができる。一方、支柱の円相当径を小さくすることにより、作動媒体の蒸気が移動するための空間をより広く確保することができる。 The width of the strut is not particularly limited as long as it gives strength that can suppress the deformation of the housing of the heat diffusion device, but the equivalent circle diameter of the cross section perpendicular to the height direction of the end of the strut is, for example, 100 μm or more and 2000 μm. It is less than or equal to, preferably 300 μm or more and 1000 μm or less. By increasing the diameter equivalent to the circle of the support column, it is possible to further suppress the deformation of the housing of the heat diffusion device. On the other hand, by reducing the diameter equivalent to the circle of the column, it is possible to secure a wider space for the steam of the working medium to move.
 支柱の配置は、特に限定されないが、好ましくは所定の領域において均等に、より好ましくは全体にわたって均等に、例えば支柱間の距離が一定となるように配置される。支柱を均等に配置することにより、熱拡散デバイス全体にわたって均一な強度を確保することができる。 The arrangement of the columns is not particularly limited, but is preferably arranged evenly in a predetermined area, more preferably evenly over the entire area, for example, so that the distance between the columns is constant. By arranging the columns evenly, uniform strength can be ensured throughout the heat diffusion device.
 本発明の熱拡散デバイスは、第1多孔体41、第2多孔体42、第3多孔体43および第4多孔体44以外のウィックをさらに備えてもよい。例えば、本発明の熱拡散デバイスは、第1内壁面に沿って配置されたウィック、および、第2内壁面に沿って配置されたウィックのうち、少なくとも一方のウィックをさらに備えてもよい。 The heat diffusion device of the present invention may further include a wick other than the first porous body 41, the second porous body 42, the third porous body 43, and the fourth porous body 44. For example, the heat diffusion device of the present invention may further include at least one of the wicks arranged along the first inner wall surface and the wicks arranged along the second inner wall surface.
 第1内壁面に沿って配置されたウィックおよび第2内壁面に沿って配置されたウィックは、毛細管力により作動媒体を移動させることができる毛細管構造を有するウィックであれば特に限定されない。ウィックの毛細管構造は、従来の熱拡散デバイスにおいて用いられている公知の構造であってもよい。毛細管構造としては、細孔、溝、突起などの凹凸を有する微細構造、例えば、多孔構造、繊維構造、溝構造、網目構造などが挙げられる。 The wick arranged along the first inner wall surface and the wick arranged along the second inner wall surface are not particularly limited as long as they have a capillary structure capable of moving the working medium by a capillary force. The capillary structure of the wick may be a known structure used in conventional heat diffusion devices. Examples of the capillary structure include microstructures having irregularities such as pores, grooves, and protrusions, such as a porous structure, a fiber structure, a groove structure, and a mesh structure.
 第1内壁面に沿って配置されたウィックおよび第2内壁面に沿って配置されたウィックの材料は特に限定されず、例えば、エッチング加工または金属加工により形成される金属多孔膜、メッシュ、不織布、焼結体、多孔体などが用いられる。ウィックの材料となるメッシュは、例えば、金属メッシュ、樹脂メッシュ、もしくは表面コートしたそれらのメッシュから構成されるものであってよく、好ましくは銅メッシュ、ステンレス(SUS)メッシュまたはポリエステルメッシュから構成される。ウィックの材料となる焼結体は、例えば、金属多孔質焼結体、セラミックス多孔質焼結体から構成されるものであってよく、好ましくは銅またはニッケルの多孔質焼結体から構成される。ウィックの材料となる多孔体は、例えば、金属多孔体、セラミックス多孔体、樹脂多孔体から構成されるもの等であってもよい。 The material of the wick arranged along the first inner wall surface and the material of the wick arranged along the second inner wall surface are not particularly limited, and for example, a metal porous film formed by etching or metal processing, a mesh, a non-woven fabric, and the like. A sintered body, a porous body, or the like is used. The mesh used as the material of the wick may be composed of, for example, a metal mesh, a resin mesh, or a surface-coated mesh thereof, and is preferably composed of a copper mesh, a stainless (SUS) mesh, or a polyester mesh. .. The sintered body used as the material of the wick may be composed of, for example, a metal porous sintered body and a ceramic porous sintered body, and is preferably composed of a copper or nickel porous sintered body. .. The porous body used as the material of the wick may be, for example, a porous body made of a metal porous body, a ceramic porous body, a resin porous body, or the like.
 第1内壁面に沿って配置されたウィックおよび第2内壁面に沿って配置されたウィックの大きさおよび形状は、特に限定されないが、例えば、筐体の内部において蒸発部から凝縮部まで連続して設置できる大きさおよび形状を有することが好ましい。 The size and shape of the wick arranged along the first inner wall surface and the wick arranged along the second inner wall surface are not particularly limited, but are, for example, continuous from the evaporation part to the condensing part inside the housing. It is preferable to have a size and a shape that can be installed.
 第1内壁面に沿って配置されたウィックおよび第2内壁面に沿って配置されたウィックの厚さは、特に限定されないが、各々、例えば2μm以上200μm以下であり、好ましくは5μm以上100μm以下、より好ましくは10μm以上40μm以下である。第1内壁面に沿って配置されたウィックおよび第2内壁面に沿って配置されたウィックの厚さは、部分的に異なっていてもよい。第1内壁面に沿って配置されたウィックの厚さは、第2内壁面に沿って配置されたウィックの厚さと同じでもよく、異なっていてもよい。 The thickness of the wick arranged along the first inner wall surface and the thickness of the wick arranged along the second inner wall surface are not particularly limited, but are, for example, 2 μm or more and 200 μm or less, preferably 5 μm or more and 100 μm or less, respectively. More preferably, it is 10 μm or more and 40 μm or less. The thickness of the wicks arranged along the first inner wall surface and the wicks arranged along the second inner wall surface may be partially different. The thickness of the wick arranged along the first inner wall surface may be the same as or different from the thickness of the wick arranged along the second inner wall surface.
 本発明の熱拡散デバイスは、放熱を目的として電子機器に搭載され得る。したがって、本発明の熱拡散デバイスを備える電子機器も本発明の1つである。本発明の電子機器としては、例えばスマートフォン、タブレット端末、ノートパソコン、ゲーム機器、ウェアラブルデバイス等が挙げられる。本発明の熱拡散デバイスは上記のとおり、外部動力を必要とせず自立的に作動し、作動媒体の蒸発潜熱および凝縮潜熱を利用して、二次元的に高速で熱を拡散することができる。そのため、本発明の熱拡散デバイスを備える電子機器により、電子機器内部の限られたスペースにおいて、放熱を効果的に実現することができる。 The heat diffusion device of the present invention can be mounted on an electronic device for the purpose of heat dissipation. Therefore, an electronic device provided with the heat diffusion device of the present invention is also one of the present inventions. Examples of the electronic device of the present invention include smartphones, tablet terminals, notebook computers, game devices, wearable devices and the like. As described above, the heat diffusion device of the present invention operates independently without the need for external power, and can diffuse heat in two dimensions at high speed by utilizing the latent heat of vaporization and the latent heat of condensation of the working medium. Therefore, the electronic device provided with the heat diffusion device of the present invention can effectively dissipate heat in the limited space inside the electronic device.
 本発明の熱拡散デバイスは、携帯情報端末等の分野において、広範な用途に使用できる。例えば、CPU等の熱源の温度を下げ、電子機器の使用時間を延ばすために使用することができ、スマートフォン、タブレット端末、ノートパソコン等に使用することができる。 The heat diffusion device of the present invention can be used for a wide range of applications in the field of portable information terminals and the like. For example, it can be used to lower the temperature of a heat source such as a CPU and extend the usage time of an electronic device, and can be used for a smartphone, a tablet terminal, a notebook computer, or the like.
 1、1A、2、3、4、5、6 ベーパーチャンバー(熱拡散デバイス)
 10 筐体
 11 第1シート
 11a 第1内壁面
 12 第2シート
 12a 第2内壁面
 20 作動媒体
 30、30A ウィック
 41 第1多孔体
 42、42A 第2多孔体
 43 第3多孔体
 44 第4多孔体
 50 蒸気流路
 51 液体流路
 CP 凝縮部
 EP 蒸発部
 HS 熱源
 L、L1、L2 曲げ線
 R1 第1分断領域
 R2 第2分断領域
 X 幅方向
 Y 長さ方向
 Z 厚さ方向
 α 第2多孔体の鋭角の角度
 θ 曲げ線に最も近い第1多孔体が配置された筐体の外壁面に対する、その第1多孔体に最も近い第2多孔体が配置された筐体の外壁面の曲げ角度
1, 1A, 2, 3, 4, 5, 6 Vapor chamber (heat diffusion device)
10 Housing 11 1st sheet 11a 1st inner wall surface 12 2nd sheet 12a 2nd inner wall surface 20 Working medium 30, 30A Wick 41 1st porous body 42, 42A 2nd porous body 43 3rd porous body 44 4th porous body 50 Steam flow path 51 Liquid flow path CP Condensing part EP Evaporation part HS Heat source L, L1, L2 Bending line R1 First dividing region R2 Second dividing region X Width direction Y Length direction Z Thickness direction α 2 Second porous body Angle of sharp angle θ 1 Bending angle of the outer wall surface of the housing in which the second porous body closest to the first porous body is arranged with respect to the outer wall surface of the housing in which the first porous body closest to the bending line is arranged.

Claims (14)

  1.  厚さ方向に対向する第1内壁面および第2内壁面を有する筐体と、
     前記筐体の内部空間に封入された作動媒体と、
     前記筐体の内部空間に配置されたウィックと、を備え、
     前記ウィックは、前記筐体の前記第1内壁面および前記第2内壁面を内側から支持する、第1多孔体と第2多孔体とを含み、
     前記第1多孔体は、前記厚さ方向に垂直な方向に沿って延び、かつ、その延びる方向において第1分断領域を介して分断され、
     前記第2多孔体は、前記第1分断領域に嵌まるように、前記第1多孔体と隙間を空けて配置されている、熱拡散デバイス。
    A housing having a first inner wall surface and a second inner wall surface facing each other in the thickness direction,
    The working medium enclosed in the internal space of the housing and
    With a wick arranged in the internal space of the housing,
    The wick includes a first porous body and a second porous body that support the first inner wall surface and the second inner wall surface of the housing from the inside.
    The first porous body extends along a direction perpendicular to the thickness direction, and is divided in the extending direction through the first dividing region.
    The second porous body is a heat diffusion device arranged with a gap from the first porous body so as to fit in the first divided region.
  2.  前記ウィックは、前記筐体の前記第1内壁面および前記第2内壁面を内側から支持する、第3多孔体と第4多孔体とをさらに含み、
     前記第3多孔体は、前記第1多孔体が延びる方向に沿って延び、かつ、その延びる方向において第2分断領域を介して分断され、
     前記第1多孔体と前記第3多孔体との間には、前記第1多孔体および前記第3多孔体が延びる方向に沿って液体流路が形成され、
     前記第4多孔体は、前記第2分断領域に嵌まるように、前記第3多孔体と隙間を空けて配置されている、請求項1に記載の熱拡散デバイス。
    The wick further includes a third porous body and a fourth porous body that support the first inner wall surface and the second inner wall surface of the housing from the inside.
    The third porous body extends along the direction in which the first porous body extends, and is divided in the extending direction via the second dividing region.
    A liquid flow path is formed between the first porous body and the third porous body along the direction in which the first porous body and the third porous body extend.
    The heat diffusion device according to claim 1, wherein the fourth porous body is arranged with a gap from the third porous body so as to fit in the second divided region.
  3.  前記厚さ方向に垂直な断面を見て、前記第1多孔体が延びる方向と直交する方向における多孔体の寸法を幅と定義したとき、前記第2多孔体の幅は前記第1多孔体の幅よりも大きい、請求項1または2に記載の熱拡散デバイス。 Looking at the cross section perpendicular to the thickness direction, when the dimension of the porous body in the direction orthogonal to the direction in which the first porous body extends is defined as the width, the width of the second porous body is the width of the first porous body. The heat diffusion device according to claim 1 or 2, which is larger than the width.
  4.  前記第1多孔体が延びる方向および前記厚さ方向に沿った断面を見たとき、前記第2多孔体が鋭角を1点以上有する、請求項1~3のいずれか1項に記載の熱拡散デバイス。 The heat diffusion according to any one of claims 1 to 3, wherein the second porous body has one or more acute angles when the cross section is viewed along the direction in which the first porous body extends and the thickness direction. device.
  5.  前記第1多孔体が延びる方向および前記厚さ方向に沿った断面を見たとき、前記第1多孔体が鋭角を1点以上有する、請求項1~4のいずれか1項に記載の熱拡散デバイス。 The heat diffusion according to any one of claims 1 to 4, wherein the first porous body has one or more acute angles when the cross section is viewed along the extending direction and the thickness direction of the first porous body. device.
  6.  前記第1分断領域を含む曲げ線を境に前記筐体が曲げられており、
     前記第1多孔体が延びる方向および前記厚さ方向に沿った断面を見たとき、前記筐体が曲げられた状態において、前記曲げ線を挟んだ前記第1多孔体と前記第2多孔体との間隔が、0mm以上0.1mm以下である、請求項1~5のいずれか1項に記載の熱拡散デバイス。
    The housing is bent at a bending line including the first dividing region.
    When the cross section along the extending direction and the thickness direction of the first porous body is viewed, the first porous body and the second porous body sandwiching the bending line are in a bent state. The heat diffusion device according to any one of claims 1 to 5, wherein the distance between the two is 0 mm or more and 0.1 mm or less.
  7.  前記第1分断領域を含む曲げ線を境に前記筐体が曲げられており、
     前記第1多孔体が延びる方向および前記厚さ方向に沿った断面を見たとき、前記第2多孔体が鋭角を1点以上有し、かつ、前記筐体が曲げられた状態において、前記曲げ線に最も近い前記第1多孔体が配置された前記筐体の外壁面に対する、その第1多孔体に最も近い前記第2多孔体が配置された前記筐体の外壁面の曲げ角度θと、その第2多孔体の鋭角の角度αとの関係が、0°<θ≦90°-αを満たす、請求項1~6のいずれか1項に記載の熱拡散デバイス。
    The housing is bent at a bending line including the first dividing region.
    When the cross section along the extending direction and the thickness direction of the first porous body is viewed, the bending is performed in a state where the second porous body has one or more acute angles and the housing is bent. With respect to the outer wall surface of the housing in which the first porous body closest to the line is arranged, the bending angle θ 1 of the outer wall surface of the housing in which the second porous body closest to the first porous body is arranged. The heat diffusion device according to any one of claims 1 to 6, wherein the relationship between the second porous body and the acute angle angle α 2 satisfies 0 ° <θ 1 ≤ 90 ° − α 2 .
  8.  前記第1分断領域を含む曲げ線を境に前記筐体が曲げられており、
     前記第1多孔体が延びる方向および前記厚さ方向に沿った断面を見たとき、前記第1多孔体が鋭角を1点以上有し、かつ、前記筐体が曲げられた状態において、前記曲げ線に最も近い前記第1多孔体が配置された前記筐体の外壁面に対する、その第1多孔体に最も近い前記第2多孔体が配置された前記筐体の外壁面の曲げ角度θと、その第1多孔体の鋭角の角度αとの関係が、0°<θ≦90°-αを満たす、請求項1~6のいずれか1項に記載の熱拡散デバイス。
    The housing is bent at a bending line including the first dividing region.
    When the cross section along the extending direction and the thickness direction of the first porous body is viewed, the bending is performed in a state where the first porous body has one or more acute angles and the housing is bent. With respect to the outer wall surface of the housing in which the first porous body closest to the line is arranged, the bending angle θ 1 of the outer wall surface of the housing in which the second porous body closest to the first porous body is arranged. The heat diffusion device according to any one of claims 1 to 6, wherein the relationship between the first porous body and the acute angle angle α 1 satisfies 0 ° <θ 1 ≤ 90 ° − α 1 .
  9.  前記第1分断領域を含む曲げ線を境に前記筐体が曲げられており、
     前記第1多孔体が延びる方向および前記厚さ方向に沿った断面を見たとき、前記筐体が曲げられた状態において、前記曲げ線に最も近い前記第1多孔体が配置された前記筐体の外壁面に対する、その第1多孔体に最も近い前記第2多孔体が配置された前記筐体の外壁面の曲げ角度θは、10°以上45°以下である、請求項1~8のいずれか1項に記載の熱拡散デバイス。
    The housing is bent at a bending line including the first dividing region.
    When the cross section along the extending direction and the thickness direction of the first porous body is viewed, the housing in which the first porous body closest to the bending line is arranged in a bent state of the housing. The bending angle θ 1 of the outer wall surface of the housing in which the second porous body closest to the first porous body is arranged with respect to the outer wall surface of the above is 10 ° or more and 45 ° or less, according to claims 1 to 8. The heat diffusion device according to any one item.
  10.  前記第1分断領域には、前記第1多孔体が延びる方向に複数の前記第2多孔体が配置されている、請求項1~9のいずれか1項に記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 1 to 9, wherein a plurality of the second porous bodies are arranged in the first divided region in a direction in which the first porous body extends.
  11.  前記第1多孔体は、複数の前記第1分断領域を有し、
     それぞれの前記第1分断領域を含む曲げ線のうち、少なくとも1本の曲げ線を境に曲げられる前記筐体の向きは、別の曲げ線を境に曲げられる前記筐体の向きと同じである、請求項1~10のいずれか1項に記載の熱拡散デバイス。
    The first porous body has a plurality of the first divided regions, and the first porous body has a plurality of the first divided regions.
    Of the bending lines including each of the first dividing regions, the orientation of the housing that can be bent with at least one bending line as a boundary is the same as the orientation of the housing that can be bent with another bending line as a boundary. , The heat diffusion device according to any one of claims 1 to 10.
  12.  前記第1多孔体は、複数の前記第1分断領域を有し、
     それぞれの前記第1分断領域を含む曲げ線のうち、少なくとも1本の曲げ線を境に曲げられる前記筐体の向きは、別の曲げ線を境に曲げられる前記筐体の向きと異なる、請求項1~10のいずれか1項に記載の熱拡散デバイス。
    The first porous body has a plurality of the first divided regions, and the first porous body has a plurality of the first divided regions.
    A claim that the orientation of the housing that is bent at least one of the bending lines including the first dividing region is different from the orientation of the housing that is bent at another bending line. Item 2. The heat diffusion device according to any one of Items 1 to 10.
  13.  前記厚さ方向に垂直な断面を見たとき、前記第1分断領域を含む曲げ線は、前記筐体の輪郭線に対して傾斜している、請求項1~12のいずれか1項に記載の熱拡散デバイス。 The invention according to any one of claims 1 to 12, wherein when the cross section perpendicular to the thickness direction is viewed, the bending line including the first dividing region is inclined with respect to the contour line of the housing. Heat diffusion device.
  14.  請求項1~13のいずれか1項に記載の熱拡散デバイスを備える、電子機器。 An electronic device provided with the heat diffusion device according to any one of claims 1 to 13.
PCT/JP2021/037157 2020-11-19 2021-10-07 Heat spreading device WO2022107479A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202190000771.4U CN220189635U (en) 2020-11-19 2021-10-07 Thermal diffusion device and electronic apparatus
JP2022563619A JP7222448B2 (en) 2020-11-19 2021-10-07 heat spreading device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020192588 2020-11-19
JP2020-192588 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022107479A1 true WO2022107479A1 (en) 2022-05-27

Family

ID=81708789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037157 WO2022107479A1 (en) 2020-11-19 2021-10-07 Heat spreading device

Country Status (3)

Country Link
JP (1) JP7222448B2 (en)
CN (1) CN220189635U (en)
WO (1) WO2022107479A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2762508Y (en) * 2004-12-22 2006-03-01 珍通科技股份有限公司 Bent type radiating plate
US20120111541A1 (en) * 2010-11-09 2012-05-10 Foxconn Technology Co., Ltd. Plate type heat pipe and heat sink using the same
US20120305222A1 (en) * 2011-05-31 2012-12-06 Asia Vital Components Co., Ltd. Heat spreader structure and manufacturing method thereof
JP2015088882A (en) * 2013-10-30 2015-05-07 東芝ホームテクノ株式会社 Portable information terminal
JP2017187126A (en) * 2016-04-07 2017-10-12 三菱電機株式会社 Vacuum heat insulating device and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108036664B (en) * 2017-12-21 2021-07-13 奇鋐科技股份有限公司 Pressure-resistant structure of heat dissipation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2762508Y (en) * 2004-12-22 2006-03-01 珍通科技股份有限公司 Bent type radiating plate
US20120111541A1 (en) * 2010-11-09 2012-05-10 Foxconn Technology Co., Ltd. Plate type heat pipe and heat sink using the same
US20120305222A1 (en) * 2011-05-31 2012-12-06 Asia Vital Components Co., Ltd. Heat spreader structure and manufacturing method thereof
JP2015088882A (en) * 2013-10-30 2015-05-07 東芝ホームテクノ株式会社 Portable information terminal
JP2017187126A (en) * 2016-04-07 2017-10-12 三菱電機株式会社 Vacuum heat insulating device and method of manufacturing the same

Also Published As

Publication number Publication date
JP7222448B2 (en) 2023-02-15
JPWO2022107479A1 (en) 2022-05-27
CN220189635U (en) 2023-12-15

Similar Documents

Publication Publication Date Title
JP6564879B2 (en) Vapor chamber
WO2021256126A1 (en) Vapor chamber
US20210136955A1 (en) Vapor chamber, heatsink device, and electronic device
WO2021157506A1 (en) Vapor chamber
WO2022107479A1 (en) Heat spreading device
JP2021143809A (en) Vapor chamber and electronic device
WO2022059517A1 (en) Vapor chamber
JP7120494B1 (en) heat spreading device
JP7260062B2 (en) heat spreading device
WO2023238626A1 (en) Heat diffusion device and electronic appliance
WO2023026896A1 (en) Thermal diffusion device
WO2023238625A1 (en) Heat spreading device and electronic apparatus
WO2022201918A1 (en) Thermal diffusion device and electronic apparatus
WO2023112616A1 (en) Thermal diffusion device and electronic apparatus
JP2020197314A (en) Vapor chamber, electronic device, and metal sheet for vapor chamber
WO2022190794A1 (en) Heat dissipation device and electronic equipment
TWI796798B (en) Heat release device, steam chamber and electronic equipment
WO2023085350A1 (en) Thermal diffusion device
WO2023145396A1 (en) Thermal diffusion device and electronic apparatus
WO2022230295A1 (en) Thermal diffusion device
WO2024034279A1 (en) Heat dissipation device and electronic apparatus
WO2023182033A1 (en) Thermal diffusion device and electronic apparatus
WO2022097417A1 (en) Heat spreading device
WO2023171408A1 (en) Thermal diffusion device and electronic apparatus
CN218888890U (en) Thermal diffusion device and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563619

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894354

Country of ref document: EP

Kind code of ref document: A1