WO2024034279A1 - Heat dissipation device and electronic apparatus - Google Patents

Heat dissipation device and electronic apparatus Download PDF

Info

Publication number
WO2024034279A1
WO2024034279A1 PCT/JP2023/023790 JP2023023790W WO2024034279A1 WO 2024034279 A1 WO2024034279 A1 WO 2024034279A1 JP 2023023790 W JP2023023790 W JP 2023023790W WO 2024034279 A1 WO2024034279 A1 WO 2024034279A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness direction
housing
wick
viewed
casing
Prior art date
Application number
PCT/JP2023/023790
Other languages
French (fr)
Japanese (ja)
Inventor
利克 大櫃
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024034279A1 publication Critical patent/WO2024034279A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to heat diffusion devices and electronic equipment.
  • Graphite sheets and the like are often used as materials for heat dissipation, but their heat transport capacity is not sufficient, so the use of various heat diffusion devices that can diffuse heat is being considered. .
  • Patent Document 1 discloses a casing including an upper casing sheet and a lower casing sheet facing each other joined at outer edges and having an internal space, a hydraulic fluid sealed in the internal space, and the lower casing.
  • a microchannel arranged in the inner space of the sheet and forming a flow path for the working fluid;
  • a sheet-shaped wick arranged in the inner space of the casing and in contact with the microchannel;
  • a vapor chamber is disclosed in which a contact area between the wick and the microchannel is 5% to 40% of the area of the internal space when viewed in plan.
  • FIG. 1 of Patent Document 1 shows a structure in which a wick is sandwiched between a convex portion of a microchannel provided on a lower casing sheet and a support provided on an upper casing sheet. Furthermore, in Patent Document 1, the vaporized working fluid releases heat in the internal space of the casing and returns to liquid, and the working fluid that returns to liquid moves through the microchannel due to capillary force due to the holes in the wick. , it is described that it is again carried near a heat source.
  • the vapor chamber shown in FIG. 1 of Patent Document 1 has a structure in which the inner surface of the upper housing sheet is flat except for the pillars, so when the vaporized working fluid returns to liquid, the upper It becomes easier to disperse on the flat area of the inner surface of the housing sheet.
  • the working fluid to be collected by the wick is easily dispersed in the flat area of the inner surface of the upper housing sheet, so the working fluid is collected by the wick. It becomes difficult to do. Therefore, in the vapor chamber shown in FIG. 1 of Patent Document 1, the recovery efficiency of the working fluid by the wick is reduced, making it difficult for the working fluid to circulate, resulting in a problem that the soaking performance is reduced.
  • the present invention has been made in order to solve the above problems, and aims to provide a heat diffusion device that can improve heat uniformity performance. Another object of the present invention is to provide an electronic device having the above heat diffusion device.
  • the heat diffusion device of the present invention includes a casing having a first inner surface and a second inner surface facing each other in the thickness direction and an internal space, and a working medium sealed in the internal space of the casing. , a wick provided in the internal space of the casing; a support provided in the internal space of the casing and in contact with the first inner surface of the casing and the wick in the thickness direction;
  • the first inner surface of the housing is provided with a recess located around the support, and when viewed in plan from the thickness direction, at least a part of the recess is located on the first inner surface of the support. It is characterized in that it is in contact with the root of the first inner surface side of the body.
  • the electronic device of the present invention is characterized by comprising the heat diffusion device of the present invention.
  • thermoelectric device that can improve heat soaking performance. Further, according to the present invention, it is possible to provide an electronic device having the above heat diffusion device.
  • FIG. 1 is a schematic perspective view showing an example of a heat diffusion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic plan view showing an example of the internal structure of the heat diffusion device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an example of a cross section of the heat diffusion device shown in FIG. 2 along line segment a1-a2.
  • FIG. 4 is a schematic cross-sectional view showing an enlarged view of the support and the depression shown in FIG.
  • FIG. 5 is a schematic plan view showing an example of a state in which the support body and depression shown in FIG. 4 are viewed from the thickness direction.
  • FIG. 6 is a schematic cross-sectional view showing an example in which the support body and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIG. 4 when viewed in cross-section from the plane direction.
  • FIG. 7 is a schematic plan view showing an example in which the support body and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from FIG. 5 when viewed from the thickness direction.
  • FIG. 8 is a schematic plan view showing an example in which the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5 and 7 when viewed from the thickness direction.
  • FIG. 9 is a schematic plan view showing an example in which the support and the depression of the heat diffusion device of Embodiment 1 of the present invention are different from those in FIGS. 5, 7, and 8 when viewed from the thickness direction.
  • FIG. 10 is a schematic plan view showing an example in which the support body and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5, 7, 8, and 9 when viewed from the thickness direction. It is.
  • FIG. 11 shows an example in which the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5, 7, 8, 9, and 10 when viewed from the thickness direction.
  • FIG. 12 shows a plan view of the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention, which is different from FIGS. 5, 7, 8, 9, 10, and 11 when viewed from the thickness direction.
  • FIG. 3 is a schematic plan view showing an example.
  • FIG. 13 is a schematic plan view showing an example of the internal structure of a heat diffusion device according to Embodiment 2 of the present invention.
  • FIG. 14 is a schematic cross-sectional view showing an example of a cross section of the heat diffusion device shown in FIG. 13 along line segment b1-b2.
  • FIG. 15 is a schematic perspective view showing an example of the electronic device of the present invention.
  • the present invention is not limited to the following configuration, and may be modified as appropriate without departing from the gist of the present invention. Furthermore, the present invention also includes a combination of a plurality of individual preferred configurations described below.
  • a vapor chamber is shown as an example of the heat diffusion device of the present invention.
  • the heat diffusion device of the present invention is also applicable to heat diffusion devices such as heat pipes.
  • the heat diffusion device of the present invention includes a casing having a first inner surface and a second inner surface facing each other in the thickness direction and an internal space, and a working medium sealed in the internal space of the casing. , a wick provided in the internal space of the casing; a support provided in the internal space of the casing and in contact with the first inner surface of the casing and the wick in the thickness direction;
  • the first inner surface of the housing is provided with a recess located around the support, and when viewed in plan from the thickness direction, at least a part of the recess is located on the first inner surface of the support. It is characterized in that it is in contact with the root of the first inner surface side of the body.
  • FIG. 1 is a schematic perspective view showing an example of a heat diffusion device according to Embodiment 1 of the present invention.
  • the vapor chamber (thermal diffusion device) 1A shown in FIG. 1 has a housing 10.
  • the housing 10 is hermetically sealed and has a hollow structure.
  • a heat source HS which is a heat generating element, is provided on the outer surface of the housing 10.
  • Examples of the heat source HS include electronic components.
  • the length direction, thickness direction, and width direction are defined by L, T, and W, respectively, as shown in FIG. 1 and the like.
  • the length direction L, the thickness direction T, and the width direction W are orthogonal to each other.
  • a direction perpendicular to the thickness direction T and including the length direction L and the width direction W is defined as a surface direction.
  • the vapor chamber 1A has a planar shape as a whole. That is, it is preferable that the housing 10 has a planar shape as a whole.
  • a planar shape includes a plate-like shape and a sheet-like shape, and the lengthwise dimension and the widthwise dimension are considerably larger than the thickness direction dimension, e.g. It means a shape in which the dimension in the direction and the dimension in the width direction are 10 times or more, preferably 100 times or more, the dimension in the thickness direction.
  • the size of the vapor chamber 1A is not particularly limited.
  • the dimension in the length direction L and the dimension in the width direction W of the vapor chamber 1A are preferably 5 mm or more and 500 mm or less, more preferably 20 mm or more and 300 mm or less, and still more preferably 50 mm or more and 200 mm or less.
  • the dimension in the length direction L and the dimension in the width direction W of the vapor chamber 1A may be the same or different.
  • the dimension of the vapor chamber 1A in the thickness direction T is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the dimensions in the length direction L, the thickness direction T, and the width direction W of the vapor chamber 1A are determined as the maximum dimensions in the length direction L, thickness direction T, and width direction W, respectively.
  • the housing 10 is preferably composed of a first sheet 11 and a second sheet 12 whose outer edges are joined together.
  • the first sheet 11 and the second sheet 12 may overlap so that their ends match, or may overlap with their ends shifted.
  • Examples of methods for joining the outer edges of the first sheet 11 and the second sheet 12 include laser welding, resistance welding, diffusion bonding, brazing welding, TIG welding (tungsten-inert gas welding), ultrasonic bonding, and resin sealing. Examples include stopping. Among these, laser welding, resistance welding, or brazing welding is preferred.
  • the constituent materials of the first sheet 11 and the second sheet 12 are not particularly limited as long as they have properties suitable for a vapor chamber, such as thermal conductivity, strength, flexibility, flexibility, etc.
  • the constituent material of the first sheet 11 and the second sheet 12 is preferably a metal, such as copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing at least one of these metals as a main component. Preferably it is copper or aluminum.
  • the constituent materials of the first sheet 11 and the second sheet 12 may be the same or different.
  • the first sheet 11 and the second sheet 12 can exhibit different functions.
  • Such functions include, but are not particularly limited to, heat conduction functions, electromagnetic shielding functions, and the like.
  • the shapes of the first sheet 11 and the second sheet 12 are not particularly limited.
  • the first sheet 11 may have a flat plate shape with a constant dimension in the thickness direction T
  • the second sheet 12 may have a shape in which the outer edge has a larger dimension in the thickness direction T than the portion other than the outer edge.
  • the first sheet 11 has a flat plate shape with a constant dimension in the thickness direction T
  • the second sheet 12 has a constant dimension in the thickness direction T
  • the portion other than the outer edge is on the outside. It may also have a convex shape.
  • a recess will be provided at the outer edge of the housing 10.
  • Such a recess on the outer edge of the housing 10 can be used when mounting the vapor chamber 1A.
  • other components can be placed in the recess on the outer edge of the housing 10.
  • the dimensions of the first sheet 11 and the second sheet 12 in the thickness direction T are preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 30 ⁇ m or more and 100 ⁇ m or less, and still more preferably 40 ⁇ m or more and 60 ⁇ m or less.
  • the dimensions of the first sheet 11 and the second sheet 12 in the thickness direction T may be the same or different.
  • the dimensions of the first sheet 11 and the second sheet 12 in the thickness direction T are each determined as the maximum dimension in the thickness direction T.
  • planar shape of the casing 10 when viewed from the thickness direction T include polygons such as triangles and rectangles, circles, ellipses, and combinations thereof. Further, the planar shape of the casing 10 may be an L-shape, a C-shape (U-shape), a staircase shape, or the like. Further, the housing 10 may be provided with a through hole in the thickness direction T.
  • the planar shape of the casing 10 may be a shape depending on the use of the vapor chamber 1A, a shape depending on the mounting location of the vapor chamber 1A, or a shape depending on other components existing nearby. It may also have a different shape.
  • the size of the housing 10 is not particularly limited.
  • the dimension in the length direction L and the dimension in the width direction W of the casing 10 are respectively preferably 5 mm or more and 500 mm or less, more preferably 20 mm or more and 300 mm or less, and still more preferably 50 mm or more and 200 mm or less.
  • the dimension in the length direction L and the dimension in the width direction W of the housing 10 may be the same or different from each other.
  • the dimension of the casing 10 in the thickness direction T is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the dimension in the length direction L, the dimension in the thickness direction T, and the dimension in the width direction W of the casing 10 are determined as the maximum dimension in the length direction L, thickness direction T, and width direction W, respectively.
  • FIG. 1 illustrates an example in which the casing 10 is composed of two sheets, the first sheet 11 and the second sheet 12, the casing 10 may be composed of one sheet or three or more sheets. It may be composed of sheets.
  • FIG. 2 is a schematic plan view showing an example of the internal structure of the heat diffusion device of Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an example of a cross section of the heat diffusion device shown in FIG. 2 along line segment a1-a2.
  • the vapor chamber 1A shown in FIGS. 2 and 3 includes a housing 10, a working medium 20, a wick 30, and a support 40.
  • the housing 10 has a first inner surface 10a and a second inner surface 10b facing each other in the thickness direction T.
  • the casing 10 is composed of a first sheet 11 and a second sheet 12, the inner surface of the first sheet 11 corresponds to the first inner surface 10a of the casing 10, and the inner surface of the second sheet 12 corresponds to the first inner surface 10a of the casing 10.
  • the inner surface corresponds to the second inner surface 10b of the housing 10.
  • the housing 10 is provided with an internal space. More specifically, the housing 10 is provided with an internal space surrounded by a first inner surface 10a and a second inner surface 10b.
  • the housing 10 has an evaporation part EP in the internal space.
  • the evaporation part EP is a part that evaporates a liquid-phase working medium 20, which will be described later, to change it into a gas-phase working medium 20. More specifically, the evaporation portion EP corresponds to a portion of the internal space of the housing 10 that is near the heat source HS shown in FIG. 1 and is heated by the heat source HS.
  • the number of evaporation parts EP may be one as shown in FIG. 2, or may be plural. In other words, only one heat source HS or a plurality of heat sources HS may be provided on the outer surface of the housing 10.
  • the heat source HS may be provided on the outer surface of the casing 10 opposite to the first inner surface 10a, here, the outer surface of the first sheet 11, or may be provided on the outer surface of the casing 10 opposite to the second inner surface 10b, Here, it may be provided on the outer surface of the second sheet 12.
  • the working medium 20 is sealed in the internal space of the housing 10.
  • the working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the casing 10.
  • Examples of the working medium 20 include water, alcohols, and alternative fluorocarbons.
  • the working medium 20 is preferably an aqueous compound, particularly preferably water.
  • the wick 30 is provided in the internal space of the housing 10.
  • the wick 30 has a capillary structure that can move the working medium 20 by capillary force.
  • the capillary structure of the wick 30 may be a known structure used in conventional heat diffusion devices (vapor chambers, etc.).
  • Examples of such a capillary structure include a fine structure having irregularities such as pores, grooves, and protrusions, such as a porous structure, a fiber structure, a groove structure, and a network structure.
  • the wick 30 functions as a liquid transport section that sucks up and transports the liquid phase working medium 20 by capillary force.
  • the wick 30 is made of a porous material.
  • porous body examples include a sintered body, a nonwoven fabric, a mesh, an etched perforated plate, and a fiber bundle.
  • the sintered body examples include porous metal sintered bodies, porous ceramic sintered bodies, and the like. Among these, metal porous sintered bodies are preferred, and copper or nickel porous sintered bodies are more preferred.
  • nonwoven fabric examples include metal nonwoven fabric.
  • the wick 30 is made of nonwoven fabric, it can be manufactured at low cost.
  • the mesh examples include metal mesh, resin mesh, and surface-coated meshes of these. Among these, copper mesh, stainless steel (SUS) mesh, or polyester mesh is preferred. When the wick 30 is made of mesh, it can be manufactured at low cost.
  • the etched perforated plate is produced, for example, by etching a flat metal plate.
  • the wick 30 is composed of the etched perforated plate produced in this manner, it has excellent flatness.
  • a fiber bundle is produced, for example, by linearly bundling a plurality of fibers.
  • the fiber bundle functions as a liquid holding section that sucks up and holds the working medium 20 in the liquid phase by capillary force, and also functions as a liquid transport section that transports the sucked up working medium 20 in the liquid phase.
  • the wick 30 When the wick 30 is composed of a fiber bundle, it is preferably composed of a braided fiber bundle.
  • a braided fiber bundle in which a plurality of fibers are woven tends to have irregularities on its surface, so when the wick 30 is composed of a braided fiber bundle, the liquid phase working medium 20 is easily transported.
  • the fibers constituting the fiber bundle include metal wires such as copper, aluminum, and stainless steel wires, and non-metal wires such as carbon fibers and glass fibers.
  • metal wire is preferred because of its high thermal conductivity.
  • a fiber bundle can be obtained by bundling about 200 copper wires with a diameter of about 0.03 mm.
  • the dimension of the wick 30 in the thickness direction T is preferably 2 ⁇ m or more and 200 ⁇ m or less, more preferably 5 ⁇ m or more and 100 ⁇ m or less, and still more preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the dimensions of the wick 30 in the thickness direction T may be the same throughout or may be different in some parts.
  • the internal space of the casing 10 includes a liquid flow path LP that mainly contains the working medium 20 in the liquid phase and a vapor flow path VP that mainly contains the working medium 20 in the gas phase. are doing.
  • a liquid flow path LP that mainly contains the working medium 20 in the liquid phase exists between the second inner surface 10b of the housing 10 and the wick 30.
  • a vapor flow path VP that mainly contains the working medium 20 in the vapor phase exists between the first inner surface 10a of the housing 10 and the wick 30.
  • the liquid flow path LP may contain the gas-phase working medium 20 as long as it is a region where the liquid-phase working medium 20 is mainly present.
  • the vapor flow path VP may contain the liquid phase working medium 20 as long as it is a region where the gas phase working medium 20 is mainly present.
  • the support body 40 is provided in the internal space of the housing 10. More specifically, the support body 40 is provided in the vapor flow path VP in the internal space of the housing 10.
  • the support body 40 is in contact with the first inner surface 10a of the housing 10 and the wick 30 in the thickness direction T. Thereby, the wick 30 is supported by the support body 40.
  • a plurality of supports 40 are provided, and the plurality of supports 40 are in contact with the first inner surface 10a of the housing 10 and the wick 30 in the thickness direction T. It is sufficient that at least one of the plurality of supports 40 is in contact with the wick 30 in the thickness direction T, and all the supports 40 are in contact with the wick 30 in the thickness direction T as shown in FIG. Alternatively, a part of the support body 40 may be in contact with the wick 30 in the thickness direction T.
  • the plurality of supports 40 are provided evenly so that the center-to-center distance (pitch) of the supports 40 is constant. In this case, it is preferable that the plurality of supports 40 are provided evenly in some areas in the internal space of the housing 10, here, the steam flow path VP, and the plurality of supports 40 are preferably provided evenly over the entire area. It is more preferable to be present. In the region where the plurality of supports 40 are evenly provided, the strength of the vapor chamber 1A is ensured uniformly.
  • the support body 40 is provided to protrude in the thickness direction T from the first inner surface 10a toward the second inner surface 10b in the internal space of the housing 10, here, in the steam flow path VP. You can leave it there.
  • the direction in which the support body 40 protrudes from the first inner surface 10a of the housing 10 does not need to be strictly parallel to the thickness direction T.
  • the support body 40 may be integrated with the first inner surface 10a of the housing 10.
  • the support body 40 is formed, for example, by etching the first inner surface 10a of the housing 10, here, the inner surface of the first sheet 11.
  • two elements being integrated means a state in which there is no interface between the elements, for example, a state in which the boundary between the elements cannot be determined.
  • the support body 40 may be joined to the first inner surface 10a of the housing 10.
  • the support body 40 is bonded to the first inner surface 10a of the housing 10, here, the inner surface of the first sheet 11, for example, by a bonding method such as diffusion bonding.
  • Examples of the constituent material of the support body 40 include resins, metals, ceramics, and mixtures or laminates of two or more of these.
  • the constituent material of the support body 40 is preferably the same as the constituent material of the housing 10, here, the constituent material of the first sheet 11, but may be different from the constituent material of the first sheet 11.
  • a plurality of supports 40 are provided, but the constituent materials of the plurality of supports 40 may be the same or different, or some of them may be made of the same or different materials. may be different.
  • the support body 40 may consist of a single layer or may consist of multiple layers.
  • the planar shape of the support body 40 when viewed from the thickness direction T is not limited to the circular shape shown in FIG. 3, as will be described later.
  • a plurality of supports 40 are provided, but the planar shapes of the plurality of supports 40 may be the same, different, or partially may be different.
  • Examples of the cross-sectional shape of the support body 40 when viewed in cross-section from the surface direction perpendicular to the thickness direction T include polygons such as rectangles.
  • the cross-sectional shape of the support body 40 may be a tapered shape shown in FIG. 3, or may be a tapered shape different from that shown in FIG.
  • a plurality of supports 40 are provided, but the cross-sectional shapes of the plurality of supports 40 may be the same or different, or some of the supports 40 may have the same or different cross-sectional shapes. may be different.
  • the vapor chamber 1A operates as follows.
  • the working medium 20 in the liquid phase is evaporated by absorbing heat from the heat source HS in the wick 30 and the liquid flow path LP that are present in the region near the evaporation section EP, and the working medium 20 in the gas phase is evaporated by absorbing heat from the heat source HS.
  • the gas phase working medium 20 generated in the evaporation section EP passes through the vapor flow path VP to a region away from the evaporation section EP, for example, to a side opposite to the evaporation section EP in the longitudinal direction L of the vapor flow path VP. , where it is cooled and changed into a liquid phase working medium 20.
  • the liquid phase working medium 20 is recovered into the wick 30 and the liquid channel LP, and then transported to the evaporation section EP.
  • the above process is repeated, whereby the working medium 20 circulates while undergoing a gas-liquid phase change.
  • the heat from the heat source HS is absorbed as latent heat of evaporation that changes the liquid-phase working medium 20 into the gas-phase working medium 20 in the evaporator section EP, and then is absorbed into the vapor-phase working medium 20 in a region away from the evaporator section EP. It is released as latent heat of condensation which transforms the medium 20 into the working medium 20 in the liquid phase.
  • the vapor chamber 1A operates autonomously without requiring external power, and furthermore, by utilizing the latent heat of vaporization and latent heat of condensation of the working medium 20, the vapor chamber 1A can generate heat from the heat source HS in two dimensions. can spread rapidly.
  • a recess 50 located around the support body 40 is provided on the first inner surface 10a of the housing 10, here, on the inner surface of the first sheet 11. More specifically, as shown in FIG. 3, the first inner surface 10a of the housing 10, here, the inner surface of the first sheet 11, in the region of the steam flow path VP that overlaps the wick 30 in the thickness direction T.
  • a depression 50 is provided around the support body 40 in contact with the wick 30 in the thickness direction T.
  • FIG. 4 is a schematic cross-sectional view showing an enlarged view of the support and the depression shown in FIG. 3.
  • FIG. 5 is a schematic plan view showing an example of a state in which the support body and depression shown in FIG. 4 are viewed from the thickness direction.
  • FIG. 5 shows the support body and recess shown in FIG. 4 when viewed from above in the thickness direction from the second inner surface side to the first inner surface side of the casing.
  • the depression is marked with a pattern different from the first inner surface (first sheet) of the casing, more specifically, a white pattern. It shows.
  • a white pattern different from the first inner surface (first sheet) of the casing.
  • the support 40 and the depression 50 shown in FIG. 4 are viewed from the thickness direction T, at least a part of the depression 50 is located at the root of the support 40 on the first inner surface 10a side of the housing 10, as shown in FIG. 41.
  • the recess 50 is provided in the first inner surface 10a of the housing 10, so that the liquid phase working medium 20 changed from the gas phase working medium 20 accumulates in the recess 50 in the vapor flow path VP. It becomes easier. Furthermore, in the vapor chamber 1A, when viewed in plan from the thickness direction T, at least a portion of the depression 50 is in contact with the root 41 of the support 40, so that the liquid phase working medium 20 accumulated in the depression 50 is It becomes easier to move to the wick 30 along the side of the body 40. That is, in the vapor chamber 1A, the liquid phase working medium 20 is easily collected into the wick 30.
  • the recovery efficiency of the liquid phase working medium 20 by the wick 30 is improved.
  • the working medium 20 is easily circulated, so that the heat soaking performance is improved.
  • the recess 50 is provided in the first inner surface 10a of the housing 10, the dimensions in the thickness direction T of the housing 10 are the same and the recess 50 is not provided.
  • the internal space of the housing 10, here the steam flow path VP is wider. In this manner, in the vapor chamber 1A, by ensuring a wide vapor flow path VP, a wide soaking area is ensured, and as a result, thermal conductivity is improved.
  • the dimension in the thickness direction of the upper casing sheet constituting the casing is needs to be made smaller throughout.
  • the rigidity of the upper housing sheet and, by extension, the rigidity of the housing will be insufficient, resulting in becomes easily deformed. Therefore, in the vapor chamber shown in FIG. 1 of Patent Document 1, it is possible to widen the internal space of the casing, particularly the vapor flow path corresponding to the area where the support is provided, while maintaining the dimension in the thickness direction of the casing. I can't.
  • the dimension in the thickness direction T of the first sheet 11 is not made small over the whole, but the depression 50 is provided around the support body 40 having relatively high rigidity, so that the casing The rigidity of the housing 10 will not be insufficient, and as a result, the housing 10 will not be deformed. Therefore, in the vapor chamber 1A, the vapor flow path VP can be expanded while maintaining the dimension of the housing 10 in the thickness direction T. In other words, in the vapor chamber 1A, a wide vapor flow path VP is secured while the dimension in the thickness direction T of the housing 10 is maintained, so a wide soaking area is secured, and as a result, thermal conductivity is improved. do.
  • the dimension of the depression 50 in the thickness direction T is preferably 10% or more and 50% or less of the dimension of the support 40 in the thickness direction T.
  • the dimension of the depression 50 in the thickness direction T is preferably 5% or more and 30% or less of the dimension of the housing 10 in the thickness direction T.
  • the dimension of the depression 50 in the thickness direction T is preferably 10% or more and 50% or less of the dimension of the first sheet 11 in the thickness direction T.
  • a plurality of depressions 50 are provided, but the dimensions of the plurality of depressions 50 in the thickness direction T may be the same, different from each other, or partially different. You can leave it there.
  • the dimension of the depression 50 in the surface direction is preferably 5% or more and 30% or less of the center-to-center distance of the support body 40.
  • a plurality of depressions 50 are provided, but the dimensions of the plurality of depressions 50 in the surface direction (for example, the length direction L or the width direction W) may be the same or each other. They may be different, or may be partially different.
  • the dimension of the depression 50 in the thickness direction T and the dimension in the surface direction are respectively the thickness direction T and the dimension in the surface direction (for example, the length direction L or the width direction W). ) is defined as the maximum dimension of
  • the cross-sectional shape of the recess 50 when viewed in cross section from a surface direction perpendicular to the thickness direction T is a shape in which the outer edge is formed of at least one of a straight line and a curve.
  • the cross-sectional shape of the recess 50 when viewed in cross-section from the surface direction, here the length direction L, may be a shape in which the outer edge is a straight line.
  • FIG. 6 is a schematic cross-sectional view showing an example in which the support body and depressions of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIG. 4 when viewed in cross-section from the surface direction.
  • the cross-sectional shape of the recess 50 when viewed in cross-section from the surface direction, here the length direction L, may be a shape in which the outer edge is formed by a curve.
  • the radius of curvature of the outer edge of the depression 50 is not particularly limited.
  • the cross-sectional shape of the recess 50 when viewed in cross section from the surface direction, here, the length direction L, may be a shape in which the outer edge is formed of both straight lines and curves.
  • a plurality of depressions 50 are provided, but the cross-sectional shapes of the plurality of depressions 50 may be the same, different, or partially different. good.
  • the planar shape of the support body 40 when viewed from the thickness direction T is not limited to the circular shape shown in FIG. 5.
  • FIG. 7 is a schematic plan view showing an example in which the support body and depressions of the heat diffusion device according to Embodiment 1 of the present invention are different from FIG. 5 when viewed from the thickness direction.
  • FIG. 8 is a schematic plan view showing an example in which the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5 and 7 when viewed from the thickness direction.
  • the planar shape of the support 40 may be a quadrilateral.
  • planar shape of the recess 50 is similar to that in FIG. 5 in the example shown in FIG. 7, but is different from that in FIG. 5 in the example shown in FIG.
  • FIG. 9 is a schematic plan view showing an example in which the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5, 7, and 8 when viewed from the thickness direction.
  • FIG. 10 is a schematic plan view showing an example in which the support body and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5, 7, 8, and 9 when viewed from the thickness direction. It is.
  • the planar shape of the support body 40 when viewed from the thickness direction T may be such that a part of the outer edge is recessed inward.
  • the surface area of the side surface of the support body 40 increases, the number of paths through which the liquid phase working medium 20 accumulated in the depression 50 moves to the wick 30 along the side surface of the support body 40 increases. Therefore, the recovery efficiency of the liquid phase working medium 20 by the wick 30 is further improved, and as a result, the soaking performance is further improved.
  • the planar shape of the support body 40 when viewed in plan from the thickness direction T includes, for example, a triangular shape, an elliptical shape, etc. in addition to the above-mentioned circular, quadrangular, and shapes with a part of the outer edge concave inward. .
  • the entire depression 50 is in contact with the base 41 of the support 40.
  • the liquid phase working medium 20 accumulated in the depression 50 has many paths to travel along the side surface of the support body 40 to the wick 30. Therefore, the recovery efficiency of the liquid phase working medium 20 by the wick 30 is further improved, and as a result, the soaking performance is further improved.
  • the entire depression 50 does not need to be in contact with the root 41 of the support 40. That is, as shown in FIG. 7, when viewed from the thickness direction T, a part of the depression 50 is in contact with the base 41 of the support 40, and the remaining part of the depression 50 is not in contact with the base 41 of the support 40. It's okay.
  • the depression 50 contacts the base 41 of the support 40 at four locations, but the number and positions of the locations where a portion of the depression 50 contacts the base 41 of the support 40 are not particularly limited.
  • the depression 50 when viewed in plan from the thickness direction T, it is preferable that the depression 50 be in contact with the entire circumference of the root 41 of the support 40.
  • the liquid phase working medium 20 accumulated in the depression 50 has many paths to travel along the side surface of the support body 40 to the wick 30. Therefore, the recovery efficiency of the liquid phase working medium 20 by the wick 30 is further improved, and as a result, the soaking performance is further improved.
  • FIG. 11 shows an example in which the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5, 7, 8, 9, and 10 when viewed from the thickness direction.
  • FIG. 11 shows an example in which the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5, 7, 8, 9, and 10 when viewed from the thickness direction.
  • the depression 50 when viewed in plan from the thickness direction T, the depression 50 does not have to be in contact with the entire circumference of the root 41 of the support 40.
  • the depressions 50 when viewed in plan from the thickness direction T, may not be connected over the entire circumference of the base 41 of the support 40, but may have a partially interrupted shape.
  • the recess 50 is interrupted at two points opposite to each other in the width direction W, but the number and positions of the points where the recess 50 is interrupted are not particularly limited.
  • the recess 50 does not touch the entire circumference of the root 41 of the support 40.
  • the inner edge of the recess 50 may be along the outer edge of the support 40 when viewed from the thickness direction T. That is, when viewed in plan from the thickness direction T, the inner edge of the depression 50 may be parallel to the outer edge of the support body 40.
  • the inner edge of the depression 50 does not need to be along the outer edge of the support 40. That is, when viewed in plan from the thickness direction T, the inner edge of the depression 50 does not need to be parallel to the outer edge of the support body 40.
  • the outer edge of the recess 50 may be along the outer edge of the support 40 when viewed from the thickness direction T. That is, when viewed in plan from the thickness direction T, the outer edge of the depression 50 may be parallel to the outer edge of the support body 40.
  • FIG. 12 shows a plan view of the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention, which is different from FIGS. 5, 7, 8, 9, 10, and 11 when viewed from the thickness direction.
  • FIG. 3 is a schematic plan view showing an example.
  • the outer edge of the recess 50 when viewed in plan from the thickness direction T, does not need to be along the outer edge of the support 40. That is, when viewed in plan from the thickness direction T, the outer edge of the depression 50 does not need to be parallel to the outer edge of the support body 40. In this case, as shown in FIG. 12, when viewed in plan from the thickness direction T, the outer edge of the depression 50 does not have to be shaped to be equidistant from the center of the support body 40.
  • a plurality of depressions 50 are provided, but the planar shapes of the plurality of depressions 50 may be the same, different from each other, or partially different. good.
  • the recess 50 is formed together with the support 40 by, for example, etching the first inner surface 10a of the housing 10, here, the inner surface of the first sheet 11, as described below.
  • the inner surface of the first sheet 11 is etched.
  • the etching rate in the region near the end of the resist is increased.
  • a region of the inner surface of the first sheet 11 near the end of the resist is over-etched.
  • a depression 50 as an over-etched region is formed so as to be in contact with the root 41 of the support 40. This method of forming the depressions 50 is useful when the constituent material of the first sheet 11 is aluminum.
  • a resist is provided on the first inner surface 10a of the casing 10, here, the inner surface of the first sheet 11, in a region where the support 40 is to be formed, and then etching is performed. form 40. Thereafter, a resist is provided on the inner surface of the first sheet 11 in areas other than the area in contact with the base 41 of the support 40 (including the area where the support 40 is formed), and then etching is performed. As a result, a region of the inner surface of the first sheet 11 that is in contact with the base 41 of the support body 40 is etched, and a depression 50 is formed as the etched region. Such a method of forming the depressions 50 is useful when the constituent material of the first sheet 11 is copper.
  • the vapor chamber 1A further includes a microchannel 60 that constitutes a liquid flow path LP.
  • the microchannel 60 functions as a liquid transport section that transports the liquid phase working medium 20 together with the wick 30 .
  • the microchannel 60 is configured as a region (flow path) between a plurality of protrusions 61 provided on the second inner surface 10b of the casing 10, here, the inner surface of the second sheet 12. There is.
  • the plurality of protrusions 61 are in contact with the second inner surface 10b of the housing 10 and the wick 30 in the thickness direction T. Thereby, the wick 30 is supported by the plurality of protrusions 61.
  • the plurality of protrusions 61 are provided evenly so that the distance (pitch) between the centers of the protrusions 61 is constant. In this case, it is preferable that the plurality of protrusions 61 be provided evenly in a part of the internal space of the casing 10, here, in the liquid flow path LP, and preferably evenly provided over the entire region. It is more preferable. In the area where the plurality of protrusions 61 are evenly provided, the strength of the vapor chamber 1A is ensured uniformly.
  • the protrusion 61 may be integrated with the second inner surface 10b of the housing 10.
  • the protrusion 61 is formed, for example, by etching the second inner surface 10b of the casing 10, here, the inner surface of the second sheet 12.
  • the protrusion 61 may be joined to the second inner surface 10b of the housing 10.
  • the protrusion 61 is bonded to the second inner surface 10b of the housing 10, here, the inner surface of the second sheet 12, by a bonding method such as diffusion bonding, for example.
  • Examples of the constituent material of the protrusion 61 include resin, metal, ceramics, and mixtures or laminates of two or more of these.
  • the constituent material of the protrusion 61 is preferably the same as the constituent material of the casing 10, here the second sheet 12, but may be different from the constituent material of the second sheet 12.
  • the protrusion 61 may be made of a single layer or may be made of multiple layers.
  • planar shape of the protrusion 61 when viewed from the thickness direction T examples include polygons such as triangles and rectangles, circles, ellipses, and combinations thereof.
  • the cross-sectional shape of the protrusion 61 when viewed in cross-section from the surface direction perpendicular to the thickness direction T includes, for example, a polygon such as a rectangle.
  • the cross-sectional shape of the protrusion 61 may be tapered as shown in FIG. 3, or may be tapered different from that shown in FIG.
  • the heat diffusion device of the present invention may further include a partition wall provided on the first inner surface of the housing along at least a portion of the inner edge at a distance from the inner edge of the housing when viewed from the thickness direction. Often, a portion of the wick may be provided between the second inner surface of the housing and the partition wall, and may be provided along at least a portion of the partition wall.
  • a heat diffusion device that is different from the heat diffusion device of Embodiment 1 of the present invention in this respect will be described below as a heat diffusion device of Embodiment 2 of the present invention.
  • FIG. 13 is a schematic plan view showing an example of the internal structure of a heat diffusion device according to Embodiment 2 of the present invention.
  • FIG. 14 is a schematic cross-sectional view showing an example of a cross section of the heat diffusion device shown in FIG. 13 along line segment b1-b2.
  • the vapor chamber 1B shown in FIGS. 13 and 14 further includes a partition wall 70 in addition to the housing 10, the working medium 20, the wick 30, and the support body 40.
  • the partition wall 70 is provided on the first inner surface 10a of the casing 10 at a distance from the inner edge 15 of the casing 10 when viewed from the thickness direction T. It is located along.
  • the partition wall 70 is provided along the entire circumference of the inner edge 15 of the housing 10 when viewed from the thickness direction T.
  • the partition wall 70 does not have to be provided along the entire circumference of the inner edge 15 of the housing 10 when viewed from the thickness direction T.
  • the partition wall 70 may be provided in the internal space of the housing 10 so as to protrude in the thickness direction T from the first inner surface 10a toward the second inner surface 10b.
  • the direction in which the partition wall 70 projects from the first inner surface 10a of the housing 10 does not need to be strictly parallel to the thickness direction T.
  • the partition wall 70 may be integrated with the first inner surface 10a of the housing 10.
  • the partition wall 70 is formed, for example, by etching the first inner surface 10a of the casing 10, here, the inner surface of the first sheet 11.
  • the partition wall 70 may be joined to the first inner surface 10a of the housing 10.
  • the partition wall 70 is bonded to the first inner surface 10a of the housing 10, here, the inner surface of the first sheet 11, by a bonding method such as diffusion bonding, for example.
  • constituent material of the partition wall 70 examples include resins, metals, ceramics, and mixtures or laminates of two or more of these.
  • the constituent material of the partition wall 70 is preferably the same as the constituent material of the casing 10, here the first sheet 11, but may be different from the constituent material of the first sheet 11.
  • the partition wall 70 may be made of a single layer or may be made of multiple layers.
  • the wick 30 is partially provided between the second inner surface 10b of the housing 10 and the partition wall 70, and is provided along at least a portion of the partition wall 70. .
  • the wick 30 is provided along the entire circumference of the partition wall 70 when viewed from the thickness direction T.
  • the wick 30 does not need to be provided along the entire circumference of the partition wall 70 when viewed from the thickness direction T.
  • the wick 30 is provided along the entire circumference of the inner edge 15 of the housing 10 when viewed from the thickness direction T.
  • the wick 30 does not have to be provided along the entire circumference of the inner edge 15 of the housing 10 when viewed from the thickness direction T.
  • the wick 30 is preferably in contact with the second inner surface 10b of the housing 10 in the thickness direction T.
  • the wick 30 is preferably in contact with the partition wall 70 in the thickness direction T.
  • the wick 30 is supported by the partition wall 70 in addition to the support body 40. Therefore, even if the wick 30 tries to deform due to external pressure, the liquid flow path LP, which will be described later, is less likely to collapse. As a result, the permeability of the liquid-phase working medium 20 through the liquid flow path LP is ensured.
  • the wick 30 be in contact with at least one of the second inner surface 10b of the housing 10 and the partition wall 70 in the thickness direction T.
  • the wick 30 be in contact with both the second inner surface 10b of the housing 10 and the partition wall 70 in the thickness direction T.
  • the wick 30 is preferably fixed to the second inner surface 10b of the housing 10.
  • the wick 30 be joined to the second inner surface 10b of the housing 10.
  • Examples of the method for joining the wick 30 and the second inner surface 10b of the housing 10 include diffusion bonding, ultrasonic bonding, spot welding, and the like.
  • the wick 30 is preferably fixed to the partition wall 70.
  • the wick 30 be joined to the partition wall 70.
  • Examples of the method for joining the wick 30 and the partition wall 70 include diffusion bonding, ultrasonic bonding, spot welding, and the like.
  • the partition wall 70 is provided on the first inner surface 10a of the housing 10 along at least a portion of the inner edge 15 of the housing 10 at a distance from the inner edge 15.
  • the wick 30 is partially provided between the second inner surface 10b of the housing 10 and the partition wall 70, and is provided along at least a portion of the partition wall 70. Due to the arrangement of the partition wall 70 and the wick 30, the liquid flow path LP is formed in an area surrounded by a part of the case 10, a part of the partition wall 70, and a part of the wick 30 in the internal space of the case 10. and is provided along at least a portion of the inner edge 15 of the housing 10.
  • the capillary force of the wick 30 acts on the liquid phase working medium 20 existing in the liquid flow path LP.
  • the liquid flow path LP is configured as a cavity in which the wick 30 and the like are not provided, so that the liquid phase working medium 20 can move smoothly within the liquid flow path LP.
  • the permeability of the liquid-phase working medium 20 is improved, and as a result, the liquid transport ability is improved.
  • the vapor flow path VP is provided in an area other than the liquid flow path LP in the internal space of the housing 10.
  • the liquid flow path LP is provided along at least a part of the inner edge 15 of the housing 10 as described above, so the vapor flow path VP is a liquid flow path in the internal space of the housing 10. It is provided in the plane direction with respect to the LP.
  • the vapor flow path VP is ensured widely in the surface direction in the internal space of the housing 10.
  • a wide soaking area is ensured, and thermal conductivity is improved.
  • the vapor flow path VP is ensured widely in the surface direction.
  • the dimension of the internal space of the housing 10 in the thickness direction T is determined as the maximum dimension.
  • the vapor flow path VP is secured widely in the plane direction, so a wide soaking area is secured, and the thermal conductivity is improved. do.
  • the first inner surface 10a of the housing 10, here, the inner surface of the first sheet 11 has a depression 50 located around the support body 40. is provided. More specifically, as shown in FIG. 14, in the vapor chamber 1B, the first inner surface 10a of the housing 10, here, the first A depression 50 is provided around the support body 40 that is in contact with the inner surface of the sheet 11 and the wick 30 in the thickness direction T. Furthermore, when viewed in plan from the thickness direction T, at least a portion of the depression 50 is in contact with the root 41 of the support 40 .
  • the recovery efficiency of the liquid phase working medium 20 by the wick 30 is improved, and therefore the heat soaking performance is improved. Furthermore, in the vapor chamber 1B, as in the vapor chamber 1A, a wide vapor flow path VP is secured while the dimension in the thickness direction T of the casing 10 is maintained, so a wide soaking area is secured, and as a result, In addition, thermal conductivity is improved.
  • the first inner surface 10a of the casing 10 in the region of the vapor flow path VP that overlaps the wick 30 in the thickness direction T here, the inner surface of the first sheet 11 and the wick 30 in the thickness direction T. It is sufficient if the depression 50 is provided around the support body 40 in contact with the support body 40 . As far as this is concerned, in the vapor chamber 1B, a depression may be provided around the support body 40 in a region of the vapor flow path VP that does not overlap with the wick 30 in the thickness direction T, or a depression may not be provided. It's okay.
  • a plurality of supports 40 may be provided in both a region of the steam flow path VP that overlaps with the wick 30 in the thickness direction T and a region that does not overlap with the wick 30 in the thickness direction T. good.
  • the support body 40 may be integrated with the second inner surface 10b of the casing 10.
  • the support body 40 is formed, for example, by etching the second inner surface 10b of the housing 10, here, the inner surface of the second sheet 12.
  • the support body 40 may be joined to the second inner surface 10b of the housing 10 in a region of the steam flow path VP that does not overlap the wick 30 in the thickness direction T.
  • the support body 40 is bonded to the second inner surface 10b of the housing 10, here, the inner surface of the second sheet 12, for example, by a bonding method such as diffusion bonding.
  • the two supports 40 are connected to each other in the thickness direction T to constitute one composite body. Furthermore, a plurality of such composite bodies may be provided.
  • the constituent material of the support body 40 may be the same or different between the region of the vapor flow path VP that overlaps with the wick 30 in the thickness direction T and the region that does not overlap with the wick 30 in the thickness direction T. You can leave it there.
  • the cross-sectional shape of the support body 40 may be the same or different between a region of the steam flow path VP that overlaps with the wick 30 in the thickness direction T and a region that does not overlap with the wick 30 in the thickness direction T. You can leave it there.
  • the planar shape of the support body 40 may be the same or different between a region of the vapor flow path VP that overlaps with the wick 30 in the thickness direction T and a region that does not overlap with the wick 30 in the thickness direction T. You can leave it there.
  • the dimensions of the plurality of supports 40 in the plane direction are the same as the region of the steam flow path VP that overlaps the wick 30 in the thickness direction T and the region that overlaps the wick 30 in the thickness direction T. They may be the same or different from the other areas.
  • the dimensions of the plurality of supports 40 in the thickness direction T are the same between a region of the steam flow path VP that overlaps with the wick 30 in the thickness direction T and a region that does not overlap with the wick 30 in the thickness direction T. It may be different or it may be different.
  • the plurality of supports 40 are arranged in the first inner surface 10a of the housing 10, in this case, the inner surface of the first sheet 11 and the wick 30 in the thickness direction, in a region overlapping with the wick 30 in the thickness direction T in the steam flow path VP. It suffices if the support body 40 that is in contact with T is included. As long as this is the case, the plurality of supports 40 may or may not be provided in a region of the steam flow path VP that does not overlap with the wick 30 in the thickness direction T.
  • the evaporation part EP when viewed from the thickness direction T, overlaps the vapor flow path VP, but the evaporation part EP may overlap the liquid flow path LP. In this case, when viewed from the thickness direction T, the evaporation portion EP may overlap the inner edge 15 of the housing 10.
  • the liquid flow path LP is provided in a region along the inner edge 15 of the housing 10; It may also be provided in a region that is not along the inner edge 15 of.
  • the liquid flow path LP when viewed from the thickness direction T, is provided so as not to pass through the inside of the evaporation part EP; may be provided.
  • the liquid flow path LP when viewed from the thickness direction T, the liquid flow path LP is not provided along the outer periphery of the evaporation portion EP, but the liquid flow path LP is provided along the outer periphery of the evaporation portion EP. You can leave it there.
  • the electronic device of the present invention is characterized by comprising the heat diffusion device of the present invention.
  • FIG. 15 is a schematic perspective view showing an example of the electronic device of the present invention.
  • the electronic device 100 shown in FIG. 15 has a vapor chamber 1A.
  • the electronic device 100 further includes an electronic component 110.
  • the electronic component 110 is preferably provided on the outer surface of the casing 10 of the vapor chamber 1A.
  • the vapor chamber 1A can function as the heat source HS shown in FIG. 1 using the electronic component 110.
  • the electronic component 110 may be provided on the outer surface of the housing 10 of the vapor chamber 1A shown in FIG. However, it may be provided on the outer surface of the housing 10 opposite to the second inner surface 10b, here, on the outer surface of the second sheet 12.
  • the electronic component 110 may be provided directly on the outer surface of the housing 10, or may be provided via another member such as a highly thermally conductive adhesive, sheet, or tape.
  • the electronic component 110 When the electronic component 110 is provided on the outer surface of the casing 10 shown in FIG. 2, it is preferable that the electronic component 110 overlaps the evaporation part EP when viewed from the thickness direction T.
  • Examples of the electronic component 110 include a central processing unit (CPU), a light emitting diode (LED), and a heat generating element such as a power semiconductor.
  • CPU central processing unit
  • LED light emitting diode
  • heat generating element such as a power semiconductor
  • the electronic device 100 further includes a device housing 120.
  • the vapor chamber 1A and the electronic component 110 are provided in the internal space of the device housing 120.
  • the housing 10 and the device housing 120 are joined via a joining member. More specifically, the outer surface of the casing 10 and the inner surface of the device casing 120 are preferably joined via a joining member. In this case, the adhesion between the housing 10 and the device housing 120 is improved.
  • the joining member that joins the housing 10 and the device housing 120 is preferably a thermally conductive member.
  • heat from the heat source HS here heat from the electronic component 110
  • the heat from the heat source HS in this case, the heat from the electronic component 110, is more likely to diffuse through the path from the casing 10 to the device casing 120.
  • thermally conductive member examples include a thermally conductive tape, a thermally conductive adhesive, and the like.
  • the vapor chamber 1A operates autonomously without requiring external power, and further utilizes the latent heat of vaporization and latent heat of condensation of the working medium 20 to absorb heat from the heat source HS, here , heat from the electronic component 110 can be diffused two-dimensionally at high speed. Furthermore, in the vapor chamber 1A, as described above, the recovery efficiency of the liquid-phase working medium 20 by the wick 30 is improved, so that the heat soaking performance is improved. Furthermore, in the vapor chamber 1A, as described above, since the vapor flow path VP is wide while the dimension in the thickness direction T of the casing 10 is maintained, a wide soaking area is secured, and as a result, Improves thermal conductivity. From the above, the electronic device 100 having the vapor chamber 1A can effectively dissipate heat in a limited space inside the electronic device 100.
  • a casing having a first inner surface and a second inner surface facing each other in the thickness direction and provided with an internal space; a working medium sealed in the internal space of the housing; a wick provided in the internal space of the housing; a support provided in the internal space of the housing and in contact with the first inner surface of the housing and the wick in the thickness direction,
  • the first inner surface of the housing is provided with a recess located around the support, When viewed in plan from the thickness direction, at least a portion of the depression is in contact with a root of the support on the first inner surface side of the casing.
  • ⁇ 4> The heat diffusion device according to ⁇ 3>, wherein the depression is in contact with the entire circumference of the root of the support when viewed in plan from the thickness direction.
  • ⁇ 5> The heat diffusion device according to any one of ⁇ 1> to ⁇ 4>, wherein the inner edge of the depression is along the outer edge of the support when viewed in plan from the thickness direction.
  • ⁇ 6> The heat diffusion device according to any one of ⁇ 1> to ⁇ 5>, wherein the outer edge of the depression is along the outer edge of the support when viewed in plan from the thickness direction.
  • the cross-sectional shape of the recess when viewed in cross section from a surface direction perpendicular to the thickness direction is a shape in which an outer edge is configured of at least one of a straight line and a curved line.
  • Heat spreading device is a shape in which an outer edge is configured of at least one of a straight line and a curved line.
  • ⁇ 8> An electronic device comprising the heat diffusion device according to any one of ⁇ 1> to ⁇ 7>.
  • the heat diffusion device of the present invention can be used for a wide range of applications in the field of mobile information terminals and the like.
  • the heat diffusion device of the present invention can be used, for example, to lower the temperature of a heat source such as a central processing unit and extend the usage time of electronic devices, and can be used in smartphones, tablet terminals, notebook computers, game devices, wearable devices, etc. Available for use.
  • Vapor chamber (thermal diffusion device) 10 Housing 10a First inner surface 10b Second inner surface 11 First sheet 12 Second sheet 15 Inner edge 20 Working medium 30 Wick 40 Support 41 Root of support 50 Hollow 60 Microchannel 61 Protrusion 70 Partition 100 Electronic device 110 Electronic component 120 Equipment housing EP Evaporation section HS Heat source L Length direction LP Liquid flow path T Thickness direction VP Vapor flow path W Width direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

This heat dissipation device 1A comprises: a casing 100 which has a first inner surface 10a and a second inner surface 10b opposite one another in a thickness direction T and is provided with an internal space; a working medium 20 which is enclosed in the internal space in the casing 10; a wick 30 which is provided in the internal space in the casing 10; and a support member 40 which is provided in the internal space in the casing 10 and is in contact with the first inner surface 10a of the casing 10 and the wick 30 in the thickness direction T. The first inner surface 10a of the casing 10 is provided with hollows 50 located around the support member 40. In a plan view from the thickness direction T, at least some of the hollows 50 adjoin a base 41 of the support member 40 on the side of the first inner surface 10a of the casing 10.

Description

熱拡散デバイス及び電子機器Heat diffusion devices and electronic equipment
 本発明は、熱拡散デバイス及び電子機器に関する。 TECHNICAL FIELD The present invention relates to heat diffusion devices and electronic equipment.
 近年、素子の高集積化及び高性能化により、発熱量が増加している。また、製品の小型化により、発熱密度が増加している。このような状況は、スマートフォン、タブレット等のモバイル端末の分野において特に顕著である。このような事情から、放熱対策を行うことが重要となっている。 In recent years, the amount of heat generated has increased due to higher integration and higher performance of elements. Furthermore, as products become smaller, heat generation density is increasing. This situation is particularly noticeable in the field of mobile terminals such as smartphones and tablets. Under these circumstances, it has become important to take measures for heat dissipation.
 放熱対策用の部材としては、グラファイトシート等が用いられることが多いが、その熱輸送量は充分ではないため、熱を拡散させることが可能である様々な熱拡散デバイスの使用が検討されている。 Graphite sheets and the like are often used as materials for heat dissipation, but their heat transport capacity is not sufficient, so the use of various heat diffusion devices that can diffuse heat is being considered. .
 特許文献1には、外縁部で接合された対向する上部筐体シートと下部筐体シートとを含み、内部空間を有する筐体と、上記内部空間に封入された作動液と、上記下部筐体シートのうち上記内部空間に配置され、上記作動液の流路を構成するマイクロチャネルと、上記筐体の上記内部空間に配置され、上記マイクロチャネルに接触して配置されたシート状のウィックと、を備え、上記ウィックと上記マイクロチャネルの接触面積は、上記内部空間を平面視した面積に対して5%~40%である、ベーパーチャンバーが開示されている。 Patent Document 1 discloses a casing including an upper casing sheet and a lower casing sheet facing each other joined at outer edges and having an internal space, a hydraulic fluid sealed in the internal space, and the lower casing. A microchannel arranged in the inner space of the sheet and forming a flow path for the working fluid; a sheet-shaped wick arranged in the inner space of the casing and in contact with the microchannel; A vapor chamber is disclosed in which a contact area between the wick and the microchannel is 5% to 40% of the area of the internal space when viewed in plan.
国際公開第2021/229961号International Publication No. 2021/229961
 特許文献1の図1には、下部筐体シートに設けられたマイクロチャネルの凸状部と上部筐体シートに設けられた支柱とにウィックが挟まれた構造が示されている。更に、特許文献1には、気化した作動液が、筐体の内部空間で熱を放出して液体に戻り、液体に戻った作動液が、ウィックの孔による毛細管力によりマイクロチャネルを移動して、再び熱源の近くに運ばれることが記載されている。 FIG. 1 of Patent Document 1 shows a structure in which a wick is sandwiched between a convex portion of a microchannel provided on a lower casing sheet and a support provided on an upper casing sheet. Furthermore, in Patent Document 1, the vaporized working fluid releases heat in the internal space of the casing and returns to liquid, and the working fluid that returns to liquid moves through the microchannel due to capillary force due to the holes in the wick. , it is described that it is again carried near a heat source.
 その一方で、特許文献1の図1に記載のベーパーチャンバーは、上部筐体シートの内面が支柱を除いて平らである構造となっているため、気化した作動液が液体に戻る際に、上部筐体シートの内面の平らな領域に分散しやすくなる。このように、特許文献1の図1に記載のベーパーチャンバーでは、ウィックに回収されるべき作動液が、上部筐体シートの内面の平らな領域に分散しやすくなるため、ウィックによって作動液を回収しにくくなる。したがって、特許文献1の図1に記載のベーパーチャンバーでは、ウィックによる作動液の回収効率が低下することで作動液が循環しにくくなるため、均熱性能が低下する、という問題が生じる。 On the other hand, the vapor chamber shown in FIG. 1 of Patent Document 1 has a structure in which the inner surface of the upper housing sheet is flat except for the pillars, so when the vaporized working fluid returns to liquid, the upper It becomes easier to disperse on the flat area of the inner surface of the housing sheet. In this way, in the vapor chamber shown in FIG. 1 of Patent Document 1, the working fluid to be collected by the wick is easily dispersed in the flat area of the inner surface of the upper housing sheet, so the working fluid is collected by the wick. It becomes difficult to do. Therefore, in the vapor chamber shown in FIG. 1 of Patent Document 1, the recovery efficiency of the working fluid by the wick is reduced, making it difficult for the working fluid to circulate, resulting in a problem that the soaking performance is reduced.
 なお、上記の問題は、ベーパーチャンバーに限らず、ベーパーチャンバーと同様の構成によって熱を拡散させることが可能な熱拡散デバイスに共通する問題である。 Note that the above problem is not limited to vapor chambers, but is a problem common to thermal diffusion devices that can diffuse heat with a configuration similar to that of vapor chambers.
 本発明は、上記の問題を解決するためになされたものであり、均熱性能を向上可能な熱拡散デバイスを提供することを目的とするものである。また、本発明は、上記熱拡散デバイスを有する電子機器を提供することを目的とするものである。 The present invention has been made in order to solve the above problems, and aims to provide a heat diffusion device that can improve heat uniformity performance. Another object of the present invention is to provide an electronic device having the above heat diffusion device.
 本発明の熱拡散デバイスは、厚み方向に対向する第1内面及び第2内面を有し、かつ、内部空間が設けられた筐体と、上記筐体の上記内部空間に封入された作動媒体と、上記筐体の上記内部空間に設けられたウィックと、上記筐体の上記内部空間に設けられ、かつ、上記筐体の上記第1内面と上記ウィックとに上記厚み方向で接する支持体と、を備え、上記筐体の上記第1内面には、上記支持体の周囲に位置する窪みが設けられ、上記厚み方向から平面視したとき、上記窪みの少なくとも一部は、上記支持体における上記筐体の上記第1内面側の根元に接している、ことを特徴とする。 The heat diffusion device of the present invention includes a casing having a first inner surface and a second inner surface facing each other in the thickness direction and an internal space, and a working medium sealed in the internal space of the casing. , a wick provided in the internal space of the casing; a support provided in the internal space of the casing and in contact with the first inner surface of the casing and the wick in the thickness direction; The first inner surface of the housing is provided with a recess located around the support, and when viewed in plan from the thickness direction, at least a part of the recess is located on the first inner surface of the support. It is characterized in that it is in contact with the root of the first inner surface side of the body.
 本発明の電子機器は、本発明の熱拡散デバイスを備える、ことを特徴とする。 The electronic device of the present invention is characterized by comprising the heat diffusion device of the present invention.
 本発明によれば、均熱性能を向上可能な熱拡散デバイスを提供できる。また、本発明によれば、上記熱拡散デバイスを有する電子機器を提供できる。 According to the present invention, it is possible to provide a heat diffusion device that can improve heat soaking performance. Further, according to the present invention, it is possible to provide an electronic device having the above heat diffusion device.
図1は、本発明の実施形態1の熱拡散デバイスの一例を示す斜視模式図である。FIG. 1 is a schematic perspective view showing an example of a heat diffusion device according to Embodiment 1 of the present invention. 図2は、本発明の実施形態1の熱拡散デバイスの内部構造の一例を示す平面模式図である。FIG. 2 is a schematic plan view showing an example of the internal structure of the heat diffusion device according to Embodiment 1 of the present invention. 図3は、図2に示す熱拡散デバイスの線分a1-a2に沿う断面の一例を示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing an example of a cross section of the heat diffusion device shown in FIG. 2 along line segment a1-a2. 図4は、図3に示す支持体及び窪みを拡大して示す断面模式図である。FIG. 4 is a schematic cross-sectional view showing an enlarged view of the support and the depression shown in FIG. 図5は、図4に示す支持体及び窪みを厚み方向から平面視した状態の一例を示す平面模式図である。FIG. 5 is a schematic plan view showing an example of a state in which the support body and depression shown in FIG. 4 are viewed from the thickness direction. 図6は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、面方向から断面視した状態が図4と異なる例を示す断面模式図である。FIG. 6 is a schematic cross-sectional view showing an example in which the support body and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIG. 4 when viewed in cross-section from the plane direction. 図7は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、厚み方向から平面視した状態が図5と異なる例を示す平面模式図である。FIG. 7 is a schematic plan view showing an example in which the support body and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from FIG. 5 when viewed from the thickness direction. 図8は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、厚み方向から平面視した状態が図5及び図7と異なる例を示す平面模式図である。FIG. 8 is a schematic plan view showing an example in which the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5 and 7 when viewed from the thickness direction. 図9は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、厚み方向から平面視した状態が図5、図7、及び、図8と異なる例を示す平面模式図である。FIG. 9 is a schematic plan view showing an example in which the support and the depression of the heat diffusion device of Embodiment 1 of the present invention are different from those in FIGS. 5, 7, and 8 when viewed from the thickness direction. 図10は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、厚み方向から平面視した状態が図5、図7、図8、及び、図9と異なる例を示す平面模式図である。FIG. 10 is a schematic plan view showing an example in which the support body and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5, 7, 8, and 9 when viewed from the thickness direction. It is. 図11は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、厚み方向から平面視した状態が図5、図7、図8、図9、及び、図10と異なる例を示す平面模式図である。FIG. 11 shows an example in which the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5, 7, 8, 9, and 10 when viewed from the thickness direction. FIG. 図12は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、厚み方向から平面視した状態が図5、図7、図8、図9、図10、及び、図11と異なる例を示す平面模式図である。FIG. 12 shows a plan view of the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention, which is different from FIGS. 5, 7, 8, 9, 10, and 11 when viewed from the thickness direction. FIG. 3 is a schematic plan view showing an example. 図13は、本発明の実施形態2の熱拡散デバイスの内部構造の一例を示す平面模式図である。FIG. 13 is a schematic plan view showing an example of the internal structure of a heat diffusion device according to Embodiment 2 of the present invention. 図14は、図13に示す熱拡散デバイスの線分b1-b2に沿う断面の一例を示す断面模式図である。FIG. 14 is a schematic cross-sectional view showing an example of a cross section of the heat diffusion device shown in FIG. 13 along line segment b1-b2. 図15は、本発明の電子機器の一例を示す斜視模式図である。FIG. 15 is a schematic perspective view showing an example of the electronic device of the present invention.
 以下、本発明の熱拡散デバイスと、本発明の電子機器とについて説明する。なお、本発明は、以下の構成に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更されてもよい。また、以下において記載する個々の好ましい構成を複数組み合わせたものもまた本発明である。 Hereinafter, the heat diffusion device of the present invention and the electronic device of the present invention will be explained. Note that the present invention is not limited to the following configuration, and may be modified as appropriate without departing from the gist of the present invention. Furthermore, the present invention also includes a combination of a plurality of individual preferred configurations described below.
 以下に示す各実施形態は例示であり、異なる実施形態で示す構成の部分的な置換又は組み合わせが可能であることは言うまでもない。実施形態2以降では、実施形態1と共通の事項についての記載は省略し、異なる点を主に説明する。特に、同様の構成による同様の作用効果については、実施形態毎に逐次言及しない。 It goes without saying that each of the embodiments shown below is an example, and that parts of the configurations shown in different embodiments can be partially replaced or combined. In Embodiment 2 and subsequent embodiments, descriptions of matters common to Embodiment 1 will be omitted, and differences will be mainly explained. In particular, similar effects due to similar configurations will not be mentioned for each embodiment.
 以下の説明において、各実施形態を特に区別しない場合、単に「本発明の熱拡散デバイス」及び「本発明の電子機器」と言う。 In the following description, unless the embodiments are particularly distinguished, they will simply be referred to as "the heat diffusion device of the present invention" and "the electronic device of the present invention."
 以下の各実施形態では、本発明の熱拡散デバイスの一例として、ベーパーチャンバーを示す。本発明の熱拡散デバイスは、ヒートパイプ等の熱拡散デバイスにも適用可能である。 In each embodiment below, a vapor chamber is shown as an example of the heat diffusion device of the present invention. The heat diffusion device of the present invention is also applicable to heat diffusion devices such as heat pipes.
 以下に示す図面は模式図であり、その寸法、縦横比の縮尺等は実際の製品と異なる場合がある。 The drawings shown below are schematic diagrams, and their dimensions, aspect ratios, etc. may differ from the actual product.
 本明細書中、要素間の関係性を示す用語(例えば、「平行」、「直交」等)及び要素の形状を示す用語は、文字通りの厳密な態様のみを意味するだけではなく、実質的に同等な範囲、例えば、数%程度の差異を含む範囲も意味する。 In this specification, terms indicating relationships between elements (for example, "parallel", "perpendicular", etc.) and terms indicating the shape of elements do not only mean literal strict aspects, but substantially It also means an equivalent range, for example, a range that includes a difference of several percent.
[熱拡散デバイス]
 本発明の熱拡散デバイスは、厚み方向に対向する第1内面及び第2内面を有し、かつ、内部空間が設けられた筐体と、上記筐体の上記内部空間に封入された作動媒体と、上記筐体の上記内部空間に設けられたウィックと、上記筐体の上記内部空間に設けられ、かつ、上記筐体の上記第1内面と上記ウィックとに上記厚み方向で接する支持体と、を備え、上記筐体の上記第1内面には、上記支持体の周囲に位置する窪みが設けられ、上記厚み方向から平面視したとき、上記窪みの少なくとも一部は、上記支持体における上記筐体の上記第1内面側の根元に接している、ことを特徴とする。
[Heat diffusion device]
The heat diffusion device of the present invention includes a casing having a first inner surface and a second inner surface facing each other in the thickness direction and an internal space, and a working medium sealed in the internal space of the casing. , a wick provided in the internal space of the casing; a support provided in the internal space of the casing and in contact with the first inner surface of the casing and the wick in the thickness direction; The first inner surface of the housing is provided with a recess located around the support, and when viewed in plan from the thickness direction, at least a part of the recess is located on the first inner surface of the support. It is characterized in that it is in contact with the root of the first inner surface side of the body.
<実施形態1>
 本発明の熱拡散デバイスの一例を、本発明の実施形態1の熱拡散デバイスとして以下に説明する。
<Embodiment 1>
An example of the heat diffusion device of the present invention will be described below as a heat diffusion device of Embodiment 1 of the present invention.
 図1は、本発明の実施形態1の熱拡散デバイスの一例を示す斜視模式図である。 FIG. 1 is a schematic perspective view showing an example of a heat diffusion device according to Embodiment 1 of the present invention.
 図1に示すベーパーチャンバー(熱拡散デバイス)1Aは、筐体10を有している。 The vapor chamber (thermal diffusion device) 1A shown in FIG. 1 has a housing 10.
 筐体10は、気密状態に密閉されており、中空構造を有している。 The housing 10 is hermetically sealed and has a hollow structure.
 筐体10の外面には、発熱素子である熱源HSが設けられている。 A heat source HS, which is a heat generating element, is provided on the outer surface of the housing 10.
 熱源HSとしては、例えば、電子部品等が挙げられる。 Examples of the heat source HS include electronic components.
 本明細書中、長さ方向、厚み方向、及び、幅方向を、図1等に示すように、各々、L、T、及び、Wで定められる方向とする。長さ方向Lと厚み方向Tと幅方向Wとは、互いに直交している。また、厚み方向Tに直交する方向であって、長さ方向L及び幅方向Wを包含する方向を、面方向とする。 In this specification, the length direction, thickness direction, and width direction are defined by L, T, and W, respectively, as shown in FIG. 1 and the like. The length direction L, the thickness direction T, and the width direction W are orthogonal to each other. Further, a direction perpendicular to the thickness direction T and including the length direction L and the width direction W is defined as a surface direction.
 ベーパーチャンバー1Aは、全体として面状であることが好ましい。すなわち、筐体10は、全体として面状であることが好ましい。 It is preferable that the vapor chamber 1A has a planar shape as a whole. That is, it is preferable that the housing 10 has a planar shape as a whole.
 本明細書中、面状とは、板状及びシート状を包含する形状であり、長さ方向の寸法及び幅方向の寸法が、厚み方向の寸法に対して相当に大きい形状、例えば、長さ方向の寸法及び幅方向の寸法が、厚み方向の寸法の10倍以上、好ましくは100倍以上である形状を意味する。 In this specification, a planar shape includes a plate-like shape and a sheet-like shape, and the lengthwise dimension and the widthwise dimension are considerably larger than the thickness direction dimension, e.g. It means a shape in which the dimension in the direction and the dimension in the width direction are 10 times or more, preferably 100 times or more, the dimension in the thickness direction.
 ベーパーチャンバー1Aの大きさは、特に限定されない。 The size of the vapor chamber 1A is not particularly limited.
 ベーパーチャンバー1Aの長さ方向Lの寸法及び幅方向Wの寸法は、各々、好ましくは5mm以上、500mm以下、より好ましくは20mm以上、300mm以下、更に好ましくは50mm以上、200mm以下である。 The dimension in the length direction L and the dimension in the width direction W of the vapor chamber 1A are preferably 5 mm or more and 500 mm or less, more preferably 20 mm or more and 300 mm or less, and still more preferably 50 mm or more and 200 mm or less.
 ベーパーチャンバー1Aの長さ方向Lの寸法及び幅方向Wの寸法は、互いに同じであってもよいし、互いに異なっていてもよい。 The dimension in the length direction L and the dimension in the width direction W of the vapor chamber 1A may be the same or different.
 ベーパーチャンバー1Aの厚み方向Tの寸法は、好ましくは50μm以上、500μm以下である。 The dimension of the vapor chamber 1A in the thickness direction T is preferably 50 μm or more and 500 μm or less.
 ベーパーチャンバー1Aの長さ方向Lの寸法、厚み方向Tの寸法、及び、幅方向Wの寸法は、各々、長さ方向L、厚み方向T、及び、幅方向Wの最大寸法として定められる。 The dimensions in the length direction L, the thickness direction T, and the width direction W of the vapor chamber 1A are determined as the maximum dimensions in the length direction L, thickness direction T, and width direction W, respectively.
 筐体10は、外縁部同士が接合された第1シート11及び第2シート12で構成されることが好ましい。この場合、第1シート11と第2シート12とは、端部同士が一致するように重なっていてもよいし、端部同士がずれて重なっていてもよい。 The housing 10 is preferably composed of a first sheet 11 and a second sheet 12 whose outer edges are joined together. In this case, the first sheet 11 and the second sheet 12 may overlap so that their ends match, or may overlap with their ends shifted.
 第1シート11及び第2シート12の外縁部同士の接合方法としては、例えば、レーザー溶接、抵抗溶接、拡散接合、ロウ接、TIG溶接(タングステン-不活性ガス溶接)、超音波接合、樹脂封止等が挙げられる。中でも、レーザー溶接、抵抗溶接、又は、ロウ接が好ましい。 Examples of methods for joining the outer edges of the first sheet 11 and the second sheet 12 include laser welding, resistance welding, diffusion bonding, brazing welding, TIG welding (tungsten-inert gas welding), ultrasonic bonding, and resin sealing. Examples include stopping. Among these, laser welding, resistance welding, or brazing welding is preferred.
 第1シート11及び第2シート12の構成材料は、ベーパーチャンバーに適した特性、例えば、熱伝導性、強度、柔軟性、可撓性等を有するものであれば、特に限定されない。第1シート11及び第2シート12の構成材料は、好ましくは金属、例えば、銅、ニッケル、アルミニウム、マグネシウム、チタン、鉄、これらの金属の少なくとも1種を主成分とする合金等であり、特に好ましくは銅又はアルミニウムである。 The constituent materials of the first sheet 11 and the second sheet 12 are not particularly limited as long as they have properties suitable for a vapor chamber, such as thermal conductivity, strength, flexibility, flexibility, etc. The constituent material of the first sheet 11 and the second sheet 12 is preferably a metal, such as copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing at least one of these metals as a main component. Preferably it is copper or aluminum.
 第1シート11及び第2シート12の構成材料は、互いに同じであってもよいし、互いに異なっていてもよい。 The constituent materials of the first sheet 11 and the second sheet 12 may be the same or different.
 第1シート11及び第2シート12の構成材料が互いに異なる場合、第1シート11及び第2シート12で異なる機能を発揮させることができる。このような機能としては、特に限定されないが、例えば、熱伝導機能、電磁波シールド機能等が挙げられる。 When the constituent materials of the first sheet 11 and the second sheet 12 are different from each other, the first sheet 11 and the second sheet 12 can exhibit different functions. Such functions include, but are not particularly limited to, heat conduction functions, electromagnetic shielding functions, and the like.
 第1シート11及び第2シート12の形状は、特に限定されない。例えば、第1シート11は、厚み方向Tの寸法が一定の平板状であり、第2シート12は、外縁部が外縁部以外の部分よりも厚み方向Tの寸法が大きい形状であってもよい。あるいは、第1シート11は、厚み方向Tの寸法が一定の平板状であり、第2シート12は、厚み方向Tの寸法が一定で、かつ、外縁部に対して外縁部以外の部分が外側に凸の形状であってもよい。この場合、筐体10の外縁部に凹みが設けられることになる。このような筐体10の外縁部の凹みは、ベーパーチャンバー1Aを搭載する際に利用可能である。また、筐体10の外縁部の凹みには、他の部品を配置できる。 The shapes of the first sheet 11 and the second sheet 12 are not particularly limited. For example, the first sheet 11 may have a flat plate shape with a constant dimension in the thickness direction T, and the second sheet 12 may have a shape in which the outer edge has a larger dimension in the thickness direction T than the portion other than the outer edge. . Alternatively, the first sheet 11 has a flat plate shape with a constant dimension in the thickness direction T, and the second sheet 12 has a constant dimension in the thickness direction T, and the portion other than the outer edge is on the outside. It may also have a convex shape. In this case, a recess will be provided at the outer edge of the housing 10. Such a recess on the outer edge of the housing 10 can be used when mounting the vapor chamber 1A. In addition, other components can be placed in the recess on the outer edge of the housing 10.
 第1シート11及び第2シート12の厚み方向Tの寸法は、各々、好ましくは10μm以上、200μm以下、より好ましくは30μm以上、100μm以下、更に好ましくは40μm以上、60μm以下である。 The dimensions of the first sheet 11 and the second sheet 12 in the thickness direction T are preferably 10 μm or more and 200 μm or less, more preferably 30 μm or more and 100 μm or less, and still more preferably 40 μm or more and 60 μm or less.
 第1シート11及び第2シート12の厚み方向Tの寸法は、互いに同じであってもよいし、互いに異なっていてもよい。 The dimensions of the first sheet 11 and the second sheet 12 in the thickness direction T may be the same or different.
 第1シート11及び第2シート12の厚み方向Tの寸法は、各々、厚み方向Tの最大寸法として定められる。 The dimensions of the first sheet 11 and the second sheet 12 in the thickness direction T are each determined as the maximum dimension in the thickness direction T.
 厚み方向Tから平面視したときの筐体10の平面形状としては、例えば、三角形、矩形等の多角形、円形、楕円形、これらを組み合わせた形状等が挙げられる。また、筐体10の平面形状は、L字型、C字型(コの字型)、階段型等であってもよい。また、筐体10には、厚み方向Tに貫通口が設けられていてもよい。筐体10の平面形状は、ベーパーチャンバー1Aの用途に応じた形状であってもよいし、ベーパーチャンバー1Aの搭載箇所に応じた形状であってもよいし、近傍に存在する他の部品に応じた形状であってもよい。 Examples of the planar shape of the casing 10 when viewed from the thickness direction T include polygons such as triangles and rectangles, circles, ellipses, and combinations thereof. Further, the planar shape of the casing 10 may be an L-shape, a C-shape (U-shape), a staircase shape, or the like. Further, the housing 10 may be provided with a through hole in the thickness direction T. The planar shape of the casing 10 may be a shape depending on the use of the vapor chamber 1A, a shape depending on the mounting location of the vapor chamber 1A, or a shape depending on other components existing nearby. It may also have a different shape.
 筐体10の大きさは、特に限定されない。 The size of the housing 10 is not particularly limited.
 筐体10の長さ方向Lの寸法及び幅方向Wの寸法は、各々、好ましくは5mm以上、500mm以下、より好ましくは20mm以上、300mm以下、更に好ましくは50mm以上、200mm以下である。 The dimension in the length direction L and the dimension in the width direction W of the casing 10 are respectively preferably 5 mm or more and 500 mm or less, more preferably 20 mm or more and 300 mm or less, and still more preferably 50 mm or more and 200 mm or less.
 筐体10の長さ方向Lの寸法及び幅方向Wの寸法は、互いに同じであってもよいし、互いに異なっていてもよい。 The dimension in the length direction L and the dimension in the width direction W of the housing 10 may be the same or different from each other.
 筐体10の厚み方向Tの寸法は、好ましくは50μm以上、500μm以下である。 The dimension of the casing 10 in the thickness direction T is preferably 50 μm or more and 500 μm or less.
 筐体10の長さ方向Lの寸法、厚み方向Tの寸法、及び、幅方向Wの寸法は、各々、長さ方向L、厚み方向T、及び、幅方向Wの最大寸法として定められる。 The dimension in the length direction L, the dimension in the thickness direction T, and the dimension in the width direction W of the casing 10 are determined as the maximum dimension in the length direction L, thickness direction T, and width direction W, respectively.
 図1では、筐体10が第1シート11及び第2シート12の2つのシートで構成される態様を例示したが、筐体10は、1つのシートで構成されてもよいし、3つ以上のシートで構成されてもよい。 Although FIG. 1 illustrates an example in which the casing 10 is composed of two sheets, the first sheet 11 and the second sheet 12, the casing 10 may be composed of one sheet or three or more sheets. It may be composed of sheets.
 図2は、本発明の実施形態1の熱拡散デバイスの内部構造の一例を示す平面模式図である。図3は、図2に示す熱拡散デバイスの線分a1-a2に沿う断面の一例を示す断面模式図である。 FIG. 2 is a schematic plan view showing an example of the internal structure of the heat diffusion device of Embodiment 1 of the present invention. FIG. 3 is a schematic cross-sectional view showing an example of a cross section of the heat diffusion device shown in FIG. 2 along line segment a1-a2.
 図2及び図3に示すベーパーチャンバー1Aは、筐体10と、作動媒体20と、ウィック30と、支持体40と、を有している。 The vapor chamber 1A shown in FIGS. 2 and 3 includes a housing 10, a working medium 20, a wick 30, and a support 40.
 図3に示すように、筐体10は、厚み方向Tに対向する第1内面10a及び第2内面10bを有している。 As shown in FIG. 3, the housing 10 has a first inner surface 10a and a second inner surface 10b facing each other in the thickness direction T.
 図3に示す例では、筐体10が第1シート11及び第2シート12で構成されており、第1シート11の内面が筐体10の第1内面10aに該当し、第2シート12の内面が筐体10の第2内面10bに該当する。 In the example shown in FIG. 3, the casing 10 is composed of a first sheet 11 and a second sheet 12, the inner surface of the first sheet 11 corresponds to the first inner surface 10a of the casing 10, and the inner surface of the second sheet 12 corresponds to the first inner surface 10a of the casing 10. The inner surface corresponds to the second inner surface 10b of the housing 10.
 筐体10には、内部空間が設けられている。より具体的には、筐体10には、第1内面10a及び第2内面10bで囲まれた内部空間が設けられている。 The housing 10 is provided with an internal space. More specifically, the housing 10 is provided with an internal space surrounded by a first inner surface 10a and a second inner surface 10b.
 図2に示すように、筐体10は、蒸発部EPを内部空間に有していることが好ましい。 As shown in FIG. 2, it is preferable that the housing 10 has an evaporation part EP in the internal space.
 蒸発部EPは、後述する液相の作動媒体20を蒸発させて、気相の作動媒体20に変化させる部分である。より具体的には、蒸発部EPは、筐体10の内部空間のうち、図1に示す熱源HSの近傍部分であって、熱源HSによって加熱される部分に該当する。 The evaporation part EP is a part that evaporates a liquid-phase working medium 20, which will be described later, to change it into a gas-phase working medium 20. More specifically, the evaporation portion EP corresponds to a portion of the internal space of the housing 10 that is near the heat source HS shown in FIG. 1 and is heated by the heat source HS.
 蒸発部EPの数は、熱源HSの数に応じて、図2に示すように1つのみであってもよいし、複数であってもよい。つまり、筐体10の外面には、熱源HSが、1つのみ設けられていてもよいし、複数設けられていてもよい。 Depending on the number of heat sources HS, the number of evaporation parts EP may be one as shown in FIG. 2, or may be plural. In other words, only one heat source HS or a plurality of heat sources HS may be provided on the outer surface of the housing 10.
 熱源HSは、筐体10の第1内面10aと反対側の外面、ここでは、第1シート11の外面に設けられていてもよいし、筐体10の第2内面10bと反対側の外面、ここでは、第2シート12の外面に設けられていてもよい。 The heat source HS may be provided on the outer surface of the casing 10 opposite to the first inner surface 10a, here, the outer surface of the first sheet 11, or may be provided on the outer surface of the casing 10 opposite to the second inner surface 10b, Here, it may be provided on the outer surface of the second sheet 12.
 図2及び図3に示すように、作動媒体20は、筐体10の内部空間に封入されている。 As shown in FIGS. 2 and 3, the working medium 20 is sealed in the internal space of the housing 10.
 作動媒体20は、筐体10内の環境下において気-液の相変化を生じ得るものであれば、特に限定されない。作動媒体20としては、例えば、水、アルコール類、代替フロン等が挙げられる。作動媒体20は、水性化合物であることが好ましく、中でも、水であることが特に好ましい。 The working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the casing 10. Examples of the working medium 20 include water, alcohols, and alternative fluorocarbons. The working medium 20 is preferably an aqueous compound, particularly preferably water.
 図2及び図3に示すように、ウィック30は、筐体10の内部空間に設けられている。 As shown in FIGS. 2 and 3, the wick 30 is provided in the internal space of the housing 10.
 ウィック30は、毛細管力により作動媒体20を移動させることができる毛細管構造を有している。 The wick 30 has a capillary structure that can move the working medium 20 by capillary force.
 ウィック30の毛細管構造としては、従来の熱拡散デバイス(ベーパーチャンバー等)で用いられる公知の構造であってもよい。このような毛細管構造としては、細孔、溝、突起等の凹凸を有する微細構造、例えば、多孔構造、繊維構造、溝構造、網目構造等が挙げられる。 The capillary structure of the wick 30 may be a known structure used in conventional heat diffusion devices (vapor chambers, etc.). Examples of such a capillary structure include a fine structure having irregularities such as pores, grooves, and protrusions, such as a porous structure, a fiber structure, a groove structure, and a network structure.
 ウィック30は、液相の作動媒体20を毛細管力により吸い上げて輸送する液輸送部として機能する。 The wick 30 functions as a liquid transport section that sucks up and transports the liquid phase working medium 20 by capillary force.
 ウィック30は、多孔質体で構成されることが好ましい。 It is preferable that the wick 30 is made of a porous material.
 多孔質体としては、例えば、焼結体、不織布、メッシュ、エッチング多孔板、繊維束等が挙げられる。 Examples of the porous body include a sintered body, a nonwoven fabric, a mesh, an etched perforated plate, and a fiber bundle.
 焼結体としては、例えば、金属多孔質焼結体、セラミックス多孔質焼結体等が挙げられる。中でも、金属多孔質焼結体が好ましく、銅又はニッケルの多孔質焼結体がより好ましい。 Examples of the sintered body include porous metal sintered bodies, porous ceramic sintered bodies, and the like. Among these, metal porous sintered bodies are preferred, and copper or nickel porous sintered bodies are more preferred.
 不織布としては、例えば、金属不織布等が挙げられる。ウィック30は、不織布で構成される場合、安価に作製可能である。 Examples of the nonwoven fabric include metal nonwoven fabric. When the wick 30 is made of nonwoven fabric, it can be manufactured at low cost.
 メッシュとしては、例えば、金属メッシュ、樹脂メッシュ、表面コートされたこれらのメッシュ等が挙げられる。中でも、銅メッシュ、ステンレス(SUS)メッシュ、又は、ポリエステルメッシュが好ましい。ウィック30は、メッシュで構成される場合、安価に作製可能である。 Examples of the mesh include metal mesh, resin mesh, and surface-coated meshes of these. Among these, copper mesh, stainless steel (SUS) mesh, or polyester mesh is preferred. When the wick 30 is made of mesh, it can be manufactured at low cost.
 エッチング多孔板は、例えば、平板状の金属板をエッチング加工することにより作製される。ウィック30は、このように作製されたエッチング多孔板で構成される場合、平坦性に優れたものとなる。 The etched perforated plate is produced, for example, by etching a flat metal plate. When the wick 30 is composed of the etched perforated plate produced in this manner, it has excellent flatness.
 繊維束は、例えば、複数の繊維を線状に束ねることにより作製される。繊維束は、液相の作動媒体20を毛細管力により吸い上げて保持する液保持部として機能しつつ、吸い上げた液相の作動媒体20を輸送する液輸送部としても機能する。 A fiber bundle is produced, for example, by linearly bundling a plurality of fibers. The fiber bundle functions as a liquid holding section that sucks up and holds the working medium 20 in the liquid phase by capillary force, and also functions as a liquid transport section that transports the sucked up working medium 20 in the liquid phase.
 ウィック30は、繊維束で構成される場合、編み込み状の繊維束で構成されることが好ましい。複数の繊維が編み込まれた編み込み状の繊維束では、表面に凹凸が存在しやすくなるため、ウィック30が編み込み状の繊維束で構成される場合、液相の作動媒体20が輸送されやすくなる。 When the wick 30 is composed of a fiber bundle, it is preferably composed of a braided fiber bundle. A braided fiber bundle in which a plurality of fibers are woven tends to have irregularities on its surface, so when the wick 30 is composed of a braided fiber bundle, the liquid phase working medium 20 is easily transported.
 繊維束を構成する繊維としては、例えば、銅、アルミニウム、ステンレス等の金属線、カーボン繊維、ガラス繊維等の非金属線等が挙げられる。中でも、金属線は、熱伝導率が高いことから好ましい。例えば、直径が0.03mm程度の銅線を200本程度束ねることにより、繊維束とすることができる。 Examples of the fibers constituting the fiber bundle include metal wires such as copper, aluminum, and stainless steel wires, and non-metal wires such as carbon fibers and glass fibers. Among these, metal wire is preferred because of its high thermal conductivity. For example, a fiber bundle can be obtained by bundling about 200 copper wires with a diameter of about 0.03 mm.
 ウィック30の厚み方向Tの寸法は、好ましくは2μm以上、200μm以下、より好ましくは5μm以上、100μm以下、更に好ましくは10μm以上、40μm以下である。 The dimension of the wick 30 in the thickness direction T is preferably 2 μm or more and 200 μm or less, more preferably 5 μm or more and 100 μm or less, and still more preferably 10 μm or more and 40 μm or less.
 ウィック30の厚み方向Tの寸法は、全体にわたって同じであってもよいし、一部で異なっていてもよい。 The dimensions of the wick 30 in the thickness direction T may be the same throughout or may be different in some parts.
 図2及び図3に示すように、筐体10の内部空間には、液相の作動媒体20を主として含む液体流路LPと、気相の作動媒体20を主として含む蒸気流路VPとが存在している。 As shown in FIGS. 2 and 3, the internal space of the casing 10 includes a liquid flow path LP that mainly contains the working medium 20 in the liquid phase and a vapor flow path VP that mainly contains the working medium 20 in the gas phase. are doing.
 図3に示す例では、筐体10の第2内面10bとウィック30との間に、液相の作動媒体20を主として含む液体流路LPが存在している。また、図3に示す例では、筐体10の第1内面10aとウィック30との間に、気相の作動媒体20を主として含む蒸気流路VPが存在している。 In the example shown in FIG. 3, a liquid flow path LP that mainly contains the working medium 20 in the liquid phase exists between the second inner surface 10b of the housing 10 and the wick 30. Further, in the example shown in FIG. 3, a vapor flow path VP that mainly contains the working medium 20 in the vapor phase exists between the first inner surface 10a of the housing 10 and the wick 30.
 液体流路LPは、液相の作動媒体20が主として存在すると言える領域であれば、気相の作動媒体20を含んでいてもよい。蒸気流路VPは、気相の作動媒体20が主として存在すると言える領域であれば、液相の作動媒体20を含んでいてもよい。 The liquid flow path LP may contain the gas-phase working medium 20 as long as it is a region where the liquid-phase working medium 20 is mainly present. The vapor flow path VP may contain the liquid phase working medium 20 as long as it is a region where the gas phase working medium 20 is mainly present.
 図2及び図3に示すように、支持体40は、筐体10の内部空間に設けられている。より具体的には、支持体40は、筐体10の内部空間のうち、蒸気流路VPに設けられている。 As shown in FIGS. 2 and 3, the support body 40 is provided in the internal space of the housing 10. More specifically, the support body 40 is provided in the vapor flow path VP in the internal space of the housing 10.
 図2及び図3に示すように、支持体40は、筐体10の第1内面10aとウィック30とに厚み方向Tで接している。これにより、ウィック30が、支持体40で支持される。 As shown in FIGS. 2 and 3, the support body 40 is in contact with the first inner surface 10a of the housing 10 and the wick 30 in the thickness direction T. Thereby, the wick 30 is supported by the support body 40.
 図2及び図3に示す例では、支持体40が複数設けられており、複数の支持体40が、筐体10の第1内面10aとウィック30とに厚み方向Tで接している。複数の支持体40のうち、少なくとも1つの支持体40がウィック30に厚み方向Tで接していればよく、図3に示すようにすべての支持体40がウィック30に厚み方向Tで接していてもよいし、一部の支持体40がウィック30に厚み方向Tで接していてもよい。 In the example shown in FIGS. 2 and 3, a plurality of supports 40 are provided, and the plurality of supports 40 are in contact with the first inner surface 10a of the housing 10 and the wick 30 in the thickness direction T. It is sufficient that at least one of the plurality of supports 40 is in contact with the wick 30 in the thickness direction T, and all the supports 40 are in contact with the wick 30 in the thickness direction T as shown in FIG. Alternatively, a part of the support body 40 may be in contact with the wick 30 in the thickness direction T.
 図2及び図3に示す例において、複数の支持体40は、支持体40の中心間距離(ピッチ)が一定となるように均等に設けられていることが好ましい。この場合、複数の支持体40は、筐体10の内部空間、ここでは、蒸気流路VPにおいて、一部の領域で均等に設けられていることが好ましく、全体の領域にわたって均等に設けられていることがより好ましい。複数の支持体40が均等に設けられている領域では、ベーパーチャンバー1Aの強度が均一に確保される。 In the example shown in FIGS. 2 and 3, it is preferable that the plurality of supports 40 are provided evenly so that the center-to-center distance (pitch) of the supports 40 is constant. In this case, it is preferable that the plurality of supports 40 are provided evenly in some areas in the internal space of the housing 10, here, the steam flow path VP, and the plurality of supports 40 are preferably provided evenly over the entire area. It is more preferable to be present. In the region where the plurality of supports 40 are evenly provided, the strength of the vapor chamber 1A is ensured uniformly.
 図3に示すように、支持体40は、筐体10の内部空間、ここでは、蒸気流路VPで、第1内面10aから第2内面10bに向かって厚み方向Tに突出するように設けられていてもよい。支持体40が筐体10の第1内面10aから突出する方向は、厚み方向Tに厳密に平行である必要はない。 As shown in FIG. 3, the support body 40 is provided to protrude in the thickness direction T from the first inner surface 10a toward the second inner surface 10b in the internal space of the housing 10, here, in the steam flow path VP. You can leave it there. The direction in which the support body 40 protrudes from the first inner surface 10a of the housing 10 does not need to be strictly parallel to the thickness direction T.
 支持体40は、筐体10の第1内面10aと一体化していてもよい。この場合、支持体40は、例えば、筐体10の第1内面10a、ここでは、第1シート11の内面をエッチング加工すること等により形成される。 The support body 40 may be integrated with the first inner surface 10a of the housing 10. In this case, the support body 40 is formed, for example, by etching the first inner surface 10a of the housing 10, here, the inner surface of the first sheet 11.
 本明細書中、2つの要素が一体化しているとは、要素間に界面が存在しない状態を意味し、例えば、要素間の境界を判別できない状態を意味する。 In this specification, two elements being integrated means a state in which there is no interface between the elements, for example, a state in which the boundary between the elements cannot be determined.
 支持体40は、筐体10の第1内面10aに接合されていてもよい。この場合、支持体40は、例えば、拡散接合等の接合方法により、筐体10の第1内面10a、ここでは、第1シート11の内面に接合される。 The support body 40 may be joined to the first inner surface 10a of the housing 10. In this case, the support body 40 is bonded to the first inner surface 10a of the housing 10, here, the inner surface of the first sheet 11, for example, by a bonding method such as diffusion bonding.
 支持体40の構成材料としては、例えば、樹脂、金属、セラミックス、これらの複数種以上の混合物又は積層物等が挙げられる。 Examples of the constituent material of the support body 40 include resins, metals, ceramics, and mixtures or laminates of two or more of these.
 支持体40の構成材料は、筐体10の構成材料、ここでは、第1シート11の構成材料と同じであることが好ましいが、第1シート11の構成材料と異なっていてもよい。 The constituent material of the support body 40 is preferably the same as the constituent material of the housing 10, here, the constituent material of the first sheet 11, but may be different from the constituent material of the first sheet 11.
 図2及び図3に示す例では、支持体40が複数設けられているが、複数の支持体40の構成材料は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 In the example shown in FIGS. 2 and 3, a plurality of supports 40 are provided, but the constituent materials of the plurality of supports 40 may be the same or different, or some of them may be made of the same or different materials. may be different.
 支持体40は、単層からなっていてもよいし、複数層からなっていてもよい。 The support body 40 may consist of a single layer or may consist of multiple layers.
 厚み方向Tから平面視したときの支持体40の平面形状は、後述するように、図3に示す円形に限定されない。 The planar shape of the support body 40 when viewed from the thickness direction T is not limited to the circular shape shown in FIG. 3, as will be described later.
 図2及び図3に示す例では、支持体40が複数設けられているが、複数の支持体40の平面形状は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 In the example shown in FIGS. 2 and 3, a plurality of supports 40 are provided, but the planar shapes of the plurality of supports 40 may be the same, different, or partially may be different.
 厚み方向Tに直交する面方向から断面視したときの支持体40の断面形状としては、例えば、矩形等の多角形等が挙げられる。支持体40の断面形状は、図3に示すテーパー状であってもよいし、図3と異なるテーパー状であってもよい。 Examples of the cross-sectional shape of the support body 40 when viewed in cross-section from the surface direction perpendicular to the thickness direction T include polygons such as rectangles. The cross-sectional shape of the support body 40 may be a tapered shape shown in FIG. 3, or may be a tapered shape different from that shown in FIG.
 図2及び図3に示す例では、支持体40が複数設けられているが、複数の支持体40の断面形状は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 In the example shown in FIGS. 2 and 3, a plurality of supports 40 are provided, but the cross-sectional shapes of the plurality of supports 40 may be the same or different, or some of the supports 40 may have the same or different cross-sectional shapes. may be different.
 ベーパーチャンバー1Aは、以下のようにして作動する。 The vapor chamber 1A operates as follows.
 ベーパーチャンバー1Aにおいて、液相の作動媒体20は、蒸発部EP近傍の領域に存在するウィック30及び液体流路LPにおいて、熱源HSからの熱を吸収することで蒸発し、気相の作動媒体20に変化する。そして、蒸発部EPで発生した気相の作動媒体20は、蒸気流路VPを通って、蒸発部EPから離れた領域、例えば、蒸気流路VPの長さ方向Lにおける蒸発部EPと反対側の端部周辺に移動し、そこで冷却されて液相の作動媒体20に変化する。そして、液相の作動媒体20は、ウィック30及び液体流路LPに回収された後、蒸発部EPに輸送される。 In the vapor chamber 1A, the working medium 20 in the liquid phase is evaporated by absorbing heat from the heat source HS in the wick 30 and the liquid flow path LP that are present in the region near the evaporation section EP, and the working medium 20 in the gas phase is evaporated by absorbing heat from the heat source HS. Changes to Then, the gas phase working medium 20 generated in the evaporation section EP passes through the vapor flow path VP to a region away from the evaporation section EP, for example, to a side opposite to the evaporation section EP in the longitudinal direction L of the vapor flow path VP. , where it is cooled and changed into a liquid phase working medium 20. Then, the liquid phase working medium 20 is recovered into the wick 30 and the liquid channel LP, and then transported to the evaporation section EP.
 ベーパーチャンバー1Aでは、以上の過程が繰り返されることにより、作動媒体20が気-液の相変化を生じつつ循環する。この際、熱源HSからの熱は、蒸発部EPにおいて液相の作動媒体20を気相の作動媒体20に変化させる蒸発潜熱として吸収された後、蒸発部EPから離れた領域において気相の作動媒体20を液相の作動媒体20に変化させる凝縮潜熱として放出される。このようにして、ベーパーチャンバー1Aは、外部動力を必要とすることなく自立的に作動し、更には、作動媒体20の蒸発潜熱及び凝縮潜熱を利用することにより、熱源HSからの熱を二次元的に高速で拡散できる。 In the vapor chamber 1A, the above process is repeated, whereby the working medium 20 circulates while undergoing a gas-liquid phase change. At this time, the heat from the heat source HS is absorbed as latent heat of evaporation that changes the liquid-phase working medium 20 into the gas-phase working medium 20 in the evaporator section EP, and then is absorbed into the vapor-phase working medium 20 in a region away from the evaporator section EP. It is released as latent heat of condensation which transforms the medium 20 into the working medium 20 in the liquid phase. In this way, the vapor chamber 1A operates autonomously without requiring external power, and furthermore, by utilizing the latent heat of vaporization and latent heat of condensation of the working medium 20, the vapor chamber 1A can generate heat from the heat source HS in two dimensions. can spread rapidly.
 図3に示すように、ベーパーチャンバー1Aにおいて、筐体10の第1内面10a、ここでは、第1シート11の内面には、支持体40の周囲に位置する窪み50が設けられている。より具体的には、図3に示すように、蒸気流路VPのうちのウィック30に厚み方向Tで重なる領域における、筐体10の第1内面10a、ここでは、第1シート11の内面とウィック30とに厚み方向Tで接する支持体40の周囲に、窪み50が設けられている。 As shown in FIG. 3, in the vapor chamber 1A, a recess 50 located around the support body 40 is provided on the first inner surface 10a of the housing 10, here, on the inner surface of the first sheet 11. More specifically, as shown in FIG. 3, the first inner surface 10a of the housing 10, here, the inner surface of the first sheet 11, in the region of the steam flow path VP that overlaps the wick 30 in the thickness direction T. A depression 50 is provided around the support body 40 in contact with the wick 30 in the thickness direction T.
 図4は、図3に示す支持体及び窪みを拡大して示す断面模式図である。図5は、図4に示す支持体及び窪みを厚み方向から平面視した状態の一例を示す平面模式図である。 FIG. 4 is a schematic cross-sectional view showing an enlarged view of the support and the depression shown in FIG. 3. FIG. 5 is a schematic plan view showing an example of a state in which the support body and depression shown in FIG. 4 are viewed from the thickness direction.
 なお、図5では、図4に示す支持体及び窪みを、筐体の第2内面側から第1内面側に向かって厚み方向に平面視した状態を示している。また、図5では、厚み方向から平面視したときの窪みの位置を明確にするため、窪みを、筐体の第1内面(第1シート)と異なる模様、より具体的には、白色模様で示している。厚み方向から平面視したときの支持体及び窪みを示す以降の図においても同様である。 Note that FIG. 5 shows the support body and recess shown in FIG. 4 when viewed from above in the thickness direction from the second inner surface side to the first inner surface side of the casing. In addition, in FIG. 5, in order to clarify the position of the depression when viewed in plan from the thickness direction, the depression is marked with a pattern different from the first inner surface (first sheet) of the casing, more specifically, a white pattern. It shows. The same applies to subsequent drawings showing the support and the recesses when viewed in plan from the thickness direction.
 図4に示す支持体40及び窪み50を厚み方向Tから平面視したとき、図5に示すように、窪み50の少なくとも一部は、支持体40における筐体10の第1内面10a側の根元41に接している。 When the support 40 and the depression 50 shown in FIG. 4 are viewed from the thickness direction T, at least a part of the depression 50 is located at the root of the support 40 on the first inner surface 10a side of the housing 10, as shown in FIG. 41.
 ベーパーチャンバー1Aでは、筐体10の第1内面10aに窪み50が設けられていることにより、蒸気流路VPにおいて、気相の作動媒体20から変化した液相の作動媒体20が窪み50に溜まりやすくなる。更に、ベーパーチャンバー1Aでは、厚み方向Tから平面視したとき、窪み50の少なくとも一部が支持体40の根元41に接していることにより、窪み50に溜まった液相の作動媒体20が、支持体40の側面を伝ってウィック30に移動しやすくなる。つまり、ベーパーチャンバー1Aでは、液相の作動媒体20がウィック30に回収されやすくなる。 In the vapor chamber 1A, the recess 50 is provided in the first inner surface 10a of the housing 10, so that the liquid phase working medium 20 changed from the gas phase working medium 20 accumulates in the recess 50 in the vapor flow path VP. It becomes easier. Furthermore, in the vapor chamber 1A, when viewed in plan from the thickness direction T, at least a portion of the depression 50 is in contact with the root 41 of the support 40, so that the liquid phase working medium 20 accumulated in the depression 50 is It becomes easier to move to the wick 30 along the side of the body 40. That is, in the vapor chamber 1A, the liquid phase working medium 20 is easily collected into the wick 30.
 以上のように、ベーパーチャンバー1Aでは、支持体40及び窪み50を利用することにより、ウィック30による液相の作動媒体20の回収効率が向上する。その結果、ベーパーチャンバー1Aでは、作動媒体20が循環しやすくなるため、均熱性能が向上する。 As described above, in the vapor chamber 1A, by utilizing the support body 40 and the depression 50, the recovery efficiency of the liquid phase working medium 20 by the wick 30 is improved. As a result, in the vapor chamber 1A, the working medium 20 is easily circulated, so that the heat soaking performance is improved.
 更に、ベーパーチャンバー1Aでは、筐体10の第1内面10aに窪み50が設けられているため、筐体10の厚み方向Tの寸法が同じであり、かつ、窪み50が設けられていない場合と比較して、筐体10の内部空間、ここでは、蒸気流路VPが広くなる。このように、ベーパーチャンバー1Aでは、蒸気流路VPが広く確保されることにより、均熱領域が広く確保され、結果的に、熱伝導率が向上する。 Furthermore, in the vapor chamber 1A, since the recess 50 is provided in the first inner surface 10a of the housing 10, the dimensions in the thickness direction T of the housing 10 are the same and the recess 50 is not provided. In comparison, the internal space of the housing 10, here the steam flow path VP, is wider. In this manner, in the vapor chamber 1A, by ensuring a wide vapor flow path VP, a wide soaking area is ensured, and as a result, thermal conductivity is improved.
 一方、特許文献1の図1に記載のベーパーチャンバーにおいて、筐体の厚み方向の寸法を保ったまま蒸気流路を広げたいのであれば、筐体を構成する上部筐体シートの厚み方向の寸法を全体にわたって小さくする必要がある。しかしながら、特許文献1の図1に記載のベーパーチャンバーにおいて、上部筐体シートの厚み方向の寸法を全体にわたって小さくすると、上部筐体シートの剛性、ひいては、筐体の剛性が不足することで筐体が変形しやすくなる。そのため、特許文献1の図1に記載のベーパーチャンバーでは、筐体の厚み方向の寸法を保ったまま、筐体の内部空間、特に、支柱が設けられた領域に相当する蒸気流路を広げることができない。 On the other hand, in the vapor chamber shown in FIG. 1 of Patent Document 1, if it is desired to widen the vapor flow path while maintaining the dimension in the thickness direction of the casing, the dimension in the thickness direction of the upper casing sheet constituting the casing is needs to be made smaller throughout. However, in the vapor chamber shown in FIG. 1 of Patent Document 1, if the dimension in the thickness direction of the upper housing sheet is reduced throughout, the rigidity of the upper housing sheet and, by extension, the rigidity of the housing will be insufficient, resulting in becomes easily deformed. Therefore, in the vapor chamber shown in FIG. 1 of Patent Document 1, it is possible to widen the internal space of the casing, particularly the vapor flow path corresponding to the area where the support is provided, while maintaining the dimension in the thickness direction of the casing. I can't.
 これに対して、ベーパーチャンバー1Aでは、第1シート11の厚み方向Tの寸法を全体にわたって小さくするのではなく、剛性が比較的高い支持体40の周囲に窪み50を設けているため、筐体10の剛性が不足することがなく、結果的に、筐体10が変形することがない。そのため、ベーパーチャンバー1Aでは、筐体10の厚み方向Tの寸法を保ったまま蒸気流路VPを広げることができる。つまり、ベーパーチャンバー1Aでは、筐体10の厚み方向Tの寸法が保たれた状態で蒸気流路VPが広く確保されるため、均熱領域が広く確保され、結果的に、熱伝導率が向上する。 On the other hand, in the vapor chamber 1A, the dimension in the thickness direction T of the first sheet 11 is not made small over the whole, but the depression 50 is provided around the support body 40 having relatively high rigidity, so that the casing The rigidity of the housing 10 will not be insufficient, and as a result, the housing 10 will not be deformed. Therefore, in the vapor chamber 1A, the vapor flow path VP can be expanded while maintaining the dimension of the housing 10 in the thickness direction T. In other words, in the vapor chamber 1A, a wide vapor flow path VP is secured while the dimension in the thickness direction T of the housing 10 is maintained, so a wide soaking area is secured, and as a result, thermal conductivity is improved. do.
 窪み50の厚み方向Tの寸法は、支持体40の厚み方向Tの寸法の10%以上、50%以下であることが好ましい。 The dimension of the depression 50 in the thickness direction T is preferably 10% or more and 50% or less of the dimension of the support 40 in the thickness direction T.
 窪み50の厚み方向Tの寸法は、筐体10の厚み方向Tの寸法の5%以上、30%以下であることが好ましい。 The dimension of the depression 50 in the thickness direction T is preferably 5% or more and 30% or less of the dimension of the housing 10 in the thickness direction T.
 窪み50の厚み方向Tの寸法は、第1シート11の厚み方向Tの寸法の10%以上、50%以下であることが好ましい。 The dimension of the depression 50 in the thickness direction T is preferably 10% or more and 50% or less of the dimension of the first sheet 11 in the thickness direction T.
 図3に示す例では、窪み50が複数設けられているが、複数の窪み50の厚み方向Tの寸法は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 In the example shown in FIG. 3, a plurality of depressions 50 are provided, but the dimensions of the plurality of depressions 50 in the thickness direction T may be the same, different from each other, or partially different. You can leave it there.
 窪み50の面方向(例えば、長さ方向L又は幅方向W)の寸法は、支持体40の中心間距離の5%以上、30%以下であることが好ましい。 The dimension of the depression 50 in the surface direction (for example, the length direction L or the width direction W) is preferably 5% or more and 30% or less of the center-to-center distance of the support body 40.
 図3に示す例では、窪み50が複数設けられているが、複数の窪み50の面方向(例えば、長さ方向L又は幅方向W)の寸法は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 In the example shown in FIG. 3, a plurality of depressions 50 are provided, but the dimensions of the plurality of depressions 50 in the surface direction (for example, the length direction L or the width direction W) may be the same or each other. They may be different, or may be partially different.
 窪み50の厚み方向Tの寸法、及び、面方向(例えば、長さ方向L又は幅方向W)の寸法は、各々、厚み方向T、及び、面方向(例えば、長さ方向L又は幅方向W)の最大寸法として定められる。 The dimension of the depression 50 in the thickness direction T and the dimension in the surface direction (for example, the length direction L or the width direction W) are respectively the thickness direction T and the dimension in the surface direction (for example, the length direction L or the width direction W). ) is defined as the maximum dimension of
 厚み方向Tに直交する面方向から断面視したときの窪み50の断面形状は、外縁が直線及び曲線の少なくとも一方で構成された形状であることが好ましい。 It is preferable that the cross-sectional shape of the recess 50 when viewed in cross section from a surface direction perpendicular to the thickness direction T is a shape in which the outer edge is formed of at least one of a straight line and a curve.
 図4に示すように、面方向、ここでは、長さ方向Lから断面視したときの窪み50の断面形状は、外縁が直線で構成された形状であってもよい。 As shown in FIG. 4, the cross-sectional shape of the recess 50 when viewed in cross-section from the surface direction, here the length direction L, may be a shape in which the outer edge is a straight line.
 図6は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、面方向から断面視した状態が図4と異なる例を示す断面模式図である。 FIG. 6 is a schematic cross-sectional view showing an example in which the support body and depressions of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIG. 4 when viewed in cross-section from the surface direction.
 図6に示すように、面方向、ここでは、長さ方向Lから断面視したときの窪み50の断面形状は、外縁が曲線で構成された形状であってもよい。この場合、窪み50の外縁の曲率半径は、特に限定されない。 As shown in FIG. 6, the cross-sectional shape of the recess 50 when viewed in cross-section from the surface direction, here the length direction L, may be a shape in which the outer edge is formed by a curve. In this case, the radius of curvature of the outer edge of the depression 50 is not particularly limited.
 面方向、ここでは、長さ方向Lから断面視したときの窪み50の断面形状は、外縁が直線及び曲線の両方で構成された形状であってもよい。 The cross-sectional shape of the recess 50 when viewed in cross section from the surface direction, here, the length direction L, may be a shape in which the outer edge is formed of both straight lines and curves.
 図3に示す例では、窪み50が複数設けられているが、複数の窪み50の断面形状は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 In the example shown in FIG. 3, a plurality of depressions 50 are provided, but the cross-sectional shapes of the plurality of depressions 50 may be the same, different, or partially different. good.
 厚み方向Tから平面視したときの支持体40の平面形状は、図5に示す円形に限定されない。 The planar shape of the support body 40 when viewed from the thickness direction T is not limited to the circular shape shown in FIG. 5.
 図7は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、厚み方向から平面視した状態が図5と異なる例を示す平面模式図である。図8は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、厚み方向から平面視した状態が図5及び図7と異なる例を示す平面模式図である。 FIG. 7 is a schematic plan view showing an example in which the support body and depressions of the heat diffusion device according to Embodiment 1 of the present invention are different from FIG. 5 when viewed from the thickness direction. FIG. 8 is a schematic plan view showing an example in which the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5 and 7 when viewed from the thickness direction.
 図7及び図8に示すように、支持体40の平面形状は、四角形であってもよい。 As shown in FIGS. 7 and 8, the planar shape of the support 40 may be a quadrilateral.
 なお、窪み50の平面形状について、図7に示す例では図5と同様の形状であるが、図8に示す例では図5と異なる形状となっている。 Note that the planar shape of the recess 50 is similar to that in FIG. 5 in the example shown in FIG. 7, but is different from that in FIG. 5 in the example shown in FIG.
 図9は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、厚み方向から平面視した状態が図5、図7、及び、図8と異なる例を示す平面模式図である。図10は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、厚み方向から平面視した状態が図5、図7、図8、及び、図9と異なる例を示す平面模式図である。 FIG. 9 is a schematic plan view showing an example in which the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5, 7, and 8 when viewed from the thickness direction. FIG. 10 is a schematic plan view showing an example in which the support body and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5, 7, 8, and 9 when viewed from the thickness direction. It is.
 図9及び図10に示すように、厚み方向Tから平面視したときの支持体40の平面形状は、外縁の一部が内側に凹んだ形状であってもよい。この場合、支持体40の側面の表面積が大きくなるため、窪み50に溜まった液相の作動媒体20が、支持体40の側面を伝ってウィック30に移動する際の経路が多くなる。そのため、ウィック30による液相の作動媒体20の回収効率がより向上し、結果的に、均熱性能がより向上する。 As shown in FIGS. 9 and 10, the planar shape of the support body 40 when viewed from the thickness direction T may be such that a part of the outer edge is recessed inward. In this case, since the surface area of the side surface of the support body 40 increases, the number of paths through which the liquid phase working medium 20 accumulated in the depression 50 moves to the wick 30 along the side surface of the support body 40 increases. Therefore, the recovery efficiency of the liquid phase working medium 20 by the wick 30 is further improved, and as a result, the soaking performance is further improved.
 厚み方向Tから平面視したときの支持体40の平面形状としては、上述した円形、四角形、及び、外縁の一部が内側に凹んだ形状の他に、例えば、三角形、楕円形等も挙げられる。 The planar shape of the support body 40 when viewed in plan from the thickness direction T includes, for example, a triangular shape, an elliptical shape, etc. in addition to the above-mentioned circular, quadrangular, and shapes with a part of the outer edge concave inward. .
 図5、図8、図9、及び、図10に示すように、厚み方向Tから平面視したとき、窪み50の全体は、支持体40の根元41に接していることが好ましい。この場合、窪み50に溜まった液相の作動媒体20が、支持体40の側面を伝ってウィック30に移動する際の経路が多くなる。そのため、ウィック30による液相の作動媒体20の回収効率がより向上し、結果的に、均熱性能がより向上する。 As shown in FIGS. 5, 8, 9, and 10, when viewed in plan from the thickness direction T, it is preferable that the entire depression 50 is in contact with the base 41 of the support 40. In this case, the liquid phase working medium 20 accumulated in the depression 50 has many paths to travel along the side surface of the support body 40 to the wick 30. Therefore, the recovery efficiency of the liquid phase working medium 20 by the wick 30 is further improved, and as a result, the soaking performance is further improved.
 図7に示すように、厚み方向Tから平面視したとき、窪み50の全体は、支持体40の根元41に接していなくてもよい。つまり、図7に示すように、厚み方向Tから平面視したとき、窪み50の一部が支持体40の根元41に接し、窪み50の残りの部分が支持体40の根元41に接していなくてもよい。図7に示す例では、窪み50が支持体40の根元41に4箇所で接しているが、窪み50の一部が支持体40の根元41に接する箇所の数及び位置は、特に限定されない。 As shown in FIG. 7, when viewed in plan from the thickness direction T, the entire depression 50 does not need to be in contact with the root 41 of the support 40. That is, as shown in FIG. 7, when viewed from the thickness direction T, a part of the depression 50 is in contact with the base 41 of the support 40, and the remaining part of the depression 50 is not in contact with the base 41 of the support 40. It's okay. In the example shown in FIG. 7, the depression 50 contacts the base 41 of the support 40 at four locations, but the number and positions of the locations where a portion of the depression 50 contacts the base 41 of the support 40 are not particularly limited.
 図5、図8、図9、及び、図10に示すように、厚み方向Tから平面視したとき、窪み50は、支持体40の根元41の全周にわたって接していることが好ましい。この場合、窪み50に溜まった液相の作動媒体20が、支持体40の側面を伝ってウィック30に移動する際の経路が多くなる。そのため、ウィック30による液相の作動媒体20の回収効率がより向上し、結果的に、均熱性能がより向上する。 As shown in FIGS. 5, 8, 9, and 10, when viewed in plan from the thickness direction T, it is preferable that the depression 50 be in contact with the entire circumference of the root 41 of the support 40. In this case, the liquid phase working medium 20 accumulated in the depression 50 has many paths to travel along the side surface of the support body 40 to the wick 30. Therefore, the recovery efficiency of the liquid phase working medium 20 by the wick 30 is further improved, and as a result, the soaking performance is further improved.
 図11は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、厚み方向から平面視した状態が図5、図7、図8、図9、及び、図10と異なる例を示す平面模式図である。 FIG. 11 shows an example in which the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention are different from those in FIGS. 5, 7, 8, 9, and 10 when viewed from the thickness direction. FIG.
 図11に示すように、厚み方向Tから平面視したとき、窪み50は、支持体40の根元41の全周にわたって接していなくてもよい。この場合、図11に示すように、厚み方向Tから平面視したとき、窪み50は、支持体40の根元41の全周にわたってつながっておらず、一部が途切れた形状となっていてもよい。図11に示す例では、窪み50が幅方向Wに相対する2箇所で途切れているが、窪み50が途切れる箇所の数及び位置は、特に限定されない。 As shown in FIG. 11, when viewed in plan from the thickness direction T, the depression 50 does not have to be in contact with the entire circumference of the root 41 of the support 40. In this case, as shown in FIG. 11, when viewed in plan from the thickness direction T, the depressions 50 may not be connected over the entire circumference of the base 41 of the support 40, but may have a partially interrupted shape. . In the example shown in FIG. 11, the recess 50 is interrupted at two points opposite to each other in the width direction W, but the number and positions of the points where the recess 50 is interrupted are not particularly limited.
 なお、図7に示す例においても、厚み方向Tから平面視したとき、窪み50は、支持体40の根元41の全周にわたって接していない。 Note that in the example shown in FIG. 7 as well, when viewed in plan from the thickness direction T, the recess 50 does not touch the entire circumference of the root 41 of the support 40.
 図5、図8、図9、図10、及び、図11に示すように、厚み方向Tから平面視したとき、窪み50の内縁は、支持体40の外縁に沿っていてもよい。つまり、厚み方向Tから平面視したとき、窪み50の内縁は、支持体40の外縁に平行であってもよい。 As shown in FIGS. 5, 8, 9, 10, and 11, the inner edge of the recess 50 may be along the outer edge of the support 40 when viewed from the thickness direction T. That is, when viewed in plan from the thickness direction T, the inner edge of the depression 50 may be parallel to the outer edge of the support body 40.
 図7に示すように、厚み方向Tから平面視したとき、窪み50の内縁は、支持体40の外縁に沿っていなくてもよい。つまり、厚み方向Tから平面視したとき、窪み50の内縁は、支持体40の外縁に平行でなくてもよい。 As shown in FIG. 7, when viewed in plan from the thickness direction T, the inner edge of the depression 50 does not need to be along the outer edge of the support 40. That is, when viewed in plan from the thickness direction T, the inner edge of the depression 50 does not need to be parallel to the outer edge of the support body 40.
 図5、図8、図9、図10、及び、図11に示すように、厚み方向Tから平面視したとき、窪み50の外縁は、支持体40の外縁に沿っていてもよい。つまり、厚み方向Tから平面視したとき、窪み50の外縁は、支持体40の外縁に平行であってもよい。 As shown in FIGS. 5, 8, 9, 10, and 11, the outer edge of the recess 50 may be along the outer edge of the support 40 when viewed from the thickness direction T. That is, when viewed in plan from the thickness direction T, the outer edge of the depression 50 may be parallel to the outer edge of the support body 40.
 図12は、本発明の実施形態1の熱拡散デバイスの支持体及び窪みについて、厚み方向から平面視した状態が図5、図7、図8、図9、図10、及び、図11と異なる例を示す平面模式図である。 FIG. 12 shows a plan view of the support and the depression of the heat diffusion device according to Embodiment 1 of the present invention, which is different from FIGS. 5, 7, 8, 9, 10, and 11 when viewed from the thickness direction. FIG. 3 is a schematic plan view showing an example.
 図12に示すように、厚み方向Tから平面視したとき、窪み50の外縁は、支持体40の外縁に沿っていなくてもよい。つまり、厚み方向Tから平面視したとき、窪み50の外縁は、支持体40の外縁に平行でなくてもよい。この場合、図12に示すように、厚み方向Tから平面視したとき、窪み50の外縁は、支持体40の中心から等距離となる形状となっていなくてもよい。 As shown in FIG. 12, when viewed in plan from the thickness direction T, the outer edge of the recess 50 does not need to be along the outer edge of the support 40. That is, when viewed in plan from the thickness direction T, the outer edge of the depression 50 does not need to be parallel to the outer edge of the support body 40. In this case, as shown in FIG. 12, when viewed in plan from the thickness direction T, the outer edge of the depression 50 does not have to be shaped to be equidistant from the center of the support body 40.
 なお、図7に示す例においても、厚み方向Tから平面視したとき、窪み50の外縁は、支持体40の外縁に沿っていない。 Note that in the example shown in FIG. 7 as well, when viewed in plan from the thickness direction T, the outer edge of the recess 50 does not follow the outer edge of the support body 40.
 図3に示す例では、窪み50が複数設けられているが、複数の窪み50の平面形状は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 In the example shown in FIG. 3, a plurality of depressions 50 are provided, but the planar shapes of the plurality of depressions 50 may be the same, different from each other, or partially different. good.
 窪み50は、例えば、以下のように、筐体10の第1内面10a、ここでは、第1シート11の内面をエッチング加工することにより、支持体40とともに形成される。 The recess 50 is formed together with the support 40 by, for example, etching the first inner surface 10a of the housing 10, here, the inner surface of the first sheet 11, as described below.
 例えば、筐体10の第1内面10a、ここでは、第1シート11の内面に対して、支持体40を形成したい領域にレジストを設けた上でエッチング加工を行う際、第1シート11の内面のうち、レジストの端部近傍の領域におけるエッチングレートを速くする。これにより、第1シート11の内面のうち、レジストの端部近傍の領域がオーバーエッチングされる。その結果、オーバーエッチングされた領域としての窪み50が、支持体40の根元41に接するように形成される。このような窪み50の形成方法は、第1シート11の構成材料がアルミニウムである場合に有用である。 For example, when etching is performed on the first inner surface 10a of the casing 10, here the inner surface of the first sheet 11, after providing a resist in the region where the support body 40 is to be formed, the inner surface of the first sheet 11 is etched. Among them, the etching rate in the region near the end of the resist is increased. As a result, a region of the inner surface of the first sheet 11 near the end of the resist is over-etched. As a result, a depression 50 as an over-etched region is formed so as to be in contact with the root 41 of the support 40. This method of forming the depressions 50 is useful when the constituent material of the first sheet 11 is aluminum.
 あるいは、例えば、筐体10の第1内面10a、ここでは、第1シート11の内面に対して、支持体40を形成したい領域にレジストを設けた上でエッチング加工を行うことにより、まず支持体40を形成する。その後、第1シート11の内面に対して、支持体40の根元41に接する領域以外の領域(支持体40が形成された領域を含む)にレジストを設けた上でエッチング加工を行う。これにより、第1シート11の内面のうち、支持体40の根元41に接する領域がエッチングされ、そのエッチングされた領域としての窪み50が形成される。このような窪み50の形成方法は、第1シート11の構成材料が銅である場合に有用である。 Alternatively, for example, a resist is provided on the first inner surface 10a of the casing 10, here, the inner surface of the first sheet 11, in a region where the support 40 is to be formed, and then etching is performed. form 40. Thereafter, a resist is provided on the inner surface of the first sheet 11 in areas other than the area in contact with the base 41 of the support 40 (including the area where the support 40 is formed), and then etching is performed. As a result, a region of the inner surface of the first sheet 11 that is in contact with the base 41 of the support body 40 is etched, and a depression 50 is formed as the etched region. Such a method of forming the depressions 50 is useful when the constituent material of the first sheet 11 is copper.
 図3に示すように、ベーパーチャンバー1Aは、液体流路LPを構成するマイクロチャネル60を更に有していることが好ましい。マイクロチャネル60は、ウィック30とともに液相の作動媒体20を輸送する液輸送部として機能する。 As shown in FIG. 3, it is preferable that the vapor chamber 1A further includes a microchannel 60 that constitutes a liquid flow path LP. The microchannel 60 functions as a liquid transport section that transports the liquid phase working medium 20 together with the wick 30 .
 図3に示すように、マイクロチャネル60は、筐体10の第2内面10b、ここでは、第2シート12の内面に設けられた複数の突起61の間の領域(流路)として構成されている。 As shown in FIG. 3, the microchannel 60 is configured as a region (flow path) between a plurality of protrusions 61 provided on the second inner surface 10b of the casing 10, here, the inner surface of the second sheet 12. There is.
 図3に示すように、複数の突起61は、筐体10の第2内面10bとウィック30とに厚み方向Tで接している。これにより、ウィック30が、複数の突起61で支持される。 As shown in FIG. 3, the plurality of protrusions 61 are in contact with the second inner surface 10b of the housing 10 and the wick 30 in the thickness direction T. Thereby, the wick 30 is supported by the plurality of protrusions 61.
 複数の突起61は、突起61の中心間距離(ピッチ)が一定となるように均等に設けられていることが好ましい。この場合、複数の突起61は、筐体10の内部空間、ここでは、液体流路LPにおいて、一部の領域で均等に設けられていることが好ましく、全体の領域にわたって均等に設けられていることがより好ましい。複数の突起61が均等に設けられている領域では、ベーパーチャンバー1Aの強度が均一に確保される。 It is preferable that the plurality of protrusions 61 are provided evenly so that the distance (pitch) between the centers of the protrusions 61 is constant. In this case, it is preferable that the plurality of protrusions 61 be provided evenly in a part of the internal space of the casing 10, here, in the liquid flow path LP, and preferably evenly provided over the entire region. It is more preferable. In the area where the plurality of protrusions 61 are evenly provided, the strength of the vapor chamber 1A is ensured uniformly.
 突起61は、筐体10の第2内面10bと一体化していてもよい。この場合、突起61は、例えば、筐体10の第2内面10b、ここでは、第2シート12の内面をエッチング加工すること等により形成される。 The protrusion 61 may be integrated with the second inner surface 10b of the housing 10. In this case, the protrusion 61 is formed, for example, by etching the second inner surface 10b of the casing 10, here, the inner surface of the second sheet 12.
 突起61は、筐体10の第2内面10bに接合されていてもよい。この場合、突起61は、例えば、拡散接合等の接合方法により、筐体10の第2内面10b、ここでは、第2シート12の内面に接合される。 The protrusion 61 may be joined to the second inner surface 10b of the housing 10. In this case, the protrusion 61 is bonded to the second inner surface 10b of the housing 10, here, the inner surface of the second sheet 12, by a bonding method such as diffusion bonding, for example.
 突起61の構成材料としては、例えば、樹脂、金属、セラミックス、これらの複数種以上の混合物又は積層物等が挙げられる。 Examples of the constituent material of the protrusion 61 include resin, metal, ceramics, and mixtures or laminates of two or more of these.
 突起61の構成材料は、筐体10の構成材料、ここでは、第2シート12の構成材料と同じであることが好ましいが、第2シート12の構成材料と異なっていてもよい。 The constituent material of the protrusion 61 is preferably the same as the constituent material of the casing 10, here the second sheet 12, but may be different from the constituent material of the second sheet 12.
 突起61は、単層からなっていてもよいし、複数層からなっていてもよい。 The protrusion 61 may be made of a single layer or may be made of multiple layers.
 厚み方向Tから平面視したときの突起61の平面形状としては、例えば、三角形、矩形等の多角形、円形、楕円形、これらを組み合わせた形状等が挙げられる。 Examples of the planar shape of the protrusion 61 when viewed from the thickness direction T include polygons such as triangles and rectangles, circles, ellipses, and combinations thereof.
 厚み方向Tに直交する面方向から断面視したときの突起61の断面形状としては、例えば、矩形等の多角形等が挙げられる。突起61の断面形状は、図3に示すテーパー状であってもよいし、図3と異なるテーパー状であってもよい。 The cross-sectional shape of the protrusion 61 when viewed in cross-section from the surface direction perpendicular to the thickness direction T includes, for example, a polygon such as a rectangle. The cross-sectional shape of the protrusion 61 may be tapered as shown in FIG. 3, or may be tapered different from that shown in FIG.
<実施形態2>
 本発明の熱拡散デバイスは、筐体の第1内面に、厚み方向から見たときの筐体の内縁から間隔を空けて内縁の少なくとも一部に沿って設けられた隔壁を更に備えていてもよく、ウィックは、筐体の第2内面と隔壁との間に一部が設けられ、かつ、隔壁の少なくとも一部に沿って設けられていてもよい。この点で本発明の実施形態1の熱拡散デバイスと異なる態様の熱拡散デバイスを、本発明の実施形態2の熱拡散デバイスとして以下に説明する。
<Embodiment 2>
The heat diffusion device of the present invention may further include a partition wall provided on the first inner surface of the housing along at least a portion of the inner edge at a distance from the inner edge of the housing when viewed from the thickness direction. Often, a portion of the wick may be provided between the second inner surface of the housing and the partition wall, and may be provided along at least a portion of the partition wall. A heat diffusion device that is different from the heat diffusion device of Embodiment 1 of the present invention in this respect will be described below as a heat diffusion device of Embodiment 2 of the present invention.
 図13は、本発明の実施形態2の熱拡散デバイスの内部構造の一例を示す平面模式図である。図14は、図13に示す熱拡散デバイスの線分b1-b2に沿う断面の一例を示す断面模式図である。 FIG. 13 is a schematic plan view showing an example of the internal structure of a heat diffusion device according to Embodiment 2 of the present invention. FIG. 14 is a schematic cross-sectional view showing an example of a cross section of the heat diffusion device shown in FIG. 13 along line segment b1-b2.
 図13及び図14に示すベーパーチャンバー1Bは、筐体10と、作動媒体20と、ウィック30と、支持体40とに加えて、隔壁70を更に有している。 The vapor chamber 1B shown in FIGS. 13 and 14 further includes a partition wall 70 in addition to the housing 10, the working medium 20, the wick 30, and the support body 40.
 図13及び図14に示すように、隔壁70は、筐体10の第1内面10aに、厚み方向Tから見たときの筐体10の内縁15から間隔を空けて内縁15の少なくとも一部に沿って設けられている。 As shown in FIGS. 13 and 14, the partition wall 70 is provided on the first inner surface 10a of the casing 10 at a distance from the inner edge 15 of the casing 10 when viewed from the thickness direction T. It is located along.
 図13及び図14に示す例において、隔壁70は、厚み方向Tから見たときに、筐体10の内縁15の全周に沿って設けられている。 In the example shown in FIGS. 13 and 14, the partition wall 70 is provided along the entire circumference of the inner edge 15 of the housing 10 when viewed from the thickness direction T.
 隔壁70は、厚み方向Tから見たときに、筐体10の内縁15の全周に沿って設けられていなくてもよい。 The partition wall 70 does not have to be provided along the entire circumference of the inner edge 15 of the housing 10 when viewed from the thickness direction T.
 図14に示すように、隔壁70は、筐体10の内部空間で、第1内面10aから第2内面10bに向かって厚み方向Tに突出するように設けられていてもよい。隔壁70が筐体10の第1内面10aから突出する方向は、厚み方向Tに厳密に平行である必要はない。 As shown in FIG. 14, the partition wall 70 may be provided in the internal space of the housing 10 so as to protrude in the thickness direction T from the first inner surface 10a toward the second inner surface 10b. The direction in which the partition wall 70 projects from the first inner surface 10a of the housing 10 does not need to be strictly parallel to the thickness direction T.
 図14に示すように、隔壁70は、筐体10の第1内面10aと一体化していてもよい。この場合、隔壁70は、例えば、筐体10の第1内面10a、ここでは、第1シート11の内面をエッチング加工すること等により形成される。 As shown in FIG. 14, the partition wall 70 may be integrated with the first inner surface 10a of the housing 10. In this case, the partition wall 70 is formed, for example, by etching the first inner surface 10a of the casing 10, here, the inner surface of the first sheet 11.
 隔壁70は、筐体10の第1内面10aに接合されていてもよい。この場合、隔壁70は、例えば、拡散接合等の接合方法により、筐体10の第1内面10a、ここでは、第1シート11の内面に接合される。 The partition wall 70 may be joined to the first inner surface 10a of the housing 10. In this case, the partition wall 70 is bonded to the first inner surface 10a of the housing 10, here, the inner surface of the first sheet 11, by a bonding method such as diffusion bonding, for example.
 隔壁70の構成材料としては、例えば、樹脂、金属、セラミックス、これらの複数種以上の混合物又は積層物等が挙げられる。 Examples of the constituent material of the partition wall 70 include resins, metals, ceramics, and mixtures or laminates of two or more of these.
 隔壁70の構成材料は、筐体10の構成材料、ここでは、第1シート11の構成材料と同じであることが好ましいが、第1シート11の構成材料と異なっていてもよい。 The constituent material of the partition wall 70 is preferably the same as the constituent material of the casing 10, here the first sheet 11, but may be different from the constituent material of the first sheet 11.
 隔壁70は、単層からなっていてもよいし、複数層からなっていてもよい。 The partition wall 70 may be made of a single layer or may be made of multiple layers.
 図13及び図14に示すように、ウィック30は、筐体10の第2内面10bと隔壁70との間に一部が設けられ、かつ、隔壁70の少なくとも一部に沿って設けられている。 As shown in FIGS. 13 and 14, the wick 30 is partially provided between the second inner surface 10b of the housing 10 and the partition wall 70, and is provided along at least a portion of the partition wall 70. .
 図13に示す例において、ウィック30は、厚み方向Tから見たときに、隔壁70の全周に沿って設けられている。 In the example shown in FIG. 13, the wick 30 is provided along the entire circumference of the partition wall 70 when viewed from the thickness direction T.
 ウィック30は、厚み方向Tから見たときに、隔壁70の全周に沿って設けられていなくてもよい。 The wick 30 does not need to be provided along the entire circumference of the partition wall 70 when viewed from the thickness direction T.
 図13に示す例において、ウィック30は、厚み方向Tから見たときに、筐体10の内縁15の全周に沿って設けられている。 In the example shown in FIG. 13, the wick 30 is provided along the entire circumference of the inner edge 15 of the housing 10 when viewed from the thickness direction T.
 ウィック30は、厚み方向Tから見たときに、筐体10の内縁15の全周に沿って設けられていなくてもよい。 The wick 30 does not have to be provided along the entire circumference of the inner edge 15 of the housing 10 when viewed from the thickness direction T.
 図14に示すように、ウィック30は、筐体10の第2内面10bに厚み方向Tで接していることが好ましい。 As shown in FIG. 14, the wick 30 is preferably in contact with the second inner surface 10b of the housing 10 in the thickness direction T.
 図14に示すように、ウィック30は、隔壁70に厚み方向Tで接していることが好ましい。この場合、ウィック30は、支持体40に加えて隔壁70によっても支持される。そのため、ウィック30が外部からの圧力で変形しようとしても、後述する液体流路LPが潰れにくくなる。その結果、液体流路LPによる液相の作動媒体20の透過率が確保される。 As shown in FIG. 14, the wick 30 is preferably in contact with the partition wall 70 in the thickness direction T. In this case, the wick 30 is supported by the partition wall 70 in addition to the support body 40. Therefore, even if the wick 30 tries to deform due to external pressure, the liquid flow path LP, which will be described later, is less likely to collapse. As a result, the permeability of the liquid-phase working medium 20 through the liquid flow path LP is ensured.
 以上のように、ウィック30は、筐体10の第2内面10bと隔壁70との少なくとも一方に厚み方向Tで接していることが好ましい。中でも、図14に示すように、ウィック30は、筐体10の第2内面10bと隔壁70との両方に厚み方向Tで接していることが特に好ましい。 As described above, it is preferable that the wick 30 be in contact with at least one of the second inner surface 10b of the housing 10 and the partition wall 70 in the thickness direction T. Among these, as shown in FIG. 14, it is particularly preferable that the wick 30 be in contact with both the second inner surface 10b of the housing 10 and the partition wall 70 in the thickness direction T.
 ウィック30は、筐体10の第2内面10bに固定されていることが好ましい。例えば、ウィック30は、筐体10の第2内面10bに接合されていることが好ましい。ウィック30と筐体10の第2内面10bとの接合方法としては、例えば、拡散接合、超音波接合、スポット溶接等が挙げられる。 The wick 30 is preferably fixed to the second inner surface 10b of the housing 10. For example, it is preferable that the wick 30 be joined to the second inner surface 10b of the housing 10. Examples of the method for joining the wick 30 and the second inner surface 10b of the housing 10 include diffusion bonding, ultrasonic bonding, spot welding, and the like.
 ウィック30は、隔壁70に固定されていることが好ましい。例えば、ウィック30は、隔壁70に接合されていることが好ましい。ウィック30と隔壁70との接合方法としては、例えば、拡散接合、超音波接合、スポット溶接等が挙げられる。 The wick 30 is preferably fixed to the partition wall 70. For example, it is preferable that the wick 30 be joined to the partition wall 70. Examples of the method for joining the wick 30 and the partition wall 70 include diffusion bonding, ultrasonic bonding, spot welding, and the like.
 上述したように、隔壁70は、筐体10の第1内面10aに、筐体10の内縁15から間隔を空けて内縁15の少なくとも一部に沿って設けられている。また、ウィック30は、筐体10の第2内面10bと隔壁70との間に一部が設けられ、かつ、隔壁70の少なくとも一部に沿って設けられている。このような隔壁70及びウィック30の配置により、液体流路LPは、筐体10の内部空間において、筐体10の一部と隔壁70の一部とウィック30の一部とで囲まれた領域で、筐体10の内縁15の少なくとも一部に沿って設けられている。 As described above, the partition wall 70 is provided on the first inner surface 10a of the housing 10 along at least a portion of the inner edge 15 of the housing 10 at a distance from the inner edge 15. Further, the wick 30 is partially provided between the second inner surface 10b of the housing 10 and the partition wall 70, and is provided along at least a portion of the partition wall 70. Due to the arrangement of the partition wall 70 and the wick 30, the liquid flow path LP is formed in an area surrounded by a part of the case 10, a part of the partition wall 70, and a part of the wick 30 in the internal space of the case 10. and is provided along at least a portion of the inner edge 15 of the housing 10.
 ベーパーチャンバー1Bでは、上述したように液体流路LPが設けられていることにより、液体流路LPに存在する液相の作動媒体20に対して、ウィック30の毛細管力が働く。更に、ベーパーチャンバー1Bでは、液体流路LPが、ウィック30等が設けられていない空洞として構成されるため、液相の作動媒体20が、液体流路LP内をスムーズに移動できる。以上により、ベーパーチャンバー1Bでは、液相の作動媒体20の透過率が向上し、結果的に、液輸送能力が向上する。 In the vapor chamber 1B, since the liquid flow path LP is provided as described above, the capillary force of the wick 30 acts on the liquid phase working medium 20 existing in the liquid flow path LP. Furthermore, in the vapor chamber 1B, the liquid flow path LP is configured as a cavity in which the wick 30 and the like are not provided, so that the liquid phase working medium 20 can move smoothly within the liquid flow path LP. As a result, in the vapor chamber 1B, the permeability of the liquid-phase working medium 20 is improved, and as a result, the liquid transport ability is improved.
 ベーパーチャンバー1Bでは、蒸気流路VPが、筐体10の内部空間において、液体流路LP以外の領域に設けられている。 In the vapor chamber 1B, the vapor flow path VP is provided in an area other than the liquid flow path LP in the internal space of the housing 10.
 ベーパーチャンバー1Bでは、上述したように液体流路LPが筐体10の内縁15の少なくとも一部に沿って設けられているため、蒸気流路VPは、筐体10の内部空間において、液体流路LPに対して面方向に設けられている。これにより、ベーパーチャンバー1Bでは、筐体10の内部空間において、蒸気流路VPが面方向に広く確保される。その結果、ベーパーチャンバー1Bでは、均熱領域が広く確保され、熱伝導率が向上する。 In the vapor chamber 1B, the liquid flow path LP is provided along at least a part of the inner edge 15 of the housing 10 as described above, so the vapor flow path VP is a liquid flow path in the internal space of the housing 10. It is provided in the plane direction with respect to the LP. Thereby, in the vapor chamber 1B, the vapor flow path VP is ensured widely in the surface direction in the internal space of the housing 10. As a result, in the vapor chamber 1B, a wide soaking area is ensured, and thermal conductivity is improved.
 ベーパーチャンバー1Bでは、筐体10の内部空間が厚み方向Tに薄くても、蒸気流路VPが面方向に広く確保される。例えば、ベーパーチャンバー1Bでは、厚み方向Tにおける筐体10の内部空間の寸法が100μm以上、200μm以下と小さくても、蒸気流路VPが面方向に広く確保される。なお、厚み方向Tにおける筐体10の内部空間の寸法は、最大寸法として定められる。このように、ベーパーチャンバー1Bでは、筐体10の内部空間が厚み方向Tに薄くても蒸気流路VPが面方向に広く確保されるため、均熱領域が広く確保され、熱伝導率が向上する。 In the vapor chamber 1B, even if the internal space of the casing 10 is thin in the thickness direction T, the vapor flow path VP is ensured widely in the surface direction. For example, in the vapor chamber 1B, even if the dimension of the internal space of the housing 10 in the thickness direction T is as small as 100 μm or more and 200 μm or less, the vapor flow path VP is ensured widely in the surface direction. Note that the dimension of the internal space of the housing 10 in the thickness direction T is determined as the maximum dimension. In this way, in the vapor chamber 1B, even if the internal space of the casing 10 is thin in the thickness direction T, the vapor flow path VP is secured widely in the plane direction, so a wide soaking area is secured, and the thermal conductivity is improved. do.
 図14に示すように、ベーパーチャンバー1Bでは、ベーパーチャンバー1Aと同様に、筐体10の第1内面10a、ここでは、第1シート11の内面には、支持体40の周囲に位置する窪み50が設けられている。より具体的には、図14に示すように、ベーパーチャンバー1Bでは、蒸気流路VPのうちのウィック30に厚み方向Tで重なる領域における、筐体10の第1内面10a、ここでは、第1シート11の内面とウィック30とに厚み方向Tで接する支持体40の周囲に、窪み50が設けられている。更に、厚み方向Tから平面視したとき、窪み50の少なくとも一部は、支持体40の根元41に接している。 As shown in FIG. 14, in the vapor chamber 1B, similarly to the vapor chamber 1A, the first inner surface 10a of the housing 10, here, the inner surface of the first sheet 11, has a depression 50 located around the support body 40. is provided. More specifically, as shown in FIG. 14, in the vapor chamber 1B, the first inner surface 10a of the housing 10, here, the first A depression 50 is provided around the support body 40 that is in contact with the inner surface of the sheet 11 and the wick 30 in the thickness direction T. Furthermore, when viewed in plan from the thickness direction T, at least a portion of the depression 50 is in contact with the root 41 of the support 40 .
 したがって、ベーパーチャンバー1Bでは、ベーパーチャンバー1Aと同様に、ウィック30による液相の作動媒体20の回収効率が向上するため、均熱性能が向上する。更に、ベーパーチャンバー1Bでは、ベーパーチャンバー1Aと同様に、筐体10の厚み方向Tの寸法が保たれた状態で蒸気流路VPが広く確保されるため、均熱領域が広く確保され、結果的に、熱伝導率が向上する。 Therefore, in the vapor chamber 1B, as in the vapor chamber 1A, the recovery efficiency of the liquid phase working medium 20 by the wick 30 is improved, and therefore the heat soaking performance is improved. Furthermore, in the vapor chamber 1B, as in the vapor chamber 1A, a wide vapor flow path VP is secured while the dimension in the thickness direction T of the casing 10 is maintained, so a wide soaking area is secured, and as a result, In addition, thermal conductivity is improved.
 ベーパーチャンバー1Bでは、蒸気流路VPのうちのウィック30に厚み方向Tで重なる領域における、筐体10の第1内面10a、ここでは、第1シート11の内面とウィック30とに厚み方向Tで接する支持体40の周囲に窪み50が設けられていればよい。この限り、ベーパーチャンバー1Bにおいて、蒸気流路VPのうちのウィック30に厚み方向Tで重ならない領域における支持体40の周囲には、窪みが設けられていてもよいし、窪みが設けられていなくてもよい。 In the vapor chamber 1B, the first inner surface 10a of the casing 10 in the region of the vapor flow path VP that overlaps the wick 30 in the thickness direction T, here, the inner surface of the first sheet 11 and the wick 30 in the thickness direction T. It is sufficient if the depression 50 is provided around the support body 40 in contact with the support body 40 . As far as this is concerned, in the vapor chamber 1B, a depression may be provided around the support body 40 in a region of the vapor flow path VP that does not overlap with the wick 30 in the thickness direction T, or a depression may not be provided. It's okay.
 図14に示すように、支持体40は、蒸気流路VPのうちの、ウィック30に厚み方向Tで重なる領域とウィック30に厚み方向Tで重ならない領域との両方に複数設けられていてもよい。 As shown in FIG. 14, a plurality of supports 40 may be provided in both a region of the steam flow path VP that overlaps with the wick 30 in the thickness direction T and a region that does not overlap with the wick 30 in the thickness direction T. good.
 図14に示すように、蒸気流路VPのうちのウィック30に厚み方向Tで重ならない領域には、筐体10の第1内面10aに厚み方向Tで接する支持体40と、第2内面10bに厚み方向Tで接する支持体40とが設けられていることが好ましい。これにより、筐体10が支持体40で蒸気流路VP側から支持されるため、筐体10が外部からの圧力で変形しようとしても、蒸気流路VPが潰れにくくなる。その結果、蒸気流路VPによる気相の作動媒体20の透過率が確保される。 As shown in FIG. 14, in a region of the steam flow path VP that does not overlap with the wick 30 in the thickness direction T, there is a support 40 in contact with the first inner surface 10a of the housing 10 in the thickness direction T, and a second inner surface 10b. It is preferable that a support body 40 that contacts in the thickness direction T is provided. As a result, the casing 10 is supported by the support body 40 from the steam flow path VP side, so that even if the casing 10 tries to deform due to external pressure, the steam flow path VP is less likely to collapse. As a result, the permeability of the gas phase working medium 20 through the vapor flow path VP is ensured.
 蒸気流路VPのうちのウィック30に厚み方向Tで重ならない領域において、支持体40は、筐体10の第2内面10bと一体化していてもよい。この場合、支持体40は、例えば、筐体10の第2内面10b、ここでは、第2シート12の内面をエッチング加工すること等により形成される。 In a region of the steam flow path VP that does not overlap the wick 30 in the thickness direction T, the support body 40 may be integrated with the second inner surface 10b of the casing 10. In this case, the support body 40 is formed, for example, by etching the second inner surface 10b of the housing 10, here, the inner surface of the second sheet 12.
 蒸気流路VPのうちのウィック30に厚み方向Tで重ならない領域において、支持体40は、筐体10の第2内面10bに接合されていてもよい。この場合、支持体40は、例えば、拡散接合等の接合方法により、筐体10の第2内面10b、ここでは、第2シート12の内面に接合される。 The support body 40 may be joined to the second inner surface 10b of the housing 10 in a region of the steam flow path VP that does not overlap the wick 30 in the thickness direction T. In this case, the support body 40 is bonded to the second inner surface 10b of the housing 10, here, the inner surface of the second sheet 12, for example, by a bonding method such as diffusion bonding.
 図14に示すように、蒸気流路VPのうちのウィック30に厚み方向Tで重ならない領域において、2つの支持体40は、厚み方向Tに互いに接続されて1つの複合体を構成していてもよく、更には、その複合体が複数設けられていてもよい。 As shown in FIG. 14, in a region of the steam flow path VP that does not overlap the wick 30 in the thickness direction T, the two supports 40 are connected to each other in the thickness direction T to constitute one composite body. Furthermore, a plurality of such composite bodies may be provided.
 支持体40の構成材料は、蒸気流路VPのうちの、ウィック30に厚み方向Tで重なる領域とウィック30に厚み方向Tで重ならない領域との間で、同じであってもよいし、異なっていてもよい。 The constituent material of the support body 40 may be the same or different between the region of the vapor flow path VP that overlaps with the wick 30 in the thickness direction T and the region that does not overlap with the wick 30 in the thickness direction T. You can leave it there.
 支持体40の断面形状は、蒸気流路VPのうちの、ウィック30に厚み方向Tで重なる領域とウィック30に厚み方向Tで重ならない領域との間で、同じであってもよいし、異なっていてもよい。 The cross-sectional shape of the support body 40 may be the same or different between a region of the steam flow path VP that overlaps with the wick 30 in the thickness direction T and a region that does not overlap with the wick 30 in the thickness direction T. You can leave it there.
 支持体40の平面形状は、蒸気流路VPのうちの、ウィック30に厚み方向Tで重なる領域とウィック30に厚み方向Tで重ならない領域との間で、同じであってもよいし、異なっていてもよい。 The planar shape of the support body 40 may be the same or different between a region of the vapor flow path VP that overlaps with the wick 30 in the thickness direction T and a region that does not overlap with the wick 30 in the thickness direction T. You can leave it there.
 複数の支持体40の面方向(例えば、長さ方向L又は幅方向W)の寸法は、蒸気流路VPのうちの、ウィック30に厚み方向Tで重なる領域とウィック30に厚み方向Tで重ならない領域との間で、同じであってもよいし、異なっていてもよい。 The dimensions of the plurality of supports 40 in the plane direction (for example, the length direction L or the width direction W) are the same as the region of the steam flow path VP that overlaps the wick 30 in the thickness direction T and the region that overlaps the wick 30 in the thickness direction T. They may be the same or different from the other areas.
 複数の支持体40の厚み方向Tの寸法は、蒸気流路VPのうちの、ウィック30に厚み方向Tで重なる領域とウィック30に厚み方向Tで重ならない領域との間で、同じであってもよいし、異なっていてもよい。 The dimensions of the plurality of supports 40 in the thickness direction T are the same between a region of the steam flow path VP that overlaps with the wick 30 in the thickness direction T and a region that does not overlap with the wick 30 in the thickness direction T. It may be different or it may be different.
 複数の支持体40は、蒸気流路VPのうちのウィック30に厚み方向Tで重なる領域において、筐体10の第1内面10a、ここでは、第1シート11の内面とウィック30とに厚み方向Tで接する支持体40を含んでいればよい。この限り、複数の支持体40は、蒸気流路VPのうちのウィック30に厚み方向Tで重ならない領域に設けられていてもよいし、設けられていなくてもよい。 The plurality of supports 40 are arranged in the first inner surface 10a of the housing 10, in this case, the inner surface of the first sheet 11 and the wick 30 in the thickness direction, in a region overlapping with the wick 30 in the thickness direction T in the steam flow path VP. It suffices if the support body 40 that is in contact with T is included. As long as this is the case, the plurality of supports 40 may or may not be provided in a region of the steam flow path VP that does not overlap with the wick 30 in the thickness direction T.
 図13に示す例では、厚み方向Tから見たとき、蒸発部EPが蒸気流路VPに重なっているが、蒸発部EPは、液体流路LPに重なっていてもよい。この場合、厚み方向Tから見たとき、蒸発部EPは、筐体10の内縁15に重なっていてもよい。 In the example shown in FIG. 13, when viewed from the thickness direction T, the evaporation part EP overlaps the vapor flow path VP, but the evaporation part EP may overlap the liquid flow path LP. In this case, when viewed from the thickness direction T, the evaporation portion EP may overlap the inner edge 15 of the housing 10.
 図13に示す例では、液体流路LPが筐体10の内縁15に沿う領域に設けられているが、液体流路LPは、筐体10の内縁15に沿う領域に加えて、筐体10の内縁15に沿わない領域にも設けられていてもよい。 In the example shown in FIG. 13, the liquid flow path LP is provided in a region along the inner edge 15 of the housing 10; It may also be provided in a region that is not along the inner edge 15 of.
 図13に示す例では、厚み方向Tから見たとき、液体流路LPが蒸発部EPの内部を通らないように設けられているが、液体流路LPは、蒸発部EPの内部を通るように設けられていてもよい。 In the example shown in FIG. 13, when viewed from the thickness direction T, the liquid flow path LP is provided so as not to pass through the inside of the evaporation part EP; may be provided.
 図13に示す例では、厚み方向Tから見たとき、液体流路LPが蒸発部EPの外周に沿って設けられていないが、液体流路LPは、蒸発部EPの外周に沿って設けられていてもよい。 In the example shown in FIG. 13, when viewed from the thickness direction T, the liquid flow path LP is not provided along the outer periphery of the evaporation portion EP, but the liquid flow path LP is provided along the outer periphery of the evaporation portion EP. You can leave it there.
[電子機器]
 本発明の電子機器は、本発明の熱拡散デバイスを備える、ことを特徴とする。
[Electronics]
The electronic device of the present invention is characterized by comprising the heat diffusion device of the present invention.
 以下では、本発明の電子機器の一例として、本発明の実施形態1の熱拡散デバイスを有する電子機器について説明する。本発明の他の実施形態の熱拡散デバイスを有する電子機器についても同様である。 Below, as an example of the electronic device of the present invention, an electronic device having the heat diffusion device of Embodiment 1 of the present invention will be described. The same applies to electronic equipment having heat diffusion devices according to other embodiments of the present invention.
 図15は、本発明の電子機器の一例を示す斜視模式図である。 FIG. 15 is a schematic perspective view showing an example of the electronic device of the present invention.
 図15に示す電子機器100は、ベーパーチャンバー1Aを有している。 The electronic device 100 shown in FIG. 15 has a vapor chamber 1A.
 図15に示すように、電子機器100は、電子部品110を更に有していることが好ましい。 As shown in FIG. 15, it is preferable that the electronic device 100 further includes an electronic component 110.
 図15に示すように、電子部品110は、ベーパーチャンバー1Aの筐体10の外面に設けられていることが好ましい。この場合、電子部品110を図1に示す熱源HSとして、ベーパーチャンバー1Aが機能できる。 As shown in FIG. 15, the electronic component 110 is preferably provided on the outer surface of the casing 10 of the vapor chamber 1A. In this case, the vapor chamber 1A can function as the heat source HS shown in FIG. 1 using the electronic component 110.
 電子部品110は、図3に示すベーパーチャンバー1Aの筐体10に対して、筐体10の第1内面10aと反対側の外面、ここでは、第1シート11の外面に設けられていてもよいし、筐体10の第2内面10bと反対側の外面、ここでは、第2シート12の外面に設けられていてもよい。 The electronic component 110 may be provided on the outer surface of the housing 10 of the vapor chamber 1A shown in FIG. However, it may be provided on the outer surface of the housing 10 opposite to the second inner surface 10b, here, on the outer surface of the second sheet 12.
 電子部品110は、筐体10の外面に直に設けられていてもよいし、熱伝導性の高い粘着剤、シート、テープ等の他の部材を介して設けられていてもよい。 The electronic component 110 may be provided directly on the outer surface of the housing 10, or may be provided via another member such as a highly thermally conductive adhesive, sheet, or tape.
 電子部品110は、図2に示す筐体10の外面に設けられたときに、厚み方向Tから見て蒸発部EPに重なっていることが好ましい。 When the electronic component 110 is provided on the outer surface of the casing 10 shown in FIG. 2, it is preferable that the electronic component 110 overlaps the evaporation part EP when viewed from the thickness direction T.
 電子部品110としては、例えば、中央処理装置(CPU)、発光ダイオード(LED)、パワー半導体等の発熱素子が挙げられる。 Examples of the electronic component 110 include a central processing unit (CPU), a light emitting diode (LED), and a heat generating element such as a power semiconductor.
 図15に示すように、電子機器100は、機器筐体120を更に有していることが好ましい。 As shown in FIG. 15, it is preferable that the electronic device 100 further includes a device housing 120.
 図15に示す例では、ベーパーチャンバー1A及び電子部品110が、機器筐体120の内部空間に設けられている。 In the example shown in FIG. 15, the vapor chamber 1A and the electronic component 110 are provided in the internal space of the device housing 120.
 筐体10と機器筐体120とは、接合部材を介して接合されていることが好ましい。より具体的には、筐体10の外面と機器筐体120の内面とは、接合部材を介して接合されていることが好ましい。この場合、筐体10と機器筐体120との密着性が向上する。 It is preferable that the housing 10 and the device housing 120 are joined via a joining member. More specifically, the outer surface of the casing 10 and the inner surface of the device casing 120 are preferably joined via a joining member. In this case, the adhesion between the housing 10 and the device housing 120 is improved.
 筐体10と機器筐体120とを接合する接合部材は、熱伝導性部材であることが好ましい。この場合、熱源HSからの熱、ここでは、電子部品110からの熱が、筐体10から機器筐体120へ伝導しやすくなる。つまり、筐体10から機器筐体120への経路によっても、熱源HSからの熱、ここでは、電子部品110からの熱が拡散しやすくなる。 The joining member that joins the housing 10 and the device housing 120 is preferably a thermally conductive member. In this case, heat from the heat source HS, here heat from the electronic component 110, is easily conducted from the casing 10 to the device casing 120. In other words, the heat from the heat source HS, in this case, the heat from the electronic component 110, is more likely to diffuse through the path from the casing 10 to the device casing 120.
 熱伝導性部材としては、例えば、熱伝導性テープ、熱伝導性粘着剤等が挙げられる。 Examples of the thermally conductive member include a thermally conductive tape, a thermally conductive adhesive, and the like.
 上述したように、ベーパーチャンバー1Aは、外部動力を必要とすることなく自立的に作動し、更には、作動媒体20の蒸発潜熱及び凝縮潜熱を利用することにより、熱源HSからの熱、ここでは、電子部品110からの熱を二次元的に高速で拡散できる。また、ベーパーチャンバー1Aでは、上述したように、ウィック30による液相の作動媒体20の回収効率が向上するため、均熱性能が向上する。更に、ベーパーチャンバー1Aでは、上述したように、筐体10の厚み方向Tの寸法が保たれた状態で蒸気流路VPが広く確保されるため、均熱領域が広く確保され、結果的に、熱伝導率が向上する。以上のことから、ベーパーチャンバー1Aを有する電子機器100により、電子機器100の内部の限られたスペースにおいて、放熱を効果的に実現できる。 As described above, the vapor chamber 1A operates autonomously without requiring external power, and further utilizes the latent heat of vaporization and latent heat of condensation of the working medium 20 to absorb heat from the heat source HS, here , heat from the electronic component 110 can be diffused two-dimensionally at high speed. Furthermore, in the vapor chamber 1A, as described above, the recovery efficiency of the liquid-phase working medium 20 by the wick 30 is improved, so that the heat soaking performance is improved. Furthermore, in the vapor chamber 1A, as described above, since the vapor flow path VP is wide while the dimension in the thickness direction T of the casing 10 is maintained, a wide soaking area is secured, and as a result, Improves thermal conductivity. From the above, the electronic device 100 having the vapor chamber 1A can effectively dissipate heat in a limited space inside the electronic device 100.
 本明細書には、以下の内容が開示されている。 The following contents are disclosed in this specification.
<1>
 厚み方向に対向する第1内面及び第2内面を有し、かつ、内部空間が設けられた筐体と、
 上記筐体の上記内部空間に封入された作動媒体と、
 上記筐体の上記内部空間に設けられたウィックと、
 上記筐体の上記内部空間に設けられ、かつ、上記筐体の上記第1内面と上記ウィックとに上記厚み方向で接する支持体と、を備え、
 上記筐体の上記第1内面には、上記支持体の周囲に位置する窪みが設けられ、
 上記厚み方向から平面視したとき、上記窪みの少なくとも一部は、上記支持体における上記筐体の上記第1内面側の根元に接している、ことを特徴とする熱拡散デバイス。
<1>
a casing having a first inner surface and a second inner surface facing each other in the thickness direction and provided with an internal space;
a working medium sealed in the internal space of the housing;
a wick provided in the internal space of the housing;
a support provided in the internal space of the housing and in contact with the first inner surface of the housing and the wick in the thickness direction,
The first inner surface of the housing is provided with a recess located around the support,
When viewed in plan from the thickness direction, at least a portion of the depression is in contact with a root of the support on the first inner surface side of the casing.
<2>
 上記厚み方向から平面視したときの上記支持体の平面形状は、外縁の一部が内側に凹んだ形状である、<1>に記載の熱拡散デバイス。
<2>
The heat diffusion device according to <1>, wherein the planar shape of the support when viewed from the thickness direction is such that a part of the outer edge is recessed inward.
<3>
 上記厚み方向から平面視したとき、上記窪みの全体は、上記支持体の上記根元に接している、<1>又は<2>に記載の熱拡散デバイス。
<3>
The heat diffusion device according to <1> or <2>, wherein the entire depression is in contact with the base of the support when viewed in plan from the thickness direction.
<4>
 上記厚み方向から平面視したとき、上記窪みは、上記支持体の上記根元の全周にわたって接している、<3>に記載の熱拡散デバイス。
<4>
The heat diffusion device according to <3>, wherein the depression is in contact with the entire circumference of the root of the support when viewed in plan from the thickness direction.
<5>
 上記厚み方向から平面視したとき、上記窪みの内縁は、上記支持体の外縁に沿っている、<1>~<4>のいずれかに記載の熱拡散デバイス。
<5>
The heat diffusion device according to any one of <1> to <4>, wherein the inner edge of the depression is along the outer edge of the support when viewed in plan from the thickness direction.
<6>
 上記厚み方向から平面視したとき、上記窪みの外縁は、上記支持体の外縁に沿っている、<1>~<5>のいずれかに記載の熱拡散デバイス。
<6>
The heat diffusion device according to any one of <1> to <5>, wherein the outer edge of the depression is along the outer edge of the support when viewed in plan from the thickness direction.
<7>
 上記厚み方向に直交する面方向から断面視したときの上記窪みの断面形状は、外縁が直線及び曲線の少なくとも一方で構成された形状である、<1>~<6>のいずれかに記載の熱拡散デバイス。
<7>
According to any one of <1> to <6>, the cross-sectional shape of the recess when viewed in cross section from a surface direction perpendicular to the thickness direction is a shape in which an outer edge is configured of at least one of a straight line and a curved line. Heat spreading device.
<8>
 <1>~<7>のいずれかに記載の熱拡散デバイスを備える、ことを特徴とする電子機器。
<8>
An electronic device comprising the heat diffusion device according to any one of <1> to <7>.
 本発明の熱拡散デバイスは、携帯情報端末等の分野において、広範な用途に使用可能である。本発明の熱拡散デバイスは、例えば、中央処理装置等の熱源の温度を下げ、電子機器の使用時間を延ばすために使用可能であり、スマートフォン、タブレット端末、ノートパソコン、ゲーム機器、ウェアラブルデバイス等に使用可能である。 The heat diffusion device of the present invention can be used for a wide range of applications in the field of mobile information terminals and the like. The heat diffusion device of the present invention can be used, for example, to lower the temperature of a heat source such as a central processing unit and extend the usage time of electronic devices, and can be used in smartphones, tablet terminals, notebook computers, game devices, wearable devices, etc. Available for use.
1A、1B ベーパーチャンバー(熱拡散デバイス)
10 筐体
10a 第1内面
10b 第2内面
11 第1シート
12 第2シート
15 内縁
20 作動媒体
30 ウィック
40 支持体
41 支持体の根元
50 窪み
60 マイクロチャネル
61 突起
70 隔壁
100 電子機器
110 電子部品
120 機器筐体
EP 蒸発部
HS 熱源
L 長さ方向
LP 液体流路
T 厚み方向
VP 蒸気流路
W 幅方向
1A, 1B Vapor chamber (thermal diffusion device)
10 Housing 10a First inner surface 10b Second inner surface 11 First sheet 12 Second sheet 15 Inner edge 20 Working medium 30 Wick 40 Support 41 Root of support 50 Hollow 60 Microchannel 61 Protrusion 70 Partition 100 Electronic device 110 Electronic component 120 Equipment housing EP Evaporation section HS Heat source L Length direction LP Liquid flow path T Thickness direction VP Vapor flow path W Width direction

Claims (8)

  1.  厚み方向に対向する第1内面及び第2内面を有し、かつ、内部空間が設けられた筐体と、
     前記筐体の前記内部空間に封入された作動媒体と、
     前記筐体の前記内部空間に設けられたウィックと、
     前記筐体の前記内部空間に設けられ、かつ、前記筐体の前記第1内面と前記ウィックとに前記厚み方向で接する支持体と、を備え、
     前記筐体の前記第1内面には、前記支持体の周囲に位置する窪みが設けられ、
     前記厚み方向から平面視したとき、前記窪みの少なくとも一部は、前記支持体における前記筐体の前記第1内面側の根元に接している、ことを特徴とする熱拡散デバイス。
    A casing having a first inner surface and a second inner surface facing each other in the thickness direction and provided with an internal space;
    a working medium sealed in the internal space of the housing;
    a wick provided in the internal space of the housing;
    a support provided in the internal space of the housing and in contact with the first inner surface of the housing and the wick in the thickness direction,
    The first inner surface of the housing is provided with a recess located around the support body,
    When viewed in plan from the thickness direction, at least a portion of the depression is in contact with a root of the support on the first inner surface side of the casing.
  2.  前記厚み方向から平面視したときの前記支持体の平面形状は、外縁の一部が内側に凹んだ形状である、請求項1に記載の熱拡散デバイス。 The heat diffusion device according to claim 1, wherein the planar shape of the support when viewed from the thickness direction is such that a part of the outer edge is recessed inward.
  3.  前記厚み方向から平面視したとき、前記窪みの全体は、前記支持体の前記根元に接している、請求項1又は2に記載の熱拡散デバイス。 The heat diffusion device according to claim 1 or 2, wherein the entire depression is in contact with the root of the support when viewed in plan from the thickness direction.
  4.  前記厚み方向から平面視したとき、前記窪みは、前記支持体の前記根元の全周にわたって接している、請求項3に記載の熱拡散デバイス。 The heat diffusion device according to claim 3, wherein the depression is in contact with the entire circumference of the base of the support when viewed in plan from the thickness direction.
  5.  前記厚み方向から平面視したとき、前記窪みの内縁は、前記支持体の外縁に沿っている、請求項1~4のいずれかに記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 1 to 4, wherein an inner edge of the depression is along an outer edge of the support when viewed in plan from the thickness direction.
  6.  前記厚み方向から平面視したとき、前記窪みの外縁は、前記支持体の外縁に沿っている、請求項1~5のいずれかに記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 1 to 5, wherein an outer edge of the depression is along an outer edge of the support when viewed in plan from the thickness direction.
  7.  前記厚み方向に直交する面方向から断面視したときの前記窪みの断面形状は、外縁が直線及び曲線の少なくとも一方で構成された形状である、請求項1~6のいずれかに記載の熱拡散デバイス。 The thermal diffusion according to any one of claims 1 to 6, wherein the cross-sectional shape of the depression when viewed in cross section from a plane direction perpendicular to the thickness direction is a shape in which an outer edge is configured of at least one of a straight line and a curved line. device.
  8.  請求項1~7のいずれかに記載の熱拡散デバイスを備える、ことを特徴とする電子機器。 An electronic device comprising the heat diffusion device according to any one of claims 1 to 7.
PCT/JP2023/023790 2022-08-08 2023-06-27 Heat dissipation device and electronic apparatus WO2024034279A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-126340 2022-08-08
JP2022126340 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034279A1 true WO2024034279A1 (en) 2024-02-15

Family

ID=89851377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023790 WO2024034279A1 (en) 2022-08-08 2023-06-27 Heat dissipation device and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2024034279A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026833A1 (en) * 2005-09-01 2007-03-08 Fuchigami Micro Co., Ltd. Heat pipe and method of manufacturing the same
WO2018198353A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
WO2019235552A1 (en) * 2018-06-08 2019-12-12 国立大学法人名古屋大学 Device, heat exchanger, and evaporative body storage container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026833A1 (en) * 2005-09-01 2007-03-08 Fuchigami Micro Co., Ltd. Heat pipe and method of manufacturing the same
WO2018198353A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber
WO2019235552A1 (en) * 2018-06-08 2019-12-12 国立大学法人名古屋大学 Device, heat exchanger, and evaporative body storage container

Similar Documents

Publication Publication Date Title
JP6702524B1 (en) Vapor chamber
US20210136955A1 (en) Vapor chamber, heatsink device, and electronic device
WO2019022214A1 (en) Wick structure and heat pipe accommodating wick structure
WO2021157506A1 (en) Vapor chamber
WO2023238626A1 (en) Heat diffusion device and electronic appliance
TWI644075B (en) Heat pipe
WO2024034279A1 (en) Heat dissipation device and electronic apparatus
WO2023145397A1 (en) Thermal diffusion device and electronic apparatus
WO2023171408A1 (en) Thermal diffusion device and electronic apparatus
WO2024142975A1 (en) Thermal diffusion device and electronic apparatus
WO2023021953A1 (en) Thermal diffusion device and electronic apparatus
WO2023074645A1 (en) Thermal diffusion device and electronic apparatus
WO2023286577A1 (en) Thermal diffusion device and electronic apparatus
JP7311057B2 (en) Heat spreading devices and electronics
WO2022230296A1 (en) Heat dissipation device
WO2023026896A1 (en) Thermal diffusion device
WO2022097417A1 (en) Heat spreading device
JP7120494B1 (en) heat spreading device
JP7260062B2 (en) heat spreading device
WO2022230295A1 (en) Thermal diffusion device
WO2022201918A1 (en) Thermal diffusion device and electronic apparatus
WO2022107479A1 (en) Heat spreading device
WO2023238625A1 (en) Heat spreading device and electronic apparatus
WO2023182029A1 (en) Heat diffusing device, and electronic apparatus
JP7464197B2 (en) Heat Diffusion Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852263

Country of ref document: EP

Kind code of ref document: A1