WO2023026896A1 - Thermal diffusion device - Google Patents

Thermal diffusion device Download PDF

Info

Publication number
WO2023026896A1
WO2023026896A1 PCT/JP2022/030944 JP2022030944W WO2023026896A1 WO 2023026896 A1 WO2023026896 A1 WO 2023026896A1 JP 2022030944 W JP2022030944 W JP 2022030944W WO 2023026896 A1 WO2023026896 A1 WO 2023026896A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
diffusion device
wick
sintered body
liquid channel
Prior art date
Application number
PCT/JP2022/030944
Other languages
French (fr)
Japanese (ja)
Inventor
浩士 福田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023026896A1 publication Critical patent/WO2023026896A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to heat diffusion devices.
  • the vapor chamber has a structure in which a working medium (also called a working fluid) and a wick composed of a porous body that transports the working medium by capillary force are sealed inside a housing.
  • the working medium absorbs heat from a heat-generating element such as an electronic component in an evaporating section that absorbs heat from the heat-generating element, evaporates in the vapor chamber, moves in the vapor chamber, and is cooled to a liquid phase. return.
  • the working medium that has returned to the liquid phase moves again to the evaporating portion on the heating element side by the capillary force of the wick, and cools the heating element.
  • the vapor chamber can operate independently without external power, and heat can be two-dimensionally diffused at high speed by utilizing the latent heat of vaporization and latent heat of condensation of the working medium.
  • Patent Document 1 discloses a flat container in which a working fluid is enclosed, and a wick provided inside the container. and a linear bundle in which fibers thicker than the fibers are linearly bundled, and the linear bundle is arranged in a cavity surrounded by the inner peripheral surface of the braided body, and is arranged around the braided body. discloses a heat pipe characterized in that a vapor channel for the working fluid is formed, and a liquid channel for the working fluid is formed in the cavity.
  • the wick is formed with an inner region and an outer region, and the inner region is used as a liquid flow path and the outer region. is the steam flow path.
  • the wick is composed of a porous sintered body such as a metal porous sintered body, cracks or dents are likely to occur in the porous sintered body due to strength problems. Therefore, there is a possibility that the liquid transport performance may deteriorate.
  • An object of the present invention is to provide a heat diffusion device with a highly durable wick and excellent liquid transport performance.
  • a further object of the present invention is to provide an electronic device comprising the above heat diffusion device.
  • a heat diffusion device of the present invention includes a housing, a working medium enclosed in the internal space of the housing, and a liquid flow path of the working medium disposed in the internal space of the housing. a forming wick;
  • the liquid channel has an upper surface remote from the inner wall surface of the housing and a side surface continuous with the upper surface and in contact with the inner wall surface of the housing.
  • the wick includes a porous sheet and a porous sintered body provided on at least part of the porous sheet.
  • the minimum pore size of the porous sheet is larger than the maximum pore size of the porous sintered body.
  • the porous sheet is a nonwoven fabric.
  • the electronic device of the present invention includes the heat diffusion device of the present invention.
  • thermoelectric device it is possible to provide a heat diffusion device with a highly durable wick and excellent liquid transport performance. Furthermore, according to the present invention, it is possible to provide an electronic device comprising the above heat diffusion device.
  • FIG. 1 is a perspective view schematically showing an example of a heat diffusion device according to a first embodiment of the invention.
  • 2 is a plan view schematically showing an example of the internal structure of the heat diffusion device shown in FIG. 1.
  • FIG. 3 is a cross-sectional view of the heat spreading device shown in FIG. 2 along line III-III.
  • FIG. 4 is a perspective view schematically showing an example of a liquid channel.
  • FIG. 5 is a cross-sectional view schematically showing another example of the heat diffusion device according to the first embodiment of the invention.
  • FIG. 6 is a cross-sectional view schematically showing still another example of the heat diffusion device according to the first embodiment of the invention.
  • FIG. 7 is a plan view schematically showing an example of a support.
  • FIG. 8 is a cross-sectional view schematically showing an example of a heat diffusion device according to the second embodiment of the invention.
  • FIG. 9 is a cross-sectional view schematically showing another example of the heat diffusion device according to the second embodiment of the invention.
  • FIG. 10 is a cross-sectional view schematically showing an example of a heat diffusion device according to the third embodiment of the invention.
  • FIG. 11 is a plan view schematically showing another example of the support.
  • FIG. 12 is a cross-sectional view schematically showing an example of a heat diffusion device according to the fourth embodiment of the invention.
  • FIG. 13 is a plan view schematically showing an example of a heat diffusion device according to the fifth embodiment of the invention.
  • 14 is a cross-sectional view of the heat spreading device shown in FIG.
  • FIG. 13 is a plan view schematically showing an example of the internal structure of a heat diffusion device in which a plurality of wicks are arranged.
  • FIG. 17 is a plan view schematically showing an example of the internal structure of a heat diffusion device whose housing has a plurality of evaporators.
  • FIG. 18 is a plan view schematically showing another example of the internal structure of a heat diffusion device whose housing has a plurality of evaporators.
  • the heat diffusion device of the present invention will be described below.
  • the present invention is not limited to the following embodiments, and can be appropriately modified and applied without changing the gist of the present invention.
  • a combination of two or more of the individual preferred configurations of the present invention described below is also the present invention.
  • a liquid-phase working medium is transported while passing through the inside of a wick.
  • the inside of the wick has a dense structure to increase the capillary pressure. can be considered to be higher.
  • the fluid resistance passing through the inside of the wick increases and the permeability decreases, so the liquid transport performance deteriorates accordingly.
  • the thinner the wick the more difficult it becomes to secure the volume of the liquid flow path and to reduce the fluid resistance.
  • the wick forms at least a part of the surface of the liquid flow path of the working medium, thereby forming a cavity that serves as the liquid flow path of the working medium. Therefore, not only can capillary pressure be generated by the wick around the cavity, but also the working medium can smoothly flow through the cavity by reducing fluid resistance passing through the cavity. As a result, the transmittance can be increased.
  • the heat diffusion device of the present invention uses a wick having a porous sintered body provided on at least a portion of the porous sheet.
  • the porous sheet functions as a reinforcing material for holding the porous sintered body.
  • the porous sintered body is less likely to develop cracks, dents, or the like. Therefore, the durability of the wick can be enhanced as compared with the case where the wick is composed only of the porous sintered body.
  • the minimum pore size of the porous sheet is larger than the maximum pore size of the porous sintered body.
  • a 2nd aspect WHEREIN A porous sheet is a nonwoven fabric.
  • the porous sheet operates without impairing the capillary pressure of the porous sintered body by making the pore size of the porous sheet larger than the pore size of the porous sintered body. It can contribute to the liquid flow path of the medium. As a result, high liquid transport performance can be exhibited.
  • a vapor chamber will be described below as an example of an embodiment of the heat diffusion device of the present invention.
  • the heat diffusion device of the present invention can also be applied to heat diffusion devices such as heat pipes.
  • the porous sheet is in contact with the upper surface of the liquid channel, and the porous sintered body is in contact with the side surface of the liquid channel. Further, a support for supporting the wick is arranged along the extending direction of the liquid channel in the internal space of the housing.
  • FIG. 1 is a perspective view schematically showing an example of the heat diffusion device according to the first embodiment of the invention.
  • 2 is a plan view schematically showing an example of the internal structure of the heat diffusion device shown in FIG. 1.
  • FIG. 3 is a cross-sectional view of the heat spreading device shown in FIG. 2 along line III-III.
  • a vapor chamber (heat diffusion device) 1 shown in FIG. 1 includes a hollow housing 10 that is hermetically sealed. As shown in FIG. 2, the housing 10 is provided with an evaporation portion EP for evaporating the enclosed working medium 20 (see FIG. 3). As shown in FIG. 1, a heat source HS, which is a heating element, is arranged on the outer wall surface of the housing 10 . Examples of the heat source HS include electronic components of electronic equipment, such as a central processing unit (CPU). A portion of the internal space of the housing 10 that is in the vicinity of the heat source HS and is heated by the heat source HS corresponds to the evaporating section EP.
  • CPU central processing unit
  • the housing 10 has, for example, a first inner wall surface 11a and a second inner wall surface 12a facing each other in the thickness direction Z, as shown in FIG.
  • the housing 10 is preferably composed of a first sheet 11 and a second sheet 12 that face each other and whose outer edges are joined.
  • the vapor chamber 1 is preferably planar as a whole. That is, the housing 10 as a whole is preferably planar.
  • the “planar shape” includes a plate shape and a sheet shape, and the dimension in the width direction X (hereinafter referred to as width) and the dimension in the length direction Y (hereinafter referred to as length) are the thickness direction Z Shapes that are considerably large relative to their dimensions (hereinafter referred to as thickness or height), for example shapes whose width and length are 10 times or more, preferably 100 times or more, the thickness.
  • the size of the vapor chamber 1, that is, the size of the housing 10 is not particularly limited.
  • the width and length of the vapor chamber 1 can be appropriately set according to the application.
  • the width and length of the vapor chamber 1 are, for example, 5 mm or more and 500 mm or less, 20 mm or more and 300 mm or less, or 50 mm or more and 200 mm or less.
  • the width and length of vapor chamber 1 may be the same or different.
  • the materials that constitute the first sheet 11 and the second sheet 12 should have properties suitable for use as a vapor chamber, such as thermal conductivity, strength, and the like. , flexibility, flexibility, etc., and is not particularly limited.
  • the material that constitutes the first sheet 11 and the second sheet 12 is preferably a metal, such as copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing them as a main component. Copper is particularly preferable. is.
  • the materials forming the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
  • the housing 10 is composed of the first sheet 11 and the second sheet 12
  • the first sheet 11 and the second sheet 12 are joined together at their outer edge portions.
  • the method of such bonding is not particularly limited, but for example, laser welding, resistance welding, diffusion bonding, brazing, TIG welding (tungsten-inert gas welding), ultrasonic bonding or resin sealing can be used, preferably can use laser welding, resistance welding or brazing.
  • the thicknesses of the first sheet 11 and the second sheet 12 are not particularly limited, but each is preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 30 ⁇ m or more and 100 ⁇ m or less, still more preferably 40 ⁇ m or more and 60 ⁇ m or less.
  • the thicknesses of the first sheet 11 and the second sheet 12 may be the same or different. Further, the thickness of each sheet of the first sheet 11 and the second sheet 12 may be the same over the entire area, or may be thin in part.
  • first sheet 11 and the second sheet 12 are not particularly limited.
  • first sheet 11 may have a flat plate shape with a constant thickness
  • second sheet 12 may have a shape in which the outer edge portion is thicker than the portions other than the outer edge portion.
  • the first sheet 11 may have a flat plate shape with a constant thickness
  • the second sheet 12 may have a constant thickness and a portion other than the outer edge with respect to the outer edge may be convex outward. good.
  • a recess is formed in the outer edge of the housing 10 . Therefore, the concave portion of the outer edge can be used when mounting the vapor chamber. Also, other components can be placed in the recesses of the outer edge.
  • the thickness of the entire vapor chamber 1 is not particularly limited, it is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the planar shape of the housing 10 when viewed from the thickness direction Z is not particularly limited, and examples thereof include polygonal shapes such as triangles and rectangles, circular shapes, elliptical shapes, and shapes combining these shapes. Further, the planar shape of the housing 10 may be L-shaped, C-shaped (U-shaped), step-shaped, or the like. Moreover, the housing 10 may have a through hole. The planar shape of the housing 10 may be a shape according to the use of the vapor chamber, the shape of the location where the vapor chamber is installed, and other parts existing nearby.
  • the working medium 20 is enclosed in the internal space of the housing 10.
  • the working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the housing 10.
  • water, alcohols, CFC alternatives, etc. can be used.
  • the working medium is an aqueous compound, preferably water.
  • a wick 30 is arranged in the internal space of the housing 10 .
  • the wick 30 has a capillary structure capable of moving the working medium 20 by capillary force.
  • the liquid channel 40 of the working medium 20 is formed by the wick 30 forming at least a part of the surface of the liquid channel 40 of the working medium 20 .
  • a vapor channel 50 for the working medium 20 is formed in a gap other than the liquid channel 40 inside the housing 10 .
  • FIG. 4 is a perspective view schematically showing an example of a liquid channel.
  • the liquid channel 40 has a top surface 41 that is separated from the inner wall surface of the housing 10, a side surface 42 that is continuous with the top surface 41 and is in contact with the inner wall surface of the housing 10, have
  • the liquid flow path 40 is formed in which the upper surface 41 is separated from the first inner wall surface 11a of the housing 10 and the side surface 42 is in contact with the first inner wall surface 11a of the housing 10.
  • the liquid channel 40 may be formed such that the upper surface 41 is separated from the second inner wall surface 12 a of the housing 10 and the side surface 42 is in contact with the second inner wall surface 12 a of the housing 10 .
  • the upper surface of the liquid channel means the surface away from the inner wall surface of the housing, and does not mean the surface positioned vertically upward.
  • the width of the liquid channel 40 in a cross section perpendicular to the extending direction (here, the length direction Y) of the liquid channel 40 is not particularly limited, it is, for example, 500 ⁇ m or more and 3000 ⁇ m or less.
  • the width of the widest portion is defined as the width of the liquid channel 40 .
  • the wick 30 includes a porous sheet 31 and a porous sintered body 32 provided on at least part of the porous sheet 31 .
  • the minimum pore size of the porous sheet 31 is larger than the maximum pore size of the porous sintered body 32 .
  • the pore diameter of the porous sheet 31 means the diameter of a circle inscribed in the pore formed on the surface of the porous sheet 31 when the wick 30 is viewed from the thickness direction Z.
  • the pore diameter of the porous sintered body 32 means the diameter of a circle inscribed in the pores formed on the surface of the porous sintered body 32 when the wick 30 is viewed from the thickness direction Z. do.
  • the porous sheet 31 may be an etched porous plate in which pores are formed by etching a metal plate, like the vapor chamber 1 shown in FIG. Since the etching porous plate is formed from a flat metal plate, the porous sheet 31 has excellent flatness.
  • FIG. 5 is a cross-sectional view schematically showing another example of the heat diffusion device according to the first embodiment of the invention.
  • the porous sheet 31 may be a mesh like the vapor chamber 1a shown in FIG.
  • the mesh that is the material of the porous sheet 31 may be composed of, for example, a metal mesh, a resin mesh, or a surface-coated mesh thereof, preferably a copper mesh, a stainless steel (SUS) mesh, or a polyester mesh. Configured. By using a mesh as the porous sheet 31, the wick 30 can be manufactured at low cost.
  • FIG. 6 is a cross-sectional view schematically showing yet another example of the heat diffusion device according to the first embodiment of the invention.
  • the porous sheet 31 is a nonwoven fabric like the vapor chamber 1b shown in FIG.
  • the material of the nonwoven fabric is not particularly limited.
  • the wick 30 can be manufactured at low cost.
  • the porous sintered body 32 may be composed of, for example, a metal porous sintered body or a ceramic porous sintered body, preferably a metal porous sintered body. It is composed of a solid body, and more preferably composed of a porous sintered body of copper or nickel.
  • a paste containing metal powder or ceramic powder is applied to the surface of the porous sheet 31 and then fired to form a porous sheet.
  • the porous sintered body 32 located on the side surface 42 of the liquid channel 40 can be formed by, for example, directly applying a paste containing metal powder or ceramic powder to the housing 10 and then firing the paste. .
  • a paste containing metal powder or ceramic powder is directly applied to the housing 10, and the porous sheet 31 having the paste applied to the surface is placed thereon, followed by simultaneous firing to form a porous sintered body. 32 may be formed.
  • a paste containing metal powder or ceramic powder is directly applied to the housing 10, the porous sheet 31 is placed thereon, the paste is applied to the surface of the porous sheet 31, and then co-fired.
  • the porous sintered body 32 may be formed by
  • the porous sheet 31 is in contact with the upper surface 41 of the liquid channel 40.
  • the porous sintered body 32 is exposed on the surface of the wick 30. As shown in FIG. 3, it is preferable that the porous sintered body 32 is exposed over the entire surface of the wick 30 .
  • a support 60 that supports the wick 30 is arranged along the extension direction of the liquid channel 40 (here, the length direction Y).
  • the extension direction of the liquid channel 40 here, the length direction Y.
  • two rows of supports 60 are arranged parallel to each other along the extending direction of the liquid flow channel 40, but only one row of supports along the extending direction of the liquid flow channel 40 is provided.
  • 60 may be arranged, or three or more rows of supports 60 may be arranged so as to be parallel to each other along the extending direction of the liquid channel 40 .
  • the support 60 When the support 60 is arranged in the internal space of the housing 10, the support 60 supports the wick 30 like a tent. Therefore, even if the wick 30 is thin as the vapor chamber is thinned, the liquid channel 40 is less likely to collapse, and the volume of the liquid channel 40 can be secured.
  • a support 60 is arranged to support the first inner wall surface 11 a of the housing 10 and the wick 30 .
  • a body 60 may be arranged.
  • the support 60 on the second inner wall surface 12a side preferably faces the support 60 on the first inner wall surface 11a side.
  • the material forming the support 60 is not particularly limited, but examples include resins, metals, ceramics, or mixtures and laminates thereof. Further, as shown in FIG. 3, the support 60 may be integrated with the housing 10, or may be formed by etching the inner wall surface of the housing 10, for example.
  • FIG. 7 is a plan view schematically showing an example of a support.
  • the support 60 included in the vapor chamber 1 shown in FIG. 3 includes a plurality of struts 61 arranged at intervals along the extending direction (here, the length direction Y) of the liquid channel 40. It is preferably composed of In this case, the porous sintered body 32 is in contact with the side surface 42 of the liquid channel 40 . Therefore, the side surface 42 of the liquid channel 40 can also be used as a gas-liquid exchange portion.
  • the shape of the cross section perpendicular to the height direction of the struts 61 may be, for example, a polygon such as a rectangle, a circle, an ellipse, or the like.
  • the heights of the struts 61 may be the same or different in one vapor chamber.
  • the height of the struts 61 in one region may differ from the height of the struts 61 in another region.
  • the width of the struts 61 is not particularly limited as long as it provides the strength to support the wick 30. is, for example, 100 ⁇ m or more and 2000 ⁇ m or less, preferably 300 ⁇ m or more and 1000 ⁇ m or less.
  • the arrangement of the struts 61 is not particularly limited. More preferably, the struts 61 are arranged so that the distance is constant.
  • the end of the wick 30 is preferably fixed to the inner wall surface of the housing 10.
  • the end of the wick 30 is preferably joined to the inner wall surface of the housing 10 .
  • the bonding method is not particularly limited, diffusion bonding or the like can be used, for example.
  • the wick 30 is preferably fixed to the support 60.
  • the wick 30 is preferably bonded to the support 60 .
  • the bonding method is not particularly limited, diffusion bonding or the like can be used, for example.
  • the minimum pore size of the porous sheet 31 is larger than the maximum pore size of the porous sintered body 32 in the first aspect.
  • the porous sheet 31 may be, for example, an etched perforated plate or a mesh.
  • the porous sheet 31 is a nonwoven fabric.
  • the porous sintered body is in contact with the upper surface of the liquid channel and the porous sintered body is in contact with the side surface of the liquid channel. Further, a support for supporting the wick is arranged along the extending direction of the liquid channel in the internal space of the housing.
  • FIG. 8 is a cross-sectional view schematically showing an example of a heat diffusion device according to the second embodiment of the invention.
  • the porous sintered body 32 is in contact with the upper surface 41 of the liquid channel 40. This facilitates gas-liquid exchange compared to the case where the porous sheet 31 is in contact with the upper surface 41 of the liquid channel 40 .
  • a porous sintered body 32 is provided on one side of a porous sheet 31 in the vapor chamber 2 shown in FIG. Therefore, the porous sheet 31 is exposed on the surface of the wick 30 . As shown in FIG. 8, it is preferable that the porous sheet 31 is exposed over the entire surface of the wick 30 .
  • a support 60 that supports the wick 30 is arranged along the extension direction of the liquid channel 40 (here, the length direction Y).
  • the support 60 included in the vapor chamber 2 shown in FIG. 8 includes a plurality of supports arranged at intervals along the extension direction (here, the length direction Y) of the liquid channel 40 as shown in FIG. It is preferably composed of a strut 61 .
  • the porous sintered body 32 is in contact with the side surface 42 of the liquid channel 40 .
  • FIG. 9 is a cross-sectional view schematically showing another example of the heat diffusion device according to the second embodiment of the invention.
  • the porous sintered body 32 is in contact with the upper surface 41 of the liquid channel 40, as in the vapor chamber 2 shown in FIG.
  • porous sintered bodies 32 are provided on both sides of a porous sheet 31. Therefore, the porous sintered body 32 is exposed on the surface of the wick 30 . As shown in FIG. 9, it is preferable that the porous sintered body 32 is exposed over the entire surface of the wick 30 .
  • the wick 30 constituting the vapor chamber 2 shown in FIG. 8 for example, similar to the wick 30 constituting the vapor chamber 1 shown in FIG.
  • the porous sintered body 32 located on the side surface 42 of the liquid channel 40 can be formed by, for example, directly applying a paste containing metal powder or ceramic powder to the housing 10 and then firing the paste.
  • the porous sintered body 32 may be formed by co-firing. In that case, the boundary between the porous sintered body 32 located on the upper surface 41 of the liquid channel 40 and the porous sintered body 32 located on the side surface 42 of the liquid channel 40 does not appear clearly.
  • the wick 30 that constitutes the vapor chamber 2a shown in FIG.
  • a method of forming a porous sintered body 32 on the surface and the like can be mentioned.
  • the method of immersing the porous sheet 31 in a paste containing metal powder or ceramic powder allows the wick 30 to be produced more easily than the method of applying the paste to both surfaces of the porous sheet 31 .
  • the porous sintered body 32 located on the side surface 42 of the liquid channel 40 can be formed by, for example, directly applying a paste containing metal powder or ceramic powder to the housing 10 and then firing the paste. .
  • the porous sintered body 32 may be formed by co-firing. In that case, the boundary between the porous sintered body 32 located on the upper surface 41 of the liquid channel 40 and the porous sintered body 32 located on the side surface 42 of the liquid channel 40 does not appear clearly.
  • the porous sheet may be in contact with the upper surface of the liquid channel, and the porous sintered body may be in contact with the upper surface of the liquid channel.
  • the porous sintered body is not in contact with the side surfaces of the liquid channels.
  • FIG. 10 is a cross-sectional view schematically showing an example of a heat diffusion device according to the third embodiment of the invention.
  • the width of the wick 30 can be made smaller than when the porous sintered body 32 is in contact with the side surface 42 of the liquid channel 40 . Therefore, the volume of the steam flow path 50 is easily ensured.
  • FIG. 11 is a plan view schematically showing another example of the support.
  • the support 60 included in the vapor chamber 3 shown in FIG. 10 is a support that forms the side surface 42 of the liquid channel 40 along the extending direction (here, the length direction Y) of the liquid channel 40, as shown in FIG. It preferably consists of a wall 62 .
  • FIG. 12 is a cross-sectional view schematically showing an example of a heat diffusion device according to the fourth embodiment of the invention.
  • the porous sintered body 32 is in contact with the side surface 42 of the liquid channel 40. Therefore, the side surface 42 of the liquid channel 40 can also be used as a gas-liquid exchange section.
  • the width of the porous sintered body 32 in the portion in contact with the side surface 42 of the liquid flow path 40 is adjusted so that the wick 30 can stand on its own. It is preferable that the width of the portion of the porous sintered body 32 that is in contact with the side surface 42 of the flow path 40 is larger than that of the porous sintered body 32 . Specifically, the width of the porous sintered body 32 in the portion in contact with the side surface 42 of the liquid channel 40 in the vapor chamber 4 shown in FIG. It is preferably equal to the sum of the width of the porous sintered body 32 in contact with the side surface 42 and the width of the support 60 .
  • FIG. 13 is a plan view schematically showing an example of a heat diffusion device according to the fifth embodiment of the invention.
  • 14 is a cross-sectional view of the heat spreading device shown in FIG. 13 along line XIV-XIV.
  • 15 is a cross-sectional view of the heat spreading device shown in FIG. 13 along line XV-XV.
  • the wick 30 overlaps the evaporation part EP and the liquid flow path 40 as shown in FIGS. Part of the porous sheet 31 is exposed. That is, when viewed from the thickness direction Z of the housing 10 , the wick 30 does not include the porous sintered body 32 in the portion where the wick 30 overlaps the evaporator EP and the liquid flow path 40 .
  • portions other than the evaporation part EP as in the vapor chamber 1 and the like shown in FIG. and a porous sintered body 32 provided thereon.
  • the evaporation heat resistance in the evaporation part EP can be lowered.
  • the heat diffusion device of the present invention is not limited to the above-described embodiments, and various applications and modifications can be made within the scope of the present invention regarding the structure of the heat diffusion device, manufacturing conditions, and the like.
  • one wick may be arranged, or a plurality of wicks may be arranged.
  • the plurality of wicks extend so as to be spaced apart and parallel to each other in plan view from the thickness direction.
  • FIG. 16 is a plan view schematically showing an example of the internal structure of a heat diffusion device in which a plurality of wicks are arranged.
  • a plurality of wicks 30 are arranged in the vapor chamber (heat diffusion device) 6 shown in FIG. Other configurations are the same as those of the vapor chamber 1 . Although four wicks 30 are shown in FIG. 16, the number of wicks 30 is not particularly limited as long as it is two or more.
  • the plurality of wicks 30 extend parallel to each other at intervals. These wicks 30 are preferably arranged so as to be concentrated in the evaporating section EP, as shown in FIG. By collecting the wick 30 in the evaporator EP, the working medium can be circulated over a short distance.
  • first steam flow paths 51 are formed between adjacent wicks 30 .
  • a first vapor channel 51 wider than the first steam flow path 51 is provided between the outermost one of the plurality of wicks 30 (the left wick 30 in FIG. 16) and the housing 10.
  • two steam flow paths 52 are formed between the outermost wick 30 and the housing 10.
  • a third steam channel 53 wider than the first steam channel 51 is formed between the other outermost wick 30 (the right wick 30 in FIG. 16) and the housing 10. preferably.
  • the uniform heating performance of the vapor chamber as a whole decreases. Therefore, by providing a gap between the wicks 30 and using the gap as a steam flow path, the uniform heating performance can be improved. As a result, it is possible to obtain a vapor chamber which is excellent in liquid circulation and vapor circulation, and which has high liquid transportation capacity and heat soaking performance.
  • the materials of the wicks 30 may be the same or different.
  • each wick 30 may be the same or different.
  • the housing may have one evaporator or may have a plurality of evaporators. That is, one heat source may be arranged on the outer wall surface of the housing, or a plurality of heat sources may be arranged.
  • the number of evaporators and heat sources is not particularly limited.
  • FIG. 17 is a plan view schematically showing an example of the internal structure of a heat diffusion device whose housing has a plurality of evaporators.
  • FIG. 18 is a plan view schematically showing another example of the internal structure of a heat diffusion device whose housing has a plurality of evaporators.
  • vapor chamber (heat diffusion device) 6a shown in FIG. 17 two wicks 30 are arranged, and the evaporator EP is provided at the end of each wick 30.
  • vapor chamber (heat diffusion device) 6b shown in FIG. 18 three wicks 30 are arranged, and an evaporator EP is provided at the end of each wick 30. As shown in FIG.
  • the evaporator may be provided at the end of the housing or may be provided at the center of the housing.
  • the first sheet and the second sheet when the housing is composed of the first sheet and the second sheet, the first sheet and the second sheet may be overlapped so that the edges are aligned, or the edges may overlap. may be shifted and overlapped.
  • the material of the first sheet and the material of the second sheet may be different.
  • the stress applied to the housing can be dispersed.
  • one sheet can have one function and the other sheet can have another function.
  • the above functions are not particularly limited, but include, for example, a heat conduction function, an electromagnetic wave shielding function, and the like.
  • the heat diffusion device of the present invention may further include a wick that does not contain a porous sheet or a wick that does not contain a porous sintered body.
  • the heat spreading device of the present invention may further comprise a wick that does not form a liquid flow path.
  • the wick is not particularly limited as long as it has a capillary structure capable of moving the working medium by capillary force.
  • the capillary structure of the wick may be any known structure used in conventional heat spreading devices.
  • the capillary structure includes fine structures having unevenness such as pores, grooves, and projections, such as porous structures, fiber structures, groove structures, and network structures.
  • the heat diffusion device of the present invention can be mounted on electronic equipment for the purpose of heat dissipation. Therefore, an electronic device including the heat diffusion device of the present invention is also one aspect of the present invention.
  • Examples of the electronic device of the present invention include smart phones, tablet terminals, notebook computers, game machines, wearable devices, and the like.
  • the heat diffusion device of the present invention can operate independently without requiring external power, and can diffuse heat two-dimensionally and at high speed by utilizing the latent heat of vaporization and latent heat of condensation of the working medium. Therefore, an electronic device equipped with the heat diffusion device of the present invention can effectively dissipate heat in a limited space inside the electronic device.
  • the heat diffusion device of the present invention can be used for a wide range of applications in fields such as personal digital assistants. For example, it can be used to lower the temperature of a heat source such as a CPU and extend the operating time of electronic equipment, and can be used in smartphones, tablet terminals, laptop computers, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A thermal diffusion device 1 comprises a housing 10, a working medium 20 enclosed in an interior space of the housing 10, and a wick 30 that is disposed in the interior space of the housing 10 and forms at least a part of the surface of a liquid flow path 40 of the working medium 20. The liquid flow path 40 has an upper surface 41 that is separated from an inner wall surface of the housing 10, and a side surface 42 that is continuous with the upper surface 41 and contacts the inner wall surface of the housing 10. The wick 30 includes a porous sheet 31 and a porous sintered body 32 provided on at least a part of the porous sheet 31. In the first embodiment, the minimum pore size of the porous sheet 31 is larger than the maximum pore size of the porous sintered body 32. Moreover, in the second embodiment, the porous sheet 31 is a nonwoven fabric.

Description

熱拡散デバイスheat spreading device
 本発明は、熱拡散デバイスに関する。 The present invention relates to heat diffusion devices.
 近年、素子の高集積化および高性能化による発熱量が増加している。また、製品の小型化が進むことで、発熱密度が増加するため、放熱対策が重要となっている。この状況はスマートフォンおよびタブレットなどのモバイル端末の分野において特に顕著である。熱対策部材としては、グラファイトシートなどが用いられることが多いが、その熱輸送量は充分ではないため、様々な熱対策部材の使用が検討されている。中でも、非常に効果的に熱を拡散させることが可能である熱拡散デバイスとして、面状のヒートパイプであるベーパーチャンバーの使用の検討が進んでいる。 In recent years, the amount of heat generated has increased due to the high integration and high performance of devices. In addition, as products become smaller, heat generation density increases, so heat dissipation measures have become important. This situation is particularly pronounced in the field of mobile terminals such as smartphones and tablets. A graphite sheet or the like is often used as a heat countermeasure member, but its heat transfer capacity is not sufficient, so the use of various heat countermeasure members has been investigated. Among them, as a heat diffusion device capable of diffusing heat very effectively, the use of a vapor chamber, which is a planar heat pipe, is being studied.
 ベーパーチャンバーは、筐体の内部に、作動媒体(作動流体ともいう)と、多孔質体から構成され、毛細管力によって作動媒体を輸送するウィックとが封入された構造を有する。上記作動媒体は、電子部品などの発熱素子からの熱を吸収する蒸発部において発熱素子からの熱を吸収してベーパーチャンバー内で蒸発した後、ベーパーチャンバー内を移動し、冷却されて液相に戻る。液相に戻った作動媒体は、ウィックの毛細管力によって再び発熱素子側の蒸発部に移動し、発熱素子を冷却する。これを繰り返すことにより、ベーパーチャンバーは外部動力を有することなく自立的に作動し、作動媒体の蒸発潜熱および凝縮潜熱を利用して、二次元的に高速で熱を拡散することができる。 The vapor chamber has a structure in which a working medium (also called a working fluid) and a wick composed of a porous body that transports the working medium by capillary force are sealed inside a housing. The working medium absorbs heat from a heat-generating element such as an electronic component in an evaporating section that absorbs heat from the heat-generating element, evaporates in the vapor chamber, moves in the vapor chamber, and is cooled to a liquid phase. return. The working medium that has returned to the liquid phase moves again to the evaporating portion on the heating element side by the capillary force of the wick, and cools the heating element. By repeating this, the vapor chamber can operate independently without external power, and heat can be two-dimensionally diffused at high speed by utilizing the latent heat of vaporization and latent heat of condensation of the working medium.
 特許文献1には、作動流体が内部に封入された扁平状のコンテナと、上記コンテナの内部に設けられたウィックと、を備え、上記ウィックは、繊維を筒状に編んだ編組体と、上記繊維よりも太い繊維を線状に束ねた線状束と、を有し、上記線状束は、上記編組体の内周面によって囲まれた空洞部に配置されており、上記編組体の周囲に、上記作動流体の蒸気流路が形成され、上記空洞部に、上記作動流体の液体流路が形成されている、ことを特徴とするヒートパイプが開示されている。 Patent Document 1 discloses a flat container in which a working fluid is enclosed, and a wick provided inside the container. and a linear bundle in which fibers thicker than the fibers are linearly bundled, and the linear bundle is arranged in a cavity surrounded by the inner peripheral surface of the braided body, and is arranged around the braided body. discloses a heat pipe characterized in that a vapor channel for the working fluid is formed, and a liquid channel for the working fluid is formed in the cavity.
特開2018-76989号公報JP 2018-76989 A
 特許文献1に記載のヒートパイプでは、ウィックの材料として用いられている繊維の太さを変えることで、ウィックに内部領域と外部領域とを形成した上で、内部領域を液体流路、外部領域を蒸気流路としている。 In the heat pipe described in Patent Document 1, by changing the thickness of the fiber used as the material of the wick, the wick is formed with an inner region and an outer region, and the inner region is used as a liquid flow path and the outer region. is the steam flow path.
 しかしながら、ベーパーチャンバーにおいてウィックが繊維から構成される場合、ウィックの毛細管力と透過率とはトレードオフの関係にある。そのため、充分な液輸送性能を得ることが困難である。 However, when the wick is composed of fibers in the vapor chamber, there is a trade-off between the capillary force of the wick and the permeability. Therefore, it is difficult to obtain sufficient liquid transport performance.
 また、ベーパーチャンバーの薄型化においては、ウィックを薄くする必要がある。そのような中、例えば、ウィックが金属多孔質焼結体などの多孔質焼結体から構成される場合には、強度上の問題により多孔質焼結体にクラックまたは凹み等が発生しやすくなるため、液輸送性能が低下するおそれがある。 Also, in making the vapor chamber thinner, it is necessary to make the wick thinner. Under such circumstances, for example, when the wick is composed of a porous sintered body such as a metal porous sintered body, cracks or dents are likely to occur in the porous sintered body due to strength problems. Therefore, there is a possibility that the liquid transport performance may deteriorate.
 なお、上記の問題は、ベーパーチャンバーに限らず、ベーパーチャンバーと同様の構成によって熱を拡散させることが可能な熱拡散デバイスに共通する問題である。 It should be noted that the above problem is not limited to vapor chambers, but is common to heat diffusion devices capable of diffusing heat with a configuration similar to that of vapor chambers.
 本発明は、ウィックの耐久性が高く、かつ、液輸送性能に優れた熱拡散デバイスを提供することを目的とする。さらに、本発明は、上記熱拡散デバイスを備える電子機器を提供することを目的とする。 An object of the present invention is to provide a heat diffusion device with a highly durable wick and excellent liquid transport performance. A further object of the present invention is to provide an electronic device comprising the above heat diffusion device.
 本発明の熱拡散デバイスは、筐体と、上記筐体の内部空間に封入される作動媒体と、上記筐体の内部空間に配置され、上記作動媒体の液体流路の少なくとも一部の面を形成するウィックと、を備える。上記液体流路は、上記筐体の内壁面から離れている上面と、上記上面に連続し、かつ、上記筐体の内壁面に接する側面と、を有する。上記ウィックは、多孔質シートと、上記多孔質シートの少なくとも一部の上に設けられた多孔質焼結体と、を含む。 A heat diffusion device of the present invention includes a housing, a working medium enclosed in the internal space of the housing, and a liquid flow path of the working medium disposed in the internal space of the housing. a forming wick; The liquid channel has an upper surface remote from the inner wall surface of the housing and a side surface continuous with the upper surface and in contact with the inner wall surface of the housing. The wick includes a porous sheet and a porous sintered body provided on at least part of the porous sheet.
 本発明の熱拡散デバイスでは、第1の態様において、上記多孔質シートの最小孔径は、上記多孔質焼結体の最大孔径よりも大きい。また、第2の態様において、上記多孔質シートは、不織布である。 In the first aspect of the heat diffusion device of the present invention, the minimum pore size of the porous sheet is larger than the maximum pore size of the porous sintered body. Moreover, in the second aspect, the porous sheet is a nonwoven fabric.
 本発明の電子機器は、本発明の熱拡散デバイスを備える。 The electronic device of the present invention includes the heat diffusion device of the present invention.
 本発明によれば、ウィックの耐久性が高く、かつ、液輸送性能に優れた熱拡散デバイスを提供することができる。さらに、本発明によれば、上記熱拡散デバイスを備える電子機器を提供することができる。 According to the present invention, it is possible to provide a heat diffusion device with a highly durable wick and excellent liquid transport performance. Furthermore, according to the present invention, it is possible to provide an electronic device comprising the above heat diffusion device.
図1は、本発明の第1実施形態に係る熱拡散デバイスの一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of a heat diffusion device according to a first embodiment of the invention. 図2は、図1に示す熱拡散デバイスの内部構造の一例を模式的に示す平面図である。2 is a plan view schematically showing an example of the internal structure of the heat diffusion device shown in FIG. 1. FIG. 図3は、図2に示す熱拡散デバイスのIII-III線に沿った断面図である。3 is a cross-sectional view of the heat spreading device shown in FIG. 2 along line III-III. 図4は、液体流路の一例を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing an example of a liquid channel. 図5は、本発明の第1実施形態に係る熱拡散デバイスの別の一例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing another example of the heat diffusion device according to the first embodiment of the invention. 図6は、本発明の第1実施形態に係る熱拡散デバイスのさらに別の一例を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing still another example of the heat diffusion device according to the first embodiment of the invention. 図7は、支持体の一例を模式的に示す平面図である。FIG. 7 is a plan view schematically showing an example of a support. 図8は、本発明の第2実施形態に係る熱拡散デバイスの一例を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing an example of a heat diffusion device according to the second embodiment of the invention. 図9は、本発明の第2実施形態に係る熱拡散デバイスの別の一例を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing another example of the heat diffusion device according to the second embodiment of the invention. 図10は、本発明の第3実施形態に係る熱拡散デバイスの一例を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an example of a heat diffusion device according to the third embodiment of the invention. 図11は、支持体の別の一例を模式的に示す平面図である。FIG. 11 is a plan view schematically showing another example of the support. 図12は、本発明の第4実施形態に係る熱拡散デバイスの一例を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing an example of a heat diffusion device according to the fourth embodiment of the invention. 図13は、本発明の第5実施形態に係る熱拡散デバイスの一例を模式的に示す平面図である。FIG. 13 is a plan view schematically showing an example of a heat diffusion device according to the fifth embodiment of the invention. 図14は、図13に示す熱拡散デバイスのXIV-XIV線に沿った断面図である。14 is a cross-sectional view of the heat spreading device shown in FIG. 13 along line XIV-XIV. 図15は、図13に示す熱拡散デバイスのXV-XV線に沿った断面図である。15 is a cross-sectional view of the heat spreading device shown in FIG. 13 along line XV-XV. 図16は、複数のウィックが配置された熱拡散デバイスの内部構造の一例を模式的に示す平面図である。FIG. 16 is a plan view schematically showing an example of the internal structure of a heat diffusion device in which a plurality of wicks are arranged. 図17は、筐体が複数の蒸発部を有する熱拡散デバイスの内部構造の一例を模式的に示す平面図である。FIG. 17 is a plan view schematically showing an example of the internal structure of a heat diffusion device whose housing has a plurality of evaporators. 図18は、筐体が複数の蒸発部を有する熱拡散デバイスの内部構造の別の一例を模式的に示す平面図である。FIG. 18 is a plan view schematically showing another example of the internal structure of a heat diffusion device whose housing has a plurality of evaporators.
 以下、本発明の熱拡散デバイスについて説明する。
 しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の好ましい構成を2つ以上組み合わせたものもまた本発明である。
The heat diffusion device of the present invention will be described below.
However, the present invention is not limited to the following embodiments, and can be appropriately modified and applied without changing the gist of the present invention. A combination of two or more of the individual preferred configurations of the present invention described below is also the present invention.
 一般に、ベーパーチャンバーなどの熱拡散デバイスにおいては、液相の作動媒体はウィックの内部を通過しながら輸送される。例えば、特許文献1に記載されているようにウィックが繊維の束から構成される場合、蒸発部への液輸送性能を高めるための方法として、ウィックの内部を密集構造にすることで、毛細管圧力を高くすることが考えられる。しかし、ウィックの内部が密集構造になると、ウィックの内部を通過する流体抵抗が大きくなることで透過率が低くなるため、その分は液輸送性能が悪化する。また、熱拡散デバイスの薄型化に伴い、ウィックが薄くなるほど、液体流路の体積を確保すること、および、流体抵抗を小さくすることが困難になる。 Generally, in a heat diffusion device such as a vapor chamber, a liquid-phase working medium is transported while passing through the inside of a wick. For example, when the wick is composed of a bundle of fibers as described in Patent Document 1, as a method for enhancing the liquid transport performance to the evaporator, the inside of the wick has a dense structure to increase the capillary pressure. can be considered to be higher. However, when the inside of the wick has a dense structure, the fluid resistance passing through the inside of the wick increases and the permeability decreases, so the liquid transport performance deteriorates accordingly. In addition, as the heat diffusion device becomes thinner, the thinner the wick, the more difficult it becomes to secure the volume of the liquid flow path and to reduce the fluid resistance.
 これに対して、本発明の熱拡散デバイスでは、ウィックが作動媒体の液体流路の少なくとも一部の面を形成することにより、作動媒体の液体流路となる空洞が形成されている。そのため、空洞の周囲のウィックによって毛細管圧力を発現させることができるだけでなく、空洞内を通過する流体抵抗が小さくなることで作動媒体が空洞内をスムーズに流動できる。その結果、透過率を高くすることができる。 On the other hand, in the heat diffusion device of the present invention, the wick forms at least a part of the surface of the liquid flow path of the working medium, thereby forming a cavity that serves as the liquid flow path of the working medium. Therefore, not only can capillary pressure be generated by the wick around the cavity, but also the working medium can smoothly flow through the cavity by reducing fluid resistance passing through the cavity. As a result, the transmittance can be increased.
 さらに、本発明の熱拡散デバイスでは、多孔質シートの少なくとも一部の上に多孔質焼結体が設けられたウィックが用いられている。このうち、多孔質シートは、多孔質焼結体を保持するための補強材として機能する。これにより、多孔質焼結体にクラックまたは凹み等が発生しにくくなる。したがって、ウィックが多孔質焼結体のみから構成される場合に比べて、ウィックの耐久性を高めることができる。 Furthermore, the heat diffusion device of the present invention uses a wick having a porous sintered body provided on at least a portion of the porous sheet. Among these, the porous sheet functions as a reinforcing material for holding the porous sintered body. As a result, the porous sintered body is less likely to develop cracks, dents, or the like. Therefore, the durability of the wick can be enhanced as compared with the case where the wick is composed only of the porous sintered body.
 より具体的には、本発明の熱拡散デバイスでは、第1の態様において、多孔質シートの最小孔径は、多孔質焼結体の最大孔径よりも大きい。また、第2の態様において、多孔質シートは、不織布である。 More specifically, in the first aspect of the heat diffusion device of the present invention, the minimum pore size of the porous sheet is larger than the maximum pore size of the porous sintered body. Moreover, a 2nd aspect WHEREIN: A porous sheet is a nonwoven fabric.
 第1の態様および第2の態様では、多孔質シートの孔径サイズを多孔質焼結体の孔径サイズよりも大きくすることにより、多孔質焼結体の毛細管圧力を損なうことなく多孔質シートが作動媒体の液体流路に対して寄与することができる。その結果、高い液輸送性能を発揮することができる。 In the first aspect and the second aspect, the porous sheet operates without impairing the capillary pressure of the porous sintered body by making the pore size of the porous sheet larger than the pore size of the porous sintered body. It can contribute to the liquid flow path of the medium. As a result, high liquid transport performance can be exhibited.
 以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。第2実施形態以降では、第1実施形態と共通の事項についての記述は省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態毎には逐次言及しない。 Each embodiment shown below is an example, and it goes without saying that partial replacement or combination of configurations shown in different embodiments is possible. In the second and subsequent embodiments, descriptions of matters common to the first embodiment will be omitted, and only different points will be described. In particular, similar actions and effects due to similar configurations will not be mentioned sequentially for each embodiment.
 以下の説明において、各実施形態を特に区別しない場合、単に「本発明の熱拡散デバイス」という。 In the following description, when each embodiment is not particularly distinguished, it is simply referred to as "the heat diffusion device of the present invention".
 以下では、本発明の熱拡散デバイスの一実施形態として、ベーパーチャンバーを例にとって説明する。本発明の熱拡散デバイスは、ヒートパイプ等の熱拡散デバイスにも適用可能である。 A vapor chamber will be described below as an example of an embodiment of the heat diffusion device of the present invention. The heat diffusion device of the present invention can also be applied to heat diffusion devices such as heat pipes.
 以下に示す図面は模式的なものであり、その寸法や縦横比の縮尺などは実際の製品とは異なる場合がある。 The drawings shown below are schematic, and their dimensions and aspect ratio may differ from the actual product.
[第1実施形態]
 本発明の第1実施形態に係る熱拡散デバイスでは、多孔質シートが液体流路の上面に接し、かつ、多孔質焼結体が液体流路の側面に接している。さらに、筐体の内部空間には、液体流路の延伸方向に沿って、ウィックを支持する支持体が配置されている。
[First embodiment]
In the heat diffusion device according to the first embodiment of the present invention, the porous sheet is in contact with the upper surface of the liquid channel, and the porous sintered body is in contact with the side surface of the liquid channel. Further, a support for supporting the wick is arranged along the extending direction of the liquid channel in the internal space of the housing.
 図1は、本発明の第1実施形態に係る熱拡散デバイスの一例を模式的に示す斜視図である。図2は、図1に示す熱拡散デバイスの内部構造の一例を模式的に示す平面図である。図3は、図2に示す熱拡散デバイスのIII-III線に沿った断面図である。 FIG. 1 is a perspective view schematically showing an example of the heat diffusion device according to the first embodiment of the invention. 2 is a plan view schematically showing an example of the internal structure of the heat diffusion device shown in FIG. 1. FIG. 3 is a cross-sectional view of the heat spreading device shown in FIG. 2 along line III-III.
 図1に示すベーパーチャンバー(熱拡散デバイス)1は、気密状態に密閉された中空の筐体10を備える。筐体10には、図2に示すように、封入した作動媒体20(図3参照)を蒸発させる蒸発部(evaporation portion)EPが設定されている。図1に示すように、筐体10の外壁面には、発熱素子である熱源(heat source)HSが配置される。熱源HSとしては、電子機器の電子部品、例えば中央処理装置(CPU)等が挙げられる。筐体10の内部空間のうち、熱源HSの近傍であって熱源HSによって加熱される部分が、蒸発部EPに相当する。 A vapor chamber (heat diffusion device) 1 shown in FIG. 1 includes a hollow housing 10 that is hermetically sealed. As shown in FIG. 2, the housing 10 is provided with an evaporation portion EP for evaporating the enclosed working medium 20 (see FIG. 3). As shown in FIG. 1, a heat source HS, which is a heating element, is arranged on the outer wall surface of the housing 10 . Examples of the heat source HS include electronic components of electronic equipment, such as a central processing unit (CPU). A portion of the internal space of the housing 10 that is in the vicinity of the heat source HS and is heated by the heat source HS corresponds to the evaporating section EP.
 筐体10は、例えば、図3に示すように、厚さ方向Zに対向する第1内壁面11aおよび第2内壁面12aを有する。その場合、筐体10は、外縁部が接合された対向する第1シート11および第2シート12から構成されることが好ましい。 The housing 10 has, for example, a first inner wall surface 11a and a second inner wall surface 12a facing each other in the thickness direction Z, as shown in FIG. In that case, the housing 10 is preferably composed of a first sheet 11 and a second sheet 12 that face each other and whose outer edges are joined.
 ベーパーチャンバー1は、全体として面状であることが好ましい。すなわち、筐体10は、全体として面状であることが好ましい。ここで、「面状」とは、板状およびシート状を包含し、幅方向Xの寸法(以下、幅という)および長さ方向Yの寸法(以下、長さという)が厚さ方向Zの寸法(以下、厚さまたは高さという)に対して相当に大きい形状、例えば幅および長さが、厚さの10倍以上、好ましくは100倍以上である形状を意味する。 The vapor chamber 1 is preferably planar as a whole. That is, the housing 10 as a whole is preferably planar. Here, the “planar shape” includes a plate shape and a sheet shape, and the dimension in the width direction X (hereinafter referred to as width) and the dimension in the length direction Y (hereinafter referred to as length) are the thickness direction Z Shapes that are considerably large relative to their dimensions (hereinafter referred to as thickness or height), for example shapes whose width and length are 10 times or more, preferably 100 times or more, the thickness.
 ベーパーチャンバー1の大きさ、すなわち、筐体10の大きさは、特に限定されない。ベーパーチャンバー1の幅および長さは、用途に応じて適宜設定することができる。ベーパーチャンバー1の幅および長さは、各々、例えば、5mm以上500mm以下、20mm以上300mm以下または50mm以上200mm以下である。ベーパーチャンバー1の幅および長さは、同じであってもよく、異なっていてもよい。 The size of the vapor chamber 1, that is, the size of the housing 10 is not particularly limited. The width and length of the vapor chamber 1 can be appropriately set according to the application. The width and length of the vapor chamber 1 are, for example, 5 mm or more and 500 mm or less, 20 mm or more and 300 mm or less, or 50 mm or more and 200 mm or less. The width and length of vapor chamber 1 may be the same or different.
 筐体10が第1シート11および第2シート12から構成される場合、第1シート11および第2シート12を構成する材料は、ベーパーチャンバーとして用いるのに適した特性、例えば熱伝導性、強度、柔軟性、可撓性等を有するものであれば、特に限定されない。第1シート11および第2シート12を構成する材料は、好ましくは金属であり、例えば銅、ニッケル、アルミニウム、マグネシウム、チタン、鉄、またはそれらを主成分とする合金等であり、特に好ましくは銅である。第1シート11および第2シート12を構成する材料は、同じであってもよく、異なっていてもよいが、好ましくは同じである。 When the housing 10 is composed of the first sheet 11 and the second sheet 12, the materials that constitute the first sheet 11 and the second sheet 12 should have properties suitable for use as a vapor chamber, such as thermal conductivity, strength, and the like. , flexibility, flexibility, etc., and is not particularly limited. The material that constitutes the first sheet 11 and the second sheet 12 is preferably a metal, such as copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing them as a main component. Copper is particularly preferable. is. The materials forming the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
 筐体10が第1シート11および第2シート12から構成される場合、第1シート11および第2シート12は、これらの外縁部において互いに接合される。かかる接合の方法は、特に限定されないが、例えば、レーザー溶接、抵抗溶接、拡散接合、ロウ接、TIG溶接(タングステン-不活性ガス溶接)、超音波接合または樹脂封止を用いることができ、好ましくはレーザー溶接、抵抗溶接またはロウ接を用いることができる。 When the housing 10 is composed of the first sheet 11 and the second sheet 12, the first sheet 11 and the second sheet 12 are joined together at their outer edge portions. The method of such bonding is not particularly limited, but for example, laser welding, resistance welding, diffusion bonding, brazing, TIG welding (tungsten-inert gas welding), ultrasonic bonding or resin sealing can be used, preferably can use laser welding, resistance welding or brazing.
 第1シート11および第2シート12の厚さは、特に限定されないが、各々、好ましくは10μm以上200μm以下、より好ましくは30μm以上100μm以下、さらに好ましくは40μm以上60μm以下である。第1シート11および第2シート12の厚さは、同じであってもよく、異なっていてもよい。また、第1シート11および第2シート12の各シートの厚さは、全体にわたって同じであってもよく、一部が薄くてもよい。 The thicknesses of the first sheet 11 and the second sheet 12 are not particularly limited, but each is preferably 10 μm or more and 200 μm or less, more preferably 30 μm or more and 100 μm or less, still more preferably 40 μm or more and 60 μm or less. The thicknesses of the first sheet 11 and the second sheet 12 may be the same or different. Further, the thickness of each sheet of the first sheet 11 and the second sheet 12 may be the same over the entire area, or may be thin in part.
 第1シート11および第2シート12の形状は、特に限定されない。例えば、第1シート11は、厚みが一定の平板形状であり、第2シート12は、外縁部が外縁部以外の部分よりも厚い形状であってもよい。 The shapes of the first sheet 11 and the second sheet 12 are not particularly limited. For example, the first sheet 11 may have a flat plate shape with a constant thickness, and the second sheet 12 may have a shape in which the outer edge portion is thicker than the portions other than the outer edge portion.
 あるいは、第1シート11は、厚みが一定の平板形状であり、第2シート12は、厚みが一定で、かつ、外縁部に対して外縁部以外の部分が外側に凸の形状であってもよい。この場合、筐体10の外縁部に凹みが形成される。そのため、ベーパーチャンバーを搭載する際などに外縁部の凹みを利用することができる。また、外縁部の凹みに他の部品などを配置することができる。 Alternatively, the first sheet 11 may have a flat plate shape with a constant thickness, and the second sheet 12 may have a constant thickness and a portion other than the outer edge with respect to the outer edge may be convex outward. good. In this case, a recess is formed in the outer edge of the housing 10 . Therefore, the concave portion of the outer edge can be used when mounting the vapor chamber. Also, other components can be placed in the recesses of the outer edge.
 ベーパーチャンバー1全体の厚さは、特に限定されないが、好ましくは50μm以上500μm以下である。 Although the thickness of the entire vapor chamber 1 is not particularly limited, it is preferably 50 μm or more and 500 μm or less.
 厚さ方向Zから見た筐体10の平面形状は特に限定されず、例えば、三角形または矩形などの多角形、円形、楕円形、これらを組み合わせた形状などが挙げられる。また、筐体10の平面形状は、L字型、C字型(コの字型)、階段型などであってもよい。また、筐体10は貫通口を有してもよい。筐体10の平面形状は、ベーパーチャンバーの用途、ベーパーチャンバーの組み入れ箇所の形状、近傍に存在する他の部品に応じた形状であってもよい。 The planar shape of the housing 10 when viewed from the thickness direction Z is not particularly limited, and examples thereof include polygonal shapes such as triangles and rectangles, circular shapes, elliptical shapes, and shapes combining these shapes. Further, the planar shape of the housing 10 may be L-shaped, C-shaped (U-shaped), step-shaped, or the like. Moreover, the housing 10 may have a through hole. The planar shape of the housing 10 may be a shape according to the use of the vapor chamber, the shape of the location where the vapor chamber is installed, and other parts existing nearby.
 図3に示すように、ベーパーチャンバー1においては、筐体10の内部空間に作動媒体20が封入されている。 As shown in FIG. 3, in the vapor chamber 1, the working medium 20 is enclosed in the internal space of the housing 10.
 作動媒体20は、筐体10内の環境下において気-液の相変化を生じ得るものであれば特に限定されず、例えば、水、アルコール類、代替フロン等を用いることができる。例えば、作動媒体は水性化合物であり、好ましくは水である。 The working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the housing 10. For example, water, alcohols, CFC alternatives, etc. can be used. For example, the working medium is an aqueous compound, preferably water.
 筐体10の内部空間には、ウィック30が配置されている。ウィック30は、毛細管力により作動媒体20を移動させることができる毛細管構造を有する。 A wick 30 is arranged in the internal space of the housing 10 . The wick 30 has a capillary structure capable of moving the working medium 20 by capillary force.
 図3に示すように、ウィック30が作動媒体20の液体流路40の少なくとも一部の面を形成することにより、作動媒体20の液体流路40が形成されている。一方、筐体10内の液体流路40以外の隙間には、作動媒体20の蒸気流路50が形成されている。 As shown in FIG. 3 , the liquid channel 40 of the working medium 20 is formed by the wick 30 forming at least a part of the surface of the liquid channel 40 of the working medium 20 . On the other hand, a vapor channel 50 for the working medium 20 is formed in a gap other than the liquid channel 40 inside the housing 10 .
 図4は、液体流路の一例を模式的に示す斜視図である。 FIG. 4 is a perspective view schematically showing an example of a liquid channel.
 図3および図4に示すように、液体流路40は、筐体10の内壁面から離れている上面41と、上面41に連続し、かつ、筐体10の内壁面に接する側面42と、を有する。図3および図4に示す例では、上面41が筐体10の第1内壁面11aから離れ、側面42が筐体10の第1内壁面11aに接している液体流路40が形成されているが、上面41が筐体10の第2内壁面12aから離れ、側面42が筐体10の第2内壁面12aに接している液体流路40が形成されていてもよい。このように、本明細書において、液体流路の上面とは、筐体の内壁面から離れている面を意味するものであり、鉛直上方に位置する面を意味するものではない。 As shown in FIGS. 3 and 4, the liquid channel 40 has a top surface 41 that is separated from the inner wall surface of the housing 10, a side surface 42 that is continuous with the top surface 41 and is in contact with the inner wall surface of the housing 10, have In the example shown in FIGS. 3 and 4, the liquid flow path 40 is formed in which the upper surface 41 is separated from the first inner wall surface 11a of the housing 10 and the side surface 42 is in contact with the first inner wall surface 11a of the housing 10. However, the liquid channel 40 may be formed such that the upper surface 41 is separated from the second inner wall surface 12 a of the housing 10 and the side surface 42 is in contact with the second inner wall surface 12 a of the housing 10 . Thus, in this specification, the upper surface of the liquid channel means the surface away from the inner wall surface of the housing, and does not mean the surface positioned vertically upward.
 液体流路40の延伸方向(ここでは長さ方向Y)に垂直な断面において、液体流路40の幅は特に限定されないが、例えば500μm以上3000μm以下である。なお、上記断面において、厚さ方向Zで液体流路40の幅が異なる場合には、最も広い部分の幅を液体流路40の幅と定義する。 Although the width of the liquid channel 40 in a cross section perpendicular to the extending direction (here, the length direction Y) of the liquid channel 40 is not particularly limited, it is, for example, 500 μm or more and 3000 μm or less. In the above cross section, when the width of the liquid channel 40 differs in the thickness direction Z, the width of the widest portion is defined as the width of the liquid channel 40 .
 ウィック30は、多孔質シート31と、多孔質シート31の少なくとも一部の上に設けられた多孔質焼結体32と、を含む。 The wick 30 includes a porous sheet 31 and a porous sintered body 32 provided on at least part of the porous sheet 31 .
 第1の態様において、多孔質シート31の最小孔径は、多孔質焼結体32の最大孔径よりも大きい。 In the first aspect, the minimum pore size of the porous sheet 31 is larger than the maximum pore size of the porous sintered body 32 .
 多孔質シート31の孔径とは、ウィック30を厚さ方向Zから平面視して、多孔質シート31の表面上に形成されている孔に内接する円の直径を意味する。同様に、多孔質焼結体32の孔径とは、ウィック30を厚さ方向Zから平面視して、多孔質焼結体32の表面上に形成されている孔に内接する円の直径を意味する。 The pore diameter of the porous sheet 31 means the diameter of a circle inscribed in the pore formed on the surface of the porous sheet 31 when the wick 30 is viewed from the thickness direction Z. Similarly, the pore diameter of the porous sintered body 32 means the diameter of a circle inscribed in the pores formed on the surface of the porous sintered body 32 when the wick 30 is viewed from the thickness direction Z. do.
 第1の態様において、多孔質シート31は、図3に示すベーパーチャンバー1のように、金属板のエッチング加工により多孔が形成されるエッチング多孔板であってもよい。エッチング多孔板は平板状の金属板から形成されるため、多孔質シート31の平坦性に優れる。 In the first aspect, the porous sheet 31 may be an etched porous plate in which pores are formed by etching a metal plate, like the vapor chamber 1 shown in FIG. Since the etching porous plate is formed from a flat metal plate, the porous sheet 31 has excellent flatness.
 図5は、本発明の第1実施形態に係る熱拡散デバイスの別の一例を模式的に示す断面図である。 FIG. 5 is a cross-sectional view schematically showing another example of the heat diffusion device according to the first embodiment of the invention.
 第1の態様において、多孔質シート31は、図5に示すベーパーチャンバー1aのように、メッシュであってもよい。多孔質シート31の材料となるメッシュは、例えば、金属メッシュ、樹脂メッシュ、もしくは表面コートしたそれらのメッシュから構成されるものであってよく、好ましくは銅メッシュ、ステンレス(SUS)メッシュまたはポリエステルメッシュから構成される。多孔質シート31としてメッシュを用いることにより、安価にウィック30を作製することができる。 In the first aspect, the porous sheet 31 may be a mesh like the vapor chamber 1a shown in FIG. The mesh that is the material of the porous sheet 31 may be composed of, for example, a metal mesh, a resin mesh, or a surface-coated mesh thereof, preferably a copper mesh, a stainless steel (SUS) mesh, or a polyester mesh. Configured. By using a mesh as the porous sheet 31, the wick 30 can be manufactured at low cost.
 図6は、本発明の第1実施形態に係る熱拡散デバイスのさらに別の一例を模式的に示す断面図である。 FIG. 6 is a cross-sectional view schematically showing yet another example of the heat diffusion device according to the first embodiment of the invention.
 第2の態様において、多孔質シート31は、図6に示すベーパーチャンバー1bのように、不織布である。不織布の材料は特に限定されない。多孔質シート31として不織布を用いることにより、安価にウィック30を作製することができる。 In the second aspect, the porous sheet 31 is a nonwoven fabric like the vapor chamber 1b shown in FIG. The material of the nonwoven fabric is not particularly limited. By using a nonwoven fabric as the porous sheet 31, the wick 30 can be manufactured at low cost.
 第1の態様および第2の態様において、多孔質焼結体32は、例えば、金属多孔質焼結体またはセラミックス多孔質焼結体から構成されるものであってよく、好ましくは金属多孔質焼結体から構成され、より好ましくは銅またはニッケルの多孔質焼結体から構成される。 In the first and second aspects, the porous sintered body 32 may be composed of, for example, a metal porous sintered body or a ceramic porous sintered body, preferably a metal porous sintered body. It is composed of a solid body, and more preferably composed of a porous sintered body of copper or nickel.
 図3に示すベーパーチャンバー1を構成するウィック30を作製する方法としては、例えば、金属粉末またはセラミック粉末を含有するペーストを多孔質シート31の表面に塗布した後、焼成することにより、多孔質シート31の表面に多孔質焼結体32を形成する方法等が挙げられる。金属粉末またはセラミック粉末を含有するペーストを多孔質シート31の表面に塗布する量を調整することにより、多孔質焼結体32の厚みを容易に制御することができる。一方、液体流路40の側面42に位置する多孔質焼結体32は、例えば、金属粉末またはセラミック粉末を含有するペーストを筐体10に直接塗布した後、焼成することにより形成することができる。例えば、金属粉末またはセラミック粉末を含有するペーストを筐体10に直接塗布し、その上に、上記ペーストが表面に塗布された多孔質シート31を載置した後、同時焼成により多孔質焼結体32を形成してもよい。あるいは、金属粉末またはセラミック粉末を含有するペーストを筐体10に直接塗布し、その上に、多孔質シート31を載置して、上記ペーストを多孔質シート31の表面に塗布した後、同時焼成により多孔質焼結体32を形成してもよい。 As a method of manufacturing the wick 30 constituting the vapor chamber 1 shown in FIG. 3, for example, a paste containing metal powder or ceramic powder is applied to the surface of the porous sheet 31 and then fired to form a porous sheet. A method of forming a porous sintered body 32 on the surface of 31, and the like. The thickness of the porous sintered body 32 can be easily controlled by adjusting the amount of paste containing metal powder or ceramic powder applied to the surface of the porous sheet 31 . On the other hand, the porous sintered body 32 located on the side surface 42 of the liquid channel 40 can be formed by, for example, directly applying a paste containing metal powder or ceramic powder to the housing 10 and then firing the paste. . For example, a paste containing metal powder or ceramic powder is directly applied to the housing 10, and the porous sheet 31 having the paste applied to the surface is placed thereon, followed by simultaneous firing to form a porous sintered body. 32 may be formed. Alternatively, a paste containing metal powder or ceramic powder is directly applied to the housing 10, the porous sheet 31 is placed thereon, the paste is applied to the surface of the porous sheet 31, and then co-fired. The porous sintered body 32 may be formed by
 図3に示すベーパーチャンバー1では、多孔質シート31が液体流路40の上面41に接している。 In the vapor chamber 1 shown in FIG. 3, the porous sheet 31 is in contact with the upper surface 41 of the liquid channel 40.
 図3に示すベーパーチャンバー1では、ウィック30の表面に多孔質焼結体32が露出している。図3に示すように、ウィック30の表面の全体に多孔質焼結体32が露出していることが好ましい。 In the vapor chamber 1 shown in FIG. 3, the porous sintered body 32 is exposed on the surface of the wick 30. As shown in FIG. 3, it is preferable that the porous sintered body 32 is exposed over the entire surface of the wick 30 .
 さらに、筐体10の内部空間には、液体流路40の延伸方向(ここでは長さ方向Y)に沿って、ウィック30を支持する支持体60が配置されている。図3に示す例では、液体流路40の延伸方向に沿って互いに並列するように2列の支持体60が配置されているが、液体流路40の延伸方向に沿って1列の支持体60が配置されていてもよく、液体流路40の延伸方向に沿って互いに並列するように3列以上の支持体60が配置されていてもよい。 Further, in the internal space of the housing 10, a support 60 that supports the wick 30 is arranged along the extension direction of the liquid channel 40 (here, the length direction Y). In the example shown in FIG. 3, two rows of supports 60 are arranged parallel to each other along the extending direction of the liquid flow channel 40, but only one row of supports along the extending direction of the liquid flow channel 40 is provided. 60 may be arranged, or three or more rows of supports 60 may be arranged so as to be parallel to each other along the extending direction of the liquid channel 40 .
 筐体10の内部空間に支持体60が配置されている場合、支持体60によってウィック30がテントのように支えられる。したがって、ベーパーチャンバーの薄型化に伴ってウィック30が薄い場合であっても、液体流路40が潰れにくくなるため、液体流路40の体積を確保することができる。 When the support 60 is arranged in the internal space of the housing 10, the support 60 supports the wick 30 like a tent. Therefore, even if the wick 30 is thin as the vapor chamber is thinned, the liquid channel 40 is less likely to collapse, and the volume of the liquid channel 40 can be secured.
 図3に示す例では、筐体10の第1内壁面11aおよびウィック30を支持する支持体60が配置されているが、さらに、筐体10の第2内壁面12aおよびウィック30を支持する支持体60が配置されていてもよい。その場合、第2内壁面12a側の支持体60は、第1内壁面11a側の支持体60に対向することが好ましい。 In the example shown in FIG. 3 , a support 60 is arranged to support the first inner wall surface 11 a of the housing 10 and the wick 30 . A body 60 may be arranged. In that case, the support 60 on the second inner wall surface 12a side preferably faces the support 60 on the first inner wall surface 11a side.
 支持体60を形成する材料は、特に限定されないが、例えば、樹脂、金属、セラミックス、またはそれらの混合物、積層物等が挙げられる。また、図3に示すように、支持体60は、筐体10と一体であってもよく、例えば、筐体10の内壁面をエッチング加工すること等により形成されていてもよい。 The material forming the support 60 is not particularly limited, but examples include resins, metals, ceramics, or mixtures and laminates thereof. Further, as shown in FIG. 3, the support 60 may be integrated with the housing 10, or may be formed by etching the inner wall surface of the housing 10, for example.
 図7は、支持体の一例を模式的に示す平面図である。 FIG. 7 is a plan view schematically showing an example of a support.
 図3に示すベーパーチャンバー1が備える支持体60は、図7に示すように、液体流路40の延伸方向(ここでは長さ方向Y)に沿って間隔を空けて配置される複数の支柱61から構成されていることが好ましい。この場合、多孔質焼結体32が液体流路40の側面42に接している。そのため、液体流路40の側面42も気液交換部として利用することができる。 As shown in FIG. 7, the support 60 included in the vapor chamber 1 shown in FIG. 3 includes a plurality of struts 61 arranged at intervals along the extending direction (here, the length direction Y) of the liquid channel 40. It is preferably composed of In this case, the porous sintered body 32 is in contact with the side surface 42 of the liquid channel 40 . Therefore, the side surface 42 of the liquid channel 40 can also be used as a gas-liquid exchange portion.
 支持体60が複数の支柱61から構成される場合、支柱61の高さ方向に垂直な断面の形状としては、例えば、矩形等の多角形、円形、楕円形等が挙げられる。 When the support 60 is composed of a plurality of struts 61, the shape of the cross section perpendicular to the height direction of the struts 61 may be, for example, a polygon such as a rectangle, a circle, an ellipse, or the like.
 支持体60が複数の支柱61から構成される場合、支柱61の高さは、一のベーパーチャンバーにおいて、同じであってもよく、異なっていてもよい。例えば、ある領域における支柱61の高さと、別の領域における支柱61の高さが異なっていてもよい。 When the support 60 is composed of a plurality of struts 61, the heights of the struts 61 may be the same or different in one vapor chamber. For example, the height of the struts 61 in one region may differ from the height of the struts 61 in another region.
 支持体60が複数の支柱61から構成される場合、支柱61の幅は、ウィック30を支持できる強度を与えるものであれば特に限定されないが、支柱61の端部の高さ方向に垂直な断面の円相当径は、例えば100μm以上2000μm以下であり、好ましくは300μm以上1000μm以下である。 When the support 60 is composed of a plurality of struts 61, the width of the struts 61 is not particularly limited as long as it provides the strength to support the wick 30. is, for example, 100 μm or more and 2000 μm or less, preferably 300 μm or more and 1000 μm or less.
 支持体60が複数の支柱61から構成される場合、支柱61の配置は特に限定されないが、所定の領域において均等に支柱61が配置されることが好ましく、全体にわたって均等に、例えば支柱61間の距離が一定となるように支柱61が配置されることがより好ましい。 When the support 60 is composed of a plurality of struts 61, the arrangement of the struts 61 is not particularly limited. More preferably, the struts 61 are arranged so that the distance is constant.
 ウィック30の端部は、筐体10の内壁面に固定されていることが好ましい。例えば、多孔質焼結体32が金属から構成される場合、ウィック30の端部が筐体10の内壁面に接合されていることが好ましい。接合の方法は特に限定されないが、例えば、拡散接合などを用いることができる。 The end of the wick 30 is preferably fixed to the inner wall surface of the housing 10. For example, when the porous sintered body 32 is made of metal, the end of the wick 30 is preferably joined to the inner wall surface of the housing 10 . Although the bonding method is not particularly limited, diffusion bonding or the like can be used, for example.
 ウィック30は、支持体60に固定されていることが好ましい。例えば、多孔質シート31および多孔質焼結体32が金属から構成される場合、ウィック30が支持体60に接合されていることが好ましい。接合の方法は特に限定されないが、例えば、拡散接合などを用いることができる。 The wick 30 is preferably fixed to the support 60. For example, when the porous sheet 31 and the porous sintered body 32 are made of metal, the wick 30 is preferably bonded to the support 60 . Although the bonding method is not particularly limited, diffusion bonding or the like can be used, for example.
 以下に示す第2実施形態以降では、第1の態様において、多孔質シート31の最小孔径は、多孔質焼結体32の最大孔径よりも大きい。多孔質シート31は、例えば、エッチング多孔板であってもよく、メッシュであってもよい。また、第2の態様において、多孔質シート31は、不織布である。 In the second and subsequent embodiments described below, the minimum pore size of the porous sheet 31 is larger than the maximum pore size of the porous sintered body 32 in the first aspect. The porous sheet 31 may be, for example, an etched perforated plate or a mesh. Moreover, in the second aspect, the porous sheet 31 is a nonwoven fabric.
[第2実施形態]
 本発明の第2実施形態に係る熱拡散デバイスでは、多孔質焼結体が液体流路の上面に接し、かつ、多孔質焼結体が液体流路の側面に接している。さらに、筐体の内部空間には、液体流路の延伸方向に沿って、ウィックを支持する支持体が配置されている。
[Second embodiment]
In the heat diffusion device according to the second embodiment of the present invention, the porous sintered body is in contact with the upper surface of the liquid channel and the porous sintered body is in contact with the side surface of the liquid channel. Further, a support for supporting the wick is arranged along the extending direction of the liquid channel in the internal space of the housing.
 図8は、本発明の第2実施形態に係る熱拡散デバイスの一例を模式的に示す断面図である。 FIG. 8 is a cross-sectional view schematically showing an example of a heat diffusion device according to the second embodiment of the invention.
 図8に示すベーパーチャンバー(熱拡散デバイス)2では、多孔質焼結体32が液体流路40の上面41に接している。これにより、多孔質シート31が液体流路40の上面41に接している場合に比べて気液交換がしやすくなる。 In the vapor chamber (heat diffusion device) 2 shown in FIG. 8, the porous sintered body 32 is in contact with the upper surface 41 of the liquid channel 40. This facilitates gas-liquid exchange compared to the case where the porous sheet 31 is in contact with the upper surface 41 of the liquid channel 40 .
 図8に示すベーパーチャンバー2では、多孔質シート31の片面に多孔質焼結体32が設けられている。そのため、ウィック30の表面に多孔質シート31が露出している。図8に示すように、ウィック30の表面の全体に多孔質シート31が露出していることが好ましい。 A porous sintered body 32 is provided on one side of a porous sheet 31 in the vapor chamber 2 shown in FIG. Therefore, the porous sheet 31 is exposed on the surface of the wick 30 . As shown in FIG. 8, it is preferable that the porous sheet 31 is exposed over the entire surface of the wick 30 .
 さらに、筐体10の内部空間には、液体流路40の延伸方向(ここでは長さ方向Y)に沿って、ウィック30を支持する支持体60が配置されている。 Further, in the internal space of the housing 10, a support 60 that supports the wick 30 is arranged along the extension direction of the liquid channel 40 (here, the length direction Y).
 図8に示すベーパーチャンバー2が備える支持体60は、上述の図7に示すように、液体流路40の延伸方向(ここでは長さ方向Y)に沿って間隔を空けて配置される複数の支柱61から構成されていることが好ましい。この場合、多孔質焼結体32が液体流路40の側面42に接している。 The support 60 included in the vapor chamber 2 shown in FIG. 8 includes a plurality of supports arranged at intervals along the extension direction (here, the length direction Y) of the liquid channel 40 as shown in FIG. It is preferably composed of a strut 61 . In this case, the porous sintered body 32 is in contact with the side surface 42 of the liquid channel 40 .
 図9は、本発明の第2実施形態に係る熱拡散デバイスの別の一例を模式的に示す断面図である。 FIG. 9 is a cross-sectional view schematically showing another example of the heat diffusion device according to the second embodiment of the invention.
 図9に示すベーパーチャンバー(熱拡散デバイス)2aでは、図8に示すベーパーチャンバー2と同様、多孔質焼結体32が液体流路40の上面41に接している。 In the vapor chamber (thermal diffusion device) 2a shown in FIG. 9, the porous sintered body 32 is in contact with the upper surface 41 of the liquid channel 40, as in the vapor chamber 2 shown in FIG.
 図9に示すベーパーチャンバー2aでは、多孔質シート31の両面に多孔質焼結体32が設けられている。そのため、ウィック30の表面に多孔質焼結体32が露出している。図9に示すように、ウィック30の表面の全体に多孔質焼結体32が露出していることが好ましい。 In the vapor chamber 2a shown in FIG. 9, porous sintered bodies 32 are provided on both sides of a porous sheet 31. Therefore, the porous sintered body 32 is exposed on the surface of the wick 30 . As shown in FIG. 9, it is preferable that the porous sintered body 32 is exposed over the entire surface of the wick 30 .
 図8に示すベーパーチャンバー2を構成するウィック30を作製する方法としては、例えば、図3に示すベーパーチャンバー1を構成するウィック30と同様に、金属粉末またはセラミック粉末を含有するペーストを多孔質シート31の表面に塗布した後、焼成することにより、多孔質シート31の表面に多孔質焼結体32を形成する方法等が挙げられる。一方、液体流路40の側面42に位置する多孔質焼結体32は、例えば、金属粉末またはセラミック粉末を含有するペーストを筐体10に直接塗布した後、焼成することにより形成することができる。上述のように、同時焼成により多孔質焼結体32を形成してもよい。その場合、液体流路40の上面41に位置する多孔質焼結体32と液体流路40の側面42に位置する多孔質焼結体32との境界は明瞭に現れない。 As a method of manufacturing the wick 30 constituting the vapor chamber 2 shown in FIG. 8, for example, similar to the wick 30 constituting the vapor chamber 1 shown in FIG. For example, a method of forming a porous sintered body 32 on the surface of the porous sheet 31 by coating the surface of the porous sheet 31 and then firing the porous sheet 31 . On the other hand, the porous sintered body 32 located on the side surface 42 of the liquid channel 40 can be formed by, for example, directly applying a paste containing metal powder or ceramic powder to the housing 10 and then firing the paste. . As described above, the porous sintered body 32 may be formed by co-firing. In that case, the boundary between the porous sintered body 32 located on the upper surface 41 of the liquid channel 40 and the porous sintered body 32 located on the side surface 42 of the liquid channel 40 does not appear clearly.
 図9に示すベーパーチャンバー2aを構成するウィック30を作製する方法としては、例えば、金属粉末またはセラミック粉末を含有するペーストに多孔質シート31を浸漬した後、焼成することにより、多孔質シート31の表面に多孔質焼結体32を形成する方法等が挙げられる。金属粉末またはセラミック粉末を含有するペーストに多孔質シート31を浸漬する方法では、上記ペーストを多孔質シート31の両面に塗布する方法に比べて簡便にウィック30を作製することができる。一方、液体流路40の側面42に位置する多孔質焼結体32は、例えば、金属粉末またはセラミック粉末を含有するペーストを筐体10に直接塗布した後、焼成することにより形成することができる。上述のように、同時焼成により多孔質焼結体32を形成してもよい。その場合、液体流路40の上面41に位置する多孔質焼結体32と液体流路40の側面42に位置する多孔質焼結体32との境界は明瞭に現れない。 As a method of manufacturing the wick 30 that constitutes the vapor chamber 2a shown in FIG. A method of forming a porous sintered body 32 on the surface and the like can be mentioned. The method of immersing the porous sheet 31 in a paste containing metal powder or ceramic powder allows the wick 30 to be produced more easily than the method of applying the paste to both surfaces of the porous sheet 31 . On the other hand, the porous sintered body 32 located on the side surface 42 of the liquid channel 40 can be formed by, for example, directly applying a paste containing metal powder or ceramic powder to the housing 10 and then firing the paste. . As described above, the porous sintered body 32 may be formed by co-firing. In that case, the boundary between the porous sintered body 32 located on the upper surface 41 of the liquid channel 40 and the porous sintered body 32 located on the side surface 42 of the liquid channel 40 does not appear clearly.
 以下に示す第3実施形態以降では、多孔質シートが液体流路の上面に接していてもよく、多孔質焼結体が液体流路の上面に接していてもよい。 In the third and subsequent embodiments described below, the porous sheet may be in contact with the upper surface of the liquid channel, and the porous sintered body may be in contact with the upper surface of the liquid channel.
[第3実施形態]
 本発明の第3実施形態に係る熱拡散デバイスでは、多孔質焼結体が液体流路の側面に接していない。
[Third embodiment]
In the heat diffusion device according to the third embodiment of the present invention, the porous sintered body is not in contact with the side surfaces of the liquid channels.
 図10は、本発明の第3実施形態に係る熱拡散デバイスの一例を模式的に示す断面図である。 FIG. 10 is a cross-sectional view schematically showing an example of a heat diffusion device according to the third embodiment of the invention.
 図10に示すベーパーチャンバー(熱拡散デバイス)3では、多孔質焼結体32が液体流路40の側面42に接していない。これにより、多孔質焼結体32が液体流路40の側面42に接している場合に比べてウィック30の幅を小さくすることができる。そのため、蒸気流路50の体積が確保されやすくなる。  In the vapor chamber (heat diffusion device) 3 shown in FIG. Thereby, the width of the wick 30 can be made smaller than when the porous sintered body 32 is in contact with the side surface 42 of the liquid channel 40 . Therefore, the volume of the steam flow path 50 is easily ensured.
 図11は、支持体の別の一例を模式的に示す平面図である。 FIG. 11 is a plan view schematically showing another example of the support.
 図10に示すベーパーチャンバー3が備える支持体60は、図11に示すように、液体流路40の延伸方向(ここでは長さ方向Y)に沿って液体流路40の側面42を形成する支持壁62から構成されていることが好ましい。 The support 60 included in the vapor chamber 3 shown in FIG. 10 is a support that forms the side surface 42 of the liquid channel 40 along the extending direction (here, the length direction Y) of the liquid channel 40, as shown in FIG. It preferably consists of a wall 62 .
[第4実施形態]
 本発明の第4実施形態に係る熱拡散デバイスでは、筐体の内部空間に支持体が配置されていない。
[Fourth embodiment]
In the heat diffusion device according to the fourth embodiment of the present invention, no support is arranged in the internal space of the housing.
 図12は、本発明の第4実施形態に係る熱拡散デバイスの一例を模式的に示す断面図である。 FIG. 12 is a cross-sectional view schematically showing an example of a heat diffusion device according to the fourth embodiment of the invention.
 図12に示すベーパーチャンバー(熱拡散デバイス)4では、図3に示すベーパーチャンバー1等と異なり、筐体10の内部空間に支持体60(図3等参照)が配置されていない。 In the vapor chamber (heat diffusion device) 4 shown in FIG. 12, unlike the vapor chamber 1 and the like shown in FIG.
 図12に示すベーパーチャンバー4では、多孔質焼結体32が液体流路40の側面42に接している。そのため、液体流路40の側面42も気液交換部として利用することができる。 In the vapor chamber 4 shown in FIG. 12, the porous sintered body 32 is in contact with the side surface 42 of the liquid channel 40. Therefore, the side surface 42 of the liquid channel 40 can also be used as a gas-liquid exchange section.
 図12に示すベーパーチャンバー4では、ウィック30が自立するように、液体流路40の側面42に接している部分の多孔質焼結体32の幅は、図3に示すベーパーチャンバー1等における液体流路40の側面42に接している部分の多孔質焼結体32の幅よりも大きいことが好ましい。具体的には、図12に示すベーパーチャンバー4における液体流路40の側面42に接している部分の多孔質焼結体32の幅は、図3に示すベーパーチャンバー1等における液体流路40の側面42に接している部分の多孔質焼結体32の幅と支持体60の幅との合計と同等であることが好ましい。 In the vapor chamber 4 shown in FIG. 12, the width of the porous sintered body 32 in the portion in contact with the side surface 42 of the liquid flow path 40 is adjusted so that the wick 30 can stand on its own. It is preferable that the width of the portion of the porous sintered body 32 that is in contact with the side surface 42 of the flow path 40 is larger than that of the porous sintered body 32 . Specifically, the width of the porous sintered body 32 in the portion in contact with the side surface 42 of the liquid channel 40 in the vapor chamber 4 shown in FIG. It is preferably equal to the sum of the width of the porous sintered body 32 in contact with the side surface 42 and the width of the support 60 .
[第5実施形態]
 本発明の第5実施形態に係る熱拡散デバイスでは、筐体の厚さ方向から見たとき、ウィックが蒸発部および液体流路に重なる部分において、多孔質シートが露出している。
[Fifth embodiment]
In the heat diffusion device according to the fifth embodiment of the present invention, when viewed from the thickness direction of the housing, the porous sheet is exposed at the portion where the wick overlaps the evaporator and the liquid channel.
 図13は、本発明の第5実施形態に係る熱拡散デバイスの一例を模式的に示す平面図である。図14は、図13に示す熱拡散デバイスのXIV-XIV線に沿った断面図である。図15は、図13に示す熱拡散デバイスのXV-XV線に沿った断面図である。 FIG. 13 is a plan view schematically showing an example of a heat diffusion device according to the fifth embodiment of the invention. 14 is a cross-sectional view of the heat spreading device shown in FIG. 13 along line XIV-XIV. 15 is a cross-sectional view of the heat spreading device shown in FIG. 13 along line XV-XV.
 図13に示すベーパーチャンバー(熱拡散デバイス)5では、筐体10の厚さ方向Zから見たとき、図13および図14に示すように、ウィック30が蒸発部EPおよび液体流路40に重なる部分において、多孔質シート31が露出している。すなわち、筐体10の厚さ方向Zから見たとき、ウィック30が蒸発部EPおよび液体流路40に重なる部分において、ウィック30は、多孔質焼結体32を含まない。一方、蒸発部EP以外の部分においては、図3に示すベーパーチャンバー1等と同様、図13および図15に示すように、ウィック30は、多孔質シート31と、多孔質シート31の少なくとも一部の上に設けられた多孔質焼結体32と、を含む。 In the vapor chamber (heat diffusion device) 5 shown in FIG. 13, when viewed from the thickness direction Z of the housing 10, the wick 30 overlaps the evaporation part EP and the liquid flow path 40 as shown in FIGS. Part of the porous sheet 31 is exposed. That is, when viewed from the thickness direction Z of the housing 10 , the wick 30 does not include the porous sintered body 32 in the portion where the wick 30 overlaps the evaporator EP and the liquid flow path 40 . On the other hand, in portions other than the evaporation part EP, as in the vapor chamber 1 and the like shown in FIG. and a porous sintered body 32 provided thereon.
 図13に示すベーパーチャンバー5では、蒸発部EPにおいて多孔質シート31を露出させることで、蒸発部EPにおける蒸発熱抵抗を下げることができる。 In the vapor chamber 5 shown in FIG. 13, by exposing the porous sheet 31 in the evaporation part EP, the evaporation heat resistance in the evaporation part EP can be lowered.
[その他の実施形態]
 本発明の熱拡散デバイスは、上記実施形態に限定されるものではなく、熱拡散デバイスの構成、製造条件等に関し、本発明の範囲内において、種々の応用、変形を加えることが可能である。
[Other embodiments]
The heat diffusion device of the present invention is not limited to the above-described embodiments, and various applications and modifications can be made within the scope of the present invention regarding the structure of the heat diffusion device, manufacturing conditions, and the like.
 本発明の熱拡散デバイスでは、1個のウィックが配置されてもよく、複数のウィックが配置されてもよい。複数のウィックが配置される場合、厚さ方向からの平面視で、複数のウィックは、互いに間隔を空けて並列するように延びていることが好ましい。 In the heat diffusion device of the present invention, one wick may be arranged, or a plurality of wicks may be arranged. When a plurality of wicks are arranged, it is preferable that the plurality of wicks extend so as to be spaced apart and parallel to each other in plan view from the thickness direction.
 図16は、複数のウィックが配置された熱拡散デバイスの内部構造の一例を模式的に示す平面図である。 FIG. 16 is a plan view schematically showing an example of the internal structure of a heat diffusion device in which a plurality of wicks are arranged.
 図16に示すベーパーチャンバー(熱拡散デバイス)6では、複数のウィック30が配置されている。それ以外の構成は、ベーパーチャンバー1と同じである。図16では、4個のウィック30が示されているが、ウィック30の数は、2個以上であれば特に限定されない。 A plurality of wicks 30 are arranged in the vapor chamber (heat diffusion device) 6 shown in FIG. Other configurations are the same as those of the vapor chamber 1 . Although four wicks 30 are shown in FIG. 16, the number of wicks 30 is not particularly limited as long as it is two or more.
 厚さ方向Zからの平面視で、複数のウィック30は、互いに間隔を空けて並列するように延びている。これらのウィック30は、図16に示すように、蒸発部EPに集約するように配置されることが好ましい。ウィック30を蒸発部EPに集約させることで、短い距離で作動媒体を循環させることができる。 In plan view from the thickness direction Z, the plurality of wicks 30 extend parallel to each other at intervals. These wicks 30 are preferably arranged so as to be concentrated in the evaporating section EP, as shown in FIG. By collecting the wick 30 in the evaporator EP, the working medium can be circulated over a short distance.
 図16に示すように、隣り合うウィック30の間には第1蒸気流路51が形成されていることが好ましい。この場合、複数のウィック30のうち、最も外側に位置する一方のウィック30(図16では左側のウィック30)と筐体10との間には、第1蒸気流路51よりも幅の広い第2蒸気流路52が形成されていることが好ましい。さらに、最も外側に位置する他方のウィック30(図16では右側のウィック30)と筐体10との間には、第1蒸気流路51よりも幅の広い第3蒸気流路53が形成されていることが好ましい。 As shown in FIG. 16, it is preferable that first steam flow paths 51 are formed between adjacent wicks 30 . In this case, between the outermost one of the plurality of wicks 30 (the left wick 30 in FIG. 16) and the housing 10, a first vapor channel 51 wider than the first steam flow path 51 is provided. It is preferable that two steam flow paths 52 are formed. Further, a third steam channel 53 wider than the first steam channel 51 is formed between the other outermost wick 30 (the right wick 30 in FIG. 16) and the housing 10. preferably.
 複数のウィック30が一部に偏在していると、その部分には作動媒体の蒸気が通らないため、ベーパーチャンバー全体の均熱性能が低下する。そこで、ウィック30の間に隙間を設け、その隙間を蒸気流路とすることで、均熱性能を改善することができる。結果として、液循環および蒸気循環に優れ、液輸送能力と均熱性能の高いベーパーチャンバーが得られる。 If the plurality of wicks 30 are unevenly distributed in one part, the steam of the working medium does not pass through that part, so the uniform heating performance of the vapor chamber as a whole decreases. Therefore, by providing a gap between the wicks 30 and using the gap as a steam flow path, the uniform heating performance can be improved. As a result, it is possible to obtain a vapor chamber which is excellent in liquid circulation and vapor circulation, and which has high liquid transportation capacity and heat soaking performance.
 ウィック30の材料は、それぞれ同じでもよく、異なっていてもよい。 The materials of the wicks 30 may be the same or different.
 ウィック30の厚さは、それぞれ同じでもよく、異なっていてもよい。 The thickness of each wick 30 may be the same or different.
 本発明の熱拡散デバイスにおいて、筐体は、1個の蒸発部を有してもよく、複数の蒸発部を有してもよい。すなわち、筐体の外壁面には、1個の熱源が配置されてもよく、複数の熱源が配置されてもよい。蒸発部および熱源の数は特に限定されない。 In the heat diffusion device of the present invention, the housing may have one evaporator or may have a plurality of evaporators. That is, one heat source may be arranged on the outer wall surface of the housing, or a plurality of heat sources may be arranged. The number of evaporators and heat sources is not particularly limited.
 図17は、筐体が複数の蒸発部を有する熱拡散デバイスの内部構造の一例を模式的に示す平面図である。図18は、筐体が複数の蒸発部を有する熱拡散デバイスの内部構造の別の一例を模式的に示す平面図である。 FIG. 17 is a plan view schematically showing an example of the internal structure of a heat diffusion device whose housing has a plurality of evaporators. FIG. 18 is a plan view schematically showing another example of the internal structure of a heat diffusion device whose housing has a plurality of evaporators.
 図17に示すベーパーチャンバー(熱拡散デバイス)6aでは、2個のウィック30が配置されており、各ウィック30の端部に蒸発部EPが設けられている。図18に示すベーパーチャンバー(熱拡散デバイス)6bでは、3個のウィック30が配置されており、各ウィック30の端部に蒸発部EPが設けられている。 In the vapor chamber (heat diffusion device) 6a shown in FIG. 17, two wicks 30 are arranged, and the evaporator EP is provided at the end of each wick 30. In the vapor chamber (heat diffusion device) 6b shown in FIG. 18, three wicks 30 are arranged, and an evaporator EP is provided at the end of each wick 30. As shown in FIG.
 本発明の熱拡散デバイスにおいて、蒸発部は筐体の端部に設けられてもよいし、筐体の中央部に設けられてもよい。 In the heat diffusion device of the present invention, the evaporator may be provided at the end of the housing or may be provided at the center of the housing.
 本発明の熱拡散デバイスにおいて、筐体が第1シートおよび第2シートから構成される場合、第1シートと第2シートとは、端部が一致するように重なっていてもよいし、端部がずれて重なっていてもよい。 In the heat diffusion device of the present invention, when the housing is composed of the first sheet and the second sheet, the first sheet and the second sheet may be overlapped so that the edges are aligned, or the edges may overlap. may be shifted and overlapped.
 本発明の熱拡散デバイスにおいて、筐体が第1シートおよび第2シートから構成される場合、第1シートを構成する材料と、第2シートを構成する材料とは異なっていてもよい。例えば、強度の高い材料を第1シートに用いることにより、筐体にかかる応力を分散させることができる。また、両者の材料を異なるものとすることにより、一方のシートで一の機能を得、他方のシートで他の機能を得ることができる。上記の機能としては、特に限定されないが、例えば、熱伝導機能、電磁波シールド機能等が挙げられる。 In the heat diffusion device of the present invention, when the housing is composed of the first sheet and the second sheet, the material of the first sheet and the material of the second sheet may be different. For example, by using a high-strength material for the first sheet, the stress applied to the housing can be dispersed. Also, by using different materials for the two sheets, one sheet can have one function and the other sheet can have another function. The above functions are not particularly limited, but include, for example, a heat conduction function, an electromagnetic wave shielding function, and the like.
 本発明の熱拡散デバイスは、多孔質シートを含まないウィックまたは多孔質焼結体を含まないウィックをさらに備えてもよい。また、本発明の熱拡散デバイスは、液体流路を形成しないウィックをさらに備えてもよい。その場合、毛細管力により作動媒体を移動させることができる毛細管構造を有するウィックであれば特に限定されない。ウィックの毛細管構造は、従来の熱拡散デバイスにおいて用いられている公知の構造であってもよい。毛細管構造としては、細孔、溝、突起などの凹凸を有する微細構造、例えば、多孔構造、繊維構造、溝構造、網目構造などが挙げられる。 The heat diffusion device of the present invention may further include a wick that does not contain a porous sheet or a wick that does not contain a porous sintered body. Also, the heat spreading device of the present invention may further comprise a wick that does not form a liquid flow path. In that case, the wick is not particularly limited as long as it has a capillary structure capable of moving the working medium by capillary force. The capillary structure of the wick may be any known structure used in conventional heat spreading devices. The capillary structure includes fine structures having unevenness such as pores, grooves, and projections, such as porous structures, fiber structures, groove structures, and network structures.
 本発明の熱拡散デバイスは、放熱を目的として電子機器に搭載され得る。したがって、本発明の熱拡散デバイスを備える電子機器も本発明の1つである。本発明の電子機器としては、例えばスマートフォン、タブレット端末、ノートパソコン、ゲーム機器、ウェアラブルデバイス等が挙げられる。本発明の熱拡散デバイスは上記のとおり、外部動力を必要とせず自立的に作動し、作動媒体の蒸発潜熱および凝縮潜熱を利用して、二次元的に高速で熱を拡散することができる。そのため、本発明の熱拡散デバイスを備える電子機器により、電子機器内部の限られたスペースにおいて、放熱を効果的に実現することができる。 The heat diffusion device of the present invention can be mounted on electronic equipment for the purpose of heat dissipation. Therefore, an electronic device including the heat diffusion device of the present invention is also one aspect of the present invention. Examples of the electronic device of the present invention include smart phones, tablet terminals, notebook computers, game machines, wearable devices, and the like. As described above, the heat diffusion device of the present invention can operate independently without requiring external power, and can diffuse heat two-dimensionally and at high speed by utilizing the latent heat of vaporization and latent heat of condensation of the working medium. Therefore, an electronic device equipped with the heat diffusion device of the present invention can effectively dissipate heat in a limited space inside the electronic device.
 本発明の熱拡散デバイスは、携帯情報端末等の分野において、広範な用途に使用できる。例えば、CPU等の熱源の温度を下げ、電子機器の使用時間を延ばすために使用することができ、スマートフォン、タブレット端末、ノートパソコン等に使用することができる。 The heat diffusion device of the present invention can be used for a wide range of applications in fields such as personal digital assistants. For example, it can be used to lower the temperature of a heat source such as a CPU and extend the operating time of electronic equipment, and can be used in smartphones, tablet terminals, laptop computers, and the like.
 1、1a、1b、2、2a、3、4、5、6、6a、6b ベーパーチャンバー(熱拡散デバイス)
 10 筐体
 11 第1シート
 11a 第1内壁面
 12 第2シート
 12a 第2内壁面
 20 作動媒体
 30 ウィック
 31 多孔質シート
 32 多孔質焼結体
 40 液体流路
 41 液体流路の上面
 42 液体流路の側面
 50 蒸気流路
 51 第1蒸気流路
 52 第2蒸気流路
 53 第3蒸気流路
 60 支持体
 61 支柱
 62 支持壁
 EP 蒸発部
 HS 熱源
 X 幅方向
 Y 長さ方向
 Z 厚さ方向
1, 1a, 1b, 2, 2a, 3, 4, 5, 6, 6a, 6b vapor chamber (heat diffusion device)
10 housing 11 first sheet 11a first inner wall surface 12 second sheet 12a second inner wall surface 20 working medium 30 wick 31 porous sheet 32 porous sintered body 40 liquid channel 41 upper surface of liquid channel 42 liquid channel 50 steam channel 51 first steam channel 52 second steam channel 53 third steam channel 60 support 61 support 62 support wall EP evaporator HS heat source X width direction Y length direction Z thickness direction

Claims (12)

  1.  筐体と、
     前記筐体の内部空間に封入される作動媒体と、
     前記筐体の内部空間に配置され、前記作動媒体の液体流路の少なくとも一部の面を形成するウィックと、を備え、
     前記液体流路は、前記筐体の内壁面から離れている上面と、前記上面に連続し、かつ、前記筐体の内壁面に接する側面と、を有し、
     前記ウィックは、多孔質シートと、前記多孔質シートの少なくとも一部の上に設けられた多孔質焼結体と、を含み、
     前記多孔質シートの最小孔径は、前記多孔質焼結体の最大孔径よりも大きい、熱拡散デバイス。
    a housing;
    a working medium enclosed in the internal space of the housing;
    a wick disposed in the inner space of the housing and forming at least a part of the surface of the liquid flow path of the working medium;
    the liquid channel has a top surface away from the inner wall surface of the housing and a side surface continuous with the top surface and in contact with the inner wall surface of the housing;
    The wick includes a porous sheet and a porous sintered body provided on at least a portion of the porous sheet,
    A heat diffusion device, wherein the minimum pore size of the porous sheet is larger than the maximum pore size of the porous sintered body.
  2.  前記多孔質シートは、エッチング多孔板である、請求項1に記載の熱拡散デバイス。 The heat diffusion device according to claim 1, wherein the porous sheet is an etched perforated plate.
  3.  前記多孔質シートは、メッシュである、請求項1に記載の熱拡散デバイス。 The heat diffusion device according to claim 1, wherein the porous sheet is a mesh.
  4.  筐体と、
     前記筐体の内部空間に封入される作動媒体と、
     前記筐体の内部空間に配置され、前記作動媒体の液体流路の少なくとも一部の面を形成するウィックと、を備え、
     前記液体流路は、前記筐体の内壁面から離れている上面と、前記上面に連続し、かつ、前記筐体の内壁面に接する側面と、を有し、
     前記ウィックは、多孔質シートと、前記多孔質シートの少なくとも一部の上に設けられた多孔質焼結体と、を含み、
     前記多孔質シートは、不織布である、熱拡散デバイス。
    a housing;
    a working medium enclosed in the internal space of the housing;
    a wick disposed in the inner space of the housing and forming at least a part of the surface of the liquid flow path of the working medium;
    the liquid channel has a top surface away from the inner wall surface of the housing and a side surface continuous with the top surface and in contact with the inner wall surface of the housing;
    The wick includes a porous sheet and a porous sintered body provided on at least a portion of the porous sheet,
    The heat diffusion device, wherein the porous sheet is a non-woven fabric.
  5.  前記多孔質シートが前記液体流路の上面に接している、請求項1~4のいずれか1項に記載の熱拡散デバイス。 The thermal diffusion device according to any one of claims 1 to 4, wherein the porous sheet is in contact with the upper surface of the liquid channel.
  6.  前記多孔質焼結体が前記液体流路の上面に接している、請求項1~4のいずれか1項に記載の熱拡散デバイス。 The thermal diffusion device according to any one of claims 1 to 4, wherein the porous sintered body is in contact with the upper surface of the liquid channel.
  7.  前記多孔質焼結体が前記液体流路の側面に接している、請求項1~6のいずれか1項に記載の熱拡散デバイス。 The thermal diffusion device according to any one of claims 1 to 6, wherein the porous sintered body is in contact with the side surface of the liquid channel.
  8.  前記液体流路の延伸方向に沿って前記筐体の内部空間に配置され、前記ウィックを支持する支持体をさらに備える、請求項1~7のいずれか1項に記載の熱拡散デバイス。 The thermal diffusion device according to any one of claims 1 to 7, further comprising a support arranged in the internal space of the housing along the extending direction of the liquid channel and supporting the wick.
  9.  前記支持体は、前記液体流路の延伸方向に沿って間隔を空けて配置される複数の支柱から構成されている、請求項8に記載の熱拡散デバイス。 The thermal diffusion device according to claim 8, wherein the support is composed of a plurality of struts arranged at intervals along the extending direction of the liquid channel.
  10.  前記支持体は、前記液体流路の延伸方向に沿って前記液体流路の側面を形成する支持壁から構成されている、請求項8に記載の熱拡散デバイス。 The thermal diffusion device according to claim 8, wherein the support body is composed of a support wall forming a side surface of the liquid channel along the extending direction of the liquid channel.
  11.  前記筐体は、蒸発部を内部空間に有し、
     前記筐体の厚さ方向から見たとき、前記ウィックが前記蒸発部および前記液体流路に重なる部分において、前記多孔質シートが露出している、請求項1~10のいずれか1項に記載の熱拡散デバイス。
    the housing has an evaporator in its internal space,
    11. The porous sheet according to any one of claims 1 to 10, wherein when viewed from the thickness direction of the housing, the porous sheet is exposed at a portion where the wick overlaps the evaporator and the liquid channel. heat spreading device.
  12.  請求項1~11のいずれか1項に記載の熱拡散デバイスを備える、電子機器。 An electronic device comprising the heat diffusion device according to any one of claims 1 to 11.
PCT/JP2022/030944 2021-08-24 2022-08-16 Thermal diffusion device WO2023026896A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-136324 2021-08-24
JP2021136324 2021-08-24

Publications (1)

Publication Number Publication Date
WO2023026896A1 true WO2023026896A1 (en) 2023-03-02

Family

ID=85321952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030944 WO2023026896A1 (en) 2021-08-24 2022-08-16 Thermal diffusion device

Country Status (1)

Country Link
WO (1) WO2023026896A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518518A (en) * 2002-02-26 2005-06-23 ミクロス・マニュファクチュアリング・インコーポレーテッド Capillary evaporator
US9835383B1 (en) * 2013-03-15 2017-12-05 Hrl Laboratories, Llc Planar heat pipe with architected core and vapor tolerant arterial wick
WO2020026908A1 (en) * 2018-07-31 2020-02-06 株式会社村田製作所 Vapor chamber
US20200103176A1 (en) * 2018-09-28 2020-04-02 Microsoft Technology Licensing, Llc Two-phase thermodynamic system having a porous microstructure sheet to increase an aggregate thin-film evaporation area of a working fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518518A (en) * 2002-02-26 2005-06-23 ミクロス・マニュファクチュアリング・インコーポレーテッド Capillary evaporator
US9835383B1 (en) * 2013-03-15 2017-12-05 Hrl Laboratories, Llc Planar heat pipe with architected core and vapor tolerant arterial wick
WO2020026908A1 (en) * 2018-07-31 2020-02-06 株式会社村田製作所 Vapor chamber
US20200103176A1 (en) * 2018-09-28 2020-04-02 Microsoft Technology Licensing, Llc Two-phase thermodynamic system having a porous microstructure sheet to increase an aggregate thin-film evaporation area of a working fluid

Similar Documents

Publication Publication Date Title
US11231235B2 (en) Vapor chamber
US11445636B2 (en) Vapor chamber, heatsink device, and electronic device
JPWO2020026908A1 (en) Vapor chamber
CN220187503U (en) Vapor chamber and electronic equipment
JP2020193715A (en) Vapor chamber
JP7111266B2 (en) vapor chamber
JP2021143809A (en) Vapor chamber and electronic device
WO2023026896A1 (en) Thermal diffusion device
WO2022201918A1 (en) Thermal diffusion device and electronic apparatus
JP7311057B2 (en) Heat spreading devices and electronics
WO2023058595A1 (en) Thermal diffusion device
JP7260062B2 (en) heat spreading device
JP7120494B1 (en) heat spreading device
WO2023085350A1 (en) Thermal diffusion device
WO2023182029A1 (en) Heat diffusing device, and electronic apparatus
JP7222448B2 (en) heat spreading device
WO2023238626A1 (en) Heat diffusion device and electronic appliance
JP7283641B2 (en) heat spreading device
WO2023182033A1 (en) Thermal diffusion device and electronic apparatus
WO2023238625A1 (en) Heat spreading device and electronic apparatus
WO2023112616A1 (en) Thermal diffusion device and electronic apparatus
WO2023171408A1 (en) Thermal diffusion device and electronic apparatus
WO2024034279A1 (en) Heat dissipation device and electronic apparatus
CN221123121U (en) Heat diffusion device and electronic apparatus
WO2023021953A1 (en) Thermal diffusion device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE