WO2023286577A1 - Thermal diffusion device and electronic apparatus - Google Patents

Thermal diffusion device and electronic apparatus Download PDF

Info

Publication number
WO2023286577A1
WO2023286577A1 PCT/JP2022/025486 JP2022025486W WO2023286577A1 WO 2023286577 A1 WO2023286577 A1 WO 2023286577A1 JP 2022025486 W JP2022025486 W JP 2022025486W WO 2023286577 A1 WO2023286577 A1 WO 2023286577A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary structure
thickness direction
housing
view
plan
Prior art date
Application number
PCT/JP2022/025486
Other languages
French (fr)
Japanese (ja)
Inventor
竜宏 沼本
浩士 福田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023286577A1 publication Critical patent/WO2023286577A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Definitions

  • the present invention relates to heat diffusion devices and electronic equipment.
  • Graphite sheets and the like are often used as materials for heat dissipation, but their heat transfer capacity is not sufficient, so the use of various materials for heat dissipation is being considered.
  • the use of a vapor chamber, which is a planar heat pipe, is being studied because it can diffuse heat very effectively.
  • a heating part to which heat is transferred from the outside is provided in a part of a thin plate-shaped main body, and the heat transferred to the heating part is diffused from the heating part to other parts of the main body.
  • a plurality of hollow passages are formed inside the main body portion so as to pass through the heating portion, and the hollow passages communicate with each other through the heating portion.
  • a working fluid that radiates heat and condenses is enclosed, and a wick that generates a capillary force when the liquid-phase working fluid permeates inside each hollow passage, and vapor of the working fluid flows inside each hollow passage.
  • a part of each wick is positioned in the heating part, and each steam channel formed inside each hollow channel is in communication with each other in the heating part.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a heat diffusion device capable of improving the maximum amount of heat transport. Another object of the present invention is to provide an electronic device having the above heat diffusion device.
  • the heat diffusion device of the present invention comprises a housing having, in an internal space, a liquid transporting section and an evaporating section connected to one end of the liquid transporting section in plan view from the thickness direction; an enclosed working medium; a first capillary structure provided in the internal space of the housing and overlapping the liquid transporting portion in plan view from the thickness direction; and provided in the internal space of the housing, and a second capillary structure that overlaps the evaporating portion when viewed in plan from the thickness direction, wherein the ratio of the first capillary structure to the area of the internal space of the housing when viewed in plan from the thickness direction.
  • the ratio of the area of the arrangement region is 50% or less, and the ratio of the area of the arrangement region of the second capillary structure overlapping the evaporator with respect to the area of the evaporator in plan view from the thickness direction is It is characterized by being 50% or more.
  • An electronic device of the present invention includes the heat diffusion device of the present invention and an electronic component attached to an outer wall surface of the housing of the heat diffusion device, and when viewed in plan from the thickness direction, the electronic component is , overlapping the evaporator of the housing.
  • the present invention it is possible to provide a heat diffusion device capable of improving the maximum amount of heat transport. Further, according to the present invention, it is possible to provide electronic equipment having the above heat diffusion device.
  • FIG. 1 is a schematic perspective view showing an example of a heat diffusion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic plan view showing the internal structure of an example of the heat diffusion device of Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a cross section along line segment A1-A2 of the heat diffusion device shown in FIG.
  • FIG. 4 is a schematic cross-sectional view showing a cross section along line segment B1-B2 of the heat diffusion device shown in FIG.
  • FIG. 5 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 2 of the present invention.
  • FIG. 1 is a schematic perspective view showing an example of a heat diffusion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic plan view showing the internal structure of an example of the heat diffusion device of Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing
  • FIG. 6 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 5 of the present invention.
  • 9 is a schematic cross-sectional view showing a cross section along line A3-A4 of the heat diffusion device shown in FIG. 8.
  • FIG. 10 is a schematic cross-sectional view showing a cross section along line segment B3-B4 of the heat diffusion device shown in FIG.
  • FIG. 10 is a schematic cross-sectional view showing a cross section along line segment B3-B4 of the heat diffusion device shown in FIG.
  • FIG. 11 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 6 of the present invention.
  • 12 is a schematic cross-sectional view showing a cross section along line A5-A6 of the heat diffusion device shown in FIG. 11.
  • FIG. 13 is a schematic cross-sectional view showing a cross section along line B5-B6 of the heat diffusion device shown in FIG. 11.
  • FIG. 14 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 7 of the present invention.
  • 15 is a schematic cross-sectional view showing a cross section along line A7-A8 of the heat diffusion device shown in FIG. 14.
  • FIG. 16 is a schematic cross-sectional view showing a cross section along line B7-B8 of the heat diffusion device shown in FIG. 14.
  • FIG. 17 is a schematic perspective view showing an example of the electronic device of the present invention.
  • the heat diffusion device of the present invention and the electronic device of the present invention will be described below. It should be noted that the present invention is not limited to the following configurations, and may be modified as appropriate without departing from the gist of the present invention.
  • the present invention also includes a combination of a plurality of individual preferred configurations described below.
  • a vapor chamber is shown as an example of the heat diffusion device of the present invention.
  • the heat diffusion device of the present invention can also be applied to heat diffusion devices such as heat pipes.
  • Heat diffusion device The heat spreading device of the present invention is described below.
  • the heat diffusion device of the present invention comprises a housing having, in an internal space, a liquid transporting section and an evaporating section connected to one end of the liquid transporting section in plan view from the thickness direction; an enclosed working medium; a first capillary structure provided in the internal space of the housing and overlapping the liquid transporting portion in plan view from the thickness direction; and provided in the internal space of the housing, and a second capillary structure that overlaps with the evaporator in plan view from the thickness direction.
  • FIG. 1 is a schematic perspective view showing an example of a heat diffusion device according to Embodiment 1 of the present invention.
  • a schematic perspective view showing an example of a heat diffusion device according to another embodiment, which will be described later, is also the same as FIG.
  • the housing 10 is hermetically sealed and has a hollow structure.
  • a heat source HS which is a heating element, is attached to the outer wall surface of the housing 10 .
  • the heat source HS includes, for example, electronic components.
  • the length direction, thickness direction, and width direction are defined by L, T, and W, respectively, as shown in FIG.
  • the length direction L, the thickness direction T, and the width direction W are orthogonal to each other.
  • the dimension in the length direction L, the dimension in the thickness direction T, and the dimension in the width direction W are also referred to as length, thickness, and width, respectively.
  • the vapor chamber 1a is planar as a whole. That is, the housing 10 is planar as a whole.
  • the planar shape includes a plate shape and a sheet shape, and in the vapor chamber 1a and the housing 10 shown in FIG.
  • it means a shape whose length and width are 10 times or more, preferably 100 times or more, the thickness.
  • the length, thickness, and width of the vapor chamber 1a that is, the length, thickness, and width of the housing 10 are defined as the maximum dimensions in the length direction L, thickness direction T, and width direction W, respectively. be done.
  • the size of the vapor chamber 1a that is, the size of the housing 10 is not particularly limited.
  • the length and width of the vapor chamber 1a that is, the length and width of the housing 10 are preferably 5 mm or more and 500 mm or less, more preferably 20 mm or more and 300 mm or less, and still more preferably 50 mm or more and 200 mm or less. .
  • the length and width of the vapor chamber 1a that is, the length and width of the housing 10 may be the same or different.
  • the thickness of the vapor chamber 1a that is, the thickness of the housing 10 is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the housing 10 is preferably composed of a first sheet 11 and a second sheet 12 whose outer edges are joined together.
  • the constituent materials of the first sheet 11 and the second sheet 12 are not particularly limited as long as they have properties suitable for the vapor chamber, such as thermal conductivity, strength, softness, and flexibility.
  • the constituent materials of the first sheet 11 and the second sheet 12 are preferably metals such as copper, nickel, aluminum, magnesium, titanium, iron, alloys containing at least one of these metals as a main component, and the like. Copper is preferred.
  • the constituent materials of the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
  • Examples of methods for joining the outer edges of the first sheet 11 and the second sheet 12 include laser welding, resistance welding, diffusion bonding, brazing, TIG welding (tungsten-inert gas welding), ultrasonic bonding, and resin sealing. stop, etc. Among them, laser welding, resistance welding, or brazing is preferred.
  • the thicknesses of the first sheet 11 and the second sheet 12 are preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 30 ⁇ m or more and 100 ⁇ m or less, and still more preferably 40 ⁇ m or more and 60 ⁇ m or less.
  • the thicknesses of the first sheet 11 and the second sheet 12 may be the same or different.
  • the thicknesses of the first sheet 11 and the second sheet 12 may be the same over the entire area, or may be partially different.
  • the shapes of the first sheet 11 and the second sheet 12 are not particularly limited.
  • the first sheet 11 may have a flat plate shape with a constant thickness
  • the second sheet 12 may have a shape in which the outer edge portion is thicker than the portions other than the outer edge portion.
  • the first sheet 11 has a flat plate shape with a constant thickness
  • the second sheet 12 has a constant thickness, and has a shape in which a portion other than the outer edge portion is outwardly convex with respect to the outer edge portion.
  • the outer edge of the vapor chamber 1a that is, the outer edge of the housing 10 is provided with a recess. If the outer edge of the vapor chamber 1a, that is, the outer edge of the housing 10 is provided with a dent, the dent of the outer edge can be used to facilitate mounting of the vapor chamber 1a on an electronic device. Other parts can be placed.
  • the planar shape of the vapor chamber 1a in a plan view from the thickness direction T includes, for example, polygons such as triangles and rectangles, circles, ovals, and combinations thereof. mentioned. Further, the planar shape of the vapor chamber 1a, that is, the planar shape of the housing 10 may be L-shaped, C-shaped (U-shaped), step-shaped, or the like. Further, a through hole may be provided in the thickness direction T of the housing 10 .
  • the planar shape of the vapor chamber 1a, that is, the planar shape of the housing 10 may be a shape according to the use of the vapor chamber, may be a shape according to the mounting location of the vapor chamber, or may be a shape in the vicinity. It may also be shaped according to other parts present.
  • FIG. 2 is a schematic plan view showing the internal structure of an example of the heat diffusion device of Embodiment 1 of the present invention. More specifically, FIG. 2 shows a state in which the vapor chamber 1a shown in FIG. 1 is seen through from the second sheet 12 side.
  • FIG. 3 is a schematic cross-sectional view showing a cross section along line segment A1-A2 of the heat diffusion device shown in FIG.
  • FIG. 4 is a schematic cross-sectional view showing a cross section along line segment B1-B2 of the heat diffusion device shown in FIG. 3 and 4, the second sheet 12 shown in FIG. 1 is omitted.
  • the vapor chamber 1a shown in FIGS. 2, 3, and 4 has a housing 10, a working medium 20, a first capillary structure 30, and a second capillary structure 40.
  • the housing 10 has a liquid transporting part LP and an evaporating part EP in its internal space. Moreover, the working medium 20 is enclosed in the internal space of the housing 10 .
  • the liquid transporting part LP functions as a part that transports the liquid-phase working medium 20 to the evaporating part EP.
  • a pair of wall portions 60 projecting in the thickness direction T from the inner surface 10a of the housing 10, here, a pair of wall portions 60 projecting in the thickness direction T from the inner surface 11a of the first sheet 11 are facing each other, It extends in the in-plane direction (direction including the length direction L and the width direction W) perpendicular to the thickness direction T, and the liquid transport part LP is provided in the region between the pair of wall parts 60 .
  • the liquid transport part LP extends linearly in plan view from the thickness direction T.
  • the liquid transporting portion LP may extend linearly like the three liquid transporting portions LP shown in FIG. 2, or may extend in a curved shape. Further, the liquid transporting portion LP may be curved in the middle like the left and right liquid transporting portions LP shown in FIG. It does not have to be bent in the middle like
  • the number of liquid transport parts LP may be only one, or may be plural (three in FIG. 2).
  • the evaporating part EP is a part that evaporates the transported liquid-phase working medium 20 to change it into a vapor-phase working medium 20 . More specifically, the evaporating part EP corresponds to a portion of the internal space of the housing 10 that is in the vicinity of the heat source HS shown in FIG. 1 and that is heated by the heat source HS.
  • the evaporating part EP is connected to one end of the liquid transporting part LP in plan view from the thickness direction T.
  • one end of each of the three liquid transporting parts LP is connected to the evaporating part EP.
  • the position where one end of the liquid transporting part LP is connected to the evaporating part EP is not particularly limited.
  • the number of evaporators EP may be only one as shown in FIG. 2, or may be plural.
  • a vapor flow path VP is provided in a region other than the liquid transporting section LP and the evaporating section EP.
  • the working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the housing 10 .
  • Examples of the working medium 20 include water, alcohols, CFC alternatives, and the like.
  • the working medium 20 is preferably an aqueous compound, particularly preferably water.
  • the first capillary structure 30 and the second capillary structure 40 are provided in the internal space of the housing 10 .
  • a capillary structure means a structure having a capillary structure that can move a working medium by capillary force, and is also called a wick.
  • the capillary structure may be a known structure used in conventional heat diffusion devices (vapor chambers, etc.), for example, fine structures having unevenness such as pores, protrusions, and grooves.
  • the first capillary structure 30 is provided in the internal space of the housing 10 and overlaps the liquid transporting part LP in plan view from the thickness direction T.
  • the first capillary structure 30 extends linearly from one end on the evaporating part EP side to the other end on the opposite side to the evaporating part EP so as to overlap the liquid transporting part LP in plan view from the thickness direction T. extended.
  • the first capillary structure 30 is in contact with the wall portion 60 that defines the liquid transport portion LP.
  • the first capillary structure 30 functions as a liquid retaining section that sucks up and retains the liquid-phase working medium 20 transported by the liquid transporting section LP by capillary force, while the sucked-up liquid-phase working medium 20 is transferred to the evaporating section EP. It also functions as a liquid transport part that transports to.
  • the ratio of the area of the arrangement region of the first capillary structure to the area of the internal space of the housing in plan view from the thickness direction is 50% or less.
  • the ratio of the area of the arrangement region CR1 of the first capillary structure 30 to the area of the internal space of the housing 10 in plan view from the thickness direction T is 50% or less.
  • the area of the internal space of the housing 10 in plan view from the thickness direction T corresponds to the area of the entire internal space of the housing 10 including the liquid transporting portion LP, the evaporating portion EP, and the vapor flow path VP.
  • the ratio of the area of the arrangement region CR1 of the first capillary structure 30 to the area of the internal space of the housing 10 in a plan view from the thickness direction T. is greater than 0%.
  • the area of the arrangement region CR1 of the first capillary structure 30 in plan view from the thickness direction T is the total area of these arrangement regions. Applicable.
  • the ratio of the area of the arrangement region CR1 of the first capillary structure 30 to the area of the internal space of the housing 10 is 50% or less.
  • a wider vapor flow path VP is ensured than in the case where the first capillary structure 30 extends over the entire internal space of the housing 10 .
  • the uniform heat performance of the vapor chamber 1a is improved.
  • the second capillary structure 40 is provided in the internal space of the housing 10 and overlaps the evaporating part EP in plan view from the thickness direction T. In FIG. 2 , in plan view from the thickness direction T, the entire second capillary structure 40 overlaps the evaporator EP.
  • the second capillary structure 40 functions as a liquid flow path that spreads the liquid-phase working medium 20 transported to the evaporator EP into the evaporator EP.
  • the ratio of the area of the second capillary structure overlapping the evaporator to the area of the evaporator is 50% or more in plan view from the thickness direction.
  • the ratio of the area of the second capillary structure 40 overlapping the evaporator EP to the area of the evaporator EP is 50% or more.
  • the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporating part EP in plan view from the thickness direction T corresponds to the area of the region overlapping the evaporating part EP in the second capillary structure 40 as a whole. . Therefore, in plan view from the thickness direction T, the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporator EP to the area of the evaporator EP is 100% or less.
  • the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporator EP to the area of the evaporator EP is 50% or more.
  • the liquid-phase working medium 20 is easily spread over the entire evaporating part EP by the second capillary structure 40 .
  • the heat transfer efficiency from the heat source HS to the liquid-phase working medium 20 is likely to be improved, and the evaporation heat resistance is likely to be reduced.
  • the maximum heat transfer amount of the vapor chamber 1a is improved.
  • the area of the entire second capillary structure 40 may be larger than the area of the evaporating part EP.
  • the ratio of the area of the entire second capillary structure 40 to the area of the evaporating portion EP may be greater than 100%.
  • the area of the entire second capillary structure 40 may be smaller than the area of the evaporation part EP.
  • the ratio of the area of the entire second capillary structure 40 to the area of the evaporating portion EP may be less than 100%.
  • the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporation part EP to the area of the evaporation part EP in plan view from the thickness direction T is 50% or more
  • the ratio of the area of the entire second capillary structure 40 to the area of the evaporating part EP is 50% or more.
  • the area of the internal space of the housing, the area of the first capillary structure, the area of the evaporating section, and the area of the second capillary structure in plan view from the thickness direction are each: , is determined by image analysis of the internal structure of the vapor chamber as shown in FIG.
  • the first capillary structure preferably contains a porous body.
  • the first capillary structure 30 preferably includes a porous body 31 in the vapor chamber 1a. 2 and 3, a porous body 31 is provided as the first capillary structure 30.
  • a porous body 31 is provided as the first capillary structure 30.
  • FIGS. the porous body 31 as the first capillary structure 30 is shown in a see-through state.
  • porous body 31 examples include metal porous membranes, meshes, non-woven fabrics, sintered bodies, and other porous bodies formed by etching or metal processing.
  • meshes, non-woven fabrics, and sintered bodies are also included in porous bodies.
  • meshes examples include metal meshes, resin meshes, and surface-coated meshes of these. Among them, copper mesh, stainless steel (SUS) mesh, and polyester mesh are preferable.
  • sintered bodies include metal porous sintered bodies and ceramic porous sintered bodies. Among them, a porous sintered body of copper or nickel is preferable.
  • porous bodies examples include metal porous bodies, ceramic porous bodies, resin porous bodies, and the like.
  • the first capillary structure 30 may include a fiber bundle in which a plurality of fibers are linearly bundled.
  • the first capillary structure 30 preferably includes a woven fiber bundle. In a woven fiber bundle in which a plurality of fibers are woven, irregularities are likely to exist on the surface. easier to transport to
  • fibers that make up the fiber bundle include metal wires such as copper, aluminum, and stainless steel, and non-metal wires such as carbon fibers and glass fibers.
  • metal wires such as copper, aluminum, and stainless steel
  • non-metal wires such as carbon fibers and glass fibers.
  • a metal wire is preferable because of its high thermal conductivity.
  • a fiber bundle can be obtained by bundling about 200 copper wires with a diameter of about 0.03 mm.
  • the second capillary structure includes a plurality of protrusions provided on the inner surface of the housing.
  • the second capillary structure 40 preferably includes a plurality of protrusions 41a provided on the inner surface 10a of the housing 10.
  • the plurality of protrusions 41a protrude in the thickness direction T from the inner surface 10a of the housing 10, here, the inner surface 11a of the first sheet 11.
  • the second capillary structure 40 includes a plurality of protrusions 41a, so that the liquid-phase working medium 20 transported to the evaporator EP flows through the plurality of protrusions 41a into the evaporator EP. spread to Furthermore, when pressure is applied to the vapor chamber 1a in the thickness direction T, the plurality of protrusions 41a function as supports for maintaining the shape of the evaporator EP, resulting in a liquid flow path in the evaporator EP. is prevented from collapsing.
  • the plurality of protrusions 41a are preferably integrated with the housing 10, here the first sheet 11, as shown in FIG.
  • the plurality of protrusions 41a are formed by etching the inner surface 11a of the first sheet 11, for example.
  • the constituent material of the plurality of projections 41 a is preferably the same as the constituent material of the housing 10 , here, the constituent material of the first sheet 11 .
  • the constituent materials of the plurality of protrusions 41a are preferably the same, but may be different from each other, or may be partially different.
  • the lengths of the plurality of protrusions 41a may be the same as each other, may be different from each other, or may be partially different.
  • the widths of the plurality of protrusions 41a may be the same as each other, may be different from each other, or may be partially different.
  • the areas of the plurality of projections 41a in plan view from the thickness direction T may be the same, different, or partly different.
  • the thicknesses of the plurality of protrusions 41a may be the same as each other, may be different from each other, or may be partially different.
  • the planar shape of the plurality of protrusions 41a in plan view from the thickness direction T includes, for example, a polygonal shape such as a rectangle, a circular shape, an elliptical shape, and a shape combining these.
  • planar shapes of the plurality of protrusions 41a may be the same as each other, may be different from each other, or may be partially different.
  • the plurality of protrusions 41a be evenly arranged so that the distance between the plurality of protrusions 41a is constant.
  • the plurality of protrusions 41a are preferably evenly arranged in a partial area of the second capillary structure 40, and more preferably evenly arranged over the entire area.
  • the second capillary structure 40 is present in addition to the plurality of protrusions 41a, on a portion of the inner surface 10a of the housing 10 present around each protrusion 41a, here present around each protrusion 41a.
  • a so-called microchannel is formed, which functions as a liquid flow path that spreads the liquid-phase working medium 20 into the evaporator EP. That is, in the vapor chamber 1a, the arrangement region CR2 of the second capillary structure 40 overlapping the evaporating part EP is composed of a plurality of projections 41a and a part of the inner surface 10a of the housing 10 around each projection 41a.
  • the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporating part EP to the area of the evaporating part EP in plan view from the thickness direction T is 100%.
  • a wall projecting from the inner surface of the housing in the thickness direction is present around the second capillary structure in plan view from the thickness direction.
  • a wall portion 61 protruding in the thickness direction T from the inner surface 10a of the housing 10 exists around the second capillary structure 40 in plan view from the thickness direction T. That is, in FIG. 2, it is preferable that a wall portion 61 protruding in the thickness direction T from the inner surface 10a of the housing 10 exists around the evaporating portion EP in plan view from the thickness direction T. As shown in FIG. In this case, the liquid-phase working medium 20 that has been transported to the evaporator EP is easily retained in the evaporator EP without spreading around the evaporator EP.
  • the heat transfer efficiency from the heat source HS to the liquid-phase working medium 20 is more likely to be improved, and the evaporation heat resistance is more likely to be reduced.
  • the maximum heat transfer amount of the vapor chamber 1a is further improved.
  • the thickness of the wall portion 60 and the wall portion 61 may be the same or different.
  • the thickness of the projection 41a (or the second capillary structure 40) and the wall portion 61 may be the same or different.
  • the wall portion 60 and the wall portion 61 may be integrated or joined.
  • the heat diffusion device of the present invention further includes a third capillary structure provided in the internal space of the housing and overlapping the evaporating section in a plan view from the thickness direction, wherein the third capillary structure comprises:
  • the capillary force is greater than that of the second capillary structure.
  • the vapor chamber 1a preferably further has a third capillary structure 50.
  • the third capillary structure 50 is preferably provided in the internal space of the housing 10 and overlaps the evaporating part EP in plan view from the thickness direction T.
  • the third capillary structure 50 overlaps the entire second capillary structure 40 in plan view from the thickness direction T.
  • the third capillary structure 50 is in contact with the protrusion 41a that constitutes the second capillary structure 40.
  • the third capillary structure 50 functions as a liquid retaining part that sucks up and retains the liquid-phase working medium 20 spread by the second capillary structure 40 by capillary force, and the sucked liquid-phase working medium 20 is absorbed by the evaporating part. It also functions as a liquid flow path extending in the EP. Therefore, by combining the second capillary structure 40 and the third capillary structure 50, the liquid-phase working medium 20 can be efficiently spread over the entire evaporation part EP.
  • the third capillary structure 50 preferably has a greater capillary force than the second capillary structure 40.
  • the third capillary structure 50 can more easily suck up the liquid-phase working medium 20 spread by the second capillary structure 40, so that the liquid-phase working medium 20 is removed by the third capillary structure 50 to the evaporation part EP. Easier to spread inside.
  • the magnitude of the capillary force of the capillary structure is related to the size of the cross-sectional area of the liquid flow path through which the liquid-phase working medium passes in the capillary structure when viewed in cross section along the thickness direction of the heat diffusion device. That is, in a cross-sectional view along the thickness direction T of the vapor chamber 1a as shown in FIG. It is preferable that the cross-sectional area of the region is small.
  • the third capillary structure preferably contains a porous body.
  • the third capillary structure 50 preferably includes a porous body 51 in the vapor chamber 1a. 2 and 4, a porous body 51 is provided as the third capillary structure 50.
  • a porous body 51 is provided as the third capillary structure 50.
  • FIGS. the porous body 51 as the third capillary structure 50 is shown in a see-through state.
  • porous body 51 for example, those similar to the porous body 31 can be used.
  • the constituent materials of the porous body 31 and the porous body 51 may be the same as each other, or may be different from each other.
  • the thickness of the porous body 31 (or the first capillary structure 30) and the thickness of the porous body 51 (or the third capillary structure 50) may be the same or different.
  • the porous body 31 (or the first capillary structure 30) and the porous body 51 (or the third capillary structure 50) may be integrated or joined.
  • the third capillary structure 50 may include a fiber bundle obtained by linearly bundling the plurality of fibers described above.
  • the ratio of the area of the arrangement region CR3 of the third capillary structure 50 overlapping the evaporator EP to the area of the evaporator EP is preferably 50% or more.
  • the area of the arrangement region CR3 of the third capillary structure 50 overlapping the evaporating part EP in plan view from the thickness direction T corresponds to the area of the region overlapping the evaporating part EP in the entire third capillary structure 50. . Therefore, in plan view from the thickness direction T, the ratio of the area of the arrangement region CR3 of the third capillary structure 50 overlapping the evaporator EP to the area of the evaporator EP is 100% or less.
  • the ratio of the area of the arrangement region CR3 of the third capillary structure 50 overlapping the evaporation part EP to the area of the evaporation part EP is 50% or more, so that the second capillary structure 40 combined with the action of , the liquid-phase working medium 20 transported to the evaporator EP is more likely to spread throughout the evaporator EP.
  • the heat transfer efficiency from the heat source HS to the liquid-phase working medium 20 is more likely to be improved, and the evaporation heat resistance is more likely to be reduced.
  • the maximum heat transfer amount of the vapor chamber 1a is further improved.
  • the area of the entire third capillary structure 50 may be larger than the area of the evaporating part EP. That is, in a plan view from the thickness direction T, the ratio of the area of the entire third capillary structure 50 to the area of the evaporating portion EP may be greater than 100%. In this case, the ratio of the area of the entire third capillary structure 50 to the area of the evaporating portion EP in plan view from the thickness direction T is preferably 120% or less.
  • the area of the entire third capillary structure 50 may be smaller than the area of the evaporating part EP.
  • the ratio of the area of the entire third capillary structure 50 to the area of the evaporating portion EP may be less than 100%.
  • the ratio of the area of the entire third capillary structure 50 to the area of the evaporating portion EP is preferably 50% or more.
  • the vapor chamber 1a operates as follows.
  • the liquid-phase working medium 20 evaporates by absorbing heat from the heat source HS in the evaporating section EP, and changes into the gas-phase working medium 20 . Then, the vapor-phase working medium 20 generated in the evaporator EP passes through the vapor passage VP to a place away from the evaporator EP (for example, near the end of the liquid transporter LP opposite to the evaporator EP). It moves, is cooled there, and changes into the working medium 20 of a liquid phase. After that, the liquid-phase working medium 20 is transported to the evaporator EP by the liquid transporter LP and the first capillary structure 30 .
  • the working medium 20 circulates while undergoing a gas-liquid phase change by repeating the above process.
  • the heat from the heat source HS is absorbed as latent heat of vaporization that changes the liquid-phase working medium 20 into the vapor-phase working medium 20 in the evaporator EP, and then the vapor-phase operation occurs at a location away from the evaporator EP. It is released as latent heat of condensation that transforms the medium 20 into a liquid phase working medium 20 .
  • the vapor chamber 1a operates autonomously without the need for external power, and further utilizes the latent heat of vaporization and latent heat of condensation of the working medium 20 to transfer heat from the heat source HS two-dimensionally. can spread rapidly.
  • the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporation part EP to the area of the evaporation part EP in plan view from the thickness direction T is 50% or more, Increases maximum heat transfer.
  • the second capillary structure is provided in the region overlapping with the evaporator. It is not provided in the extending direction of the liquid transport section.
  • the heat spreading device of Embodiment 2 of the present invention is the same as the heat spreading device of Embodiment 1 of the present invention except for this point.
  • FIG. 5 is a schematic plan view showing the internal structure of an example of the heat diffusion device of Embodiment 2 of the present invention.
  • the second capillary structure 40 in a plan view from the thickness direction T, the second capillary structure 40, more specifically, a plurality of protrusions 41a, are located in the region overlapping the evaporating part EP in the liquid transporting part LP. Not provided in the extension direction.
  • the extending direction of the liquid transporting part LP is such that, in plan view from the thickness direction T, the liquid transporting part LP extends from one end of the liquid transporting part LP connected to the evaporating part EP to a region overlapping the evaporating part EP. It corresponds to the direction assumed in the case. That is, in FIG. 5, in a planar view from the thickness direction T, the second capillary structure 40 extends in the length direction L and the width direction W in the region overlapping the evaporation portion EP. not provided for.
  • the second capillary structure 40 Since the second capillary structure 40 is not provided in the extending direction of the liquid transporting part LP, the flow path resistance of the liquid flow path in the evaporating part EP tends to decrease. As a result, coupled with the action of the second capillary structure 40, the liquid-phase working medium 20 transported to the evaporator EP is more likely to spread throughout the evaporator EP.
  • the second capillary structure 40 is not entirely provided in the extending direction of the liquid transporting part LP as shown in FIG. Alternatively, it may not be provided partially in the extending direction of the liquid transporting portion LP.
  • the second capillary structure 40 is not provided partially in the extending direction of the liquid transporting part LP, the second capillary structure 40 is provided from the viewpoint of reducing the flow resistance of the liquid flow path in the evaporating part EP. is preferably connected to one end of the liquid transporting part LP.
  • Embodiment 3 In the heat diffusion device of Embodiment 3 of the present invention, unlike the heat diffusion device of Embodiment 2 of the present invention, when viewed from above in the thickness direction, the plurality of protrusions constituting the second capillary structure are linear. shape.
  • the heat spreading device of Embodiment 3 of the present invention is otherwise similar to the heat spreading device of Embodiment 2 of the present invention.
  • FIG. 6 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 3 of the present invention.
  • the second capillary structure 40 in plan view from the thickness direction T, a plurality of protrusions 41b forming the second capillary structure 40 extend linearly. Thereby, the second capillary structure 40 constitutes a so-called microchannel. Since the capillary force of the microchannel is large, the second capillary structure 40 constitutes the microchannel, and in the vapor chamber 1c, the liquid-phase working medium 20 transported to the evaporator EP is spread throughout the entire evaporator EP. It becomes easier to get around.
  • the second capillary structure 40 is not provided in the extending direction of the liquid transporting part LP in the region overlapping the evaporating part EP.
  • the flow path resistance of the liquid flow path in the evaporator EP is likely to be reduced, so that the liquid-phase working medium 20 transported to the evaporator EP can more easily spread throughout the entire evaporator EP.
  • the plurality of protrusions 41b are arranged in the region overlapping the evaporator part EP in a plan view from the thickness direction T, as shown in FIG. preferably extend radially as shown in FIG. More specifically, in a plan view from the thickness direction T, the plurality of projections 41b linearly extend from the region where the second capillary structure 40 is not provided to the edge in the region overlapping the evaporating portion EP. preferably.
  • the plurality of projections 41b preferably extends in a direction intersecting the length direction L and the width direction W as shown in FIG. , or may extend in the width direction W.
  • the second capillary structure constitutes a meandering flow path in plan view from the thickness direction.
  • the heat spreading device of Embodiment 4 of the present invention is the same as the heat spreading device of Embodiment 1 of the present invention except for this point.
  • FIG. 7 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 4 of the present invention.
  • the second capillary structure 40 forms a meandering flow path. More specifically, the second capillary structure 40 includes a wall portion 62 protruding in the thickness direction T from the inner surface 10a of the housing 10, here, the inner surface 11a of the first sheet 11. The enclosed area is configured to meander.
  • the liquid-phase working medium 20 transported to the evaporator EP spreads in the evaporator EP through the meandering flow path formed by the second capillary structure 40 .
  • the arrangement region CR2 of the second capillary structure 40 that overlaps the evaporating section EP does not include the region R that does not contribute to forming the meandering flow path. That is, in the vapor chamber 1d, the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporator EP to the area of the evaporator EP in plan view from the thickness direction T is 50% or more. Yes, but not 100%.
  • the wall portion 61 and the wall portion 62 may be integrated or joined.
  • Embodiment 5 In the heat diffusion device of Embodiment 5 of the present invention, unlike the heat diffusion device of Embodiment 1 of the present invention, when viewed from above in the thickness direction, the inner surface of the housing is provided around the second capillary structure. There is no wall protruding from the thickness direction.
  • the heat spreading device of Embodiment 5 of the present invention is the same as the heat spreading device of Embodiment 1 of the present invention except for this point.
  • FIG. 8 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 5 of the present invention.
  • 9 is a schematic cross-sectional view showing a cross section along line A3-A4 of the heat diffusion device shown in FIG. 8.
  • FIG. 10 is a schematic cross-sectional view showing a cross section along line segment B3-B4 of the heat diffusion device shown in FIG.
  • the liquid-phase working medium 20 transported to the evaporating part EP may spread around the evaporating part EP compared to the vapor chamber 1a or the like in which the wall part 61 is present. And compared to the vapor chamber 1f shown in FIG. 13, the liquid-phase working medium 20 spreads easily in the evaporation part EP.
  • the second capillary structure includes a porous body.
  • the heat spreading device of Embodiment 6 of the present invention is the same as the heat spreading device of Embodiment 1 of the present invention except for this point.
  • FIG. 11 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 6 of the present invention.
  • 12 is a schematic cross-sectional view showing a cross section along line A5-A6 of the heat diffusion device shown in FIG. 11.
  • FIG. 13 is a schematic cross-sectional view showing a cross section along line B5-B6 of the heat diffusion device shown in FIG. 11.
  • FIG. 12 is a schematic cross-sectional view showing a cross section along line A5-A6 of the heat diffusion device shown in FIG. 11.
  • FIG. 13 is a schematic cross-sectional view showing a cross section along line B5-B6 of the heat diffusion device shown in FIG. 11.
  • the second capillary structure 40 includes a porous body 41. 11 and 13, a porous body 41 is provided as the second capillary structure 40.
  • FIGS. 11 and 13 a porous body 41 is provided as the second capillary structure 40.
  • porous body 41 for example, the same as the porous body 31 can be used.
  • the constituent materials of the porous body 31 and the porous body 41 may be the same or different.
  • the total thickness of the porous body 31 (or the first capillary structure 30) and the wall portion 60 and the thickness of the porous body 41 (or the second capillary structure 40) may be the same, or can be different.
  • the porous body 31 (or the first capillary structure 30) and the porous body 41 (or the second capillary structure 40) may be integrated or joined.
  • the second capillary structure 40 may include a fiber bundle obtained by linearly bundling the plurality of fibers described above.
  • the vapor chamber 1f may not have the third capillary structure, for example, the porous body 51 shown in FIGS. 2 and 4, or may further have the third capillary structure.
  • the second capillary structure includes grooves provided on the inner surface of the housing.
  • the heat spreading device of Embodiment 7 of the present invention is the same as the heat spreading device of Embodiment 1 of the present invention except for this point.
  • FIG. 14 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 7 of the present invention.
  • 15 is a schematic cross-sectional view showing a cross section along line A7-A8 of the heat diffusion device shown in FIG. 14.
  • FIG. 16 is a schematic cross-sectional view showing a cross section along line B7-B8 of the heat diffusion device shown in FIG. 14.
  • FIG. 14 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 7 of the present invention.
  • 15 is a schematic cross-sectional view showing a cross section along line A7-A8 of the heat diffusion device shown in FIG. 14.
  • FIG. 16 is a schematic cross-sectional view showing a cross section along line B7-B8 of the heat diffusion device shown in FIG. 14.
  • the second capillary structure 40 preferably includes grooves 42 provided on the inner surface 10a of the housing 10.
  • the groove 42 is recessed in the thickness direction T from the inner surface 10 a of the housing 10 , here, the inner surface 11 a of the first sheet 11 .
  • the planar shape of the grooves 42 when viewed from the thickness direction T is mesh-like.
  • the grooves 42 are formed, for example, by processing the inner surface 10a of the housing 10, here, the inner surface 11a of the first sheet 11, by etching, pressing, machining, or the like.
  • the second capillary structure 40 includes the grooves 42, so that the liquid-phase working medium 20 transported to the evaporation part EP spreads through the grooves 42 into the evaporation part EP. Furthermore, the thickness of the region of the vapor chamber 1g that overlaps the evaporation part EP is smaller than the thickness of the region of the vapor chamber 1a that overlaps the evaporation part EP shown in FIG.
  • the second capillary structure 40 includes, in addition to the grooves 42, a portion of the inner surface 10a of the housing 10 that is not provided with the grooves 42, here the first sheet 11 that is not provided with the grooves 42.
  • a so-called microchannel is formed, which functions as a liquid flow path for spreading the liquid-phase working medium 20 in the evaporating part EP. That is, in the vapor chamber 1g, the arrangement region CR2 of the second capillary structure 40 overlapping the evaporating part EP consists of the groove 42 and a portion of the inner surface 10a of the housing 10 where the groove 42 is not provided.
  • the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporation part EP to the area of the evaporation part EP in plan view from the thickness direction T is 100%.
  • the thickness of the region overlapping the liquid transporting portions LP of the vapor chamber 1g is equal to that of the liquid transporting portions LP of the vapor chamber 1a shown in FIG. less than the thickness of the overlapping region.
  • the thickness of the region overlapping the liquid transporting part LP and the evaporating part EP is smaller, so it can be made thinner.
  • the depths (thicknesses) of the grooves 42 and the grooves 72 may be the same or different.
  • An electronic device of the present invention includes the heat diffusion device of the present invention and an electronic component attached to an outer wall surface of the housing of the heat diffusion device, and when viewed in plan from the thickness direction, the electronic component is , overlaps the evaporator section of the housing.
  • FIG. 17 is a schematic perspective view showing an example of the electronic device of the present invention.
  • An electronic device having the heat diffusion device of Embodiment 1 of the present invention will be described below as an example of the electronic device of the present invention. The same applies to electronic equipment having heat diffusion devices according to other embodiments of the present invention.
  • An electronic device 100 shown in FIG. 17 has a vapor chamber 1a and an electronic component 110. More specifically, electronic device 100 has vapor chamber 1 a and electronic component 110 in the internal space of device housing 120 .
  • the electronic component 110 is attached to the outer wall surface of the housing 10 of the vapor chamber 1a.
  • the electronic component 110 corresponds to the heat source HS shown in FIG.
  • the electronic component 110 is attached to the outer wall surface opposite to the inner surface 10a of the housing 10 shown in FIG.
  • the electronic component 110 overlaps the evaporation portion EP of the housing 10 .
  • the electronic component 110 may be attached directly to the outer wall surface of the housing 10, or may be attached via another member such as adhesive, sheet, or tape with high thermal conductivity.
  • Examples of the electronic device 100 include smartphones, tablet terminals, notebook computers, game machines, wearable devices, and the like.
  • Examples of the electronic components 110 include central processing units (CPUs), light emitting diodes (LEDs), and heating elements such as power semiconductors.
  • CPUs central processing units
  • LEDs light emitting diodes
  • heating elements such as power semiconductors.
  • the vapor chamber 1a operates autonomously without the need for external power and furthermore the latent heat of vaporization of the working medium 20 And by utilizing the latent heat of condensation, the heat from the heat source HS can be diffused two-dimensionally at high speed. Furthermore, in the vapor chamber 1a, the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporation part EP to the area of the evaporation part EP in plan view from the thickness direction T is 50% or more, Increases maximum heat transfer. As described above, the electronic device 100 having the vapor chamber 1a can effectively dissipate heat in a limited space inside the electronic device 100 .
  • the heat diffusion device of the present invention can be used for a wide range of applications in fields such as personal digital assistants.
  • the heat diffusion device of the present invention can be used, for example, to lower the temperature of a heat source such as a central processing unit and extend the usage time of electronic equipment, and is used in smartphones, tablet terminals, laptop computers, game machines, wearable devices, etc. Available.
  • vapor chamber (thermal diffusion device) 10 housing 10a housing inner surface 11 first sheet 11a first sheet inner surface 12 second sheet 20 working medium 30 first capillary structures 31, 41, 51 porous body 40 second capillary structures 41a, 41b projection 42 , 72 groove 50 third capillary structure 60, 61, 62 wall 100 electronic device 110 electronic component 120 device housing CR1 arrangement region CR2 of first capillary structure arrangement region CR3 of second capillary structure third capillary structure Arrangement area EP Evaporation part HS Heat source L Length direction LP Liquid transport part R Area T Thickness direction VP Vapor flow path W Width direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A vapor chamber (thermal diffusion device) (1a) comprises: a liquid transport part (LP); an evaporation part (EP) which, in a planar view from the thickness direction (T), is connected to one end of the liquid transport part (LP); a housing (10) which has an internal space; a working medium (20) which is sealed in the internal space of the housing (10); a first capillary structure (30) which is provided in the internal space of the housing (10) and which overlaps with the liquid transport part (LP) in a planar view from the thickness direction (T); and a second capillary structure (40) which is provided in the internal space of the housing (10) and the which overlaps with the evaporation part (EP) in a planar view from the thickness direction (T). In a planar view from the thickness direction (T), the ratio of the area of the placement region (CR1) of the first capillary structure (30) to the area of the internal space of the housing (10) is not more than 50%. In a planar view from the thickness direction (T), the ratio of the area of the placement region (CR2) of the second capillary structure (40) overlapping the evaporation part (EP) to the area of the evaporation part (EP) is not less than 50%.

Description

熱拡散デバイス及び電子機器Heat spreading device and electronic equipment
 本発明は、熱拡散デバイス及び電子機器に関する。 The present invention relates to heat diffusion devices and electronic equipment.
 近年、素子の高集積化及び高性能化により、発熱量が増加している。また、製品の小型化により、発熱密度が増加している。このような状況は、スマートフォン、タブレット等のモバイル端末の分野において特に顕著である。このような事情から、放熱対策を行うことが重要となっている。 In recent years, the amount of heat generated has increased due to the high integration and high performance of devices. In addition, due to the miniaturization of products, heat generation density is increasing. Such a situation is particularly conspicuous in the field of mobile terminals such as smartphones and tablets. Under these circumstances, it is important to take heat dissipation measures.
 放熱対策用の部材としては、グラファイトシート等が用いられることが多いが、その熱輸送量は充分ではないため、様々な放熱対策用の部材の使用が検討されている。中でも、非常に効果的に熱を拡散させることが可能であるとして、面状のヒートパイプであるベーパーチャンバーの使用の検討が進んでいる。  Graphite sheets and the like are often used as materials for heat dissipation, but their heat transfer capacity is not sufficient, so the use of various materials for heat dissipation is being considered. Among them, the use of a vapor chamber, which is a planar heat pipe, is being studied because it can diffuse heat very effectively.
 特許文献1には、薄い板状の本体部の一部に外部から熱が伝達される加熱部が設けられ、加熱部に伝達された熱を加熱部から本体部の他の部分に拡散させる熱拡散板において、複数本の中空路が本体部の内部に加熱部を通るように形成されるとともに、各中空路が加熱部で互いに連通しており、中空路の内部に、加熱されて蒸発しかつ放熱して凝縮する作動流体が封入され、各中空路の内部に、液相の作動流体が浸透することにより毛管力を発生するウィックが、各中空路の内部に作動流体の蒸気が流動する蒸気流路をあけた状態に配置され、各ウィックの一部が加熱部に位置するとともに、各中空路の内部に形成されている各蒸気流路が加熱部で互いに連通している、ことを特徴とする熱拡散板が開示されている。 In Patent Document 1, a heating part to which heat is transferred from the outside is provided in a part of a thin plate-shaped main body, and the heat transferred to the heating part is diffused from the heating part to other parts of the main body. In the diffuser plate, a plurality of hollow passages are formed inside the main body portion so as to pass through the heating portion, and the hollow passages communicate with each other through the heating portion. In addition, a working fluid that radiates heat and condenses is enclosed, and a wick that generates a capillary force when the liquid-phase working fluid permeates inside each hollow passage, and vapor of the working fluid flows inside each hollow passage. A part of each wick is positioned in the heating part, and each steam channel formed inside each hollow channel is in communication with each other in the heating part. A heat spreader plate characterized is disclosed.
特開2016-223673号公報JP 2016-223673 A
 特許文献1に記載の熱拡散板では、特許文献1の図1等に示されているように、液流路として機能するウィックが線状に配置されており、そのウィックの端部が加熱部に配置されている。しかしながら、特許文献1に記載の熱拡散板では、加熱部に位置するウィックが加熱部の大きさに対して局所的に配置されているため、ウィックと加熱部との間の熱移動効率が低く、結果的に、最大熱輸送量が少ない、という問題が生じる。 In the heat diffusion plate described in Patent Document 1, as shown in FIG. 1 and the like of Patent Document 1, wicks functioning as liquid flow paths are arranged linearly, and the ends of the wicks serve as heating portions. are placed in However, in the heat diffusion plate described in Patent Document 1, the wick located in the heating portion is arranged locally with respect to the size of the heating portion, so the efficiency of heat transfer between the wick and the heating portion is low. As a result, there arises a problem that the maximum amount of heat transport is small.
 本発明は、上記の問題を解決するためになされたものであり、最大熱輸送量を向上可能な熱拡散デバイスを提供することを目的とするものである。また、本発明は、上記熱拡散デバイスを有する電子機器を提供することを目的とするものである。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a heat diffusion device capable of improving the maximum amount of heat transport. Another object of the present invention is to provide an electronic device having the above heat diffusion device.
 本発明の熱拡散デバイスは、液輸送部と、厚み方向からの平面視で上記液輸送部の一端に接続された蒸発部と、を内部空間に有する筐体と、上記筐体の内部空間に封入された作動媒体と、上記筐体の内部空間に設けられ、かつ、上記厚み方向からの平面視で上記液輸送部に重なる第1毛細管構造体と、上記筐体の内部空間に設けられ、かつ、上記厚み方向からの平面視で上記蒸発部に重なる第2毛細管構造体と、を備え、上記厚み方向からの平面視で、上記筐体の内部空間の面積に対する上記第1毛細管構造体の配置領域の面積の割合は、50%以下であり、上記厚み方向からの平面視で、上記蒸発部の面積に対する、上記蒸発部に重なる上記第2毛細管構造体の配置領域の面積の割合は、50%以上である、ことを特徴とする。 The heat diffusion device of the present invention comprises a housing having, in an internal space, a liquid transporting section and an evaporating section connected to one end of the liquid transporting section in plan view from the thickness direction; an enclosed working medium; a first capillary structure provided in the internal space of the housing and overlapping the liquid transporting portion in plan view from the thickness direction; and provided in the internal space of the housing, and a second capillary structure that overlaps the evaporating portion when viewed in plan from the thickness direction, wherein the ratio of the first capillary structure to the area of the internal space of the housing when viewed in plan from the thickness direction. The ratio of the area of the arrangement region is 50% or less, and the ratio of the area of the arrangement region of the second capillary structure overlapping the evaporator with respect to the area of the evaporator in plan view from the thickness direction is It is characterized by being 50% or more.
 本発明の電子機器は、本発明の熱拡散デバイスと、上記熱拡散デバイスの上記筐体の外壁面に取り付けられた電子部品と、を備え、上記厚み方向からの平面視で、上記電子部品は、上記筐体の上記蒸発部に重なる、ことを特徴とする。 An electronic device of the present invention includes the heat diffusion device of the present invention and an electronic component attached to an outer wall surface of the housing of the heat diffusion device, and when viewed in plan from the thickness direction, the electronic component is , overlapping the evaporator of the housing.
 本発明によれば、最大熱輸送量を向上可能な熱拡散デバイスを提供できる。また、本発明によれば、上記熱拡散デバイスを有する電子機器を提供できる。 According to the present invention, it is possible to provide a heat diffusion device capable of improving the maximum amount of heat transport. Further, according to the present invention, it is possible to provide electronic equipment having the above heat diffusion device.
図1は、本発明の実施形態1の熱拡散デバイスの一例を示す斜視模式図である。FIG. 1 is a schematic perspective view showing an example of a heat diffusion device according to Embodiment 1 of the present invention. 図2は、本発明の実施形態1の熱拡散デバイスの一例の内部構造を示す平面模式図である。FIG. 2 is a schematic plan view showing the internal structure of an example of the heat diffusion device of Embodiment 1 of the present invention. 図3は、図2に示す熱拡散デバイスの線分A1-A2に沿う断面を示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing a cross section along line segment A1-A2 of the heat diffusion device shown in FIG. 図4は、図2に示す熱拡散デバイスの線分B1-B2に沿う断面を示す断面模式図である。FIG. 4 is a schematic cross-sectional view showing a cross section along line segment B1-B2 of the heat diffusion device shown in FIG. 図5は、本発明の実施形態2の熱拡散デバイスの一例の内部構造を示す平面模式図である。FIG. 5 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 2 of the present invention. 図6は、本発明の実施形態3の熱拡散デバイスの一例の内部構造を示す平面模式図である。FIG. 6 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 3 of the present invention. 図7は、本発明の実施形態4の熱拡散デバイスの一例の内部構造を示す平面模式図である。FIG. 7 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 4 of the present invention. 図8は、本発明の実施形態5の熱拡散デバイスの一例の内部構造を示す平面模式図である。FIG. 8 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 5 of the present invention. 図9は、図8に示す熱拡散デバイスの線分A3-A4に沿う断面を示す断面模式図である。9 is a schematic cross-sectional view showing a cross section along line A3-A4 of the heat diffusion device shown in FIG. 8. FIG. 図10は、図8に示す熱拡散デバイスの線分B3-B4に沿う断面を示す断面模式図である。FIG. 10 is a schematic cross-sectional view showing a cross section along line segment B3-B4 of the heat diffusion device shown in FIG. 図11は、本発明の実施形態6の熱拡散デバイスの一例の内部構造を示す平面模式図である。FIG. 11 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 6 of the present invention. 図12は、図11に示す熱拡散デバイスの線分A5-A6に沿う断面を示す断面模式図である。12 is a schematic cross-sectional view showing a cross section along line A5-A6 of the heat diffusion device shown in FIG. 11. FIG. 図13は、図11に示す熱拡散デバイスの線分B5-B6に沿う断面を示す断面模式図である。13 is a schematic cross-sectional view showing a cross section along line B5-B6 of the heat diffusion device shown in FIG. 11. FIG. 図14は、本発明の実施形態7の熱拡散デバイスの一例の内部構造を示す平面模式図である。FIG. 14 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 7 of the present invention. 図15は、図14に示す熱拡散デバイスの線分A7-A8に沿う断面を示す断面模式図である。15 is a schematic cross-sectional view showing a cross section along line A7-A8 of the heat diffusion device shown in FIG. 14. FIG. 図16は、図14に示す熱拡散デバイスの線分B7-B8に沿う断面を示す断面模式図である。16 is a schematic cross-sectional view showing a cross section along line B7-B8 of the heat diffusion device shown in FIG. 14. FIG. 図17は、本発明の電子機器の一例を示す斜視模式図である。FIG. 17 is a schematic perspective view showing an example of the electronic device of the present invention.
 以下、本発明の熱拡散デバイスと、本発明の電子機器とについて説明する。なお、本発明は、以下の構成に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更されてもよい。また、以下において記載する個々の好ましい構成を複数組み合わせたものもまた本発明である。 The heat diffusion device of the present invention and the electronic device of the present invention will be described below. It should be noted that the present invention is not limited to the following configurations, and may be modified as appropriate without departing from the gist of the present invention. The present invention also includes a combination of a plurality of individual preferred configurations described below.
 以下に示す各実施形態は例示であり、異なる実施形態で示す構成の部分的な置換又は組み合わせが可能であることは言うまでもない。実施形態2以降では、実施形態1と共通の事項についての記載は省略し、異なる点を主に説明する。特に、同様の構成による同様の作用効果については、実施形態毎に逐次言及しない。 Each embodiment shown below is an example, and it goes without saying that partial replacement or combination of configurations shown in different embodiments is possible. In the second and subsequent embodiments, descriptions of matters common to the first embodiment will be omitted, and different points will be mainly described. In particular, similar actions and effects due to similar configurations will not be mentioned sequentially for each embodiment.
 以下の説明において、各実施形態を特に区別しない場合、単に「本発明の熱拡散デバイス」及び「本発明の電子機器」と言う。 In the following description, when the embodiments are not particularly distinguished, they are simply referred to as "the heat diffusion device of the present invention" and "the electronic device of the present invention".
 以下の各実施形態では、本発明の熱拡散デバイスの一例として、ベーパーチャンバーを示す。本発明の熱拡散デバイスは、ヒートパイプ等の熱拡散デバイスにも適用可能である。 In each of the embodiments below, a vapor chamber is shown as an example of the heat diffusion device of the present invention. The heat diffusion device of the present invention can also be applied to heat diffusion devices such as heat pipes.
 以下に示す図面は模式図であり、その寸法、縦横比の縮尺等は実際の製品と異なる場合がある。 The drawings shown below are schematic diagrams, and their dimensions, aspect ratio scale, etc. may differ from the actual product.
[熱拡散デバイス]
 本発明の熱拡散デバイスについて、以下に説明する。
[Heat diffusion device]
The heat spreading device of the present invention is described below.
<実施形態1>
 本発明の熱拡散デバイスは、液輸送部と、厚み方向からの平面視で上記液輸送部の一端に接続された蒸発部と、を内部空間に有する筐体と、上記筐体の内部空間に封入された作動媒体と、上記筐体の内部空間に設けられ、かつ、上記厚み方向からの平面視で上記液輸送部に重なる第1毛細管構造体と、上記筐体の内部空間に設けられ、かつ、上記厚み方向からの平面視で上記蒸発部に重なる第2毛細管構造体と、を備える。
<Embodiment 1>
The heat diffusion device of the present invention comprises a housing having, in an internal space, a liquid transporting section and an evaporating section connected to one end of the liquid transporting section in plan view from the thickness direction; an enclosed working medium; a first capillary structure provided in the internal space of the housing and overlapping the liquid transporting portion in plan view from the thickness direction; and provided in the internal space of the housing, and a second capillary structure that overlaps with the evaporator in plan view from the thickness direction.
 図1は、本発明の実施形態1の熱拡散デバイスの一例を示す斜視模式図である。なお、後述する他の実施形態の熱拡散デバイスの一例を示す斜視模式図も、図1と同様である。 FIG. 1 is a schematic perspective view showing an example of a heat diffusion device according to Embodiment 1 of the present invention. A schematic perspective view showing an example of a heat diffusion device according to another embodiment, which will be described later, is also the same as FIG.
 図1に示すベーパーチャンバー(熱拡散デバイス)1aは、筐体10を有している。 A vapor chamber (heat diffusion device) 1a shown in FIG.
 筐体10は、気密状態に密閉されており、中空構造を有している。 The housing 10 is hermetically sealed and has a hollow structure.
 筐体10の外壁面には、発熱素子である熱源HSが取り付けられている。 A heat source HS, which is a heating element, is attached to the outer wall surface of the housing 10 .
 熱源HSとしては、例えば、電子部品が挙げられる。 The heat source HS includes, for example, electronic components.
 本明細書中、長さ方向、厚み方向、及び、幅方向を、図1等に示すように、各々、L、T、及び、Wで定められる方向とする。長さ方向Lと厚み方向Tと幅方向Wとは、互いに直交している。また、長さ方向Lの寸法、厚み方向Tの寸法、及び、幅方向Wの寸法を、各々、長さ、厚み、及び、幅とも言う。 In this specification, the length direction, thickness direction, and width direction are defined by L, T, and W, respectively, as shown in FIG. The length direction L, the thickness direction T, and the width direction W are orthogonal to each other. Also, the dimension in the length direction L, the dimension in the thickness direction T, and the dimension in the width direction W are also referred to as length, thickness, and width, respectively.
 ベーパーチャンバー1aは、全体として面状である。すなわち、筐体10は、全体として面状である。 The vapor chamber 1a is planar as a whole. That is, the housing 10 is planar as a whole.
 本明細書中、面状とは、板状及びシート状を包含する形状であり、図1に示すベーパーチャンバー1a及び筐体10では、長さ及び幅が、厚みに対して相当に大きい形状、例えば、長さ及び幅が、厚みの10倍以上、好ましくは100倍以上である形状を意味する。 In this specification, the planar shape includes a plate shape and a sheet shape, and in the vapor chamber 1a and the housing 10 shown in FIG. For example, it means a shape whose length and width are 10 times or more, preferably 100 times or more, the thickness.
 ベーパーチャンバー1aの長さ、厚み、及び、幅、すなわち、筐体10の長さ、厚み、及び、幅は、各々、長さ方向L、厚み方向T、及び、幅方向Wの最大寸法として定められる。 The length, thickness, and width of the vapor chamber 1a, that is, the length, thickness, and width of the housing 10 are defined as the maximum dimensions in the length direction L, thickness direction T, and width direction W, respectively. be done.
 ベーパーチャンバー1aの大きさ、すなわち、筐体10の大きさは、特に限定されない。 The size of the vapor chamber 1a, that is, the size of the housing 10 is not particularly limited.
 ベーパーチャンバー1aの長さ及び幅、すなわち、筐体10の長さ及び幅は、各々、好ましくは5mm以上、500mm以下、より好ましくは20mm以上、300mm以下、更に好ましくは50mm以上、200mm以下である。 The length and width of the vapor chamber 1a, that is, the length and width of the housing 10 are preferably 5 mm or more and 500 mm or less, more preferably 20 mm or more and 300 mm or less, and still more preferably 50 mm or more and 200 mm or less. .
 ベーパーチャンバー1aの長さ及び幅、すなわち、筐体10の長さ及び幅は、互いに同じであってもよいし、互いに異なっていてもよい。 The length and width of the vapor chamber 1a, that is, the length and width of the housing 10 may be the same or different.
 ベーパーチャンバー1aの厚み、すなわち、筐体10の厚みは、好ましくは50μm以上、500μm以下である。 The thickness of the vapor chamber 1a, that is, the thickness of the housing 10 is preferably 50 µm or more and 500 µm or less.
 筐体10は、外縁部同士が接合された第1シート11及び第2シート12から構成されることが好ましい。 The housing 10 is preferably composed of a first sheet 11 and a second sheet 12 whose outer edges are joined together.
 第1シート11及び第2シート12の構成材料は、ベーパーチャンバーに適した特性、例えば、熱伝導性、強度、柔軟性、可撓性等を有するものであれば、特に限定されない。第1シート11及び第2シート12の構成材料は、好ましくは金属、例えば、銅、ニッケル、アルミニウム、マグネシウム、チタン、鉄、これらの金属の少なくとも1種を主成分とする合金等であり、特に好ましくは銅である。 The constituent materials of the first sheet 11 and the second sheet 12 are not particularly limited as long as they have properties suitable for the vapor chamber, such as thermal conductivity, strength, softness, and flexibility. The constituent materials of the first sheet 11 and the second sheet 12 are preferably metals such as copper, nickel, aluminum, magnesium, titanium, iron, alloys containing at least one of these metals as a main component, and the like. Copper is preferred.
 第1シート11及び第2シート12の構成材料は、互いに同じであってもよいし、互いに異なっていてもよいが、互いに同じであることが好ましい。 The constituent materials of the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
 第1シート11及び第2シート12の外縁部同士の接合方法としては、例えば、レーザー溶接、抵抗溶接、拡散接合、ロウ接、TIG溶接(タングステン-不活性ガス溶接)、超音波接合、樹脂封止等が挙げられる。中でも、レーザー溶接、抵抗溶接、又は、ロウ接が好ましい。 Examples of methods for joining the outer edges of the first sheet 11 and the second sheet 12 include laser welding, resistance welding, diffusion bonding, brazing, TIG welding (tungsten-inert gas welding), ultrasonic bonding, and resin sealing. stop, etc. Among them, laser welding, resistance welding, or brazing is preferred.
 第1シート11及び第2シート12の厚みは、各々、好ましくは10μm以上、200μm以下、より好ましくは30μm以上、100μm以下、更に好ましくは40μm以上、60μm以下である。 The thicknesses of the first sheet 11 and the second sheet 12 are preferably 10 µm or more and 200 µm or less, more preferably 30 µm or more and 100 µm or less, and still more preferably 40 µm or more and 60 µm or less.
 第1シート11及び第2シート12の厚みは、互いに同じであってもよいし、互いに異なっていてもよい。 The thicknesses of the first sheet 11 and the second sheet 12 may be the same or different.
 第1シート11及び第2シート12の厚みは、各々、全体にわたって同じであってもよいし、一部で異なっていてもよい。 The thicknesses of the first sheet 11 and the second sheet 12 may be the same over the entire area, or may be partially different.
 第1シート11及び第2シート12の形状は、特に限定されない。 The shapes of the first sheet 11 and the second sheet 12 are not particularly limited.
 例えば、第1シート11は、厚みが一定の平板状であり、かつ、第2シート12は、外縁部の厚みが外縁部以外の部分の厚みよりも大きい形状であってもよい。 For example, the first sheet 11 may have a flat plate shape with a constant thickness, and the second sheet 12 may have a shape in which the outer edge portion is thicker than the portions other than the outer edge portion.
 また、第1シート11は、厚みが一定の平板状であり、かつ、第2シート12は、厚みが一定で、外縁部に対して外縁部以外の部分が外側に凸である形状であってもよい。この場合、ベーパーチャンバー1aの外縁部、すなわち、筐体10の外縁部には、凹みが設けられることになる。ベーパーチャンバー1aの外縁部、すなわち、筐体10の外縁部に凹みが設けられていると、外縁部の凹みを利用してベーパーチャンバー1aを電子機器に搭載しやすくなったり、外縁部の凹みに他の部品を配置したりすることができる。 In addition, the first sheet 11 has a flat plate shape with a constant thickness, and the second sheet 12 has a constant thickness, and has a shape in which a portion other than the outer edge portion is outwardly convex with respect to the outer edge portion. good too. In this case, the outer edge of the vapor chamber 1a, that is, the outer edge of the housing 10 is provided with a recess. If the outer edge of the vapor chamber 1a, that is, the outer edge of the housing 10 is provided with a dent, the dent of the outer edge can be used to facilitate mounting of the vapor chamber 1a on an electronic device. Other parts can be placed.
 厚み方向Tからの平面視での、ベーパーチャンバー1aの平面形状、すなわち、筐体10の平面形状としては、例えば、三角形、矩形等の多角形、円形、楕円形、これらを組み合わせた形状等が挙げられる。また、ベーパーチャンバー1aの平面形状、すなわち、筐体10の平面形状は、L字型、C字型(コの字型)、階段型等であってもよい。また、筐体10には、厚み方向Tに貫通口が設けられていてもよい。ベーパーチャンバー1aの平面形状、すなわち、筐体10の平面形状は、ベーパーチャンバーの用途に応じた形状であってもよいし、ベーパーチャンバーの搭載箇所に応じた形状であってもよいし、近傍に存在する他の部品に応じた形状であってもよい。 The planar shape of the vapor chamber 1a in a plan view from the thickness direction T, that is, the planar shape of the housing 10 includes, for example, polygons such as triangles and rectangles, circles, ovals, and combinations thereof. mentioned. Further, the planar shape of the vapor chamber 1a, that is, the planar shape of the housing 10 may be L-shaped, C-shaped (U-shaped), step-shaped, or the like. Further, a through hole may be provided in the thickness direction T of the housing 10 . The planar shape of the vapor chamber 1a, that is, the planar shape of the housing 10 may be a shape according to the use of the vapor chamber, may be a shape according to the mounting location of the vapor chamber, or may be a shape in the vicinity. It may also be shaped according to other parts present.
 図2は、本発明の実施形態1の熱拡散デバイスの一例の内部構造を示す平面模式図である。より具体的には、図2は、図1に示すベーパーチャンバー1aを第2シート12側から透視した状態を示している。図3は、図2に示す熱拡散デバイスの線分A1-A2に沿う断面を示す断面模式図である。図4は、図2に示す熱拡散デバイスの線分B1-B2に沿う断面を示す断面模式図である。なお、図3及び図4では、図1に示す第2シート12を省略している。 FIG. 2 is a schematic plan view showing the internal structure of an example of the heat diffusion device of Embodiment 1 of the present invention. More specifically, FIG. 2 shows a state in which the vapor chamber 1a shown in FIG. 1 is seen through from the second sheet 12 side. FIG. 3 is a schematic cross-sectional view showing a cross section along line segment A1-A2 of the heat diffusion device shown in FIG. FIG. 4 is a schematic cross-sectional view showing a cross section along line segment B1-B2 of the heat diffusion device shown in FIG. 3 and 4, the second sheet 12 shown in FIG. 1 is omitted.
 図2、図3、及び、図4に示すベーパーチャンバー1aは、筐体10と、作動媒体20と、第1毛細管構造体30と、第2毛細管構造体40と、を有している。 The vapor chamber 1a shown in FIGS. 2, 3, and 4 has a housing 10, a working medium 20, a first capillary structure 30, and a second capillary structure 40.
 筐体10は、液輸送部LPと、蒸発部EPと、を内部空間に有している。また、作動媒体20は、筐体10の内部空間に封入されている。 The housing 10 has a liquid transporting part LP and an evaporating part EP in its internal space. Moreover, the working medium 20 is enclosed in the internal space of the housing 10 .
 液輸送部LPは、液相の作動媒体20を蒸発部EPに輸送する部分として機能する。図2では、筐体10の内面10aから厚み方向Tに突出した一対の壁部60、ここでは、第1シート11の内面11aから厚み方向Tに突出した一対の壁部60が対向しつつ、厚み方向Tに直交する面内方向(長さ方向L及び幅方向Wを包含する方向)に延びており、液輸送部LPが一対の壁部60の間の領域に設けられている。 The liquid transporting part LP functions as a part that transports the liquid-phase working medium 20 to the evaporating part EP. In FIG. 2, a pair of wall portions 60 projecting in the thickness direction T from the inner surface 10a of the housing 10, here, a pair of wall portions 60 projecting in the thickness direction T from the inner surface 11a of the first sheet 11 are facing each other, It extends in the in-plane direction (direction including the length direction L and the width direction W) perpendicular to the thickness direction T, and the liquid transport part LP is provided in the region between the pair of wall parts 60 .
 液輸送部LPは、厚み方向Tからの平面視で、線状に延びていることが好ましい。この場合、液輸送部LPは、厚み方向Tからの平面視で、図2に示す3つの液輸送部LPのように直線状に延びていてもよいし、曲線状に延びていてもよい。また、液輸送部LPは、厚み方向Tからの平面視で、図2に示す左右の液輸送部LPのように途中で屈曲していてもよいし、図2に示す中央の液輸送部LPのように途中で屈曲していなくてもよい。 It is preferable that the liquid transport part LP extends linearly in plan view from the thickness direction T. In this case, when viewed from the thickness direction T, the liquid transporting portion LP may extend linearly like the three liquid transporting portions LP shown in FIG. 2, or may extend in a curved shape. Further, the liquid transporting portion LP may be curved in the middle like the left and right liquid transporting portions LP shown in FIG. It does not have to be bent in the middle like
 液輸送部LPの数は、1つのみであってもよいし、複数(図2では、3つ)であってもよい。 The number of liquid transport parts LP may be only one, or may be plural (three in FIG. 2).
 蒸発部EPは、輸送された液相の作動媒体20を蒸発させて、気相の作動媒体20に変化させる部分である。より具体的には、蒸発部EPは、筐体10の内部空間のうち、図1に示す熱源HSの近傍部分であって、熱源HSによって加熱される部分に該当する。 The evaporating part EP is a part that evaporates the transported liquid-phase working medium 20 to change it into a vapor-phase working medium 20 . More specifically, the evaporating part EP corresponds to a portion of the internal space of the housing 10 that is in the vicinity of the heat source HS shown in FIG. 1 and that is heated by the heat source HS.
 蒸発部EPは、厚み方向Tからの平面視で液輸送部LPの一端に接続されている。図2では、厚み方向Tからの平面視で、3つの液輸送部LPの各一端が蒸発部EPに接続されている。 The evaporating part EP is connected to one end of the liquid transporting part LP in plan view from the thickness direction T. In FIG. 2, in a plan view from the thickness direction T, one end of each of the three liquid transporting parts LP is connected to the evaporating part EP.
 蒸発部EPに対して液輸送部LPの一端が接続される位置は、特に限定されない。 The position where one end of the liquid transporting part LP is connected to the evaporating part EP is not particularly limited.
 蒸発部EPの数は、熱源HSの数に応じて、図2に示すように1つのみであってもよいし、複数であってもよい。 Depending on the number of heat sources HS, the number of evaporators EP may be only one as shown in FIG. 2, or may be plural.
 筐体10の内部空間には、液輸送部LP及び蒸発部EP以外の領域に蒸気流路VPが設けられている。 In the internal space of the housing 10, a vapor flow path VP is provided in a region other than the liquid transporting section LP and the evaporating section EP.
 作動媒体20は、筐体10内の環境下において気-液の相変化を生じ得るものであれば、特に限定されない。作動媒体20としては、例えば、水、アルコール類、代替フロン等が挙げられる。作動媒体20は、水性化合物であることが好ましく、中でも、水であることが特に好ましい。 The working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the housing 10 . Examples of the working medium 20 include water, alcohols, CFC alternatives, and the like. The working medium 20 is preferably an aqueous compound, particularly preferably water.
 第1毛細管構造体30及び第2毛細管構造体40は、筐体10の内部空間に設けられている。 The first capillary structure 30 and the second capillary structure 40 are provided in the internal space of the housing 10 .
 本明細書中、毛細管構造体は、毛細管力により作動媒体を移動させることができる毛細管構造を有するものを意味し、いわゆるウィックとも呼ばれる。 In this specification, a capillary structure means a structure having a capillary structure that can move a working medium by capillary force, and is also called a wick.
 毛細管構造としては、従来の熱拡散デバイス(ベーパーチャンバー等)で用いられる公知の構造であってもよく、例えば、細孔、突起、溝等の凹凸を有する微細構造等が挙げられる。 The capillary structure may be a known structure used in conventional heat diffusion devices (vapor chambers, etc.), for example, fine structures having unevenness such as pores, protrusions, and grooves.
 第1毛細管構造体30は、筐体10の内部空間に設けられ、かつ、厚み方向Tからの平面視で液輸送部LPに重なっている。図2では、第1毛細管構造体30が、厚み方向Tからの平面視で、液輸送部LPに重なるように、蒸発部EP側の一端から蒸発部EPと反対側の他端まで線状に延びている。図3では、第1毛細管構造体30が、液輸送部LPを規定する壁部60に接している。 The first capillary structure 30 is provided in the internal space of the housing 10 and overlaps the liquid transporting part LP in plan view from the thickness direction T. In FIG. 2 , the first capillary structure 30 extends linearly from one end on the evaporating part EP side to the other end on the opposite side to the evaporating part EP so as to overlap the liquid transporting part LP in plan view from the thickness direction T. extended. In FIG. 3, the first capillary structure 30 is in contact with the wall portion 60 that defines the liquid transport portion LP.
 第1毛細管構造体30は、液輸送部LPで輸送される液相の作動媒体20を毛細管力により吸い上げて保持する液保持部として機能しつつ、吸い上げた液相の作動媒体20を蒸発部EPに輸送する液輸送部としても機能する。 The first capillary structure 30 functions as a liquid retaining section that sucks up and retains the liquid-phase working medium 20 transported by the liquid transporting section LP by capillary force, while the sucked-up liquid-phase working medium 20 is transferred to the evaporating section EP. It also functions as a liquid transport part that transports to.
 本発明の熱拡散デバイスにおいて、上記厚み方向からの平面視で、上記筐体の内部空間の面積に対する上記第1毛細管構造体の配置領域の面積の割合は、50%以下である。 In the heat diffusion device of the present invention, the ratio of the area of the arrangement region of the first capillary structure to the area of the internal space of the housing in plan view from the thickness direction is 50% or less.
 ベーパーチャンバー1aにおいて、厚み方向Tからの平面視で、筐体10の内部空間の面積に対する第1毛細管構造体30の配置領域CR1の面積の割合は、50%以下である。 In the vapor chamber 1a, the ratio of the area of the arrangement region CR1 of the first capillary structure 30 to the area of the internal space of the housing 10 in plan view from the thickness direction T is 50% or less.
 厚み方向Tからの平面視での、筐体10の内部空間の面積は、液輸送部LP、蒸発部EP、及び、蒸気流路VPを含む筐体10の内部空間全体の面積に該当する。 The area of the internal space of the housing 10 in plan view from the thickness direction T corresponds to the area of the entire internal space of the housing 10 including the liquid transporting portion LP, the evaporating portion EP, and the vapor flow path VP.
 ベーパーチャンバー1aでは、第1毛細管構造体30が存在しているため、厚み方向Tからの平面視で、筐体10の内部空間の面積に対する第1毛細管構造体30の配置領域CR1の面積の割合は、0%よりも大きい。 Since the first capillary structure 30 is present in the vapor chamber 1a, the ratio of the area of the arrangement region CR1 of the first capillary structure 30 to the area of the internal space of the housing 10 in a plan view from the thickness direction T. is greater than 0%.
 厚み方向Tからの平面視での、第1毛細管構造体30の配置領域CR1の面積は、図2に示すように第1毛細管構造体30が複数存在する場合、これらの配置領域の合計面積に該当する。 When a plurality of first capillary structures 30 exist as shown in FIG. 2, the area of the arrangement region CR1 of the first capillary structure 30 in plan view from the thickness direction T is the total area of these arrangement regions. Applicable.
 厚み方向Tからの平面視で、筐体10の内部空間の面積に対する第1毛細管構造体30の配置領域CR1の面積の割合が50%以下であることにより、例えば、厚み方向Tからの平面視で第1毛細管構造体30が筐体10の内部空間全体にわたっている場合と比較して、蒸気流路VPが広く確保される。その結果、ベーパーチャンバー1aの均熱性能が向上する。 When viewed from the thickness direction T, the ratio of the area of the arrangement region CR1 of the first capillary structure 30 to the area of the internal space of the housing 10 is 50% or less. , a wider vapor flow path VP is ensured than in the case where the first capillary structure 30 extends over the entire internal space of the housing 10 . As a result, the uniform heat performance of the vapor chamber 1a is improved.
 第2毛細管構造体40は、筐体10の内部空間に設けられ、かつ、厚み方向Tからの平面視で蒸発部EPに重なっている。図2では、厚み方向Tからの平面視で、第2毛細管構造体40の全体が、蒸発部EPに重なっている。 The second capillary structure 40 is provided in the internal space of the housing 10 and overlaps the evaporating part EP in plan view from the thickness direction T. In FIG. 2 , in plan view from the thickness direction T, the entire second capillary structure 40 overlaps the evaporator EP.
 第2毛細管構造体40は、蒸発部EPに輸送された液相の作動媒体20を蒸発部EP内に広げる液流路として機能する。 The second capillary structure 40 functions as a liquid flow path that spreads the liquid-phase working medium 20 transported to the evaporator EP into the evaporator EP.
 本発明の熱拡散デバイスにおいて、上記厚み方向からの平面視で、上記蒸発部の面積に対する、上記蒸発部に重なる上記第2毛細管構造体の配置領域の面積の割合は、50%以上である。 In the heat diffusion device of the present invention, the ratio of the area of the second capillary structure overlapping the evaporator to the area of the evaporator is 50% or more in plan view from the thickness direction.
 ベーパーチャンバー1aにおいて、厚み方向Tからの平面視で、蒸発部EPの面積に対する、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2の面積の割合は、50%以上である。 In the vapor chamber 1a, in a plan view from the thickness direction T, the ratio of the area of the second capillary structure 40 overlapping the evaporator EP to the area of the evaporator EP is 50% or more.
 厚み方向Tからの平面視での、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2の面積は、第2毛細管構造体40全体のうちで蒸発部EPに重なる領域の面積に該当する。したがって、厚み方向Tからの平面視で、蒸発部EPの面積に対する、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2の面積の割合は、100%以下である。 The area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporating part EP in plan view from the thickness direction T corresponds to the area of the region overlapping the evaporating part EP in the second capillary structure 40 as a whole. . Therefore, in plan view from the thickness direction T, the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporator EP to the area of the evaporator EP is 100% or less.
 厚み方向Tからの平面視で、蒸発部EPの面積に対する、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2の面積の割合が50%以上であることにより、蒸発部EPに輸送された液相の作動媒体20が、第2毛細管構造体40で蒸発部EP全体に行きわたりやすくなる。その結果、蒸発部EPにおいて、熱源HSから液相の作動媒体20への熱移動効率が向上しやすくなり、蒸発熱抵抗が減少しやすくなる。以上により、ベーパーチャンバー1aの最大熱輸送量が向上する。 In a plan view from the thickness direction T, the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporator EP to the area of the evaporator EP is 50% or more. The liquid-phase working medium 20 is easily spread over the entire evaporating part EP by the second capillary structure 40 . As a result, in the evaporating section EP, the heat transfer efficiency from the heat source HS to the liquid-phase working medium 20 is likely to be improved, and the evaporation heat resistance is likely to be reduced. As described above, the maximum heat transfer amount of the vapor chamber 1a is improved.
 厚み方向Tからの平面視で、第2毛細管構造体40全体の面積は、蒸発部EPの面積よりも大きくてもよい。つまり、厚み方向Tからの平面視で、蒸発部EPの面積に対する、第2毛細管構造体40全体の面積の割合は、100%よりも大きくてもよい。 In plan view from the thickness direction T, the area of the entire second capillary structure 40 may be larger than the area of the evaporating part EP. In other words, in plan view from the thickness direction T, the ratio of the area of the entire second capillary structure 40 to the area of the evaporating portion EP may be greater than 100%.
 厚み方向Tからの平面視で、第2毛細管構造体40全体の面積は、蒸発部EPの面積よりも小さくてもよい。つまり、厚み方向Tからの平面視で、蒸発部EPの面積に対する、第2毛細管構造体40全体の面積の割合は、100%よりも小さくてもよい。ただし、上述したように、厚み方向Tからの平面視で、蒸発部EPの面積に対する、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2の面積の割合が50%以上であるため、厚み方向Tからの平面視で、蒸発部EPの面積に対する、第2毛細管構造体40全体の面積の割合は、50%以上である。 In plan view from the thickness direction T, the area of the entire second capillary structure 40 may be smaller than the area of the evaporation part EP. In other words, in plan view from the thickness direction T, the ratio of the area of the entire second capillary structure 40 to the area of the evaporating portion EP may be less than 100%. However, as described above, since the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporation part EP to the area of the evaporation part EP in plan view from the thickness direction T is 50% or more, In plan view from the thickness direction T, the ratio of the area of the entire second capillary structure 40 to the area of the evaporating part EP is 50% or more.
 本発明の熱拡散デバイスにおいて、厚み方向からの平面視での、筐体の内部空間の面積、第1毛細管構造体の面積、蒸発部の面積、及び、第2毛細管構造体の面積は、各々、図2に示すようなベーパーチャンバーの内部構造の画像解析により測定される。 In the heat diffusion device of the present invention, the area of the internal space of the housing, the area of the first capillary structure, the area of the evaporating section, and the area of the second capillary structure in plan view from the thickness direction are each: , is determined by image analysis of the internal structure of the vapor chamber as shown in FIG.
 本発明の熱拡散デバイスにおいて、上記第1毛細管構造体は、多孔質体を含むことが好ましい。 In the heat diffusion device of the present invention, the first capillary structure preferably contains a porous body.
 ベーパーチャンバー1aにおいて、第1毛細管構造体30は、多孔質体31を含んでいることが好ましい。図2及び図3では、第1毛細管構造体30として、多孔質体31が設けられている。なお、図2では、第1毛細管構造体30としての多孔質体31が透視状態で示されている。 The first capillary structure 30 preferably includes a porous body 31 in the vapor chamber 1a. 2 and 3, a porous body 31 is provided as the first capillary structure 30. In FIGS. In addition, in FIG. 2, the porous body 31 as the first capillary structure 30 is shown in a see-through state.
 多孔質体31としては、例えば、エッチング加工又は金属加工で形成される金属多孔質膜、メッシュ、不織布、焼結体、その他の多孔質体等が挙げられる。なお、本明細書では、メッシュ、不織布、及び、焼結体も、多孔質体に含まれるものとする。 Examples of the porous body 31 include metal porous membranes, meshes, non-woven fabrics, sintered bodies, and other porous bodies formed by etching or metal processing. In this specification, meshes, non-woven fabrics, and sintered bodies are also included in porous bodies.
 メッシュとしては、例えば、金属メッシュ、樹脂メッシュ、表面コートされたこれらのメッシュ等が挙げられる。中でも、銅メッシュ、ステンレス(SUS)メッシュ、ポリエステルメッシュが好ましい。 Examples of meshes include metal meshes, resin meshes, and surface-coated meshes of these. Among them, copper mesh, stainless steel (SUS) mesh, and polyester mesh are preferable.
 焼結体としては、例えば、金属多孔質焼結体、セラミックス多孔質焼結体等が挙げられる。中でも、銅又はニッケルの多孔質焼結体が好ましい。 Examples of sintered bodies include metal porous sintered bodies and ceramic porous sintered bodies. Among them, a porous sintered body of copper or nickel is preferable.
 その他の多孔質体としては、例えば、金属多孔質体、セラミックス多孔質体、樹脂多孔質体等が挙げられる。 Examples of other porous bodies include metal porous bodies, ceramic porous bodies, resin porous bodies, and the like.
 第1毛細管構造体30は、多孔質体31の代わりに、複数の繊維を線状に束ねた繊維束を含んでいてもよい。この場合、第1毛細管構造体30は、編み込み状の繊維束を含むことが好ましい。複数の繊維が編み込まれた編み込み状の繊維束では、表面に凹凸が存在しやすくなるため、第1毛細管構造体30が編み込み状の繊維束を含む場合、液相の作動媒体20が蒸発部EPに輸送されやすくなる。 Instead of the porous body 31, the first capillary structure 30 may include a fiber bundle in which a plurality of fibers are linearly bundled. In this case, the first capillary structure 30 preferably includes a woven fiber bundle. In a woven fiber bundle in which a plurality of fibers are woven, irregularities are likely to exist on the surface. easier to transport to
 繊維束を構成する繊維としては、例えば、銅、アルミニウム、ステンレス等の金属線、カーボン繊維、ガラス繊維等の非金属線等が挙げられる。中でも、金属線は、熱伝導率が高いことから好ましい。例えば、直径が0.03mm程度の銅線を200本程度束ねることにより、繊維束とすることができる。 Examples of fibers that make up the fiber bundle include metal wires such as copper, aluminum, and stainless steel, and non-metal wires such as carbon fibers and glass fibers. Among them, a metal wire is preferable because of its high thermal conductivity. For example, a fiber bundle can be obtained by bundling about 200 copper wires with a diameter of about 0.03 mm.
 本発明の熱拡散デバイスにおいて、上記第2毛細管構造体は、上記筐体の内面に設けられた複数の突起を含むことが好ましい。 In the heat diffusion device of the present invention, it is preferable that the second capillary structure includes a plurality of protrusions provided on the inner surface of the housing.
 ベーパーチャンバー1aにおいて、第2毛細管構造体40は、筐体10の内面10aに設けられた複数の突起41aを含んでいることが好ましい。 In the vapor chamber 1a, the second capillary structure 40 preferably includes a plurality of protrusions 41a provided on the inner surface 10a of the housing 10.
 複数の突起41aは、筐体10の内面10a、ここでは、第1シート11の内面11aから厚み方向Tに突出している。 The plurality of protrusions 41a protrude in the thickness direction T from the inner surface 10a of the housing 10, here, the inner surface 11a of the first sheet 11.
 ベーパーチャンバー1aにおいて、第2毛細管構造体40が複数の突起41aを含んでいることにより、蒸発部EPに輸送された液相の作動媒体20が、複数の突起41a間を通って蒸発部EP内に広がる。更に、ベーパーチャンバー1aに対して厚み方向Tに圧力が加わる場合に、複数の突起41aが蒸発部EPの形状を維持するための支柱として機能し、結果的に、蒸発部EP内の液流路が潰れることが防止される。 In the vapor chamber 1a, the second capillary structure 40 includes a plurality of protrusions 41a, so that the liquid-phase working medium 20 transported to the evaporator EP flows through the plurality of protrusions 41a into the evaporator EP. spread to Furthermore, when pressure is applied to the vapor chamber 1a in the thickness direction T, the plurality of protrusions 41a function as supports for maintaining the shape of the evaporator EP, resulting in a liquid flow path in the evaporator EP. is prevented from collapsing.
 複数の突起41aは、図4に示すように、筐体10、ここでは、第1シート11と一体であることが好ましい。この場合、複数の突起41aは、例えば、第1シート11の内面11aをエッチング加工することにより形成される。 The plurality of protrusions 41a are preferably integrated with the housing 10, here the first sheet 11, as shown in FIG. In this case, the plurality of protrusions 41a are formed by etching the inner surface 11a of the first sheet 11, for example.
 複数の突起41aの構成材料は、筐体10の構成材料、ここでは、第1シート11の構成材料と同じであることが好ましい。 The constituent material of the plurality of projections 41 a is preferably the same as the constituent material of the housing 10 , here, the constituent material of the first sheet 11 .
 複数の突起41aの構成材料は、互いに同じであることが好ましいが、互いに異なっていてもよいし、一部で異なっていてもよい。 The constituent materials of the plurality of protrusions 41a are preferably the same, but may be different from each other, or may be partially different.
 複数の突起41aの長さは、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 The lengths of the plurality of protrusions 41a may be the same as each other, may be different from each other, or may be partially different.
 複数の突起41aの幅は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 The widths of the plurality of protrusions 41a may be the same as each other, may be different from each other, or may be partially different.
 厚み方向Tからの平面視での、複数の突起41aの面積は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 The areas of the plurality of projections 41a in plan view from the thickness direction T may be the same, different, or partly different.
 複数の突起41aの厚みは、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 The thicknesses of the plurality of protrusions 41a may be the same as each other, may be different from each other, or may be partially different.
 厚み方向Tからの平面視での、複数の突起41aの平面形状としては、例えば、矩形等の多角形、円形、楕円形、これらを組み合わせた形状等が挙げられる。 The planar shape of the plurality of protrusions 41a in plan view from the thickness direction T includes, for example, a polygonal shape such as a rectangle, a circular shape, an elliptical shape, and a shape combining these.
 複数の突起41aの平面形状は、互いに同じであってもよいし、互いに異なっていてもよいし、一部で異なっていてもよい。 The planar shapes of the plurality of protrusions 41a may be the same as each other, may be different from each other, or may be partially different.
 厚み方向Tからの平面視で、複数の突起41aは、複数の突起41a間の距離が一定となるように均等に配置されていることが好ましい。この場合、複数の突起41aは、第2毛細管構造体40において、一部の領域で均等に配置されていることが好ましく、全体の領域にわたって均等に配置されていることがより好ましい。 In a plan view from the thickness direction T, it is preferable that the plurality of protrusions 41a be evenly arranged so that the distance between the plurality of protrusions 41a is constant. In this case, the plurality of protrusions 41a are preferably evenly arranged in a partial area of the second capillary structure 40, and more preferably evenly arranged over the entire area.
 ベーパーチャンバー1aにおいて、第2毛細管構造体40は、複数の突起41aに加えて、各々の突起41aの周囲に存在する筐体10の内面10a一部、ここでは、各々の突起41aの周囲に存在する第1シート11の内面11aの一部を組み合わせることにより、いわゆるマイクロチャネルを構成し、液相の作動媒体20を蒸発部EP内に広げる液流路として機能する。つまり、ベーパーチャンバー1aにおいて、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2は、複数の突起41aと、各々の突起41aの周囲に存在する筐体10の内面10aの一部、ここでは、各々の突起41aの周囲に存在する第1シート11の内面11aの一部とが配置されている領域に該当する。よって、ベーパーチャンバー1aでは、厚み方向Tからの平面視で、蒸発部EPの面積に対する、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2の面積の割合が、100%となっている。 In the vapor chamber 1a, the second capillary structure 40 is present in addition to the plurality of protrusions 41a, on a portion of the inner surface 10a of the housing 10 present around each protrusion 41a, here present around each protrusion 41a. By combining a part of the inner surface 11a of the first sheet 11, a so-called microchannel is formed, which functions as a liquid flow path that spreads the liquid-phase working medium 20 into the evaporator EP. That is, in the vapor chamber 1a, the arrangement region CR2 of the second capillary structure 40 overlapping the evaporating part EP is composed of a plurality of projections 41a and a part of the inner surface 10a of the housing 10 around each projection 41a. corresponds to the area where a part of the inner surface 11a of the first sheet 11 existing around each projection 41a is arranged. Therefore, in the vapor chamber 1a, the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporating part EP to the area of the evaporating part EP in plan view from the thickness direction T is 100%. .
 本発明の熱拡散デバイスにおいて、上記厚み方向からの平面視で、上記第2毛細管構造体の周囲には、上記筐体の内面から上記厚み方向に突出した壁部が存在することが好ましい。 In the heat diffusion device of the present invention, it is preferable that a wall projecting from the inner surface of the housing in the thickness direction is present around the second capillary structure in plan view from the thickness direction.
 ベーパーチャンバー1aにおいて、厚み方向Tからの平面視で、第2毛細管構造体40の周囲には、筐体10の内面10aから厚み方向Tに突出した壁部61が存在していることが好ましい。つまり、図2では、厚み方向Tからの平面視で、蒸発部EPの周囲には、筐体10の内面10aから厚み方向Tに突出した壁部61が存在していることが好ましい。この場合、蒸発部EPに輸送された液相の作動媒体20が、蒸発部EPの周囲に広がらずに、蒸発部EP内に保持されやすくなる。その結果、蒸発部EPにおいて、熱源HSから液相の作動媒体20への熱移動効率がより向上しやすくなり、蒸発熱抵抗がより減少しやすくなる。以上により、ベーパーチャンバー1aの最大熱輸送量がより向上する。 In the vapor chamber 1a, it is preferable that a wall portion 61 protruding in the thickness direction T from the inner surface 10a of the housing 10 exists around the second capillary structure 40 in plan view from the thickness direction T. That is, in FIG. 2, it is preferable that a wall portion 61 protruding in the thickness direction T from the inner surface 10a of the housing 10 exists around the evaporating portion EP in plan view from the thickness direction T. As shown in FIG. In this case, the liquid-phase working medium 20 that has been transported to the evaporator EP is easily retained in the evaporator EP without spreading around the evaporator EP. As a result, in the evaporating section EP, the heat transfer efficiency from the heat source HS to the liquid-phase working medium 20 is more likely to be improved, and the evaporation heat resistance is more likely to be reduced. As described above, the maximum heat transfer amount of the vapor chamber 1a is further improved.
 壁部60及び壁部61の厚みは、互いに同じであってもよいし、互いに異なっていてもよい。 The thickness of the wall portion 60 and the wall portion 61 may be the same or different.
 突起41a(あるいは第2毛細管構造体40)及び壁部61の厚みは、互いに同じであってもよいし、互いに異なっていてもよい。 The thickness of the projection 41a (or the second capillary structure 40) and the wall portion 61 may be the same or different.
 壁部60と壁部61とは、一体化されていてもよいし、接合されていてもよい。 The wall portion 60 and the wall portion 61 may be integrated or joined.
 本発明の熱拡散デバイスは、上記筐体の内部空間に設けられ、かつ、上記厚み方向からの平面視で上記蒸発部に重なる第3毛細管構造体を更に備え、上記第3毛細管構造体は、上記第2毛細管構造体よりも毛細管力が大きい、ことが好ましい。 The heat diffusion device of the present invention further includes a third capillary structure provided in the internal space of the housing and overlapping the evaporating section in a plan view from the thickness direction, wherein the third capillary structure comprises: Preferably, the capillary force is greater than that of the second capillary structure.
 ベーパーチャンバー1aは、第3毛細管構造体50を更に有していることが好ましい。 The vapor chamber 1a preferably further has a third capillary structure 50.
 第3毛細管構造体50は、図2に示すように、筐体10の内部空間に設けられ、かつ、厚み方向Tからの平面視で蒸発部EPに重なっていることが好ましい。図2では、第3毛細管構造体50が、厚み方向Tからの平面視で、第2毛細管構造体40の全体に重なっている。図4では、第3毛細管構造体50が、第2毛細管構造体40を構成する突起41aに接している。 As shown in FIG. 2, the third capillary structure 50 is preferably provided in the internal space of the housing 10 and overlaps the evaporating part EP in plan view from the thickness direction T. In FIG. 2 , the third capillary structure 50 overlaps the entire second capillary structure 40 in plan view from the thickness direction T. In FIG. In FIG. 4, the third capillary structure 50 is in contact with the protrusion 41a that constitutes the second capillary structure 40. In FIG.
 第3毛細管構造体50は、第2毛細管構造体40で広げられる液相の作動媒体20を毛細管力により吸い上げて保持する液保持部として機能しつつ、吸い上げた液相の作動媒体20を蒸発部EP内に広げる液流路としても機能する。よって、第2毛細管構造体40及び第3毛細管構造体50を組み合わせることにより、液相の作動媒体20を蒸発部EP全体に効率よく広げることができる。 The third capillary structure 50 functions as a liquid retaining part that sucks up and retains the liquid-phase working medium 20 spread by the second capillary structure 40 by capillary force, and the sucked liquid-phase working medium 20 is absorbed by the evaporating part. It also functions as a liquid flow path extending in the EP. Therefore, by combining the second capillary structure 40 and the third capillary structure 50, the liquid-phase working medium 20 can be efficiently spread over the entire evaporation part EP.
 第3毛細管構造体50は、第2毛細管構造体40よりも毛細管力が大きいことが好ましい。この場合、第3毛細管構造体50が、第2毛細管構造体40で広げられる液相の作動媒体20をより吸い上げやすくなるため、第3毛細管構造体50で液相の作動媒体20を蒸発部EP内に広げやすくなる。 The third capillary structure 50 preferably has a greater capillary force than the second capillary structure 40. In this case, the third capillary structure 50 can more easily suck up the liquid-phase working medium 20 spread by the second capillary structure 40, so that the liquid-phase working medium 20 is removed by the third capillary structure 50 to the evaporation part EP. Easier to spread inside.
 毛細管構造体の毛細管力の大きさは、熱拡散デバイスの厚み方向に沿う断面視で、毛細管構造体において液相の作動媒体が通る液流路となる領域の断面積の大きさと関係する。つまり、図4に示すようなベーパーチャンバー1aの厚み方向Tに沿う断面視で、第3毛細管構造体50は、第2毛細管構造体40よりも、液相の作動媒体20が通る液流路となる領域の断面積が小さいことが好ましい。 The magnitude of the capillary force of the capillary structure is related to the size of the cross-sectional area of the liquid flow path through which the liquid-phase working medium passes in the capillary structure when viewed in cross section along the thickness direction of the heat diffusion device. That is, in a cross-sectional view along the thickness direction T of the vapor chamber 1a as shown in FIG. It is preferable that the cross-sectional area of the region is small.
 本発明の熱拡散デバイスにおいて、上記第3毛細管構造体は、多孔質体を含むことが好ましい。 In the heat diffusion device of the present invention, the third capillary structure preferably contains a porous body.
 ベーパーチャンバー1aにおいて、第3毛細管構造体50は、多孔質体51を含んでいることが好ましい。図2及び図4では、第3毛細管構造体50として、多孔質体51が設けられている。なお、図2では、第3毛細管構造体50としての多孔質体51が透視状態で示されている。 The third capillary structure 50 preferably includes a porous body 51 in the vapor chamber 1a. 2 and 4, a porous body 51 is provided as the third capillary structure 50. In FIGS. In addition, in FIG. 2, the porous body 51 as the third capillary structure 50 is shown in a see-through state.
 多孔質体51としては、例えば、多孔質体31と同様のものが挙げられる。 As the porous body 51, for example, those similar to the porous body 31 can be used.
 多孔質体31及び多孔質体51の構成材料は、互いに同じであってもよいし、互いに異なっていてもよい。 The constituent materials of the porous body 31 and the porous body 51 may be the same as each other, or may be different from each other.
 多孔質体31(あるいは第1毛細管構造体30)及び多孔質体51(あるいは第3毛細管構造体50)の厚みは、互いに同じであってもよいし、互いに異なっていてもよい。 The thickness of the porous body 31 (or the first capillary structure 30) and the thickness of the porous body 51 (or the third capillary structure 50) may be the same or different.
 多孔質体31(あるいは第1毛細管構造体30)と多孔質体51(あるいは第3毛細管構造体50)とは、一体化されていてもよいし、接合されていてもよい。 The porous body 31 (or the first capillary structure 30) and the porous body 51 (or the third capillary structure 50) may be integrated or joined.
 第3毛細管構造体50は、多孔質体51の代わりに、上述した複数の繊維を線状に束ねた繊維束を含んでいてもよい。 Instead of the porous body 51, the third capillary structure 50 may include a fiber bundle obtained by linearly bundling the plurality of fibers described above.
 厚み方向Tからの平面視で、蒸発部EPの面積に対する、蒸発部EPに重なる第3毛細管構造体50の配置領域CR3の面積の割合は、好ましくは50%以上である。 In plan view from the thickness direction T, the ratio of the area of the arrangement region CR3 of the third capillary structure 50 overlapping the evaporator EP to the area of the evaporator EP is preferably 50% or more.
 厚み方向Tからの平面視での、蒸発部EPに重なる第3毛細管構造体50の配置領域CR3の面積は、第3毛細管構造体50全体のうちで蒸発部EPに重なる領域の面積に該当する。したがって、厚み方向Tからの平面視で、蒸発部EPの面積に対する、蒸発部EPに重なる第3毛細管構造体50の配置領域CR3の面積の割合は、100%以下である。 The area of the arrangement region CR3 of the third capillary structure 50 overlapping the evaporating part EP in plan view from the thickness direction T corresponds to the area of the region overlapping the evaporating part EP in the entire third capillary structure 50. . Therefore, in plan view from the thickness direction T, the ratio of the area of the arrangement region CR3 of the third capillary structure 50 overlapping the evaporator EP to the area of the evaporator EP is 100% or less.
 厚み方向Tからの平面視で、蒸発部EPの面積に対する、蒸発部EPに重なる第3毛細管構造体50の配置領域CR3の面積の割合が50%以上であることにより、第2毛細管構造体40の作用と相まって、蒸発部EPに輸送された液相の作動媒体20が、蒸発部EP全体により行きわたりやすくなる。その結果、蒸発部EPにおいて、熱源HSから液相の作動媒体20への熱移動効率がより向上しやすくなり、蒸発熱抵抗がより減少しやすくなる。以上により、ベーパーチャンバー1aの最大熱輸送量がより向上する。 In a plan view from the thickness direction T, the ratio of the area of the arrangement region CR3 of the third capillary structure 50 overlapping the evaporation part EP to the area of the evaporation part EP is 50% or more, so that the second capillary structure 40 combined with the action of , the liquid-phase working medium 20 transported to the evaporator EP is more likely to spread throughout the evaporator EP. As a result, in the evaporating section EP, the heat transfer efficiency from the heat source HS to the liquid-phase working medium 20 is more likely to be improved, and the evaporation heat resistance is more likely to be reduced. As described above, the maximum heat transfer amount of the vapor chamber 1a is further improved.
 厚み方向Tからの平面視で、第3毛細管構造体50全体の面積は、蒸発部EPの面積よりも大きくてもよい。つまり、厚み方向Tからの平面視で、蒸発部EPの面積に対する、第3毛細管構造体50全体の面積の割合は、100%よりも大きくてもよい。この場合、厚み方向Tからの平面視で、蒸発部EPの面積に対する、第3毛細管構造体50全体の面積の割合は、好ましくは120%以下である。 In plan view from the thickness direction T, the area of the entire third capillary structure 50 may be larger than the area of the evaporating part EP. That is, in a plan view from the thickness direction T, the ratio of the area of the entire third capillary structure 50 to the area of the evaporating portion EP may be greater than 100%. In this case, the ratio of the area of the entire third capillary structure 50 to the area of the evaporating portion EP in plan view from the thickness direction T is preferably 120% or less.
 厚み方向Tからの平面視で、第3毛細管構造体50全体の面積は、蒸発部EPの面積よりも小さくてもよい。つまり、厚み方向Tからの平面視で、蒸発部EPの面積に対する、第3毛細管構造体50全体の面積の割合は、100%よりも小さくてもよい。この場合、厚み方向Tからの平面視で、蒸発部EPの面積に対する、第3毛細管構造体50全体の面積の割合は、好ましくは50%以上である。 In plan view from the thickness direction T, the area of the entire third capillary structure 50 may be smaller than the area of the evaporating part EP. In other words, in a plan view from the thickness direction T, the ratio of the area of the entire third capillary structure 50 to the area of the evaporating portion EP may be less than 100%. In this case, in plan view from the thickness direction T, the ratio of the area of the entire third capillary structure 50 to the area of the evaporating portion EP is preferably 50% or more.
 ベーパーチャンバー1aは、以下のようにして作動する。 The vapor chamber 1a operates as follows.
 液相の作動媒体20は、蒸発部EPにおいて、熱源HSからの熱を吸収することで蒸発し、気相の作動媒体20に変化する。そして、蒸発部EPで発生した気相の作動媒体20は、蒸気流路VPを通って蒸発部EPから離れた場所(例えば、液輸送部LPにおける蒸発部EPと反対側の端部近傍)に移動し、そこで冷却されて液相の作動媒体20に変化する。その後、液相の作動媒体20は、液輸送部LP及び第1毛細管構造体30で蒸発部EPに輸送される。 The liquid-phase working medium 20 evaporates by absorbing heat from the heat source HS in the evaporating section EP, and changes into the gas-phase working medium 20 . Then, the vapor-phase working medium 20 generated in the evaporator EP passes through the vapor passage VP to a place away from the evaporator EP (for example, near the end of the liquid transporter LP opposite to the evaporator EP). It moves, is cooled there, and changes into the working medium 20 of a liquid phase. After that, the liquid-phase working medium 20 is transported to the evaporator EP by the liquid transporter LP and the first capillary structure 30 .
 ベーパーチャンバー1aでは、以上の過程が繰り返されることにより、作動媒体20が気-液の相変化を生じつつ循環する。この際、熱源HSからの熱は、蒸発部EPにおいて液相の作動媒体20を気相の作動媒体20に変化させる蒸発潜熱として吸収された後、蒸発部EPから離れた場所において気相の作動媒体20を液相の作動媒体20に変化させる凝縮潜熱として放出される。このようにして、ベーパーチャンバー1aは、外部動力を必要とすることなく自立的に作動し、更には、作動媒体20の蒸発潜熱及び凝縮潜熱を利用することにより、熱源HSからの熱を二次元的に高速で拡散できる。更に、ベーパーチャンバー1aでは、厚み方向Tからの平面視で、蒸発部EPの面積に対する、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2の面積の割合が50%以上であるため、最大熱輸送量が向上する。 In the vapor chamber 1a, the working medium 20 circulates while undergoing a gas-liquid phase change by repeating the above process. At this time, the heat from the heat source HS is absorbed as latent heat of vaporization that changes the liquid-phase working medium 20 into the vapor-phase working medium 20 in the evaporator EP, and then the vapor-phase operation occurs at a location away from the evaporator EP. It is released as latent heat of condensation that transforms the medium 20 into a liquid phase working medium 20 . In this way, the vapor chamber 1a operates autonomously without the need for external power, and further utilizes the latent heat of vaporization and latent heat of condensation of the working medium 20 to transfer heat from the heat source HS two-dimensionally. can spread rapidly. Furthermore, in the vapor chamber 1a, the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporation part EP to the area of the evaporation part EP in plan view from the thickness direction T is 50% or more, Increases maximum heat transfer.
<実施形態2>
 本発明の実施形態2の熱拡散デバイスでは、本発明の実施形態1の熱拡散デバイスと異なり、上記厚み方向からの平面視で、上記蒸発部に重なる領域には、上記第2毛細管構造体が上記液輸送部の延在方向に設けられていない。本発明の実施形態2の熱拡散デバイスは、この点以外、本発明の実施形態1の熱拡散デバイスと同様である。
<Embodiment 2>
In the heat diffusion device of Embodiment 2 of the present invention, unlike the heat diffusion device of Embodiment 1 of the present invention, in a plan view from the thickness direction, the second capillary structure is provided in the region overlapping with the evaporator. It is not provided in the extending direction of the liquid transport section. The heat spreading device of Embodiment 2 of the present invention is the same as the heat spreading device of Embodiment 1 of the present invention except for this point.
 図5は、本発明の実施形態2の熱拡散デバイスの一例の内部構造を示す平面模式図である。 FIG. 5 is a schematic plan view showing the internal structure of an example of the heat diffusion device of Embodiment 2 of the present invention.
 図5に示すベーパーチャンバー1bでは、厚み方向Tからの平面視で、蒸発部EPに重なる領域には、第2毛細管構造体40、より具体的には、複数の突起41aが液輸送部LPの延在方向に設けられていない。 In the vapor chamber 1b shown in FIG. 5, in a plan view from the thickness direction T, the second capillary structure 40, more specifically, a plurality of protrusions 41a, are located in the region overlapping the evaporating part EP in the liquid transporting part LP. Not provided in the extension direction.
 液輸送部LPの延在方向は、厚み方向Tからの平面視で、蒸発部EPに接続される液輸送部LPの一端からそのまま蒸発部EPに重なる領域にまで液輸送部LPが延在した場合に想定される方向に該当する。つまり、図5では、厚み方向Tからの平面視で、蒸発部EPに重なる領域には、第2毛細管構造体40が、液輸送部LPの延在方向である長さ方向L及び幅方向Wに設けられていない。 The extending direction of the liquid transporting part LP is such that, in plan view from the thickness direction T, the liquid transporting part LP extends from one end of the liquid transporting part LP connected to the evaporating part EP to a region overlapping the evaporating part EP. It corresponds to the direction assumed in the case. That is, in FIG. 5, in a planar view from the thickness direction T, the second capillary structure 40 extends in the length direction L and the width direction W in the region overlapping the evaporation portion EP. not provided for.
 第2毛細管構造体40が液輸送部LPの延在方向に設けられていないことにより、蒸発部EP内での液流路の流路抵抗が低下しやすくなる。その結果、第2毛細管構造体40の作用と相まって、蒸発部EPに輸送された液相の作動媒体20が、蒸発部EP全体により行きわたりやすくなる。 Since the second capillary structure 40 is not provided in the extending direction of the liquid transporting part LP, the flow path resistance of the liquid flow path in the evaporating part EP tends to decrease. As a result, coupled with the action of the second capillary structure 40, the liquid-phase working medium 20 transported to the evaporator EP is more likely to spread throughout the evaporator EP.
 厚み方向Tからの平面視で、蒸発部EPに重なる領域には、第2毛細管構造体40が、図5に示すように液輸送部LPの延在方向で全体的に設けられていなくてもよいし、液輸送部LPの延在方向で部分的に設けられていなくてもよい。 In a planar view from the thickness direction T, even if the second capillary structure 40 is not entirely provided in the extending direction of the liquid transporting part LP as shown in FIG. Alternatively, it may not be provided partially in the extending direction of the liquid transporting portion LP.
 第2毛細管構造体40が液輸送部LPの延在方向で部分的に設けられていない場合、蒸発部EP内での液流路の流路抵抗を低下させる観点から、第2毛細管構造体40が設けられていない領域は、液輸送部LPの一端に接続されていることが好ましい。 When the second capillary structure 40 is not provided partially in the extending direction of the liquid transporting part LP, the second capillary structure 40 is provided from the viewpoint of reducing the flow resistance of the liquid flow path in the evaporating part EP. is preferably connected to one end of the liquid transporting part LP.
<実施形態3>
 本発明の実施形態3の熱拡散デバイスでは、本発明の実施形態2の熱拡散デバイスと異なり、上記厚み方向からの平面視で、上記第2毛細管構造体を構成する上記複数の突起が、線状に延びる。本発明の実施形態3の熱拡散デバイスは、この点以外、本発明の実施形態2の熱拡散デバイスと同様である。
<Embodiment 3>
In the heat diffusion device of Embodiment 3 of the present invention, unlike the heat diffusion device of Embodiment 2 of the present invention, when viewed from above in the thickness direction, the plurality of protrusions constituting the second capillary structure are linear. shape. The heat spreading device of Embodiment 3 of the present invention is otherwise similar to the heat spreading device of Embodiment 2 of the present invention.
 図6は、本発明の実施形態3の熱拡散デバイスの一例の内部構造を示す平面模式図である。 FIG. 6 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 3 of the present invention.
 図6に示すベーパーチャンバー1cでは、厚み方向Tからの平面視で、第2毛細管構造体40を構成する複数の突起41bが、線状に延びている。これにより、第2毛細管構造体40は、いわゆるマイクロ流路を構成している。マイクロ流路の毛細管力は大きいため、第2毛細管構造体40がマイクロ流路を構成することにより、ベーパーチャンバー1cでは、蒸発部EPに輸送された液相の作動媒体20が、蒸発部EP全体により行きわたりやすくなる。 In the vapor chamber 1c shown in FIG. 6, in plan view from the thickness direction T, a plurality of protrusions 41b forming the second capillary structure 40 extend linearly. Thereby, the second capillary structure 40 constitutes a so-called microchannel. Since the capillary force of the microchannel is large, the second capillary structure 40 constitutes the microchannel, and in the vapor chamber 1c, the liquid-phase working medium 20 transported to the evaporator EP is spread throughout the entire evaporator EP. It becomes easier to get around.
 更に、ベーパーチャンバー1cでは、厚み方向Tからの平面視で、蒸発部EPに重なる領域には、第2毛細管構造体40が液輸送部LPの延在方向に設けられていないことが好ましい。この場合、蒸発部EP内での液流路の流路抵抗が低下しやすくなるため、蒸発部EPに輸送された液相の作動媒体20が、蒸発部EP全体に更に行きわたりやすくなる。 Furthermore, in the vapor chamber 1c, in a plan view from the thickness direction T, it is preferable that the second capillary structure 40 is not provided in the extending direction of the liquid transporting part LP in the region overlapping the evaporating part EP. In this case, the flow path resistance of the liquid flow path in the evaporator EP is likely to be reduced, so that the liquid-phase working medium 20 transported to the evaporator EP can more easily spread throughout the entire evaporator EP.
 液相の作動媒体20を第2毛細管構造体40で蒸発部EP全体に行きわたらせる観点から、厚み方向Tからの平面視で、複数の突起41bは、蒸発部EPに重なる領域において、図6に示すように放射状に延びていることが好ましい。より具体的には、厚み方向Tからの平面視で、複数の突起41bは、蒸発部EPに重なる領域において、第2毛細管構造体40が設けられていない領域から縁端まで線状に延びていることが好ましい。 From the viewpoint of spreading the liquid-phase working medium 20 over the entire evaporator part EP with the second capillary structure 40, the plurality of protrusions 41b are arranged in the region overlapping the evaporator part EP in a plan view from the thickness direction T, as shown in FIG. preferably extend radially as shown in FIG. More specifically, in a plan view from the thickness direction T, the plurality of projections 41b linearly extend from the region where the second capillary structure 40 is not provided to the edge in the region overlapping the evaporating portion EP. preferably.
 複数の突起41bは、厚み方向Tからの平面視で、図6に示すように長さ方向L及び幅方向Wに交差する方向に延びていることが好ましいが、長さ方向Lに延びていてもよいし、幅方向Wに延びていてもよい。 The plurality of projections 41b preferably extends in a direction intersecting the length direction L and the width direction W as shown in FIG. , or may extend in the width direction W.
<実施形態4>
 本発明の実施形態4の熱拡散デバイスでは、本発明の実施形態1の熱拡散デバイスと異なり、上記厚み方向からの平面視で、上記第2毛細管構造体が蛇行流路を構成する。本発明の実施形態4の熱拡散デバイスは、この点以外、本発明の実施形態1の熱拡散デバイスと同様である。
<Embodiment 4>
In the heat diffusion device of Embodiment 4 of the present invention, unlike the heat diffusion device of Embodiment 1 of the present invention, the second capillary structure constitutes a meandering flow path in plan view from the thickness direction. The heat spreading device of Embodiment 4 of the present invention is the same as the heat spreading device of Embodiment 1 of the present invention except for this point.
 図7は、本発明の実施形態4の熱拡散デバイスの一例の内部構造を示す平面模式図である。 FIG. 7 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 4 of the present invention.
 図7に示すベーパーチャンバー1dでは、厚み方向Tからの平面視で、第2毛細管構造体40が蛇行流路を構成している。より具体的には、第2毛細管構造体40は、筐体10の内面10a、ここでは、第1シート11の内面11aから厚み方向Tに突出した壁部62を含んでおり、壁部62で囲まれた領域が蛇行するように構成されている。ベーパーチャンバー1dにおいて、蒸発部EPに輸送された液相の作動媒体20は、第2毛細管構造体40が構成する蛇行流路を通って蒸発部EP内に広がる。 In the vapor chamber 1d shown in FIG. 7, in plan view from the thickness direction T, the second capillary structure 40 forms a meandering flow path. More specifically, the second capillary structure 40 includes a wall portion 62 protruding in the thickness direction T from the inner surface 10a of the housing 10, here, the inner surface 11a of the first sheet 11. The enclosed area is configured to meander. In the vapor chamber 1 d , the liquid-phase working medium 20 transported to the evaporator EP spreads in the evaporator EP through the meandering flow path formed by the second capillary structure 40 .
 ベーパーチャンバー1dにおいて、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2には、蛇行流路を構成するのに寄与しない領域Rが含まれない。つまり、ベーパーチャンバー1dでは、厚み方向Tからの平面視で、蒸発部EPの面積に対する、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2の面積の割合が、50%以上となっているものの、100%となっていない。 In the vapor chamber 1d, the arrangement region CR2 of the second capillary structure 40 that overlaps the evaporating section EP does not include the region R that does not contribute to forming the meandering flow path. That is, in the vapor chamber 1d, the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporator EP to the area of the evaporator EP in plan view from the thickness direction T is 50% or more. Yes, but not 100%.
 壁部61と壁部62とは、一体化されていてもよいし、接合されていてもよい。 The wall portion 61 and the wall portion 62 may be integrated or joined.
<実施形態5>
 本発明の実施形態5の熱拡散デバイスでは、本発明の実施形態1の熱拡散デバイスと異なり、上記厚み方向からの平面視で、上記第2毛細管構造体の周囲には、上記筐体の内面から上記厚み方向に突出した壁部が存在しない。本発明の実施形態5の熱拡散デバイスは、この点以外、本発明の実施形態1の熱拡散デバイスと同様である。
<Embodiment 5>
In the heat diffusion device of Embodiment 5 of the present invention, unlike the heat diffusion device of Embodiment 1 of the present invention, when viewed from above in the thickness direction, the inner surface of the housing is provided around the second capillary structure. There is no wall protruding from the thickness direction. The heat spreading device of Embodiment 5 of the present invention is the same as the heat spreading device of Embodiment 1 of the present invention except for this point.
 図8は、本発明の実施形態5の熱拡散デバイスの一例の内部構造を示す平面模式図である。図9は、図8に示す熱拡散デバイスの線分A3-A4に沿う断面を示す断面模式図である。図10は、図8に示す熱拡散デバイスの線分B3-B4に沿う断面を示す断面模式図である。 FIG. 8 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 5 of the present invention. 9 is a schematic cross-sectional view showing a cross section along line A3-A4 of the heat diffusion device shown in FIG. 8. FIG. FIG. 10 is a schematic cross-sectional view showing a cross section along line segment B3-B4 of the heat diffusion device shown in FIG.
 図8、図9、及び、図10に示すベーパーチャンバー1eにおいて、厚み方向Tからの平面視で、第2毛細管構造体40の周囲には、筐体10の内面10aから厚み方向Tに突出した壁部が存在していない。より具体的には、ベーパーチャンバー1eにおいて、厚み方向Tからの平面視で、第2毛細管構造体40の周囲には、図2及び図4に示すベーパーチャンバー1a等に存在する壁部61のような、筐体10の内面10aから厚み方向Tに突出した壁部が存在していない。 In the vapor chamber 1e shown in FIGS. 8, 9, and 10, in plan view from the thickness direction T, around the second capillary structure 40, there is a No wall exists. More specifically, in the vapor chamber 1e, in plan view from the thickness direction T, there are walls around the second capillary structure 40, such as the wall portion 61 present in the vapor chamber 1a and the like shown in FIGS. In addition, there is no wall portion protruding in the thickness direction T from the inner surface 10a of the housing 10 .
 ベーパーチャンバー1eでは、壁部61が存在するベーパーチャンバー1a等と比較して、蒸発部EPに輸送された液相の作動媒体20が蒸発部EPの周囲に広がることがあるものの、後述する図11及び図13に示すベーパーチャンバー1fと比較して、液相の作動媒体20が蒸発部EP内に広がりやすくなる。 In the vapor chamber 1e, the liquid-phase working medium 20 transported to the evaporating part EP may spread around the evaporating part EP compared to the vapor chamber 1a or the like in which the wall part 61 is present. And compared to the vapor chamber 1f shown in FIG. 13, the liquid-phase working medium 20 spreads easily in the evaporation part EP.
<実施形態6>
 本発明の実施形態6の熱拡散デバイスでは、本発明の実施形態1の熱拡散デバイスと異なり、上記第2毛細管構造体が、多孔質体を含む。本発明の実施形態6の熱拡散デバイスは、この点以外、本発明の実施形態1の熱拡散デバイスと同様である。
<Embodiment 6>
In the heat diffusion device of Embodiment 6 of the present invention, unlike the heat diffusion device of Embodiment 1 of the present invention, the second capillary structure includes a porous body. The heat spreading device of Embodiment 6 of the present invention is the same as the heat spreading device of Embodiment 1 of the present invention except for this point.
 図11は、本発明の実施形態6の熱拡散デバイスの一例の内部構造を示す平面模式図である。図12は、図11に示す熱拡散デバイスの線分A5-A6に沿う断面を示す断面模式図である。図13は、図11に示す熱拡散デバイスの線分B5-B6に沿う断面を示す断面模式図である。 FIG. 11 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 6 of the present invention. 12 is a schematic cross-sectional view showing a cross section along line A5-A6 of the heat diffusion device shown in FIG. 11. FIG. 13 is a schematic cross-sectional view showing a cross section along line B5-B6 of the heat diffusion device shown in FIG. 11. FIG.
 図11、図12、及び、図13に示すベーパーチャンバー1fにおいて、第2毛細管構造体40は、多孔質体41を含んでいる。図11及び図13では、第2毛細管構造体40として、多孔質体41が設けられている。 In the vapor chamber 1f shown in FIGS. 11, 12, and 13, the second capillary structure 40 includes a porous body 41. 11 and 13, a porous body 41 is provided as the second capillary structure 40. In FIGS.
 多孔質体41としては、例えば、多孔質体31と同様のものが挙げられる。 As the porous body 41, for example, the same as the porous body 31 can be used.
 多孔質体31及び多孔質体41の構成材料は、互いに同じであってもよいし、互いに異なっていてもよい。 The constituent materials of the porous body 31 and the porous body 41 may be the same or different.
 多孔質体31(あるいは第1毛細管構造体30)及び壁部60の合計厚みと、多孔質体41(あるいは第2毛細管構造体40)の厚みとは、互いに同じであってもよいし、互いに異なっていてもよい。 The total thickness of the porous body 31 (or the first capillary structure 30) and the wall portion 60 and the thickness of the porous body 41 (or the second capillary structure 40) may be the same, or can be different.
 多孔質体31(あるいは第1毛細管構造体30)と多孔質体41(あるいは第2毛細管構造体40)とは、一体化されていてもよいし、接合されていてもよい。 The porous body 31 (or the first capillary structure 30) and the porous body 41 (or the second capillary structure 40) may be integrated or joined.
 第2毛細管構造体40は、多孔質体41の代わりに、上述した複数の繊維を線状に束ねた繊維束を含んでいてもよい。 Instead of the porous body 41, the second capillary structure 40 may include a fiber bundle obtained by linearly bundling the plurality of fibers described above.
 ベーパーチャンバー1fは、第3毛細管構造体、例えば、図2及び図4に示す多孔質体51を有していなくてもよいし、第3毛細管構造体を更に有していてもよい。 The vapor chamber 1f may not have the third capillary structure, for example, the porous body 51 shown in FIGS. 2 and 4, or may further have the third capillary structure.
<実施形態7>
 本発明の実施形態7の熱拡散デバイスでは、本発明の実施形態1の熱拡散デバイスと異なり、上記第2毛細管構造体が、上記筐体の内面に設けられた溝を含む。本発明の実施形態7の熱拡散デバイスは、この点以外、本発明の実施形態1の熱拡散デバイスと同様である。
<Embodiment 7>
In the heat spreading device of Embodiment 7 of the present invention, unlike the heat spreading device of Embodiment 1 of the present invention, the second capillary structure includes grooves provided on the inner surface of the housing. The heat spreading device of Embodiment 7 of the present invention is the same as the heat spreading device of Embodiment 1 of the present invention except for this point.
 図14は、本発明の実施形態7の熱拡散デバイスの一例の内部構造を示す平面模式図である。図15は、図14に示す熱拡散デバイスの線分A7-A8に沿う断面を示す断面模式図である。図16は、図14に示す熱拡散デバイスの線分B7-B8に沿う断面を示す断面模式図である。 FIG. 14 is a schematic plan view showing the internal structure of an example of a heat diffusion device according to Embodiment 7 of the present invention. 15 is a schematic cross-sectional view showing a cross section along line A7-A8 of the heat diffusion device shown in FIG. 14. FIG. 16 is a schematic cross-sectional view showing a cross section along line B7-B8 of the heat diffusion device shown in FIG. 14. FIG.
 図14、図15、及び、図16に示すベーパーチャンバー1gにおいて、第2毛細管構造体40は、筐体10の内面10aに設けられた溝42を含んでいることが好ましい。 In the vapor chamber 1g shown in FIGS. 14, 15, and 16, the second capillary structure 40 preferably includes grooves 42 provided on the inner surface 10a of the housing 10.
 溝42は、筐体10の内面10a、ここでは、第1シート11の内面11aから厚み方向Tに窪んでいる。図14では、厚み方向Tからの平面視での、溝42の平面形状が、網目状となっている。 The groove 42 is recessed in the thickness direction T from the inner surface 10 a of the housing 10 , here, the inner surface 11 a of the first sheet 11 . In FIG. 14 , the planar shape of the grooves 42 when viewed from the thickness direction T is mesh-like.
 溝42は、例えば、筐体10の内面10a、ここでは、第1シート11の内面11aを、エッチング加工、プレス加工、機械加工等で加工することにより形成される。 The grooves 42 are formed, for example, by processing the inner surface 10a of the housing 10, here, the inner surface 11a of the first sheet 11, by etching, pressing, machining, or the like.
 ベーパーチャンバー1gにおいて、第2毛細管構造体40が溝42を含んでいることにより、蒸発部EPに輸送された液相の作動媒体20が、溝42を通って蒸発部EP内に広がる。更に、ベーパーチャンバー1gの蒸発部EPに重なる領域の厚みが、図4に示すベーパーチャンバー1aの蒸発部EPに重なる領域の厚みよりも小さくなる。 In the vapor chamber 1g, the second capillary structure 40 includes the grooves 42, so that the liquid-phase working medium 20 transported to the evaporation part EP spreads through the grooves 42 into the evaporation part EP. Furthermore, the thickness of the region of the vapor chamber 1g that overlaps the evaporation part EP is smaller than the thickness of the region of the vapor chamber 1a that overlaps the evaporation part EP shown in FIG.
 ベーパーチャンバー1gにおいて、第2毛細管構造体40は、溝42に加えて、溝42が設けられていない筐体10の内面10aの一部、ここでは、溝42が設けられていない第1シート11の内面11aの一部を組み合わせることにより、いわゆるマイクロチャネルを構成し、液相の作動媒体20を蒸発部EP内に広げる液流路として機能する。つまり、ベーパーチャンバー1gにおいて、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2は、溝42と、溝42が設けられていない筐体10の内面10aの一部、ここでは、溝42が設けられていない第1シート11の内面11aの一部とが配置されている領域に該当する。よって、ベーパーチャンバー1gでは、厚み方向Tからの平面視で、蒸発部EPの面積に対する、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2の面積の割合が、100%となっている。 In the vapor chamber 1g, the second capillary structure 40 includes, in addition to the grooves 42, a portion of the inner surface 10a of the housing 10 that is not provided with the grooves 42, here the first sheet 11 that is not provided with the grooves 42. By combining a part of the inner surface 11a of the , a so-called microchannel is formed, which functions as a liquid flow path for spreading the liquid-phase working medium 20 in the evaporating part EP. That is, in the vapor chamber 1g, the arrangement region CR2 of the second capillary structure 40 overlapping the evaporating part EP consists of the groove 42 and a portion of the inner surface 10a of the housing 10 where the groove 42 is not provided. corresponds to the area where a part of the inner surface 11a of the first sheet 11 where the is not provided is arranged. Therefore, in the vapor chamber 1g, the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporation part EP to the area of the evaporation part EP in plan view from the thickness direction T is 100%. .
 図14及び図15に示すベーパーチャンバー1gでは、筐体10の内面10aから厚み方向Tに窪んだ複数の溝72、ここでは、第1シート11の内面11aから厚み方向Tに窪んだ複数の溝72が面内方向に延びており、液輸送部LPが複数の溝72に設けられている。 In the vapor chamber 1g shown in FIGS. 14 and 15, a plurality of grooves 72 recessed in the thickness direction T from the inner surface 10a of the housing 10, here, a plurality of grooves recessed in the thickness direction T from the inner surface 11a of the first sheet 11. 72 extends in the in-plane direction, and liquid transporting portions LP are provided in the plurality of grooves 72 .
 ベーパーチャンバー1gにおいて、液輸送部LPが複数の溝72に設けられていることにより、ベーパーチャンバー1gの液輸送部LPに重なる領域の厚みが、図3に示すベーパーチャンバー1aの液輸送部LPに重なる領域の厚みよりも小さくなる。 In the vapor chamber 1g, since the liquid transporting portions LP are provided in the plurality of grooves 72, the thickness of the region overlapping the liquid transporting portions LP of the vapor chamber 1g is equal to that of the liquid transporting portions LP of the vapor chamber 1a shown in FIG. less than the thickness of the overlapping region.
 ベーパーチャンバー1gでは、ベーパーチャンバー1aと比較して、液輸送部LP及び蒸発部EPに重なる領域の厚みが小さいため、薄型化が可能となる。 In the vapor chamber 1g, compared to the vapor chamber 1a, the thickness of the region overlapping the liquid transporting part LP and the evaporating part EP is smaller, so it can be made thinner.
 溝42及び溝72の深さ(厚み)は、互いに同じであってもよいし、互いに異なっていてもよい。 The depths (thicknesses) of the grooves 42 and the grooves 72 may be the same or different.
[電子機器]
 本発明の電子機器について、以下に説明する。
[Electronics]
Electronic equipment according to the present invention will be described below.
 本発明の電子機器は、本発明の熱拡散デバイスと、上記熱拡散デバイスの上記筐体の外壁面に取り付けられた電子部品と、を備え、上記厚み方向からの平面視で、上記電子部品は、上記筐体の上記蒸発部に重なる。 An electronic device of the present invention includes the heat diffusion device of the present invention and an electronic component attached to an outer wall surface of the housing of the heat diffusion device, and when viewed in plan from the thickness direction, the electronic component is , overlaps the evaporator section of the housing.
 図17は、本発明の電子機器の一例を示す斜視模式図である。 FIG. 17 is a schematic perspective view showing an example of the electronic device of the present invention.
 以下では、本発明の電子機器の一例として、本発明の実施形態1の熱拡散デバイスを有する電子機器について説明する。本発明の他の実施形態の熱拡散デバイスを有する電子機器についても同様である。 An electronic device having the heat diffusion device of Embodiment 1 of the present invention will be described below as an example of the electronic device of the present invention. The same applies to electronic equipment having heat diffusion devices according to other embodiments of the present invention.
 図17に示す電子機器100は、ベーパーチャンバー1aと、電子部品110と、を有している。より具体的には、電子機器100は、ベーパーチャンバー1aと、電子部品110と、を機器筐体120の内部空間に有している。 An electronic device 100 shown in FIG. 17 has a vapor chamber 1a and an electronic component 110. More specifically, electronic device 100 has vapor chamber 1 a and electronic component 110 in the internal space of device housing 120 .
 電子部品110は、ベーパーチャンバー1aの筐体10の外壁面に取り付けられている。電子部品110は、図1に示す熱源HSに該当する。つまり、電子部品110は、図2に示す筐体10の内面10aと反対側の外壁面、ここでは、第1シート11の内面11aと反対側の外壁面に取り付けられている。更に、厚み方向Tからの平面視で、電子部品110は、筐体10の蒸発部EPに重なっている。 The electronic component 110 is attached to the outer wall surface of the housing 10 of the vapor chamber 1a. The electronic component 110 corresponds to the heat source HS shown in FIG. In other words, the electronic component 110 is attached to the outer wall surface opposite to the inner surface 10a of the housing 10 shown in FIG. Furthermore, in plan view from the thickness direction T, the electronic component 110 overlaps the evaporation portion EP of the housing 10 .
 電子部品110は、筐体10の外壁面に直に取り付けられていてもよいし、熱伝導性の高い粘着剤、シート、テープ等の他の部材を介して取り付けられていてもよい。 The electronic component 110 may be attached directly to the outer wall surface of the housing 10, or may be attached via another member such as adhesive, sheet, or tape with high thermal conductivity.
 電子機器100としては、例えば、スマートフォン、タブレット端末、ノートパソコン、ゲーム機器、ウェアラブルデバイス等が挙げられる。 Examples of the electronic device 100 include smartphones, tablet terminals, notebook computers, game machines, wearable devices, and the like.
 電子部品110としては、例えば、中央処理装置(CPU)、発光ダイオード(LED)、パワー半導体等の発熱素子が挙げられる。 Examples of the electronic components 110 include central processing units (CPUs), light emitting diodes (LEDs), and heating elements such as power semiconductors.
 図1、図2、図3、及び、図4を参照しつつ上述したように、ベーパーチャンバー1aは、外部動力を必要とすることなく自立的に作動し、更には、作動媒体20の蒸発潜熱及び凝縮潜熱を利用することにより、熱源HSからの熱を二次元的に高速で拡散できる。更に、ベーパーチャンバー1aでは、厚み方向Tからの平面視で、蒸発部EPの面積に対する、蒸発部EPに重なる第2毛細管構造体40の配置領域CR2の面積の割合が50%以上であるため、最大熱輸送量が向上する。以上のことから、ベーパーチャンバー1aを有する電子機器100により、電子機器100の内部の限られたスペースにおいて、放熱を効果的に実現できる。 As described above with reference to FIGS. 1, 2, 3 and 4, the vapor chamber 1a operates autonomously without the need for external power and furthermore the latent heat of vaporization of the working medium 20 And by utilizing the latent heat of condensation, the heat from the heat source HS can be diffused two-dimensionally at high speed. Furthermore, in the vapor chamber 1a, the ratio of the area of the arrangement region CR2 of the second capillary structure 40 overlapping the evaporation part EP to the area of the evaporation part EP in plan view from the thickness direction T is 50% or more, Increases maximum heat transfer. As described above, the electronic device 100 having the vapor chamber 1a can effectively dissipate heat in a limited space inside the electronic device 100 .
 本発明の熱拡散デバイスは、携帯情報端末等の分野において、広範な用途に使用可能である。本発明の熱拡散デバイスは、例えば、中央処理装置等の熱源の温度を下げ、電子機器の使用時間を延ばすために使用可能であり、スマートフォン、タブレット端末、ノートパソコン、ゲーム機器、ウェアラブルデバイス等に使用可能である。 The heat diffusion device of the present invention can be used for a wide range of applications in fields such as personal digital assistants. The heat diffusion device of the present invention can be used, for example, to lower the temperature of a heat source such as a central processing unit and extend the usage time of electronic equipment, and is used in smartphones, tablet terminals, laptop computers, game machines, wearable devices, etc. Available.
1a、1b、1c、1d、1e、1f、1g ベーパーチャンバー(熱拡散デバイス)
10 筐体
10a 筐体の内面
11 第1シート
11a 第1シートの内面
12 第2シート
20 作動媒体
30 第1毛細管構造体
31、41、51 多孔質体
40 第2毛細管構造体
41a、41b 突起
42、72 溝
50 第3毛細管構造体
60、61、62 壁部
100 電子機器
110 電子部品
120 機器筐体
CR1 第1毛細管構造体の配置領域
CR2 第2毛細管構造体の配置領域
CR3 第3毛細管構造体の配置領域
EP 蒸発部
HS 熱源
L 長さ方向
LP 液輸送部
R 領域
T 厚み方向
VP 蒸気流路
W 幅方向
1a, 1b, 1c, 1d, 1e, 1f, 1g vapor chamber (thermal diffusion device)
10 housing 10a housing inner surface 11 first sheet 11a first sheet inner surface 12 second sheet 20 working medium 30 first capillary structures 31, 41, 51 porous body 40 second capillary structures 41a, 41b projection 42 , 72 groove 50 third capillary structure 60, 61, 62 wall 100 electronic device 110 electronic component 120 device housing CR1 arrangement region CR2 of first capillary structure arrangement region CR3 of second capillary structure third capillary structure Arrangement area EP Evaporation part HS Heat source L Length direction LP Liquid transport part R Area T Thickness direction VP Vapor flow path W Width direction

Claims (9)

  1.  液輸送部と、厚み方向からの平面視で前記液輸送部の一端に接続された蒸発部と、を内部空間に有する筐体と、
     前記筐体の内部空間に封入された作動媒体と、
     前記筐体の内部空間に設けられ、かつ、前記厚み方向からの平面視で前記液輸送部に重なる第1毛細管構造体と、
     前記筐体の内部空間に設けられ、かつ、前記厚み方向からの平面視で前記蒸発部に重なる第2毛細管構造体と、を備え、
     前記厚み方向からの平面視で、前記筐体の内部空間の面積に対する前記第1毛細管構造体の配置領域の面積の割合は、50%以下であり、
     前記厚み方向からの平面視で、前記蒸発部の面積に対する、前記蒸発部に重なる前記第2毛細管構造体の配置領域の面積の割合は、50%以上である、ことを特徴とする熱拡散デバイス。
    a housing having, in its internal space, a liquid transporting section and an evaporating section connected to one end of the liquid transporting section in plan view from the thickness direction;
    a working medium enclosed in the internal space of the housing;
    a first capillary structure provided in the internal space of the housing and overlapping the liquid transporting portion in plan view from the thickness direction;
    a second capillary structure provided in the internal space of the housing and overlapping the evaporating section in plan view from the thickness direction;
    In plan view from the thickness direction, the ratio of the area of the arrangement region of the first capillary structure to the area of the internal space of the housing is 50% or less,
    The heat diffusion device, wherein the ratio of the area of the second capillary structure overlapping the evaporating portion to the area of the evaporating portion in plan view from the thickness direction is 50% or more. .
  2.  前記第1毛細管構造体は、多孔質体を含む、請求項1に記載の熱拡散デバイス。 The thermal diffusion device according to claim 1, wherein the first capillary structure includes a porous body.
  3.  前記第2毛細管構造体は、前記筐体の内面に設けられた複数の突起を含む、請求項1又は2に記載の熱拡散デバイス。 The heat diffusion device according to claim 1 or 2, wherein the second capillary structure includes a plurality of protrusions provided on the inner surface of the housing.
  4.  前記第2毛細管構造体は、前記筐体の内面に設けられた溝を含む、請求項1又は2に記載の熱拡散デバイス。 The heat diffusion device according to claim 1 or 2, wherein the second capillary structure includes grooves provided on the inner surface of the housing.
  5.  前記厚み方向からの平面視で、前記第2毛細管構造体の周囲には、前記筐体の内面から前記厚み方向に突出した壁部が存在する、請求項1~4のいずれかに記載の熱拡散デバイス。 5. The heater according to any one of claims 1 to 4, wherein a wall protruding in the thickness direction from the inner surface of the housing is present around the second capillary structure in plan view from the thickness direction. diffusion device.
  6.  前記厚み方向からの平面視で、前記蒸発部に重なる領域には、前記第2毛細管構造体が前記液輸送部の延在方向に設けられていない、請求項1~5のいずれかに記載の熱拡散デバイス。 6. The second capillary structure according to any one of claims 1 to 5, wherein in a planar view from the thickness direction, the second capillary structure is not provided in the extending direction of the liquid transporting section in a region overlapping with the evaporating section. heat spreading device.
  7.  前記筐体の内部空間に設けられ、かつ、前記厚み方向からの平面視で前記蒸発部に重なる第3毛細管構造体を更に備え、
     前記第3毛細管構造体は、前記第2毛細管構造体よりも毛細管力が大きい、請求項1~6のいずれかに記載の熱拡散デバイス。
    further comprising a third capillary structure provided in the internal space of the housing and overlapping the evaporating section in plan view from the thickness direction;
    The heat spreading device according to any one of claims 1 to 6, wherein said third capillary structure has a greater capillary force than said second capillary structure.
  8.  前記第3毛細管構造体は、多孔質体を含む、請求項7に記載の熱拡散デバイス。 The heat diffusion device according to claim 7, wherein the third capillary structure includes a porous body.
  9.  請求項1~8のいずれかに記載の熱拡散デバイスと、
     前記熱拡散デバイスの前記筐体の外壁面に取り付けられた電子部品と、を備え、
     前記厚み方向からの平面視で、前記電子部品は、前記筐体の前記蒸発部に重なる、ことを特徴とする電子機器。
    a heat diffusion device according to any one of claims 1 to 8;
    an electronic component attached to an outer wall surface of the housing of the heat spreading device;
    The electronic device according to claim 1, wherein the electronic component overlaps the evaporating portion of the housing when viewed in plan from the thickness direction.
PCT/JP2022/025486 2021-07-15 2022-06-27 Thermal diffusion device and electronic apparatus WO2023286577A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021117013 2021-07-15
JP2021-117013 2021-07-15

Publications (1)

Publication Number Publication Date
WO2023286577A1 true WO2023286577A1 (en) 2023-01-19

Family

ID=84920039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025486 WO2023286577A1 (en) 2021-07-15 2022-06-27 Thermal diffusion device and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2023286577A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042675A (en) * 2001-07-26 2003-02-13 Tokai Rubber Ind Ltd Thermal diffusion sheet
JP2020076522A (en) * 2018-11-06 2020-05-21 東芝ホームテクノ株式会社 Sheet-shape heat pipe
WO2020255513A1 (en) * 2019-06-21 2020-12-24 株式会社村田製作所 Vapor chamber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042675A (en) * 2001-07-26 2003-02-13 Tokai Rubber Ind Ltd Thermal diffusion sheet
JP2020076522A (en) * 2018-11-06 2020-05-21 東芝ホームテクノ株式会社 Sheet-shape heat pipe
WO2020255513A1 (en) * 2019-06-21 2020-12-24 株式会社村田製作所 Vapor chamber

Similar Documents

Publication Publication Date Title
US20100122798A1 (en) Heat transport device, electronic apparatus, and heat transport device manufacturing method
KR20190071783A (en) Heat dissipation module
US11445636B2 (en) Vapor chamber, heatsink device, and electronic device
JP7111266B2 (en) vapor chamber
WO2023286577A1 (en) Thermal diffusion device and electronic apparatus
TW201825850A (en) Heat pipe
WO2023021953A1 (en) Thermal diffusion device and electronic apparatus
WO2022201918A1 (en) Thermal diffusion device and electronic apparatus
WO2023074645A1 (en) Thermal diffusion device and electronic apparatus
WO2024034279A1 (en) Heat dissipation device and electronic apparatus
JP7311057B2 (en) Heat spreading devices and electronics
WO2023171408A1 (en) Thermal diffusion device and electronic apparatus
WO2022230296A1 (en) Heat dissipation device
JP7260062B2 (en) heat spreading device
JP7222448B2 (en) heat spreading device
WO2023026896A1 (en) Thermal diffusion device
JP7283641B2 (en) heat spreading device
JP7120494B1 (en) heat spreading device
WO2023112616A1 (en) Thermal diffusion device and electronic apparatus
WO2022230295A1 (en) Thermal diffusion device
WO2023085350A1 (en) Thermal diffusion device
WO2023058595A1 (en) Thermal diffusion device
WO2022259716A1 (en) Thermal diffusion device
WO2023182029A1 (en) Heat diffusing device, and electronic apparatus
WO2022230357A1 (en) Heat diffusion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE