WO2023238626A1 - Heat diffusion device and electronic appliance - Google Patents

Heat diffusion device and electronic appliance Download PDF

Info

Publication number
WO2023238626A1
WO2023238626A1 PCT/JP2023/018557 JP2023018557W WO2023238626A1 WO 2023238626 A1 WO2023238626 A1 WO 2023238626A1 JP 2023018557 W JP2023018557 W JP 2023018557W WO 2023238626 A1 WO2023238626 A1 WO 2023238626A1
Authority
WO
WIPO (PCT)
Prior art keywords
wick
thickness direction
convex portion
diffusion device
heat diffusion
Prior art date
Application number
PCT/JP2023/018557
Other languages
French (fr)
Japanese (ja)
Inventor
利克 大櫃
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023238626A1 publication Critical patent/WO2023238626A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to heat diffusion devices and electronic equipment.
  • the vapor chamber has a structure in which a working medium (also referred to as working fluid) and a wick that transports the working medium by capillary force are enclosed inside a housing.
  • the working medium absorbs heat from the heat generating elements such as electronic components in the evaporation section, evaporates in the vapor chamber, moves within the vapor chamber, is cooled, and returns to the liquid phase. .
  • the working medium that has returned to the liquid phase moves again to the evaporation section on the heating element side by the capillary force of the wick, and cools the heating element.
  • the vapor chamber can operate independently without external power, and can diffuse heat two-dimensionally at high speed using the latent heat of vaporization and latent heat of condensation of the working medium.
  • Patent Document 1 discloses a casing including an upper casing sheet and a lower casing sheet facing each other joined at outer edges and having an internal space, a hydraulic fluid sealed in the internal space, and the lower casing.
  • a microchannel arranged in the inner space of the sheet and forming a flow path for the working fluid; a sheet-shaped wick arranged in the inner space of the casing and in contact with the microchannel;
  • a vapor chamber is described in which the contact area between the wick and the microchannel is 5% to 40% of the area of the internal space when viewed in plan.
  • the working fluid changes from liquid to gas in the holes of the wick due to heat from a heat source in close contact with the lower housing sheet.
  • the working fluid constitutes a gas-liquid interface in the holes of the wick.
  • the vaporized working fluid releases heat in the internal space of the housing and returns to liquid form.
  • the working fluid, which has returned to liquid form moves through the microchannel due to capillary force due to the pores of the wick and is brought close to the heat source again.
  • the vapor space which is the space in which the working fluid that has vaporized into steam moves, within the internal space of the casing.
  • the present invention was made in order to solve the above problems, and an object of the present invention is to provide a heat diffusion device that can widen the vapor space. Furthermore, an object of the present invention is to provide an electronic device equipped with the above-mentioned heat diffusion device.
  • the heat diffusion device of the present invention includes a casing having a first inner surface and a second inner surface facing each other in the thickness direction, a working medium sealed in an internal space of the casing, and a working medium disposed in the internal space of the casing.
  • a wick the wick including a support in contact with the first inner surface, and a perforated body in contact with the support, the edge of the wick facing toward the first inner surface. curved so that they are close together.
  • the electronic device of the present invention includes the heat diffusion device of the present invention.
  • thermoelectric device that can widen the vapor space. Furthermore, according to the present invention, it is possible to provide an electronic device including the above heat diffusion device.
  • FIG. 1 is a perspective view schematically showing an example of a heat diffusion device of the present invention.
  • FIG. 2 is an example of a cross-sectional view of the heat diffusion device shown in FIG. 1 taken along line II-II.
  • FIG. 3 is an enlarged view of portion III in FIG.
  • FIG. 4 is an enlarged view showing a modification of portion III in FIG. 2.
  • FIG. 5 is a partially enlarged cross-sectional view schematically showing an example of a wick constituting the heat diffusion device shown in FIG. 2.
  • FIG. FIG. 6 is a plan view of the wick shown in FIG. 5 viewed from the support body side.
  • FIG. 7 is a partially enlarged sectional view schematically showing a first modification of the wick.
  • FIG. 1 is a perspective view schematically showing an example of a heat diffusion device of the present invention.
  • FIG. 2 is an example of a cross-sectional view of the heat diffusion device shown in FIG. 1 taken along line II-II.
  • FIG. 3 is an
  • FIG. 8 is a partially enlarged sectional view schematically showing a second modification of the wick.
  • FIG. 9 is a partially enlarged sectional view schematically showing a third modification of the wick.
  • FIG. 10A is a partially enlarged sectional view schematically showing a fourth modification of the wick.
  • FIG. 10B is a plan view schematically showing the through hole, the convex portion, and the flow of steam near the convex portion when the wick shown in FIG. 10A is viewed from the perforated body side.
  • FIG. 11 is a partially enlarged sectional view schematically showing a first modified example of the convex portion shown in FIG. 10A.
  • FIG. 12 is a partially enlarged sectional view schematically showing a second modified example of the convex portion shown in FIG. 10A.
  • FIG. 13 is a partially enlarged cross-sectional view schematically showing a third modification of the convex portion shown in FIG. 10A.
  • FIG. 14 is a partially enlarged sectional view schematically showing a fourth modification of the convex portion shown in FIG. 10A.
  • FIG. 15 is a partially enlarged sectional view schematically showing a fifth modification example of the convex portion shown in FIG. 10A.
  • FIG. 16A is a partially enlarged cross-sectional view schematically showing a fifth modification of the wick.
  • FIG. 16B is a cross-sectional view showing an example of a state in which a working medium is enclosed in the cross-sectional view shown in FIG. 16A.
  • FIG. 17 is a partially enlarged sectional view schematically showing a first modified example of the convex portion shown in FIG. 16A.
  • FIG. 18 is a partially enlarged sectional view schematically showing a second modified example of the convex portion shown in FIG. 16A.
  • FIG. 19 is a partially enlarged sectional view schematically showing a third modification of the convex portion shown in FIG. 16A.
  • FIG. 20 is a partially enlarged sectional view schematically showing a fourth modification of the convex portion shown in FIG. 16A.
  • FIG. 21 is a partially enlarged sectional view schematically showing a fifth modification example of the convex portion shown in FIG. 16A.
  • FIG. 22 is a plan view schematically showing a sixth modification of the wick.
  • FIG. 23 is a plan view schematically showing the arrangement of wicks when the heat diffusion device shown in FIG. 1 is viewed from the thickness direction.
  • FIG. 24 is a plan view schematically showing the arrangement of the wicks when the first modified example of the heat diffusion device of the present invention is viewed from the thickness direction.
  • FIG. 25 is a plan view schematically showing the arrangement of the wick when the second modified example of the heat diffusion device of the present invention is viewed from the thickness direction.
  • FIG. 26 is a cross-sectional view schematically showing a third modification of the heat diffusion device.
  • FIG. 27 is a cross-sectional view schematically showing a fourth modification of the heat diffusion device.
  • the heat diffusion device of the present invention will be explained below.
  • the present invention is not limited to the following embodiments, and can be modified and applied as appropriate without changing the gist of the present invention.
  • the present invention also includes a combination of two or more of the individual preferred configurations of the present invention described below.
  • heat diffusion device of the present invention is also applicable to heat diffusion devices such as heat pipes.
  • FIG. 1 is a perspective view schematically showing an example of the heat diffusion device of the present invention.
  • FIG. 2 is an example of a cross-sectional view of the heat diffusion device shown in FIG. 1 taken along line II-II.
  • the vapor chamber (thermal diffusion device) 1 shown in FIGS. 1 and 2 includes a hollow casing 10 that is hermetically sealed.
  • the housing 10 has a first inner surface 11a and a second inner surface 12a facing each other in the thickness direction Z.
  • the vapor chamber 1 further includes a working medium 20 sealed in the internal space of the housing 10 and a wick 30 arranged in the internal space of the housing 10.
  • the housing 10 is provided with an evaporation section that evaporates the enclosed working medium 20.
  • a heat source HS which is a heat generating element, is arranged on the outer surface of the housing 10.
  • the heat source HS include electronic components of electronic equipment, such as a central processing unit (CPU).
  • CPU central processing unit
  • a portion of the internal space of the housing 10 that is near the heat source HS and is heated by the heat source HS corresponds to the evaporation section.
  • the vapor chamber 1 has a planar shape as a whole. That is, it is preferable that the housing 10 has a planar shape as a whole.
  • plan shape includes plate shape and sheet shape, and the dimension in the width direction X (hereinafter referred to as width) and the dimension in the length direction Y (hereinafter referred to as length) is It means a shape that is considerably large relative to its dimensions (hereinafter referred to as thickness or height), for example, a shape whose width and length are 10 times or more, preferably 100 times or more, the thickness.
  • the size of the vapor chamber 1, that is, the size of the housing 10, is not particularly limited.
  • the width and length of the vapor chamber 1 can be set as appropriate depending on the application.
  • the width and length of the vapor chamber 1 are, for example, 5 mm or more and 500 mm or less, 20 mm or more and 300 mm or less, or 50 mm or more and 200 mm or less.
  • the width and length of the vapor chamber 1 may be the same or different.
  • the casing 10 is composed of a first sheet 11 and a second sheet 12 that are joined at their outer edges and that face each other in the thickness direction Z.
  • the first sheet 11 has the first inner surface 11a of the housing 10.
  • the second sheet 12 has a second inner surface 12a of the housing 10. The first sheet 11 and the second sheet 12 are joined at their outer edges by a joint 13 .
  • the materials constituting the first sheet 11 and the second sheet 12 have properties suitable for use as a vapor chamber, such as thermal conductivity and strength. It is not particularly limited as long as it has flexibility, softness, etc.
  • the material constituting the first sheet 11 and the second sheet 12 is preferably a metal, such as copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing these as main components, and particularly preferably copper. It is.
  • the materials constituting the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
  • the outer edges of the first sheet 11 and the second sheet 12 are joined by the joining part 13.
  • the method of such joining is not particularly limited, but for example, laser welding, resistance welding, diffusion bonding, brazing welding, TIG welding (tungsten-inert gas welding), ultrasonic bonding, or resin sealing can be used, and preferably Laser welding, resistance welding or brazing can be used.
  • the thickness of the first sheet 11 and the second sheet 12 is not particularly limited, but each is preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 30 ⁇ m or more and 100 ⁇ m or less, and even more preferably 40 ⁇ m or more and 60 ⁇ m or less.
  • the thickness of the first sheet 11 and the second sheet 12 may be the same or different. Further, the thickness of each of the first sheet 11 and the second sheet 12 may be the same over the entirety, or may be partially thin.
  • each of the first sheet 11 and the second sheet 12 may have an outer edge portion thicker than a portion other than the outer edge portion.
  • the first sheet 11 and the second sheet 12 are joined. There may be a mark in the joint portion 13 where the first sheet 11 and the second sheet 12 were joined.
  • the overall thickness of the vapor chamber 1 is not particularly limited, but is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the planar shape of the casing 10 viewed from the thickness direction Z is not particularly limited, and examples thereof include polygons such as triangles and rectangles, circles, ellipses, and combinations thereof. Further, the planar shape of the casing 10 may be an L-shape, a C-shape (U-shape), a staircase shape, or the like. Furthermore, the housing 10 may have a through hole. The planar shape of the casing 10 may be a shape depending on the purpose of the vapor chamber, the shape of the part where the vapor chamber is installed, and other components existing nearby.
  • the working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the casing 10, and for example, water, alcohols, CFC substitutes, etc. can be used.
  • working medium 20 is an aqueous compound, preferably water.
  • the wick 30 has a capillary structure that can move the working medium 20 by capillary force.
  • the capillary structure of the wick 30 may be a known structure used in conventional vapor chambers.
  • the size and shape of the wick 30 are not particularly limited, it is preferable, for example, that the wick 30 be arranged continuously in the internal space of the housing 10.
  • the wick 30 may be disposed in the entire internal space of the casing 10 when viewed from the thickness direction Z, or the wick 30 may be disposed in a part of the internal space of the casing 10 when viewed from the thickness direction Z. You can leave it there.
  • An example of the arrangement of the wicks in the internal space of the housing 10 will be described later using FIGS. 23, 24, and 25.
  • the wick 30 includes a support 31 in contact with the first inner surface 11a and a perforated body 32 in contact with the support 31.
  • FIG. 3 is an enlarged view of portion III in FIG. 2.
  • FIG. 3 is an enlarged view showing the periphery of the edge of the wick 30.
  • FIG. 4 is an enlarged view showing a modification of portion III in FIG. 2.
  • the edge of the wick 30 is bent toward the first inner surface 11a side.
  • the edge of the wick 30 is bent downward in FIGS. 3 and 4.
  • the edge of the perforated body 32 is bent toward the first inner surface 11a side.
  • the edge of the wick 30 is bent toward the first inner surface 11a side, the space on the second inner surface 12a side will be smaller than the edge of the wick 30, compared to a wick with an uncurved edge. Since it can be expanded, it is possible to widen the steam space, which is the space in which the working medium 20 that has been vaporized and turned into steam moves. Specifically, in the wick 30, the area indicated by R in FIGS. 3 and 4 can be expanded as a vapor space, compared to a wick whose edge is not bent toward the first inner surface 11a side. can. By widening the vapor space, the thermal conductivity of the vapor chamber 1 can be improved.
  • the edge of the wick 30 may be bent toward the first inner surface 11a by, for example, press working.
  • the edge of the wick 30 is formed by printing a paste material, performing press working, and then firing. may be bent so as to approach the first inner surface 11a side.
  • the edge of the wick 30 approaches the first inner surface 11a by preparing a thicker porous sintered body in advance and removing a portion of the porous sintered body by etching or the like. It may be bent like this.
  • the shape of the edge of the wick 30 is not particularly limited as long as it is curved toward the first inner surface 11a side.
  • the edge of the wick 30 is curved in a cross section along the thickness direction Z so as to approach the first inner surface 11a side.
  • the edge of the wick 30 preferably has a convex shape toward the second inner surface 12a (upper side), as shown in FIGS. 3 and 4.
  • the edge may be curved so that the curvature is constant, or may be curved while changing the curvature.
  • the edge of the wick 30 may be bent linearly at a predetermined position so as to approach the first inner surface 11a side in the cross section along the thickness direction Z.
  • a gap exist between the edge of the wick 30 and the inner edge of the casing 10 in a direction perpendicular to the thickness direction Z. . That is, in the cross section along the thickness direction Z, it is preferable that the edge of the wick 30 and the inner edge of the housing 10 do not touch.
  • the effect of the gap existing in the direction perpendicular to the thickness direction Z between the edge of the wick 30 and the inner edge of the casing 10 will be explained.
  • the working medium 20 which is in the form of vapor, comes into contact with the inner edge of the casing 10 and easily becomes liquid. Therefore, in the cross section along the thickness direction Z, if the edge of the wick 30 and the inner edge of the casing 10 are in contact, the steam space near the part where the edge of the wick 30 and the inner edge of the casing 10 are in contact with each other. There is a risk that the vapor space will become narrow due to the accumulation of liquid working medium 20 in the space.
  • the liquid working medium 20 can move into the liquid flow path through the gap between the edge of the wick 30 and the inner edge of the casing 10, so the liquid working medium 20 accumulates in the vapor space, causing the vapor space to become narrow. can be prevented.
  • the distance between the edge of the wick 30 and the inner edge of the housing 10 is preferably 10 ⁇ m or more, for example. If the distance between the edge of the wick 30 and the inner edge of the housing 10 (the length indicated by A in FIG. 3) is 10 ⁇ m or more, the liquid working medium 20 accumulates in the vapor space, resulting in a narrow vapor space. This can be prevented more efficiently. On the other hand, the distance between the edge of the wick 30 and the inner edge of the housing 10 (the length indicated by A in FIG. 3) is preferably 500 ⁇ m or less.
  • the bending height of the edge of the wick 30 (distance indicated by B in FIG. 3), which is the distance in the thickness direction Z between the edge of the wick 30 and a portion of the wick 30 other than the edge, is particularly limited. However, it may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the bending width of the edge 30 (the length indicated by C in FIG. 3) is not particularly limited, but may be, for example, 1 ⁇ m or more and 1000 ⁇ m or less. In FIG. 3, the bending width of the edge of the wick 30 is the length in the width direction X.
  • the joint 13 between the first sheet 11 and the second sheet 12 be located at a different position from the edge of the wick 30 in the thickness direction Z. If the joint 13 between the first sheet 11 and the second sheet 12 is located at the same position as the edge of the wick 30 in the thickness direction Z, the first sheet 11 and the second sheet 12 will be connected in the manufacturing process of the vapor chamber. When joining, the part that functions as the wick 30 is reduced by entering the wick 30 into the joint part 13, so there is a risk that the maximum heat transport amount will decrease. On the other hand, if the joint 13 between the first sheet 11 and the second sheet 12 is located at a different position from the edge of the wick 30 in the thickness direction Z, the edge of the wick 30 will enter the joint 13. Therefore, it is possible to prevent the maximum heat transport amount from decreasing in the vapor chamber 1.
  • the joint 13 between the first sheet 11 and the second sheet 12 is located between the edge of the wick 30 and the second inner surface 12a of the casing 10 in the thickness direction Z.
  • the edge of the wick 30 may be located between the joint 13 of the first sheet 11 and the second sheet 12 and the second inner surface 12a of the housing 10 in the thickness direction Z.
  • FIG. 5 is a partially enlarged sectional view schematically showing an example of a wick that constitutes the heat diffusion device shown in FIG. 2.
  • FIG. 6 is a plan view of the wick shown in FIG. 5 viewed from the support body side.
  • a support 31 is formed in the recessed part by bending and recessing a part of the metal foil by, for example, press working. Since a vapor space is formed in the recessed portion of the support body 31, thermal conductivity is improved.
  • a through hole may be formed in a recessed portion when a part of the metal foil is bent, depending on the condition of the pressing.
  • the thickness of the metal foil is constant before performing press working or the like. However, the metal foil may become thinner in bent areas. From the above, in the wick 30, it is preferable that the thickness of the support body 31 is the same as the thickness of the porous body 32, or smaller than the thickness of the porous body 32.
  • the porous body 32 is made of the same material as the support body 31.
  • the support body 31 and the perforated body 32 are integrally constructed.
  • the support body 31 and the porous body 32 are integrally constituted means that there is no interface between the support body 31 and the porous body 32, and specifically, , which means that the boundary between the support body 31 and the porous body 32 cannot be determined.
  • the support body 31 includes a plurality of columnar members, for example, as shown in FIG.
  • columnar means a shape in which the ratio of the length of the long side of the bottom surface is less than 5 times the length of the short side of the bottom surface.
  • the shape of the columnar member is not particularly limited, and examples include shapes such as a columnar shape, a prismatic shape, a truncated cone shape, and a truncated pyramid shape.
  • the shape of the support body 31 is not particularly limited, but as shown in FIGS. 2 and 5, the support body 31 preferably has a tapered shape whose width becomes narrower from the perforated body 32 toward the first inner surface 11a. Thereby, the flow path between the supports 31 can be widened on the first inner surface 11a side of the housing 10 while suppressing the perforated body 32 from falling into the spaces between the supports 31. As a result, the transmittance increases and the maximum heat transport amount increases.
  • the arrangement of the supports 31 is not particularly limited, but is preferably arranged evenly in a predetermined area, more preferably evenly throughout, for example, so that the center-to-center distance (pitch) of the supports 31 is constant.
  • the center-to-center distance of the support body 31 (the length indicated by P 31 in FIG. 6) is, for example, 60 ⁇ m or more and 800 ⁇ m or less.
  • the width of the support body 31 (the length indicated by W 31 in FIG. 6) is, for example, 20 ⁇ m or more and 500 ⁇ m or less.
  • the height of the support body 31 (the length indicated by T 31 in FIG. 5) is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the equivalent circle diameter of the cross section perpendicular to the height direction of the support body 31 is, for example, 20 ⁇ m or more and 500 ⁇ m or less.
  • the bending height of the edge of the wick 30 (the distance indicated by B in FIG. 5) is smaller than the height of the support 31 (the length indicated by T 31 in FIG. 5).
  • the bending width of the edge of the wick 30 may be smaller or larger than the width of the support 31 (length indicated by W 31 in FIG. 6). Well, they can be the same.
  • the perforated body 32 may have a through hole 33 penetrating in the thickness direction Z.
  • the working medium 20 can move due to capillary action.
  • the through hole 33 is provided in a portion where the support body 31 is not present when viewed from the thickness direction Z.
  • the shape of the through hole 33 is not particularly limited, it is preferable that the cross section in a plane perpendicular to the thickness direction Z is circular or elliptical.
  • the arrangement of the through holes 33 of the perforated body 32 is not particularly limited, but is preferably arranged uniformly in a predetermined area, more preferably evenly over the entire area, for example, by adjusting the center-to-center distance (pitch) of the through holes 33 of the perforated body 32. are arranged so that it is constant.
  • the distance between the centers of the through holes 33 of the porous body 32 is, for example, 3 ⁇ m or more and 150 ⁇ m or less.
  • the diameter of the through hole 33 (the length indicated by ⁇ 33 in FIG. 6) is, for example, 100 ⁇ m or less.
  • the thickness of the porous body 32 (the length indicated by T 32 in FIG. 5) is, for example, 5 ⁇ m or more and 50 ⁇ m or less.
  • the bending height of the edge of the wick 30 may be smaller than or greater than the thickness of the perforated body 32 (the length indicated by T 32 in FIG. 5). Well, they can be the same.
  • the bending width of the edge of the wick 30 may be smaller or larger than the diameter of the through hole 33 (length indicated by ⁇ 33 in FIG. 6). Well, they can be the same.
  • the through-hole 33 can be made, for example, by punching the metal or the like that constitutes the perforated body 32 by press working.
  • the wick 30 may be formed by simultaneously performing the press work for forming the support body 31 and the press work for forming the through holes 33.
  • the vapor chamber 1 may further include a support 40 disposed in the internal space so as to be in contact with the second inner surface 12a of the housing 10. It is possible to support the housing 10 and the wick 30 by arranging the struts 40 in the internal space of the housing 10.
  • the material constituting the pillar 40 is not particularly limited, and examples thereof include resin, metal, ceramics, a mixture thereof, a laminate, and the like. Further, the support column 40 may be integrated with the housing 10, and may be formed by, for example, etching the second inner surface 12a of the housing 10.
  • the shape of the support 40 is not particularly limited as long as it can support the housing 10 and the wick 30, but the shape of the cross section perpendicular to the height direction of the support 40 may be, for example, a polygon such as a rectangle, a circle, or an ellipse. Examples include shape.
  • the heights of the columns 40 may be the same or different in one vapor chamber.
  • the height of the pillar 40 may be, for example, 50 ⁇ m or more and 1000 ⁇ m or less.
  • the height of the support column 40 is preferably greater than the height of the support body 31.
  • the width of the support 40 is not particularly limited as long as it provides strength that can suppress deformation of the casing 10, but the width is the equivalent circle diameter of the cross section perpendicular to the height direction of the end of the support 40. is, for example, 100 ⁇ m or more and 2000 ⁇ m or less, preferably 300 ⁇ m or more and 1000 ⁇ m or less.
  • the equivalent circle diameter of the support column 40 By increasing the equivalent circular diameter of the support column 40, deformation of the housing 10 can be further suppressed.
  • by reducing the equivalent circle diameter of the support column 40 it is possible to secure a wider space for the vapor of the working medium 20 to move.
  • the equivalent circle diameter of the cross section perpendicular to the height direction of the support 40 is preferably larger than the equivalent circle diameter of the cross section perpendicular to the height direction of the support body 31.
  • the arrangement of the struts 40 is not particularly limited, but is preferably arranged evenly in a predetermined area, more preferably evenly throughout, for example, so that the distance between the struts 40 is constant. By arranging the pillars 40 evenly, uniform strength can be ensured throughout the vapor chamber 1.
  • the center-to-center distance between adjacent pillars 40 may be, for example, 100 ⁇ m or more and 5000 ⁇ m or less.
  • the center-to-center distance between mutually adjacent support columns 40 is larger than the center-to-center distance between mutually adjacent supports 31.
  • the support body 31 includes a plurality of columnar members, it is preferable that the center-to-center distance between the mutually adjacent columns 40 is larger than the center-to-center distance between the mutually adjacent columnar members.
  • FIG. 7 is a partially enlarged sectional view schematically showing a first modification of the wick.
  • edges of the wick are not shown in order to simplify the explanation of the modified examples of the wick.
  • the shape of the edge of the wick in the cross-sectional views shown in FIGS. 7 to 9 may be the same as the shape of the edge of the wick 30 in the cross-sectional view shown in FIG.
  • the support 31 is not recessed.
  • the porous body 32 is made of the same material as the support body 31.
  • the materials constituting the support body 31 and the porous body 32 are not particularly limited, but may include, for example, resin, metal, ceramics, or a mixture thereof; Examples include laminates.
  • the material constituting the support body 31 and the porous body 32 is preferably metal.
  • the support body 31 and the perforated body 32 may be integrally configured.
  • the wick 30A in which the support body 31 and the porous body 32 are integrally formed can be produced by, for example, an etching technique, a printing technique using multilayer coating, or another multilayer technique.
  • the support body 31 and the porous body 32 do not need to be integrally constituted.
  • a wick 30A in which a copper pillar as a support 31 and a copper mesh as a perforated body 32 are fixed by diffusion bonding or spot welding the entire surface between the support 31 and the perforated body 32 is fixed. Since it is difficult to join the support body 31 and the porous body 32, a gap is formed between the support body 31 and the porous body 32.
  • the boundary between the support body 31 and the perforated body 32 can be distinguished, so that although the perforated body 32 is made of the same material as the support body 31, It is not constructed integrally with the body 32.
  • FIG. 8 is a partially enlarged sectional view schematically showing a second modification of the wick.
  • the support body 31 is not recessed.
  • the support 31 and the porous body 32 are made of a porous body.
  • the capillary force of the wick 30B can be improved.
  • the porous bodies constituting the support body 31 and the porous body 32 include, for example, porous sintered bodies such as metal porous sintered bodies and ceramic porous sintered bodies, or metal porous bodies, ceramic porous bodies, Examples include porous bodies such as porous resin bodies.
  • the wick 30B made of a porous material can be produced, for example, by a printing technique using multilayer coating using metal paste or ceramic paste.
  • the content of metal or ceramics in the paste for forming the support body 31 may be the same as the content of metal or ceramics in the paste for forming the porous body 32.
  • the content of metal or ceramics in the paste for forming the porous body 32 may be smaller than the content of metal or ceramics in the paste for forming the porous body 32.
  • the density can be made larger than the density of the porous body 32. As a result, the strength of the support body 31 can be increased.
  • the porous body 32 made of a porous body may have through holes penetrating in the thickness direction Z.
  • the porous body 32 made of a porous body does not need to have through holes penetrating in the thickness direction Z.
  • FIG. 9 is a partially enlarged sectional view schematically showing a third modification of the wick.
  • the support body 31 is not recessed.
  • the porous body 32 is made of a different material from the support body 31.
  • the material constituting the support body 31 is not particularly limited, and examples thereof include resin, metal, ceramics, a mixture thereof, a laminate, etc. It will be done.
  • the material constituting the porous body 32 is not particularly limited, and examples thereof include resin, metal, ceramics, a mixture thereof, a laminate, and the like.
  • the wick 30C in which the support body 31 and the porous body 32 are made of different materials can be produced, for example, by a printing technique using multilayer coating using metal paste or ceramic paste.
  • the support 31 and the perforated body 32 may be fixed by diffusion bonding, spot welding, or the like.
  • the porous body 32 is made of a porous body.
  • porous body constituting the porous body 32 examples include a porous sintered body such as a porous metal sintered body, a porous ceramic sintered body, a porous metal body, a porous ceramic body, a porous resin body, etc. Examples include porous bodies.
  • the porous body 32 made of a porous body may have through holes 33 penetrating in the thickness direction Z.
  • the porous body 32 made of a porous body does not need to have through holes 33 penetrating in the thickness direction Z.
  • FIG. 10A is a partially enlarged cross-sectional view schematically showing a fourth modification of the wick.
  • FIG. 10B is a plan view schematically showing the through hole, the convex portion, and the flow of steam near the convex portion when the wick shown in FIG. 10A is viewed from the perforated body side.
  • a protrusion 34 is provided on the periphery of the through hole 33 in a direction approaching the second inner surface 12a.
  • the convex portion 34 has a first end 35 on the first inner surface 11a side and a second end 36 on the second inner surface 12a side.
  • the working medium 20 evaporated in the heat source HS flows in a vapor state through the space between the perforated body 32 and the second inner surface 12a in a direction away from the heat source HS.
  • FIG. 10B if a convex portion 34 is provided at the periphery of the through hole 33 in a direction approaching the second inner surface 12a, steam flowing in the space between the perforated body 32 and the second inner surface 12a flows around the outer peripheral edge of the convex portion 34. Therefore, the flow of steam can be prevented from coming into direct contact with the liquid level of the working medium 20 in the through hole 33. Therefore, the influence of the flow of steam in the opposite direction to the capillary force of the wick 30, that is, the so-called counterflow, can be reduced. Therefore, the maximum heat transport amount of the vapor chamber 1 can be improved.
  • the convex portion 34 is provided on the entire periphery of the through hole 33.
  • the protrusion 34 may be provided only on a part of the periphery of the through hole 33.
  • the convex portion 34 may be provided on the periphery of all the through holes 33 in the perforated body 32, or may be provided only on the periphery of some of the through holes 33 in the perforated body 32. When the convex portion 34 is provided only on the periphery of some of the through holes 33 in the perforated body 32, the convex portion 34 may be provided on the periphery of the through holes 33 other than those located directly above the heat source HS. preferable.
  • the through holes 33 and the convex portions 34 can be produced, for example, by punching the metal or the like that constitutes the perforated body 32 by press working.
  • punching by press working the shape of the convex portion, etc. can be adjusted by appropriately adjusting the punching depth, etc.
  • the punching depth means, for example, how far the punch is pushed in the punching direction when punching is performed.
  • the dimensions of the convex portion 34 are not particularly limited.
  • the height of the protrusion 34 may be larger than the diameter of the through hole 33, the height of the protrusion 34 may be smaller than the diameter of the through hole 33, and the height of the protrusion 34 may be It may be the same as the diameter of the through hole 33.
  • the height of the convex part 34 means the distance in the thickness direction Z between the 1st end part 35 and the 2nd end part 36.
  • the bending height of the edge of the wick 30D (distance indicated by B in FIG. 10A) is greater than the height of the convex portion 34.
  • the bending height of the edge of the wick 30D (the distance indicated by B in FIG. 10A) may be smaller than the height of the protrusion 34, or may be the same as the height of the protrusion 34.
  • the thickness of the perforated body 32 is equal to the thickness of the perforated body 32 at the portion where the protrusion 34 is not provided. It means the thickness of the body 32.
  • a support body 31 is formed in the recessed part by bending and recessing a part of the metal foil by pressing or the like.
  • the wick 30D may be formed by simultaneously performing the press work to form the support body 31 and the press work to form the through holes 33 and the convex portions 34.
  • the support 31 does not have to be recessed like the wick 30A shown in FIG. 7, the wick 30B shown in FIG. 8, and the wick 30C shown in FIG.
  • FIG. 11 is a partially enlarged cross-sectional view schematically showing a first modification of the convex portion shown in FIG. 10A.
  • edges of the wick are not shown in order to simplify the explanation of the modified examples of the wick.
  • the shape of the edge of the wick in the cross-sectional views shown in FIGS. 11 to 15 may be the same as the shape of the edge of the wick 30D in the cross-sectional view shown in FIG. 10A.
  • the convex portion 34a shown in FIG. 11 has a first end 35a on the first inner surface 11a side and a second end 36a on the second inner surface 12a side.
  • the cross-sectional area of the region surrounded by the inner wall of the second end portion 36a is smaller than the cross-sectional area of the region surrounded by the inner wall of the first end portion 35a.
  • the inner wall of the second end portion 36a when viewed from the thickness direction Z, the inner wall of the second end portion 36a is located inside the inner wall of the first end portion 35a.
  • the flow of steam directly contacts the liquid level of the working medium 20 in the through hole 33. can be further prevented.
  • the influence of counterflow can be further reduced, so that the maximum heat transport amount of the vapor chamber 1 can be further improved.
  • the convex portion 34a has a tapered shape in which the distance between the outer walls of the convex portion 34a becomes narrower toward the second inner surface 12a.
  • the convex portion 34a has a tapered shape in which the distance between the outer walls of the convex portion 34a becomes narrower toward the second inner surface 12a in the cross section along the thickness direction Z, the distance between the perforated body 32 and the second inner surface increases. 12a, when the steam flows in the space between the convex portion 34a and the convex portion 34a, the steam not only flows around the convex portion 34a but also flows along the outer wall surface of the convex portion 34a in the cross section along the thickness direction Z.
  • the protrusion 34a is smaller than the protrusion 34 which does not have a tapered shape in which the distance between the outer walls of the protrusion 34a becomes narrower toward the second inner surface 12a. It is possible to increase the number of paths through which steam comes into contact with. Thereby, a decrease in thermal conductivity of the vapor chamber 1 can be suppressed.
  • the convex portion 34a has a shape that is convex toward the second inner surface 12a side (upper side in FIG. 11) in a cross section along the thickness direction Z.
  • the convex portion 34a has a shape that curves toward the second inner surface 12a side (upper side in FIG. 11) with respect to the line segment connecting the first end portion 35a and the second end portion 36a in the cross section along the thickness direction Z. It is.
  • FIG. 12 is a partially enlarged cross-sectional view schematically showing a second modification of the convex portion shown in FIG. 10A.
  • the convex portion 34b shown in FIG. 12 has a first end 35b on the first inner surface 11a side and a second end 36b on the second inner surface 12a side.
  • the convex portion 34b has a tapered shape in a cross section along the thickness direction Z such that the distance between the outer walls of the convex portion 34b decreases toward the second inner surface 12a.
  • the convex portion 34b has a shape that is convex toward the first inner surface 11a side (lower side in FIG. 12) in a cross section along the thickness direction Z. In other words, the convex portion 34b curves toward the first inner surface 11a side (downward in FIG.
  • the convex portion 34b has a shape that is convex toward the first inner surface 11a side (lower side in FIG. 12) in the cross section along the thickness direction Z, it has a convex shape toward the second inner surface 12a side (upper side in FIG. 11).
  • the slope of the outer wall surface of the portion of the convex portion 34b on the first end 35b side is gentle.
  • the convex portion 34b is removed in the cross section along the thickness direction Z. It becomes easier to flow toward the second inner surface 12a side along the outer wall surface. Thereby, a decrease in the thermal conductivity of the vapor chamber 1 can be further suppressed.
  • FIG. 13 is a partially enlarged sectional view schematically showing a third modification of the convex portion shown in FIG. 10A.
  • the convex portion 34c shown in FIG. 13 has a first end 35c on the first inner surface 11a side and a second end 36c on the second inner surface 12a side.
  • the cross-sectional area of the region surrounded by the inner wall of the second end portion 36c is smaller than the cross-sectional area of the region surrounded by the inner wall of the first end portion 35c.
  • the convex portion 34c includes a lid portion 37 that narrows the opening of the convex portion 34c at the second end portion 36c.
  • the convex portion 34c when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the second end portion 36c is narrower than that of the convex portion 34b in which the lid portion 37 does not exist at the second end portion 36c. There is. If the convex portion 34c is provided with a lid portion 37 that narrows the opening of the convex portion 34c at the second end 36c, direct contact of the flow of steam with the liquid level of the working medium 20 in the through hole 33 can be further prevented. I can do it. As a result, the influence of counterflow can be further reduced, so that the maximum heat transport amount of the vapor chamber 1 can be further improved.
  • the lid portion 37 that narrows the opening of the convex portion 34c may be formed by, for example, performing press working on the second end portion 36c.
  • the size and shape of the lid part 37 that narrows the opening of the convex part 34c are not particularly limited, as long as the opening on the second end 36c side of the convex part 34c is narrowed. It is preferable that the lid portion 37 that narrows the opening of the convex portion 34c has a flat surface.
  • the lid portion 37 that narrows the opening of the convex portion 34c is preferably a flat surface perpendicular to the thickness direction Z.
  • the lid portion 37 that narrows the opening of the convex portion 34c may have a curved surface in part or in its entirety.
  • the lid portion 37 that narrows the opening of the convex portion 34c may have an uneven surface.
  • the thickness of the lid portion 37 that narrows the opening of the convex portion 34c may be the same as or different from the thickness of the convex portion 34c.
  • FIG. 14 is a partially enlarged sectional view schematically showing a fourth modification of the convex portion shown in FIG. 10A.
  • the convex portion 34d shown in FIG. 14 has a first end 35d on the first inner surface 11a side and a second end 36d on the second inner surface 12a side.
  • the cross-sectional area of the region surrounded by the inner wall of the second end portion 36d is larger than the cross-sectional area of the region surrounded by the inner wall of the first end portion 35d.
  • the inner wall of the second end portion 36d is located outside the inner wall of the first end portion 35d.
  • FIG. 15 is a partially enlarged sectional view schematically showing a fifth modification of the convex portion shown in FIG. 10A.
  • the convex portion 34e shown in FIG. 15 has a first end 35e on the first inner surface 11a side and a second end 36e on the second inner surface 12a side.
  • the cross-sectional area of the region surrounded by the inner wall of the second end portion 36e is larger than the cross-sectional area of the region surrounded by the inner wall of the first end portion 35e.
  • the convex portion 34e includes a lid portion 37 that narrows the opening of the convex portion 34e at the second end portion 36e.
  • the convex portion 34e when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the second end portion 36e is narrower than that of the convex portion 34d in which the lid portion 37 does not exist at the second end portion 36e. There is. If the convex portion 34e is provided with a lid portion 37 that narrows the opening of the convex portion 34e at the second end 36e, direct contact of the flow of steam with the liquid level of the working medium 20 in the through hole 33 can be further prevented. I can do it. As a result, the influence of counterflow can be further reduced, so that the maximum heat transport amount of the vapor chamber 1 can be further improved.
  • the lid portion 37 that narrows the opening of the convex portion 34e may be formed, for example, by pressing the second end portion 36e.
  • the size and shape of the lid 37 that narrows the opening of the convex portion 34e are not particularly limited, as long as the opening on the second end 36e side of the convex portion 34e is narrowed. It is preferable that the lid portion 37 that narrows the opening of the convex portion 34e has a flat surface.
  • the lid portion 37 that narrows the opening of the convex portion 34e is preferably a flat surface perpendicular to the thickness direction Z.
  • the lid portion 37 that narrows the opening of the convex portion 34e may have a curved surface in part or in its entirety.
  • the lid portion 37 that narrows the opening of the convex portion 34e may have an uneven surface.
  • the thickness of the lid portion 37 that narrows the opening of the convex portion 34e may be the same as or different from the thickness of the convex portion 34e.
  • FIG. 16A is a partially enlarged cross-sectional view schematically showing a fifth modification of the wick.
  • FIG. 16B is a cross-sectional view showing an example of a state in which a working medium is enclosed in the cross-sectional view shown in FIG. 16A.
  • edges of the wick are not shown in order to simplify the explanation of the modified examples of the wick.
  • the shape of the edge of the wick in the cross-sectional views shown in FIGS. 16B and 17 to 21 may be the same as the shape of the edge of the wick 30E in the cross-sectional view shown in FIG. 16A.
  • a protrusion 34f is provided on the periphery of the through hole 33 in a direction approaching the first inner surface 11a.
  • the convex portion 34f has a first end 35f on the first inner surface 11a side and a second end 36f on the second inner surface 12a side.
  • the effect of the protrusion 34f being provided at the periphery of the through hole 33 in a direction approaching the first inner surface 11a will be explained.
  • the working medium 20 is sucked up into the through hole 33 by capillary force by contacting the surface surrounded by the inner wall of the convex portion 34f. Therefore, even though the liquid level of the working medium 20 is located closer to the first inner surface 11a than the perforated body 32 in the portion where the through hole 33 does not exist when the wick 30E is viewed from the thickness direction Z.
  • the working medium 20 is sucked up into the through hole 33 . In this way, even when the amount of the working medium 20 is small as shown in FIG.
  • the working medium 20 can be sucked up into the through hole 33. Therefore, even if the amount of the working medium 20 is small, it is possible to prevent capillary force from occurring in the wick 30E. From the above, in the vapor chamber 1, even when the amount of the working medium 20 is small, it is possible to suppress the deterioration of the heat soaking performance and the heat transport performance.
  • the convex portion 34f is provided on the periphery of the through hole 33 in a direction close to the first inner surface 11a, even when the amount of the working medium 20 is small, deterioration in heat soaking performance and heat transport performance can be suppressed. For example, changes in the design value of the amount of the working medium 20 injected in the manufacturing process, variations in the amount of the working medium 20 injected in the manufacturing process, fluctuations in the amount of the working medium 20 during use, etc. There is little effect on soaking performance or heat transport performance. In other words, if the convex portion 34f is provided on the periphery of the through hole 33 in a direction approaching the first inner surface 11a, it can be said that the robustness against the amount of the working medium 20 in the vapor chamber 1 is improved.
  • the convex portion 34f is provided on the entire periphery of the through hole 33.
  • the convex portion 34f may be provided only on a part of the periphery of the through hole 33 as long as the convex portion 34f has a shape that allows the working medium 20 to be sucked up by capillary force.
  • the convex portion 34f may be provided on the periphery of all the through holes 33 in the perforated body 32, or may be provided only on the periphery of some of the through holes 33 in the perforated body 32.
  • the convex portion 34f is provided at least on the periphery of the through hole 33 located directly above the heat source HS. is preferred.
  • the convex portion 34f is provided in the through hole 33 located directly above the heat source HS, even if the amount of the working medium 20 is small, it can be suppressed that the working medium 20 is less likely to evaporate in the evaporation section.
  • the protrusion 34f may be provided only on the periphery of the through hole 33 located directly above the heat source HS.
  • the through hole 33 and the convex portion 34f can be produced, for example, by punching the metal or the like that constitutes the perforated body 32 by press working.
  • punching by press working the shape of the convex portion, etc. can be adjusted by appropriately adjusting the punching depth, etc.
  • the punching depth means, for example, how far the punch is pushed in the punching direction when punching is performed.
  • the dimensions of the convex portion 34f are not particularly limited.
  • the height of the protrusion 34f may be larger than the diameter of the through hole 33
  • the height of the protrusion 34f may be smaller than the diameter of the through hole 33
  • the height of the protrusion 34f may be It may be the same as the diameter of the through hole 33.
  • the height of the convex part 34f means the distance in the thickness direction Z between the 1st end part 35f and the 2nd end part 36f.
  • the bending height of the edge of the wick 30E (distance indicated by B in FIG. 16A) is greater than the height of the convex portion 34f.
  • the bending height of the edge of the wick 30E (the distance indicated by B in FIG. 16A) may be smaller than the height of the protrusion 34f, or may be the same as the height of the protrusion 34f.
  • the thickness of the perforated body 32 is equal to the thickness of the perforated body 32 at the portion where the protrusion 34f is not provided. It means the thickness of the body 32.
  • a support 31 is formed in the recessed part by bending and recessing a part of the metal foil by pressing or the like.
  • the wick 30E may be formed by simultaneously performing the press work for forming the support body 31 and the press work for forming the through hole 33 and the convex portion 34f.
  • the support 31 does not have to be recessed like the wick 30A shown in FIG. 7, the wick 30B shown in FIG. 8, and the wick 30C shown in FIG.
  • FIG. 17 is a partially enlarged cross-sectional view schematically showing a first modification of the convex portion shown in FIG. 16A.
  • the convex portion 34g shown in FIG. 17 has a first end 35g on the first inner surface 11a side and a second end 36g on the second inner surface 12a side.
  • the cross-sectional area of the region surrounded by the inner wall of the first end portion 35g is smaller than the cross-sectional area of the region surrounded by the inner wall of the second end portion 36g.
  • the inner wall of the first end 35g surrounds the region. can improve the capillary force generated in the area where the Therefore, since the capillary force of the wick 30E can be improved, the maximum heat transport amount of the vapor chamber 1 can be improved.
  • the inner wall of the first end portion 35g may be located inside the inner wall of the second end portion 36g when viewed from the thickness direction Z.
  • the convex portion 34g has a tapered shape in a cross section along the thickness direction Z such that the distance between the outer walls of the convex portion 34g becomes narrower toward the first inner surface 11a.
  • the convex portion 34g has a shape that is convex toward the first inner surface 11a side (lower side in FIG. 17) in the cross section along the thickness direction Z. In other words, the convex portion 34g curves toward the first inner surface 11a side (downward in FIG. 17) with respect to the line segment connecting the first end portion 35g and the second end portion 36g in the cross section along the thickness direction Z. It is the shape.
  • FIG. 18 is a partially enlarged sectional view schematically showing a second modification of the convex portion shown in FIG. 16A.
  • the convex portion 34h shown in FIG. 18 has a first end 35h on the first inner surface 11a side and a second end 36h on the second inner surface 12a side.
  • the convex portion 34h has a tapered shape in a cross section along the thickness direction Z such that the distance between the outer walls of the convex portion 34h becomes narrower toward the first inner surface 11a.
  • the convex portion 34h has a convex shape toward the second inner surface 12a side (upper side in FIG. 18) in a cross section along the thickness direction Z.
  • the convex portion 34h has a shape that curves toward the second inner surface 12a side (upper side in FIG. 18) with respect to the line segment connecting the first end portion 35h and the second end portion 36h in the cross section along the thickness direction Z. It is.
  • FIG. 19 is a partially enlarged cross-sectional view schematically showing a third modification of the convex portion shown in FIG. 16A.
  • the convex portion 34i shown in FIG. 19 has a first end 35i on the first inner surface 11a side and a second end 36i on the second inner surface 12a side.
  • the cross-sectional area of the region surrounded by the inner wall of the first end portion 35i is smaller than the cross-sectional area of the region surrounded by the inner wall of the second end portion 36i.
  • the convex portion 34i includes a lid portion 37 that narrows the opening of the convex portion 34i at the first end 35i.
  • the cross-sectional area of the region surrounded by the inner wall of the first end 35i is narrower than that of the convex portion 34h in which the lid portion 37 does not exist at the first end 35i. There is.
  • the lid portion 37 that narrows the opening of the convex portion 34i may be formed by, for example, pressing the first end portion 35i.
  • the size and shape of the lid 37 that narrows the opening of the convex portion 34i are not particularly limited, as long as the opening on the first end 35i side of the convex portion 34i is narrowed. It is preferable that the lid portion 37 that narrows the opening of the convex portion 34i has a flat surface.
  • the lid portion 37 that narrows the opening of the convex portion 34i is preferably a flat surface perpendicular to the thickness direction Z.
  • the lid portion 37 that narrows the opening of the convex portion 34i may have a curved shape in part or in its entirety.
  • the lid portion 37 that narrows the opening of the convex portion 34i may have an uneven surface.
  • the thickness of the lid portion 37 that narrows the opening of the convex portion 34i may be the same as or different from the thickness of the convex portion 34i.
  • FIG. 20 is a partially enlarged sectional view schematically showing a fourth modification of the convex portion shown in FIG. 16A.
  • the convex portion 34j shown in FIG. 20 has a first end 35j on the first inner surface 11a side and a second end 36j on the second inner surface 12a side.
  • the cross-sectional area of the region surrounded by the inner wall of the first end portion 35j is larger than the cross-sectional area of the region surrounded by the inner wall of the second end portion 36j.
  • the cross-sectional area of the region surrounded by the inner wall of the first end 35j is larger than the cross-sectional area of the region surrounded by the inner wall of the second end 36j when viewed from the thickness direction Z, the working medium 20 flows into the through hole 33. The amount of suction can be increased.
  • the inner wall of the first end 35j may be located outside the inner wall of the second end 36j when viewed from the thickness direction Z.
  • FIG. 21 is a partially enlarged sectional view schematically showing a fifth modification of the convex portion shown in FIG. 16A.
  • the convex portion 34k shown in FIG. 21 has a first end 35k on the first inner surface 11a side and a second end 36k on the second inner surface 12a side.
  • the cross-sectional area of the region surrounded by the inner wall of the first end portion 35k is larger than the cross-sectional area of the region surrounded by the inner wall of the second end portion 36k.
  • the convex portion 34k includes a lid portion 37 that narrows the opening of the convex portion 34k at the first end 35k.
  • the cross-sectional area of the region surrounded by the inner wall of the first end portion 35k is narrower than that of the convex portion 34j in which the lid portion 37 does not exist at the first end portion 35k.
  • the lid portion 37 that narrows the opening of the convex portion 34k may be formed by, for example, performing press working on the first end portion 35k.
  • the size and shape of the lid portion 37 that narrows the opening of the convex portion 34k are not particularly limited, as long as the opening on the first end 35k side of the convex portion 34k is narrowed. It is preferable that the lid portion 37 that narrows the opening of the convex portion 34k has a flat surface.
  • the lid portion 37 that narrows the opening of the convex portion 34k is preferably a flat surface perpendicular to the thickness direction Z.
  • the lid portion 37 that narrows the opening of the convex portion 34k may have a curved surface in part or in its entirety.
  • the lid portion 37 that narrows the opening of the convex portion 34k may have an uneven surface.
  • the thickness of the lid portion 37 that narrows the opening of the convex portion 34k may be the same as or different from the thickness of the convex portion 34k.
  • FIG. 22 is a plan view schematically showing a sixth modification of the wick. Note that FIG. 22 is a plan view of the wick viewed from the support body side.
  • the support body 31 includes a plurality of rail-shaped members.
  • rail shape means a shape in which the ratio of the length of the long side of the bottom surface is 5 times or more to the length of the short side of the bottom surface.
  • the cross-sectional shape perpendicular to the extending direction of the rail-like member is not particularly limited, and examples thereof include polygons such as quadrangles, semicircles, semiellipses, and combinations thereof.
  • the rail-shaped member is relatively higher in height than its surroundings. Therefore, in addition to the portion protruding from the first inner surface 11a, the rail-like member also includes a portion having a relatively high height due to the groove formed in the first inner surface 11a.
  • the wick 30F is not limited to the shape shown in FIG. 22, and may be used by being partially disposed instead of being disposed throughout the interior space.
  • a rail-shaped support 31 may be configured in the internal space along the outer periphery, and a perforated body 32 shaped along the outer periphery may be arranged thereon.
  • FIG. 23 is a plan view schematically showing the arrangement of the wicks when the heat diffusion device shown in FIG. 1 is viewed from the thickness direction.
  • the wick 30 is arranged throughout the interior space of the casing 10 when viewed from the thickness direction Z.
  • the evaporation portion EP (evaporation portion) overlaps the inner edge of the housing 10 when viewed from the thickness direction Z.
  • the evaporation part EP overlaps the wick 30 when viewed from the thickness direction Z.
  • the edge of the wick 30 and the inner edge of the casing 10 are not in contact.
  • the edge of the wick 30 and the inner edge of the housing 10 may be in contact with each other.
  • FIG. 24 is a plan view schematically showing the arrangement of the wicks when the first modification of the heat diffusion device of the present invention is viewed from the thickness direction.
  • the wick 30 is disposed over the entire internal space of the casing 10 when viewed from the thickness direction Z, and the internal space is It has a region where the wick 30 is arranged and a region where the wick 30 is not arranged, and the region where the wick 30 is not arranged extends linearly when viewed from the thickness direction Z. .
  • the region where the wick 30 is not arranged may extend linearly or curvedly when viewed from the thickness direction Z.
  • the edge on the inner edge side of the housing 10 is bent toward the first inner surface 11a side.
  • the edge on the side of the area where the wick 30 is not arranged may be curved so as to approach the first inner surface 11a side, and may approach the edge toward the first inner surface 11a side. It doesn't have to be bent like this.
  • the edge of the wick 30 and the inner edge of the casing 10 are not in contact.
  • the edge of the wick 30 and the inner edge of the housing 10 may be in contact with each other.
  • the evaporation part EP overlaps the inner edge of the casing 10 when viewed from the thickness direction Z.
  • the area where the wick 30 is not arranged may extend to the evaporation part EP when viewed from the thickness direction Z, or may not extend to the evaporation part EP.
  • FIG. 25 is a plan view schematically showing the arrangement of the wick when the second modification of the heat diffusion device of the present invention is viewed from the thickness direction.
  • the wick 30 is arranged along the outer periphery of the internal space of the casing 10 when viewed from the thickness direction Z.
  • the edge on the inner edge side of the housing 10 is bent toward the first inner surface 11a side.
  • the edge on the side where the wick 30 is hollow may be bent so as to approach the first inner surface 11a side, and may be bent toward the first inner surface 11a side. It doesn't have to be bent like that.
  • the evaporation part EP overlaps the inner edge of the casing 10 when viewed from the thickness direction Z. In the vapor chamber 1B shown in FIG. 25, the evaporation part EP overlaps the wick 30 when viewed from the thickness direction Z.
  • the edge of the wick 30 and the inner edge of the casing 10 are not in contact.
  • the edge of the wick 30 and the inner edge of the housing 10 may be in contact with each other.
  • FIG. 26 is a cross-sectional view schematically showing a third modification of the heat diffusion device.
  • the support body 31 is configured integrally with the first sheet 11 of the casing 10.
  • the first sheet 11 and the support body 31 can be produced by, for example, an etching technique, a printing technique using multilayer coating, or another multilayer technique.
  • the perforated body 32 may be made of the same material as the support body 31 and the first sheet 11 of the housing 10, or may be made of a different material. The perforated body 32 may be configured integrally with the support body 31 and the first sheet 11 of the housing 10.
  • FIG. 27 is a cross-sectional view schematically showing a fourth modification of the heat diffusion device.
  • a support body 31 is formed in the recessed part. There is.
  • the heat diffusion device of the present invention is not limited to the above embodiments, and various applications and modifications can be made within the scope of the present invention regarding the configuration, manufacturing conditions, etc. of the heat diffusion device.
  • the casing may have one evaporation section or a plurality of evaporation sections. That is, one heat source or a plurality of heat sources may be arranged on the outer surface of the casing.
  • the number of evaporation sections and heat sources is not particularly limited.
  • the first sheet and the second sheet may overlap so that their edges coincide, or may be shifted and overlap.
  • the material constituting the first sheet and the material constituting the second sheet may be different.
  • stress applied to the housing can be dispersed.
  • different materials for both sheets one function can be obtained with one sheet, and another function can be obtained with the other sheet.
  • the above-mentioned functions are not particularly limited, but include, for example, a heat conduction function, an electromagnetic wave shielding function, and the like.
  • the heat diffusion device of the present invention can be installed in electronic equipment for the purpose of heat radiation. Therefore, electronic equipment including the heat diffusion device of the present invention is also one of the present inventions. Examples of the electronic device of the present invention include a smartphone, a tablet terminal, a notebook computer, a game device, a wearable device, and the like. As described above, the heat diffusion device of the present invention operates independently without requiring external power, and can diffuse heat two-dimensionally at high speed by utilizing the latent heat of vaporization and latent heat of condensation of the working medium. Therefore, an electronic device including the heat diffusion device of the present invention can effectively dissipate heat in a limited space inside the electronic device.
  • a casing having a first inner surface and a second inner surface facing each other in the thickness direction; A working medium sealed in the internal space of the casing; a wick disposed in the internal space of the casing; The wick includes a support in contact with the first inner surface and a perforated body in contact with the support, In the heat diffusion device, an edge of the wick is bent toward the first inner surface.
  • ⁇ 2> The heat diffusion device according to ⁇ 1>, wherein in a cross section along the thickness direction, a gap exists in a direction perpendicular to the thickness direction between the edge of the wick and the inner edge of the casing. .
  • the casing is composed of a first sheet and a second sheet that are joined at their outer edges and that face each other in the thickness direction,
  • ⁇ 4> further comprising a post disposed in the internal space so as to be in contact with the second inner surface of the casing,
  • the heat diffusion device according to any one of ⁇ 1> to ⁇ 3>, wherein the height of the support column is greater than the height of the support body.
  • ⁇ 11> The heat diffusion device according to any one of ⁇ 1> to ⁇ 10>, wherein the thickness of the support is the same as the thickness of the porous body or smaller than the thickness of the porous body.
  • the porous body has a through hole penetrating in the thickness direction,
  • the heat diffusion device according to any one of ⁇ 1> to ⁇ 11>, wherein a convex portion is provided on a peripheral edge of the through hole in a direction approaching the second inner surface.
  • the convex portion has a first end on the first inner surface side and a second end on the second inner surface side,
  • the heat diffusion device according to ⁇ 12> wherein the cross-sectional area of the region surrounded by the inner wall of the second end is smaller than the cross-sectional area of the region surrounded by the inner wall of the first end, when viewed from the thickness direction.
  • the porous body has a through hole penetrating in the thickness direction,
  • the heat diffusion device according to any one of ⁇ 1> to ⁇ 11>, wherein a convex portion is provided on a peripheral edge of the through hole in a direction proximate to the first inner surface.
  • the convex portion has a first end on the first inner surface side and a second end on the second inner surface side,
  • the heat diffusion device according to ⁇ 14> wherein the cross-sectional area of the region surrounded by the inner wall of the first end is smaller than the cross-sectional area of the region surrounded by the inner wall of the second end, when viewed from the thickness direction.
  • ⁇ 16> The heat diffusion device according to any one of ⁇ 1> to ⁇ 15>, wherein the wick is disposed throughout the internal space of the housing when viewed from the thickness direction.
  • the wick When viewed from the thickness direction, the wick is arranged throughout the internal space of the housing, The internal space has a region where the wick is arranged and a region where the wick is not arranged when viewed from the thickness direction,
  • ⁇ 18> The heat diffusion device according to any one of ⁇ 1> to ⁇ 15>, wherein the wick is arranged along the outer periphery of the internal space of the housing when viewed from the thickness direction.
  • An electronic device comprising the heat diffusion device according to any one of ⁇ 1> to ⁇ 18>.
  • the heat diffusion device of the present invention can be used for a wide range of applications in the field of mobile information terminals and the like. For example, it can be used to lower the temperature of a heat source such as a CPU and extend the usage time of electronic devices, and can be used for smartphones, tablet terminals, notebook computers, etc.
  • Vapor chamber (thermal diffusion device) 10 Housing 11 First sheet 11a First inner surface 12 Second sheet 12a Second inner surface 13 Joint portion 20 Working medium 30, 30A, 30B, 30C, 30D, 30E, 30F Wick 31 Support body 32 Porous body 33 Through hole 34 , 34a, 34b, 34c, 34d, 34e, 34f, 34g, 34h, 34i, 34j, 34k Convex portion 35, 35a, 35b, 35c, 35d, 35e, 35f, 35g, 35h, 35i, 35j, 35k First end Parts 36, 36a, 36b, 36c, 36d, 36e, 36f, 36g, 36h, 36i, 36j, 36k Second end part 37 Lid part 40 Pillar HS Heat source EP Evaporation part P 31 Distance between centers of support P 33 Through hole Distance between centers T 31 Height of support T 32 Thickness of porous body W 31 Width of support X Width direction Y Length direction Z Thick

Abstract

A vapor chamber 1 as an embodiment of this heat diffusion device comprises: a housing 10 having a first inner surface 11a and a second inner surface 12a, which face each other in the thickness direction Z; a working fluid 20 enclosed in the inner space of the housing 10; and a wick 30 disposed in the inner space of the housing 10, the wick 30 including a support 31 which is in contact with the first inner surface 11a and a perforated object 32 which is in contact with the support 31, the edges of the wick 30 being bent so as to approach the first inner surface 11a.

Description

熱拡散デバイス及び電子機器Heat diffusion devices and electronic equipment
 本発明は、熱拡散デバイス及び電子機器に関する。 TECHNICAL FIELD The present invention relates to heat diffusion devices and electronic equipment.
 近年、素子の高集積化及び高性能化による発熱量が増加している。また、製品の小型化が進むことで、発熱密度が増加するため、放熱対策が重要となっている。この状況はスマートフォン及びタブレットなどのモバイル端末の分野において特に顕著である。熱対策部材としては、グラファイトシートなどが用いられることが多いが、その熱輸送量は充分ではないため、様々な熱対策部材の使用が検討されている。中でも、非常に効果的に熱を拡散させることが可能である熱拡散デバイスとして、面状のヒートパイプであるベーパーチャンバーの使用の検討が進んでいる。 In recent years, the amount of heat generated has been increasing due to higher integration and higher performance of elements. Furthermore, as products become smaller, the density of heat generation increases, making heat dissipation measures important. This situation is particularly noticeable in the field of mobile terminals such as smartphones and tablets. Graphite sheets and the like are often used as heat countermeasure members, but their heat transport capacity is not sufficient, so the use of various heat countermeasure members is being considered. Among these, the use of a vapor chamber, which is a planar heat pipe, is being considered as a heat diffusion device that can diffuse heat very effectively.
 ベーパーチャンバーは、筐体の内部に、作動媒体(作動液ともいう)と、毛細管力によって作動媒体を輸送するウィックとが封入された構造を有する。作動媒体は、電子部品などの発熱素子からの熱を吸収する蒸発部において発熱素子からの熱を吸収してベーパーチャンバー内で蒸発した後、ベーパーチャンバー内を移動し、冷却されて液相に戻る。液相に戻った作動媒体は、ウィックの毛細管力によって再び発熱素子側の蒸発部に移動し、発熱素子を冷却する。これを繰り返すことにより、ベーパーチャンバーは外部動力を有することなく自立的に作動し、作動媒体の蒸発潜熱及び凝縮潜熱を利用して、二次元的に高速で熱を拡散することができる。 The vapor chamber has a structure in which a working medium (also referred to as working fluid) and a wick that transports the working medium by capillary force are enclosed inside a housing. The working medium absorbs heat from the heat generating elements such as electronic components in the evaporation section, evaporates in the vapor chamber, moves within the vapor chamber, is cooled, and returns to the liquid phase. . The working medium that has returned to the liquid phase moves again to the evaporation section on the heating element side by the capillary force of the wick, and cools the heating element. By repeating this, the vapor chamber can operate independently without external power, and can diffuse heat two-dimensionally at high speed using the latent heat of vaporization and latent heat of condensation of the working medium.
 特許文献1には、外縁部で接合された対向する上部筐体シートと下部筐体シートとを含み、内部空間を有する筐体と、上記内部空間に封入された作動液と、上記下部筐体シートのうち上記内部空間に配置され、上記作動液の流路を構成するマイクロチャネルと、上記筐体の上記内部空間に配置され、上記マイクロチャネルに接触して配置されたシート状のウィックと、を備え、上記ウィックと上記マイクロチャネルの接触面積は、上記内部空間を平面視した面積に対して5%~40%である、ベーパーチャンバーが記載されている。 Patent Document 1 discloses a casing including an upper casing sheet and a lower casing sheet facing each other joined at outer edges and having an internal space, a hydraulic fluid sealed in the internal space, and the lower casing. A microchannel arranged in the inner space of the sheet and forming a flow path for the working fluid; a sheet-shaped wick arranged in the inner space of the casing and in contact with the microchannel; A vapor chamber is described in which the contact area between the wick and the microchannel is 5% to 40% of the area of the internal space when viewed in plan.
国際公開第2021/229961号International Publication No. 2021/229961
 特許文献1に記載のベーパーチャンバーでは、作動液は、下部筐体シートに密着した熱源からの熱により、ウィックの孔において液体から気体に変化する。つまり、作動液は、ウィックの孔において気液界面を構成する。気化した作動液は、筐体の内部空間で熱を放出して液体に戻る。液体に戻った作動液は、ウィックの孔による毛細管力により、マイクロチャネルを移動して、再び熱源の近くに運ばれる。しかしながら、筐体の内部空間のうち、気化して蒸気となった作動液が移動する空間である蒸気空間を広くするという点では改善の余地がある。 In the vapor chamber described in Patent Document 1, the working fluid changes from liquid to gas in the holes of the wick due to heat from a heat source in close contact with the lower housing sheet. In other words, the working fluid constitutes a gas-liquid interface in the holes of the wick. The vaporized working fluid releases heat in the internal space of the housing and returns to liquid form. The working fluid, which has returned to liquid form, moves through the microchannel due to capillary force due to the pores of the wick and is brought close to the heat source again. However, there is room for improvement in terms of widening the vapor space, which is the space in which the working fluid that has vaporized into steam moves, within the internal space of the casing.
 なお、上記の問題は、ベーパーチャンバーに限らず、ベーパーチャンバーと同様の構成によって熱を拡散させることが可能な熱拡散デバイスに共通する問題である。 Note that the above problem is not limited to vapor chambers, but is a problem common to thermal diffusion devices that can diffuse heat with a configuration similar to that of vapor chambers.
 本発明は上記の問題を解決するためになされたものであり、蒸気空間を広くすることが可能な熱拡散デバイスを提供することを目的とする。さらに、本発明は上記熱拡散デバイスを備える電子機器を提供することを目的とする。 The present invention was made in order to solve the above problems, and an object of the present invention is to provide a heat diffusion device that can widen the vapor space. Furthermore, an object of the present invention is to provide an electronic device equipped with the above-mentioned heat diffusion device.
 本発明の熱拡散デバイスは、厚さ方向に対向する第1内面及び第2内面を有する筐体と、上記筐体の内部空間に封入される作動媒体と、上記筐体の上記内部空間に配置されるウィックと、を備え、上記ウィックは、上記第1内面に接する支持体と、上記支持体に接する有孔体と、を含み、上記ウィックの縁端は、上記第1内面側に向かって近接するように曲がっている。 The heat diffusion device of the present invention includes a casing having a first inner surface and a second inner surface facing each other in the thickness direction, a working medium sealed in an internal space of the casing, and a working medium disposed in the internal space of the casing. a wick, the wick including a support in contact with the first inner surface, and a perforated body in contact with the support, the edge of the wick facing toward the first inner surface. curved so that they are close together.
 本発明の電子機器は、本発明の熱拡散デバイスを備える。 The electronic device of the present invention includes the heat diffusion device of the present invention.
 本発明によれば、蒸気空間を広くすることが可能な熱拡散デバイスを提供することができる。さらに、本発明によれば、上記熱拡散デバイスを備える電子機器を提供することができる。 According to the present invention, it is possible to provide a heat diffusion device that can widen the vapor space. Furthermore, according to the present invention, it is possible to provide an electronic device including the above heat diffusion device.
図1は、本発明の熱拡散デバイスの一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of a heat diffusion device of the present invention. 図2は、図1に示す熱拡散デバイスのII-II線に沿った断面図の一例である。FIG. 2 is an example of a cross-sectional view of the heat diffusion device shown in FIG. 1 taken along line II-II. 図3は、図2のIII部分の拡大図である。FIG. 3 is an enlarged view of portion III in FIG. 図4は、図2のIII部分の変形例を示す拡大図である。FIG. 4 is an enlarged view showing a modification of portion III in FIG. 2. FIG. 図5は、図2に示す熱拡散デバイスを構成するウィックの一例を模式的に示す、一部を拡大した断面図である。FIG. 5 is a partially enlarged cross-sectional view schematically showing an example of a wick constituting the heat diffusion device shown in FIG. 2. FIG. 図6は、図5に示すウィックを支持体側から見た平面図である。FIG. 6 is a plan view of the wick shown in FIG. 5 viewed from the support body side. 図7は、ウィックの第1変形例を模式的に示す、一部を拡大した断面図である。FIG. 7 is a partially enlarged sectional view schematically showing a first modification of the wick. 図8は、ウィックの第2変形例を模式的に示す、一部を拡大した断面図である。FIG. 8 is a partially enlarged sectional view schematically showing a second modification of the wick. 図9は、ウィックの第3変形例を模式的に示す、一部を拡大した断面図である。FIG. 9 is a partially enlarged sectional view schematically showing a third modification of the wick. 図10Aは、ウィックの第4変形例を模式的に示す、一部を拡大した断面図である。FIG. 10A is a partially enlarged sectional view schematically showing a fourth modification of the wick. 図10Bは、図10Aに示すウィックを有孔体側から見たときの、貫通孔、凸部及び凸部付近での蒸気の流れを模式的に示す平面図である。FIG. 10B is a plan view schematically showing the through hole, the convex portion, and the flow of steam near the convex portion when the wick shown in FIG. 10A is viewed from the perforated body side. 図11は、図10Aに示す凸部の第1変形例を模式的に示す、一部を拡大した断面図である。FIG. 11 is a partially enlarged sectional view schematically showing a first modified example of the convex portion shown in FIG. 10A. 図12は、図10Aに示す凸部の第2変形例を模式的に示す、一部を拡大した断面図である。FIG. 12 is a partially enlarged sectional view schematically showing a second modified example of the convex portion shown in FIG. 10A. 図13は、図10Aに示す凸部の第3変形例を模式的に示す、一部を拡大した断面図である。FIG. 13 is a partially enlarged cross-sectional view schematically showing a third modification of the convex portion shown in FIG. 10A. 図14は、図10Aに示す凸部の第4変形例を模式的に示す、一部を拡大した断面図である。FIG. 14 is a partially enlarged sectional view schematically showing a fourth modification of the convex portion shown in FIG. 10A. 図15は、図10Aに示す凸部の第5変形例を模式的に示す、一部を拡大した断面図である。FIG. 15 is a partially enlarged sectional view schematically showing a fifth modification example of the convex portion shown in FIG. 10A. 図16Aは、ウィックの第5変形例を模式的に示す、一部を拡大した断面図である。FIG. 16A is a partially enlarged cross-sectional view schematically showing a fifth modification of the wick. 図16Bは、図16Aに示す断面図において、作動媒体を封入した状態の一例を示した断面図である。FIG. 16B is a cross-sectional view showing an example of a state in which a working medium is enclosed in the cross-sectional view shown in FIG. 16A. 図17は、図16Aに示す凸部の第1変形例を模式的に示す、一部を拡大した断面図である。FIG. 17 is a partially enlarged sectional view schematically showing a first modified example of the convex portion shown in FIG. 16A. 図18は、図16Aに示す凸部の第2変形例を模式的に示す、一部を拡大した断面図である。FIG. 18 is a partially enlarged sectional view schematically showing a second modified example of the convex portion shown in FIG. 16A. 図19は、図16Aに示す凸部の第3変形例を模式的に示す、一部を拡大した断面図である。FIG. 19 is a partially enlarged sectional view schematically showing a third modification of the convex portion shown in FIG. 16A. 図20は、図16Aに示す凸部の第4変形例を模式的に示す、一部を拡大した断面図である。FIG. 20 is a partially enlarged sectional view schematically showing a fourth modification of the convex portion shown in FIG. 16A. 図21は、図16Aに示す凸部の第5変形例を模式的に示す、一部を拡大した断面図である。FIG. 21 is a partially enlarged sectional view schematically showing a fifth modification example of the convex portion shown in FIG. 16A. 図22は、ウィックの第6変形例を模式的に示す平面図である。FIG. 22 is a plan view schematically showing a sixth modification of the wick. 図23は、図1に示す熱拡散デバイスを厚さ方向から見たときの、ウィックの配置を模式的に示す平面図である。FIG. 23 is a plan view schematically showing the arrangement of wicks when the heat diffusion device shown in FIG. 1 is viewed from the thickness direction. 図24は、本発明の熱拡散デバイスの第1変形例を厚さ方向から見たときの、ウィックの配置を模式的に示す平面図である。FIG. 24 is a plan view schematically showing the arrangement of the wicks when the first modified example of the heat diffusion device of the present invention is viewed from the thickness direction. 図25は、本発明の熱拡散デバイスの第2変形例を厚さ方向から見たときの、ウィックの配置を模式的に示す平面図である。FIG. 25 is a plan view schematically showing the arrangement of the wick when the second modified example of the heat diffusion device of the present invention is viewed from the thickness direction. 図26は、熱拡散デバイスの第3変形例を模式的に示す断面図である。FIG. 26 is a cross-sectional view schematically showing a third modification of the heat diffusion device. 図27は、熱拡散デバイスの第4変形例を模式的に示す断面図である。FIG. 27 is a cross-sectional view schematically showing a fourth modification of the heat diffusion device.
 以下、本発明の熱拡散デバイスについて説明する。
 しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の好ましい構成を2つ以上組み合わせたものもまた本発明である。
The heat diffusion device of the present invention will be explained below.
However, the present invention is not limited to the following embodiments, and can be modified and applied as appropriate without changing the gist of the present invention. Note that the present invention also includes a combination of two or more of the individual preferred configurations of the present invention described below.
 以下では、本発明の熱拡散デバイスの一実施形態として、ベーパーチャンバーを例にとって説明する。本発明の熱拡散デバイスは、ヒートパイプ等の熱拡散デバイスにも適用可能である。 Hereinafter, a vapor chamber will be described as an example of an embodiment of the heat diffusion device of the present invention. The heat diffusion device of the present invention is also applicable to heat diffusion devices such as heat pipes.
 以下に示す図面は模式的なものであり、その寸法や縦横比の縮尺などは実際の製品とは異なる場合がある。 The drawings shown below are schematic, and their dimensions and aspect ratio may differ from the actual product.
 図1は、本発明の熱拡散デバイスの一例を模式的に示す斜視図である。図2は、図1に示す熱拡散デバイスのII-II線に沿った断面図の一例である。 FIG. 1 is a perspective view schematically showing an example of the heat diffusion device of the present invention. FIG. 2 is an example of a cross-sectional view of the heat diffusion device shown in FIG. 1 taken along line II-II.
 図1及び図2に示すベーパーチャンバー(熱拡散デバイス)1は、気密状態に密閉された中空の筐体10を備える。筐体10は、厚さ方向Zに対向する第1内面11a及び第2内面12aを有する。ベーパーチャンバー1は、さらに、筐体10の内部空間に封入される作動媒体20と、筐体10の内部空間に配置されるウィック30と、を備える。 The vapor chamber (thermal diffusion device) 1 shown in FIGS. 1 and 2 includes a hollow casing 10 that is hermetically sealed. The housing 10 has a first inner surface 11a and a second inner surface 12a facing each other in the thickness direction Z. The vapor chamber 1 further includes a working medium 20 sealed in the internal space of the housing 10 and a wick 30 arranged in the internal space of the housing 10.
 筐体10には、封入した作動媒体20を蒸発させる蒸発部が設定される。図1に示すように、筐体10の外面には、発熱素子である熱源(heat source)HSが配置される。熱源HSとしては、電子機器の電子部品、例えば中央処理装置(CPU)等が挙げられる。筐体10の内部空間のうち、熱源HSの近傍であって熱源HSによって加熱される部分が、蒸発部に相当する。 The housing 10 is provided with an evaporation section that evaporates the enclosed working medium 20. As shown in FIG. 1, a heat source HS, which is a heat generating element, is arranged on the outer surface of the housing 10. Examples of the heat source HS include electronic components of electronic equipment, such as a central processing unit (CPU). A portion of the internal space of the housing 10 that is near the heat source HS and is heated by the heat source HS corresponds to the evaporation section.
 ベーパーチャンバー1は、全体として面状であることが好ましい。すなわち、筐体10は、全体として面状であることが好ましい。ここで、「面状」とは、板状及びシート状を包含し、幅方向Xの寸法(以下、幅という)及び長さ方向Yの寸法(以下、長さという)が厚さ方向Zの寸法(以下、厚さ又は高さという)に対して相当に大きい形状、例えば幅及び長さが、厚さの10倍以上、好ましくは100倍以上である形状を意味する。 It is preferable that the vapor chamber 1 has a planar shape as a whole. That is, it is preferable that the housing 10 has a planar shape as a whole. Here, "plane shape" includes plate shape and sheet shape, and the dimension in the width direction X (hereinafter referred to as width) and the dimension in the length direction Y (hereinafter referred to as length) is It means a shape that is considerably large relative to its dimensions (hereinafter referred to as thickness or height), for example, a shape whose width and length are 10 times or more, preferably 100 times or more, the thickness.
 ベーパーチャンバー1の大きさ、すなわち、筐体10の大きさは、特に限定されない。ベーパーチャンバー1の幅及び長さは、用途に応じて適宜設定することができる。ベーパーチャンバー1の幅及び長さは、各々、例えば、5mm以上500mm以下、20mm以上300mm以下又は50mm以上200mm以下である。ベーパーチャンバー1の幅及び長さは、同じであってもよく、異なっていてもよい。 The size of the vapor chamber 1, that is, the size of the housing 10, is not particularly limited. The width and length of the vapor chamber 1 can be set as appropriate depending on the application. The width and length of the vapor chamber 1 are, for example, 5 mm or more and 500 mm or less, 20 mm or more and 300 mm or less, or 50 mm or more and 200 mm or less. The width and length of the vapor chamber 1 may be the same or different.
 筐体10は、外縁部が接合され、厚さ方向Zに対向する第1シート11及び第2シート12から構成されることが好ましい。第1シート11は、筐体10の第1内面11aを有している。第2シート12は、筐体10の第2内面12aを有している。第1シート11及び第2シート12は、それぞれの外縁部が接合部13によって接合されている。 It is preferable that the casing 10 is composed of a first sheet 11 and a second sheet 12 that are joined at their outer edges and that face each other in the thickness direction Z. The first sheet 11 has the first inner surface 11a of the housing 10. The second sheet 12 has a second inner surface 12a of the housing 10. The first sheet 11 and the second sheet 12 are joined at their outer edges by a joint 13 .
 筐体10が第1シート11及び第2シート12から構成される場合、第1シート11及び第2シート12を構成する材料は、ベーパーチャンバーとして用いるのに適した特性、例えば熱伝導性、強度、柔軟性、可撓性等を有するものであれば、特に限定されない。第1シート11及び第2シート12を構成する材料は、好ましくは金属であり、例えば銅、ニッケル、アルミニウム、マグネシウム、チタン、鉄、又はそれらを主成分とする合金等であり、特に好ましくは銅である。第1シート11及び第2シート12を構成する材料は、同じであってもよく、異なっていてもよいが、好ましくは同じである。 When the housing 10 is composed of the first sheet 11 and the second sheet 12, the materials constituting the first sheet 11 and the second sheet 12 have properties suitable for use as a vapor chamber, such as thermal conductivity and strength. It is not particularly limited as long as it has flexibility, softness, etc. The material constituting the first sheet 11 and the second sheet 12 is preferably a metal, such as copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing these as main components, and particularly preferably copper. It is. The materials constituting the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
 筐体10が第1シート11及び第2シート12から構成される場合、第1シート11及び第2シート12は、これらの外縁部が接合部13によって接合されている。かかる接合の方法は、特に限定されないが、例えば、レーザー溶接、抵抗溶接、拡散接合、ロウ接、TIG溶接(タングステン-不活性ガス溶接)、超音波接合又は樹脂封止を用いることができ、好ましくはレーザー溶接、抵抗溶接又はロウ接を用いることができる。 When the housing 10 is composed of the first sheet 11 and the second sheet 12, the outer edges of the first sheet 11 and the second sheet 12 are joined by the joining part 13. The method of such joining is not particularly limited, but for example, laser welding, resistance welding, diffusion bonding, brazing welding, TIG welding (tungsten-inert gas welding), ultrasonic bonding, or resin sealing can be used, and preferably Laser welding, resistance welding or brazing can be used.
 第1シート11及び第2シート12の厚さは、特に限定されないが、各々、好ましくは10μm以上200μm以下、より好ましくは30μm以上100μm以下、さらに好ましくは40μm以上60μm以下である。第1シート11及び第2シート12の厚さは、同じであってもよく、異なっていてもよい。また、第1シート11及び第2シート12の各シートの厚さは、全体にわたって同じであってもよく、一部が薄くてもよい。 The thickness of the first sheet 11 and the second sheet 12 is not particularly limited, but each is preferably 10 μm or more and 200 μm or less, more preferably 30 μm or more and 100 μm or less, and even more preferably 40 μm or more and 60 μm or less. The thickness of the first sheet 11 and the second sheet 12 may be the same or different. Further, the thickness of each of the first sheet 11 and the second sheet 12 may be the same over the entirety, or may be partially thin.
 第1シート11及び第2シート12の形状は、特に限定されない。例えば、第1シート11及び第2シート12は、各々、外縁部が外縁部以外の部分よりも厚い形状であってもよい。 The shapes of the first sheet 11 and the second sheet 12 are not particularly limited. For example, each of the first sheet 11 and the second sheet 12 may have an outer edge portion thicker than a portion other than the outer edge portion.
 接合部13では、第1シート11と第2シート12とが接合されている。接合部13には第1シート11及び第2シート12を接合した痕が存在してもよい。 At the joining portion 13, the first sheet 11 and the second sheet 12 are joined. There may be a mark in the joint portion 13 where the first sheet 11 and the second sheet 12 were joined.
 ベーパーチャンバー1全体の厚さは、特に限定されないが、好ましくは50μm以上500μm以下である。 The overall thickness of the vapor chamber 1 is not particularly limited, but is preferably 50 μm or more and 500 μm or less.
 厚さ方向Zから見た筐体10の平面形状は特に限定されず、例えば、三角形又は矩形などの多角形、円形、楕円形、これらを組み合わせた形状などが挙げられる。また、筐体10の平面形状は、L字型、C字型(コの字型)、階段型などであってもよい。また、筐体10は貫通口を有してもよい。筐体10の平面形状は、ベーパーチャンバーの用途、ベーパーチャンバーの組み入れ箇所の形状、近傍に存在する他の部品に応じた形状であってもよい。 The planar shape of the casing 10 viewed from the thickness direction Z is not particularly limited, and examples thereof include polygons such as triangles and rectangles, circles, ellipses, and combinations thereof. Further, the planar shape of the casing 10 may be an L-shape, a C-shape (U-shape), a staircase shape, or the like. Furthermore, the housing 10 may have a through hole. The planar shape of the casing 10 may be a shape depending on the purpose of the vapor chamber, the shape of the part where the vapor chamber is installed, and other components existing nearby.
 作動媒体20は、筐体10内の環境下において気-液の相変化を生じ得るものであれば特に限定されず、例えば、水、アルコール類、代替フロンなどを用いることができる。例えば、作動媒体20は水性化合物であり、好ましくは水である。 The working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the casing 10, and for example, water, alcohols, CFC substitutes, etc. can be used. For example, working medium 20 is an aqueous compound, preferably water.
 ウィック30は、毛細管力により作動媒体20を移動させることができる毛細管構造を有する。ウィック30の毛細管構造は、従来のベーパーチャンバーにおいて用いられている公知の構造であってもよい。 The wick 30 has a capillary structure that can move the working medium 20 by capillary force. The capillary structure of the wick 30 may be a known structure used in conventional vapor chambers.
 ウィック30の大きさ及び形状は、特に限定されないが、例えば、筐体10の内部空間において連続してウィック30が配置されていることが好ましい。厚さ方向Zから見て、筐体10の内部空間の全体にウィック30が配置されていてもよく、厚さ方向Zから見て、筐体10の内部空間の一部にウィック30が配置されていてもよい。筐体10の内部空間におけるウィックの配置の例については、図23、図24及び図25を用いて後述する。 Although the size and shape of the wick 30 are not particularly limited, it is preferable, for example, that the wick 30 be arranged continuously in the internal space of the housing 10. The wick 30 may be disposed in the entire internal space of the casing 10 when viewed from the thickness direction Z, or the wick 30 may be disposed in a part of the internal space of the casing 10 when viewed from the thickness direction Z. You can leave it there. An example of the arrangement of the wicks in the internal space of the housing 10 will be described later using FIGS. 23, 24, and 25.
 図2に示すように、ウィック30は、第1内面11aに接する支持体31と、支持体31に接する有孔体32と、を含む。 As shown in FIG. 2, the wick 30 includes a support 31 in contact with the first inner surface 11a and a perforated body 32 in contact with the support 31.
 図3は、図2のIII部分の拡大図である。図3は、ウィック30の縁端の周辺を示す拡大図である。 FIG. 3 is an enlarged view of portion III in FIG. 2. FIG. 3 is an enlarged view showing the periphery of the edge of the wick 30.
 図4は、図2のIII部分の変形例を示す拡大図である。 FIG. 4 is an enlarged view showing a modification of portion III in FIG. 2.
 ウィック30の縁端は、第1内面11a側に向かって近接するように曲がっている。ウィック30の縁端は図3及び図4における下側に向かって曲がっている。図3及び図4に示すウィック30では、有孔体32の縁端が第1内面11a側に向かって近接するように曲がっている。 The edge of the wick 30 is bent toward the first inner surface 11a side. The edge of the wick 30 is bent downward in FIGS. 3 and 4. In the wick 30 shown in FIGS. 3 and 4, the edge of the perforated body 32 is bent toward the first inner surface 11a side.
 ウィック30の縁端が第1内面11a側に向かって近接するように曲がっていると、縁端が曲がっていないウィックと比較して、ウィック30の縁端よりも第2内面12a側の空間を広げることができるため、気化して蒸気となった作動媒体20が移動する空間である蒸気空間を広くすることができる。具体的には、ウィック30では、縁端が第1内面11a側に向かって近接するように曲がっていないウィックと比較して、図3及び図4においてRで示す領域を蒸気空間として広げることができる。蒸気空間を広くすると、ベーパーチャンバー1の熱伝導率を向上することができる。 If the edge of the wick 30 is bent toward the first inner surface 11a side, the space on the second inner surface 12a side will be smaller than the edge of the wick 30, compared to a wick with an uncurved edge. Since it can be expanded, it is possible to widen the steam space, which is the space in which the working medium 20 that has been vaporized and turned into steam moves. Specifically, in the wick 30, the area indicated by R in FIGS. 3 and 4 can be expanded as a vapor space, compared to a wick whose edge is not bent toward the first inner surface 11a side. can. By widening the vapor space, the thermal conductivity of the vapor chamber 1 can be improved.
 ウィック30の縁端は、例えば、プレス加工を行うことによって、第1内面11a側に向かって近接するように曲げられていてもよい。ウィック30がセラミックス多孔質焼結体等の多孔質焼結体から構成されている場合、ペースト状の材料を印刷して、プレス加工を行った後、焼成を行うことによって、ウィック30の縁端が第1内面11a側に向かって近接するように曲げられていてもよい。あるいは、予め厚めに多孔質焼結体を作製したうえで、エッチング処理などによって多孔質焼結体の一部を除去することによって、ウィック30の縁端が第1内面11a側に向かって近接するように曲げられていてもよい。 The edge of the wick 30 may be bent toward the first inner surface 11a by, for example, press working. When the wick 30 is made of a porous sintered body such as a ceramic porous sintered body, the edge of the wick 30 is formed by printing a paste material, performing press working, and then firing. may be bent so as to approach the first inner surface 11a side. Alternatively, the edge of the wick 30 approaches the first inner surface 11a by preparing a thicker porous sintered body in advance and removing a portion of the porous sintered body by etching or the like. It may be bent like this.
 ウィック30の縁端の形状は、第1内面11a側に向かって近接するように曲がっていればよく、特に限定されない。 The shape of the edge of the wick 30 is not particularly limited as long as it is curved toward the first inner surface 11a side.
 図3及び図4に示す例では、ウィック30の縁端は、厚さ方向Zに沿う断面において、第1内面11a側に向かって近接するように曲線状に曲がっている。この場合、ウィック30の縁端は、図3及び図4に示すように、第2内面12a側(上側)に凸な形状であることが好ましい。ウィック30の縁端が、厚さ方向Zに沿う断面において、曲線状に曲がっている場合、曲率が一定となるように曲がっていてもよく、曲率が変化しながら曲がっていてもよい。また、ウィック30の縁端は、厚さ方向Zに沿う断面において、第1内面11a側に向かって近接するように、所定の位置で直線状に折れ曲がっていてもよい。 In the example shown in FIGS. 3 and 4, the edge of the wick 30 is curved in a cross section along the thickness direction Z so as to approach the first inner surface 11a side. In this case, the edge of the wick 30 preferably has a convex shape toward the second inner surface 12a (upper side), as shown in FIGS. 3 and 4. When the edge of the wick 30 is curved in a cross section along the thickness direction Z, the edge may be curved so that the curvature is constant, or may be curved while changing the curvature. Further, the edge of the wick 30 may be bent linearly at a predetermined position so as to approach the first inner surface 11a side in the cross section along the thickness direction Z.
 図3に示すように、厚さ方向Zに沿った断面において、ウィック30の縁端と筐体10の内縁との間には、厚さ方向Zに垂直な方向に隙間が存在することが好ましい。すなわち、厚さ方向Zに沿った断面において、ウィック30の縁端と筐体10の内縁とが接していないことが好ましい。以下、厚さ方向Zに沿った断面において、ウィック30の縁端と筐体10の内縁との間に、厚さ方向Zに垂直な方向に隙間が存在することによる効果を説明する。 As shown in FIG. 3, in a cross section along the thickness direction Z, it is preferable that a gap exist between the edge of the wick 30 and the inner edge of the casing 10 in a direction perpendicular to the thickness direction Z. . That is, in the cross section along the thickness direction Z, it is preferable that the edge of the wick 30 and the inner edge of the housing 10 do not touch. Hereinafter, in the cross section along the thickness direction Z, the effect of the gap existing in the direction perpendicular to the thickness direction Z between the edge of the wick 30 and the inner edge of the casing 10 will be explained.
 ベーパーチャンバー1において、蒸気空間のうち筐体10の内縁付近の部分では、蒸気となっている作動媒体20が筐体10の内縁と接することで液体になりやすくなっている。そのため、厚さ方向Zに沿った断面において、ウィック30の縁端と筐体10の内縁とが接している場合、ウィック30の縁端と筐体10の内縁が接している部分付近の蒸気空間に液体の作動媒体20が溜まることによって蒸気空間が狭くなってしまうおそれがある。これに対して、厚さ方向Zに沿った断面において、ウィック30の縁端と筐体10の内縁との間に、厚さ方向Zに垂直な方向に隙間が存在すると、液体の作動媒体20は、ウィック30の縁端と筐体10の内縁との隙間を通って液体流路に移動することができるため、蒸気空間に液体の作動媒体20が溜まることによって蒸気空間が狭くなってしまうことを防ぐことができる。 In the vapor chamber 1, in a portion of the vapor space near the inner edge of the casing 10, the working medium 20, which is in the form of vapor, comes into contact with the inner edge of the casing 10 and easily becomes liquid. Therefore, in the cross section along the thickness direction Z, if the edge of the wick 30 and the inner edge of the casing 10 are in contact, the steam space near the part where the edge of the wick 30 and the inner edge of the casing 10 are in contact with each other. There is a risk that the vapor space will become narrow due to the accumulation of liquid working medium 20 in the space. On the other hand, if a gap exists in the direction perpendicular to the thickness direction Z between the edge of the wick 30 and the inner edge of the casing 10 in the cross section along the thickness direction Z, the liquid working medium 20 can move into the liquid flow path through the gap between the edge of the wick 30 and the inner edge of the casing 10, so the liquid working medium 20 accumulates in the vapor space, causing the vapor space to become narrow. can be prevented.
 ウィック30の縁端と筐体10の内縁との距離(図3中、Aで示す長さ)は、例えば10μm以上であることが好ましい。ウィック30の縁端と筐体10の内縁との距離(図3中、Aで示す長さ)が10μm以上であると、蒸気空間に液体の作動媒体20が溜まることによって蒸気空間が狭くなってしまうことを、さらに効率的に防ぐことができる。一方、ウィック30の縁端と筐体10の内縁との距離(図3中、Aで示す長さ)は500μm以下であることが好ましい。 The distance between the edge of the wick 30 and the inner edge of the housing 10 (the length indicated by A in FIG. 3) is preferably 10 μm or more, for example. If the distance between the edge of the wick 30 and the inner edge of the housing 10 (the length indicated by A in FIG. 3) is 10 μm or more, the liquid working medium 20 accumulates in the vapor space, resulting in a narrow vapor space. This can be prevented more efficiently. On the other hand, the distance between the edge of the wick 30 and the inner edge of the housing 10 (the length indicated by A in FIG. 3) is preferably 500 μm or less.
 図4に示すように、厚さ方向Zに沿った断面において、ウィック30の縁端と筐体10の内縁との間には、厚さ方向Zに垂直な方向に隙間が存在しなくてもよい。図4において、ウィック30の縁端と筐体10の内縁とは接している。なお、図4に示すようにウィック30の縁端と筐体10の内縁とが接している場合、ウィック30の縁端と筐体10の内縁との距離は、0μmである。 As shown in FIG. 4, in the cross section along the thickness direction Z, there is no gap between the edge of the wick 30 and the inner edge of the casing 10 in the direction perpendicular to the thickness direction Z. good. In FIG. 4, the edge of the wick 30 and the inner edge of the housing 10 are in contact. Note that when the edge of the wick 30 and the inner edge of the housing 10 are in contact with each other as shown in FIG. 4, the distance between the edge of the wick 30 and the inner edge of the housing 10 is 0 μm.
 ウィック30の縁端とウィック30の縁端以外を構成する部分との、厚さ方向Zにおける距離である、ウィック30の縁端の曲げ高さ(図3中、Bで示す距離)は特に限定されないが、例えば、1μm以上、100μm以下であってもよい。 The bending height of the edge of the wick 30 (distance indicated by B in FIG. 3), which is the distance in the thickness direction Z between the edge of the wick 30 and a portion of the wick 30 other than the edge, is particularly limited. However, it may be, for example, 1 μm or more and 100 μm or less.
 厚さ方向Zに沿う断面における、ウィック30の縁端が第1内面11a側に向かって近接するように曲がっている部分での、厚さ方向Zに垂直な方向での長さである、ウィック30の縁端の曲げ幅(図3中、Cで示す長さ)は特に限定されないが、例えば、1μm以上、1000μm以下であってもよい。図3においては、ウィック30の縁端の曲げ幅は、幅方向Xでの長さである。 The length of the wick in the direction perpendicular to the thickness direction Z at the portion where the edge of the wick 30 is bent toward the first inner surface 11a side in a cross section along the thickness direction Z. The bending width of the edge 30 (the length indicated by C in FIG. 3) is not particularly limited, but may be, for example, 1 μm or more and 1000 μm or less. In FIG. 3, the bending width of the edge of the wick 30 is the length in the width direction X.
 ウィック30の縁端のうちの一部のみが第1内面11a側に向かって近接するように曲がっていてもよいが、蒸気空間を広くする観点から、ウィック30の縁端の全体が第1内面11a側に向かって近接するように曲がっていることが好ましい。 Only a part of the edge of the wick 30 may be bent toward the first inner surface 11a, but from the viewpoint of widening the vapor space, the entire edge of the wick 30 is bent toward the first inner surface 11a. It is preferable that it curves toward the 11a side.
 第1シート11と第2シート12との接合部13は、厚さ方向Zにおいて、ウィック30の縁端と異なる位置にあることが好ましい。第1シート11と第2シート12との接合部13が厚さ方向Zにおいて、ウィック30の縁端と同じ位置にあると、ベーパーチャンバーの製造過程において、第1シート11と第2シート12とを接合する際に、接合部13にウィック30に入り込むことで、ウィック30として機能する部分が減少するため、最大熱輸送量が低下するおそれがある。これに対して、第1シート11と第2シート12との接合部13が、厚さ方向Zにおいて、ウィック30の縁端と異なる位置にあると、ウィック30の縁端が接合部13に入り込んでしまうことを防ぐことができるため、ベーパーチャンバー1において最大熱輸送量が低下することを防ぐことができる。 It is preferable that the joint 13 between the first sheet 11 and the second sheet 12 be located at a different position from the edge of the wick 30 in the thickness direction Z. If the joint 13 between the first sheet 11 and the second sheet 12 is located at the same position as the edge of the wick 30 in the thickness direction Z, the first sheet 11 and the second sheet 12 will be connected in the manufacturing process of the vapor chamber. When joining, the part that functions as the wick 30 is reduced by entering the wick 30 into the joint part 13, so there is a risk that the maximum heat transport amount will decrease. On the other hand, if the joint 13 between the first sheet 11 and the second sheet 12 is located at a different position from the edge of the wick 30 in the thickness direction Z, the edge of the wick 30 will enter the joint 13. Therefore, it is possible to prevent the maximum heat transport amount from decreasing in the vapor chamber 1.
 図3及び図4では、第1シート11と第2シート12との接合部13が、厚さ方向Zにおいて、ウィック30の縁端と筐体10の第2内面12aとの間に位置しているが、ウィック30の縁端が、厚さ方向Zにおいて、第1シート11と第2シート12との接合部13と筐体10の第2内面12aとの間に位置していてもよい。 3 and 4, the joint 13 between the first sheet 11 and the second sheet 12 is located between the edge of the wick 30 and the second inner surface 12a of the casing 10 in the thickness direction Z. However, the edge of the wick 30 may be located between the joint 13 of the first sheet 11 and the second sheet 12 and the second inner surface 12a of the housing 10 in the thickness direction Z.
 図5は、図2に示す熱拡散デバイスを構成するウィックの一例を模式的に示す、一部を拡大した断面図である。図6は、図5に示すウィックを支持体側から見た平面図である。 FIG. 5 is a partially enlarged sectional view schematically showing an example of a wick that constitutes the heat diffusion device shown in FIG. 2. FIG. 6 is a plan view of the wick shown in FIG. 5 viewed from the support body side.
 ウィック30では、例えば、プレス加工などによって金属箔の一部を曲げて凹ませることにより、凹んだ部分に支持体31が形成されている。支持体31の凹んだ部分に蒸気空間が形成されるため、熱伝導率が向上する。図5に示す例に限らず、金属箔にプレス加工を行う場合、プレス加工の具合によっては、金属箔の一部を曲げた際に凹んだ部分に貫通孔が形成されても良い。 In the wick 30, a support 31 is formed in the recessed part by bending and recessing a part of the metal foil by, for example, press working. Since a vapor space is formed in the recessed portion of the support body 31, thermal conductivity is improved. In addition to the example shown in FIG. 5, when pressing metal foil, a through hole may be formed in a recessed portion when a part of the metal foil is bent, depending on the condition of the pressing.
 プレス加工などを行う前の金属箔の厚さは一定であることが好ましい。ただし、曲げられた部分では金属箔が薄くなることもある。以上より、ウィック30では、支持体31の厚さが有孔体32の厚さと同じであるか、又は、有孔体32の厚さより小さいことが好ましい。 It is preferable that the thickness of the metal foil is constant before performing press working or the like. However, the metal foil may become thinner in bent areas. From the above, in the wick 30, it is preferable that the thickness of the support body 31 is the same as the thickness of the porous body 32, or smaller than the thickness of the porous body 32.
 ウィック30では、有孔体32は、支持体31と同じ材料から構成される。 In the wick 30, the porous body 32 is made of the same material as the support body 31.
 ウィック30では、支持体31及び有孔体32が一体的に構成されている。本明細書において、「支持体31及び有孔体32が一体的に構成される」とは、支持体31と有孔体32との間に界面が存在しないことを意味し、具体的には、支持体31と有孔体32との間に境界が判別できないことを意味する。 In the wick 30, the support body 31 and the perforated body 32 are integrally constructed. In this specification, "the support body 31 and the porous body 32 are integrally constituted" means that there is no interface between the support body 31 and the porous body 32, and specifically, , which means that the boundary between the support body 31 and the porous body 32 cannot be determined.
 ウィック30では、支持体31は、例えば、図8に示すように、複数の柱状部材を含む。柱状部材の間に液相の作動媒体20を保持することにより、ベーパーチャンバー1の熱輸送性能を向上させることができる。ここで、「柱状」とは、底面の長辺の長さの比が、底面の短辺の長さに対して5倍未満である形状を意味する。 In the wick 30, the support body 31 includes a plurality of columnar members, for example, as shown in FIG. By retaining the liquid phase working medium 20 between the columnar members, the heat transport performance of the vapor chamber 1 can be improved. Here, "columnar" means a shape in which the ratio of the length of the long side of the bottom surface is less than 5 times the length of the short side of the bottom surface.
 柱状部材の形状は、特に限定されないが、例えば、円柱形状、角柱形状、円錐台形状、角錐台形状などの形状が挙げられる。 The shape of the columnar member is not particularly limited, and examples include shapes such as a columnar shape, a prismatic shape, a truncated cone shape, and a truncated pyramid shape.
 支持体31の形状は特に限定されないが、図2及び図5に示すように、支持体31は、有孔体32から第1内面11aに向かって幅が狭くなるテーパー形状を有することが好ましい。これにより、支持体31の間への有孔体32の落ち込みを抑制しつつ、筐体10の第1内面11a側では支持体31の間の流路を広くすることができる。その結果、透過率が上昇し、最大熱輸送量が大きくなる。 The shape of the support body 31 is not particularly limited, but as shown in FIGS. 2 and 5, the support body 31 preferably has a tapered shape whose width becomes narrower from the perforated body 32 toward the first inner surface 11a. Thereby, the flow path between the supports 31 can be widened on the first inner surface 11a side of the housing 10 while suppressing the perforated body 32 from falling into the spaces between the supports 31. As a result, the transmittance increases and the maximum heat transport amount increases.
 支持体31の配置は、特に限定されないが、好ましくは所定の領域において均等に、より好ましくは全体にわたって均等に、例えば支持体31の中心間距離(ピッチ)が一定となるように配置される。 The arrangement of the supports 31 is not particularly limited, but is preferably arranged evenly in a predetermined area, more preferably evenly throughout, for example, so that the center-to-center distance (pitch) of the supports 31 is constant.
 支持体31の中心間距離(図6中、P31で示す長さ)は、例えば、60μm以上800μm以下である。支持体31の幅(図6中、W31で示す長さ)は、例えば、20μm以上500μm以下である。支持体31の高さ(図5中、T31で示す長さ)は、例えば、10μm以上100μm以下である。支持体31の高さ方向に垂直な断面の円相当径は、例えば、20μm以上500μm以下である。 The center-to-center distance of the support body 31 (the length indicated by P 31 in FIG. 6) is, for example, 60 μm or more and 800 μm or less. The width of the support body 31 (the length indicated by W 31 in FIG. 6) is, for example, 20 μm or more and 500 μm or less. The height of the support body 31 (the length indicated by T 31 in FIG. 5) is, for example, 10 μm or more and 100 μm or less. The equivalent circle diameter of the cross section perpendicular to the height direction of the support body 31 is, for example, 20 μm or more and 500 μm or less.
 図5に示す例において、ウィック30の縁端の曲げ高さ(図5中、Bで示す距離)は、支持体31の高さ(図5中、T31で示す長さ)よりも小さい。 In the example shown in FIG. 5, the bending height of the edge of the wick 30 (the distance indicated by B in FIG. 5) is smaller than the height of the support 31 (the length indicated by T 31 in FIG. 5).
 ウィック30の縁端の曲げ幅(図5及び図6中、Cで示す距離)は、支持体31の幅(図6中、W31で示す長さ)よりも小さくてもよく、大きくてもよく、同じであってもよい。 The bending width of the edge of the wick 30 (distance indicated by C in FIGS. 5 and 6) may be smaller or larger than the width of the support 31 (length indicated by W 31 in FIG. 6). Well, they can be the same.
 ウィック30において、有孔体32は、厚さ方向Zに貫通する貫通孔33を有していてもよい。貫通孔33内において、作動媒体20は、毛細管現象により移動することができる。貫通孔33は厚さ方向Zから見て、支持体31が存在しない部分に設けられていることが好ましい。貫通孔33の形状は、特に限定されないが、厚さ方向Zに垂直な面での断面が円形又は楕円形であることが好ましい。 In the wick 30, the perforated body 32 may have a through hole 33 penetrating in the thickness direction Z. Within the through hole 33, the working medium 20 can move due to capillary action. It is preferable that the through hole 33 is provided in a portion where the support body 31 is not present when viewed from the thickness direction Z. Although the shape of the through hole 33 is not particularly limited, it is preferable that the cross section in a plane perpendicular to the thickness direction Z is circular or elliptical.
 有孔体32の貫通孔33の配置は、特に限定されないが、好ましくは所定の領域において均等に、より好ましくは全体にわたって均等に、例えば有孔体32の貫通孔33の中心間距離(ピッチ)が一定となるように配置される。 The arrangement of the through holes 33 of the perforated body 32 is not particularly limited, but is preferably arranged uniformly in a predetermined area, more preferably evenly over the entire area, for example, by adjusting the center-to-center distance (pitch) of the through holes 33 of the perforated body 32. are arranged so that it is constant.
 有孔体32の貫通孔33の中心間距離(図6中、P33で示す長さ)は、例えば、3μm以上150μm以下である。貫通孔33の径(図6中、φ33で示す長さ)は、例えば、100μm以下である。有孔体32の厚さ(図5中、T32で示す長さ)は、例えば、5μm以上50μm以下である。 The distance between the centers of the through holes 33 of the porous body 32 (the length indicated by P 33 in FIG. 6) is, for example, 3 μm or more and 150 μm or less. The diameter of the through hole 33 (the length indicated by φ 33 in FIG. 6) is, for example, 100 μm or less. The thickness of the porous body 32 (the length indicated by T 32 in FIG. 5) is, for example, 5 μm or more and 50 μm or less.
 ウィック30の縁端の曲げ高さ(図5中、Bで示す距離)は、有孔体32の厚さ(図5中、T32で示す長さ)よりも小さくてもよく、大きくてもよく、同じであってもよい。 The bending height of the edge of the wick 30 (the distance indicated by B in FIG. 5) may be smaller than or greater than the thickness of the perforated body 32 (the length indicated by T 32 in FIG. 5). Well, they can be the same.
 ウィック30の縁端の曲げ幅(図5及び図6中、Cで示す距離)は、貫通孔33の径(図6中、φ33で示す長さ)よりも小さくてもよく、大きくてもよく、同じであってもよい。 The bending width of the edge of the wick 30 (distance indicated by C in FIGS. 5 and 6) may be smaller or larger than the diameter of the through hole 33 (length indicated by φ 33 in FIG. 6). Well, they can be the same.
 貫通孔33は、例えば、有孔体32を構成する金属等に対して、プレス加工による打ち抜きを行うことによって作製することができる。ウィック30は、支持体31を形成するプレス加工と、貫通孔33を形成するプレス加工と、が一括で行われることにより形成されていてもよい。 The through-hole 33 can be made, for example, by punching the metal or the like that constitutes the perforated body 32 by press working. The wick 30 may be formed by simultaneously performing the press work for forming the support body 31 and the press work for forming the through holes 33.
 図2に示すように、ベーパーチャンバー1は、筐体10の第2内面12aに接するように内部空間に配置される支柱40をさらに備えていてもよい。筐体10の内部空間に支柱40を配置することによって筐体10及びウィック30を支持することが可能である。 As shown in FIG. 2, the vapor chamber 1 may further include a support 40 disposed in the internal space so as to be in contact with the second inner surface 12a of the housing 10. It is possible to support the housing 10 and the wick 30 by arranging the struts 40 in the internal space of the housing 10.
 支柱40を構成する材料は、特に限定されないが、例えば、樹脂、金属、セラミックス、又はそれらの混合物、積層物などが挙げられる。また、支柱40は、筐体10と一体であってもよく、例えば、筐体10の第2内面12aをエッチング加工すること等により形成されていてもよい。 The material constituting the pillar 40 is not particularly limited, and examples thereof include resin, metal, ceramics, a mixture thereof, a laminate, and the like. Further, the support column 40 may be integrated with the housing 10, and may be formed by, for example, etching the second inner surface 12a of the housing 10.
 支柱40の形状は、筐体10及びウィック30を支持できる形状であれば特に限定されないが、支柱40の高さ方向に垂直な断面の形状としては、例えば、矩形などの多角形、円形、楕円形などが挙げられる。 The shape of the support 40 is not particularly limited as long as it can support the housing 10 and the wick 30, but the shape of the cross section perpendicular to the height direction of the support 40 may be, for example, a polygon such as a rectangle, a circle, or an ellipse. Examples include shape.
 支柱40の高さは、一のベーパーチャンバーにおいて、同じであってもよく、異なっていてもよい。 The heights of the columns 40 may be the same or different in one vapor chamber.
 支柱40の高さは、例えば、50μm以上1000μm以下であってもよい。 The height of the pillar 40 may be, for example, 50 μm or more and 1000 μm or less.
 支柱40の高さは、支持体31の高さよりも大きいことが好ましい。 The height of the support column 40 is preferably greater than the height of the support body 31.
 図2に示す断面において、支柱40の幅は、筐体10の変形を抑制できる強度を与えるものであれば特に限定されないが、支柱40の端部の高さ方向に垂直な断面の円相当径は、例えば100μm以上2000μm以下であり、好ましくは300μm以上1000μm以下である。支柱40の円相当径を大きくすることにより、筐体10の変形をより抑制することができる。一方、支柱40の円相当径を小さくすることにより、作動媒体20の蒸気が移動するための空間をより広く確保することができる。 In the cross section shown in FIG. 2, the width of the support 40 is not particularly limited as long as it provides strength that can suppress deformation of the casing 10, but the width is the equivalent circle diameter of the cross section perpendicular to the height direction of the end of the support 40. is, for example, 100 μm or more and 2000 μm or less, preferably 300 μm or more and 1000 μm or less. By increasing the equivalent circular diameter of the support column 40, deformation of the housing 10 can be further suppressed. On the other hand, by reducing the equivalent circle diameter of the support column 40, it is possible to secure a wider space for the vapor of the working medium 20 to move.
 支柱40の高さ方向に垂直な断面の円相当径は、支持体31の高さ方向に垂直な断面の円相当径よりも大きいことが好ましい。 The equivalent circle diameter of the cross section perpendicular to the height direction of the support 40 is preferably larger than the equivalent circle diameter of the cross section perpendicular to the height direction of the support body 31.
 支柱40の配置は、特に限定されないが、好ましくは所定の領域において均等に、より好ましくは全体にわたって均等に、例えば支柱40間の距離が一定となるように配置される。支柱40を均等に配置することにより、ベーパーチャンバー1の全体にわたって均一な強度を確保することができる。 The arrangement of the struts 40 is not particularly limited, but is preferably arranged evenly in a predetermined area, more preferably evenly throughout, for example, so that the distance between the struts 40 is constant. By arranging the pillars 40 evenly, uniform strength can be ensured throughout the vapor chamber 1.
 互いに隣接する支柱40同士の中心間距離は、例えば、100μm以上5000μm以下であってもよい。 The center-to-center distance between adjacent pillars 40 may be, for example, 100 μm or more and 5000 μm or less.
 互いに隣接する支柱40同士の中心間距離は、互いに隣接する支持体31同士の中心間距離よりも大きいことが好ましい。支持体31が複数の柱状部材を含む場合、互いに隣接する支柱40同士の中心間距離は、互いに隣接する柱状部材同士の中心間距離よりも大きいことが好ましい。 It is preferable that the center-to-center distance between mutually adjacent support columns 40 is larger than the center-to-center distance between mutually adjacent supports 31. When the support body 31 includes a plurality of columnar members, it is preferable that the center-to-center distance between the mutually adjacent columns 40 is larger than the center-to-center distance between the mutually adjacent columnar members.
 図7は、ウィックの第1変形例を模式的に示す、一部を拡大した断面図である。 FIG. 7 is a partially enlarged sectional view schematically showing a first modification of the wick.
 なお、図7から図9に示す断面図においては、ウィックの変形例の説明を簡単にするため、ウィックの縁端の様子は図示していない。図7から図9に示す断面図におけるウィックの縁端の形状は、図5に示す断面図におけるウィック30の縁端の形状と同じであってもよい。 Note that in the cross-sectional views shown in FIGS. 7 to 9, the edges of the wick are not shown in order to simplify the explanation of the modified examples of the wick. The shape of the edge of the wick in the cross-sectional views shown in FIGS. 7 to 9 may be the same as the shape of the edge of the wick 30 in the cross-sectional view shown in FIG.
 図7に示すウィック30Aでは、支持体31は凹んでいない。 In the wick 30A shown in FIG. 7, the support 31 is not recessed.
 図7に示すウィック30Aでは、有孔体32は、支持体31と同じ材料から構成される。有孔体32が支持体31と同じ材料から構成される場合において、支持体31及び有孔体32を構成する材料は、特に限定されないが、例えば、樹脂、金属、セラミックス、又はそれらの混合物、積層物などが挙げられる。支持体31及び有孔体32を構成する材料は金属が好ましい。 In the wick 30A shown in FIG. 7, the porous body 32 is made of the same material as the support body 31. In the case where the porous body 32 is made of the same material as the support body 31, the materials constituting the support body 31 and the porous body 32 are not particularly limited, but may include, for example, resin, metal, ceramics, or a mixture thereof; Examples include laminates. The material constituting the support body 31 and the porous body 32 is preferably metal.
 ウィック30Aにおいて、支持体31及び有孔体32が一体的に構成されていてもよい。 In the wick 30A, the support body 31 and the perforated body 32 may be integrally configured.
 支持体31及び有孔体32が一体的に構成されるウィック30Aは、例えば、エッチング技術、多層塗りによる印刷技術、その他の多層技術などにより作製することができる。 The wick 30A in which the support body 31 and the porous body 32 are integrally formed can be produced by, for example, an etching technique, a printing technique using multilayer coating, or another multilayer technique.
 ウィック30Aにおいて、有孔体32が支持体31と同じ材料から構成されている場合、支持体31及び有孔体32が一体的に構成されていなくてもよい。例えば、支持体31としての銅ピラーと、有孔体32としての銅メッシュとが、拡散接合又はスポット溶接などで固定されたウィック30Aにおいては、支持体31と有孔体32との間を全面にわたって接合することが困難であるため、支持体31と有孔体32との間の一部には隙間が生じる。このようなウィック30Aでは、支持体31と有孔体32との間に境界が判別できるため、有孔体32は、支持体31と同じ材料から構成されているが、支持体31と有孔体32とは一体的に構成されていない。 In the wick 30A, when the porous body 32 is made of the same material as the support body 31, the support body 31 and the porous body 32 do not need to be integrally constituted. For example, in a wick 30A in which a copper pillar as a support 31 and a copper mesh as a perforated body 32 are fixed by diffusion bonding or spot welding, the entire surface between the support 31 and the perforated body 32 is fixed. Since it is difficult to join the support body 31 and the porous body 32, a gap is formed between the support body 31 and the porous body 32. In such a wick 30A, the boundary between the support body 31 and the perforated body 32 can be distinguished, so that although the perforated body 32 is made of the same material as the support body 31, It is not constructed integrally with the body 32.
 図8は、ウィックの第2変形例を模式的に示す、一部を拡大した断面図である。 FIG. 8 is a partially enlarged sectional view schematically showing a second modification of the wick.
 図8に示すウィック30Bでは、支持体31は凹んでいない。 In the wick 30B shown in FIG. 8, the support body 31 is not recessed.
 図8に示すウィック30Bでは、支持体31及び有孔体32が多孔質体から構成される。有孔体32だけでなく支持体31も多孔質体から構成されることで、ウィック30Bの毛細管力を向上させることができる。 In the wick 30B shown in FIG. 8, the support 31 and the porous body 32 are made of a porous body. By forming not only the porous body 32 but also the support body 31 from a porous body, the capillary force of the wick 30B can be improved.
 支持体31及び有孔体32を構成する多孔質体としては、例えば、金属多孔質焼結体、セラミックス多孔質焼結体などの多孔質焼結体、又は、金属多孔体、セラミックス多孔体、樹脂多孔体などの多孔体が挙げられる。 The porous bodies constituting the support body 31 and the porous body 32 include, for example, porous sintered bodies such as metal porous sintered bodies and ceramic porous sintered bodies, or metal porous bodies, ceramic porous bodies, Examples include porous bodies such as porous resin bodies.
 多孔質体から構成されるウィック30Bは、例えば、金属ペースト又はセラミックスペーストを用いた多層塗りによる印刷技術などにより作製することができる。この際、支持体31を形成するためのペースト中の金属又はセラミックスの含有量は、有孔体32を形成するためのペースト中の金属又はセラミックスの含有量と同じでもよく、有孔体32を形成するためのペースト中の金属又はセラミックスの含有量よりも少なくてもよく、有孔体32を形成するためのペースト中の金属又はセラミックスの含有量よりも多くてもよい。例えば、支持体31を形成するためのペースト中の金属又はセラミックスの含有量を、有孔体32を形成するためのペースト中の金属又はセラミックスの含有量よりも多くすることで、支持体31の密度を有孔体32の密度よりも大きくすることができる。その結果、支持体31の強度を上げることができる。 The wick 30B made of a porous material can be produced, for example, by a printing technique using multilayer coating using metal paste or ceramic paste. At this time, the content of metal or ceramics in the paste for forming the support body 31 may be the same as the content of metal or ceramics in the paste for forming the porous body 32. The content of metal or ceramics in the paste for forming the porous body 32 may be smaller than the content of metal or ceramics in the paste for forming the porous body 32. For example, by making the content of metal or ceramics in the paste for forming the support body 31 larger than the content of metal or ceramics in the paste for forming the porous body 32, The density can be made larger than the density of the porous body 32. As a result, the strength of the support body 31 can be increased.
 多孔質体から構成される有孔体32は、厚さ方向Zに貫通する貫通孔を有していてもよい。多孔質体から構成される有孔体32は、厚さ方向Zに貫通する貫通孔を有してなくてもよい。 The porous body 32 made of a porous body may have through holes penetrating in the thickness direction Z. The porous body 32 made of a porous body does not need to have through holes penetrating in the thickness direction Z.
 図9は、ウィックの第3変形例を模式的に示す、一部を拡大した断面図である。 FIG. 9 is a partially enlarged sectional view schematically showing a third modification of the wick.
 図9に示すウィック30Cでは、支持体31は凹んでいない。 In the wick 30C shown in FIG. 9, the support body 31 is not recessed.
 図9に示すウィック30Cでは、有孔体32は、支持体31とは異なる材料から構成される。 In the wick 30C shown in FIG. 9, the porous body 32 is made of a different material from the support body 31.
 支持体31と有孔体32とが異なる材料から構成される場合、支持体31を構成する材料は、特に限定されないが、例えば、樹脂、金属、セラミックス、又はそれらの混合物、積層物などが挙げられる。有孔体32を構成する材料は、特に限定されないが、例えば、樹脂、金属、セラミックス、又はそれらの混合物、積層物などが挙げられる。 When the support body 31 and the porous body 32 are made of different materials, the material constituting the support body 31 is not particularly limited, and examples thereof include resin, metal, ceramics, a mixture thereof, a laminate, etc. It will be done. The material constituting the porous body 32 is not particularly limited, and examples thereof include resin, metal, ceramics, a mixture thereof, a laminate, and the like.
 支持体31と有孔体32とが異なる材料から構成されるウィック30Cは、例えば、金属ペースト又はセラミックスペーストを用いた多層塗りによる印刷技術などにより作製することができる。 The wick 30C in which the support body 31 and the porous body 32 are made of different materials can be produced, for example, by a printing technique using multilayer coating using metal paste or ceramic paste.
 有孔体32が、支持体31とは異なる材料から構成される場合、支持体31と、有孔体32とが、拡散接合又はスポット溶接などで固定されていてもよい。 When the perforated body 32 is made of a material different from that of the support 31, the support 31 and the perforated body 32 may be fixed by diffusion bonding, spot welding, or the like.
 ウィック30Cでは、例えば、有孔体32が多孔質体から構成される。 In the wick 30C, for example, the porous body 32 is made of a porous body.
 有孔体32を構成する多孔質体としては、例えば、金属多孔質焼結体、セラミックス多孔質焼結体などの多孔質焼結体、又は、金属多孔体、セラミックス多孔体、樹脂多孔体などの多孔体が挙げられる。 Examples of the porous body constituting the porous body 32 include a porous sintered body such as a porous metal sintered body, a porous ceramic sintered body, a porous metal body, a porous ceramic body, a porous resin body, etc. Examples include porous bodies.
 多孔質体から構成される有孔体32は、厚さ方向Zに貫通する貫通孔33を有していてもよい。多孔質体から構成される有孔体32は、厚さ方向Zに貫通する貫通孔33を有してなくてもよい。 The porous body 32 made of a porous body may have through holes 33 penetrating in the thickness direction Z. The porous body 32 made of a porous body does not need to have through holes 33 penetrating in the thickness direction Z.
 図10Aは、ウィックの第4変形例を模式的に示す、一部を拡大した断面図である。図10Bは、図10Aに示すウィックを有孔体側から見たときの、貫通孔、凸部及び凸部付近での蒸気の流れを模式的に示す平面図である。 FIG. 10A is a partially enlarged cross-sectional view schematically showing a fourth modification of the wick. FIG. 10B is a plan view schematically showing the through hole, the convex portion, and the flow of steam near the convex portion when the wick shown in FIG. 10A is viewed from the perforated body side.
 図10Aに示すウィック30Dでは、貫通孔33の周縁には、第2内面12aに近接する方向に凸部34が設けられている。 In the wick 30D shown in FIG. 10A, a protrusion 34 is provided on the periphery of the through hole 33 in a direction approaching the second inner surface 12a.
 凸部34は、第1内面11a側の第1端部35及び第2内面12a側の第2端部36を有する。 The convex portion 34 has a first end 35 on the first inner surface 11a side and a second end 36 on the second inner surface 12a side.
 以下、貫通孔33の周縁において、第2内面12aに近接する方向に凸部34が設けられていることによる効果を説明する。熱源HSにおいて蒸発した作動媒体20は、蒸気の状態で、有孔体32と、第2内面12aとの間の空間を、熱源HSから離れる方向に流れる。図10Bに示すように、貫通孔33の周縁において、第2内面12aに近接する方向に凸部34が設けられていると、有孔体32と第2内面12aとの間の空間を流れる蒸気は凸部34の外周縁を迂回するように流れる。このため、蒸気の流れが貫通孔33内の作動媒体20の液面と直接触れることを防ぐことができる。したがって、ウィック30の毛細管力とは逆方向への蒸気の流れ、いわゆるカウンターフローの影響を低減することができる。それゆえ、ベーパーチャンバー1の最大熱輸送量を向上することができる。 Hereinafter, the effect of providing the convex portion 34 on the periphery of the through hole 33 in a direction approaching the second inner surface 12a will be explained. The working medium 20 evaporated in the heat source HS flows in a vapor state through the space between the perforated body 32 and the second inner surface 12a in a direction away from the heat source HS. As shown in FIG. 10B, if a convex portion 34 is provided at the periphery of the through hole 33 in a direction approaching the second inner surface 12a, steam flowing in the space between the perforated body 32 and the second inner surface 12a flows around the outer peripheral edge of the convex portion 34. Therefore, the flow of steam can be prevented from coming into direct contact with the liquid level of the working medium 20 in the through hole 33. Therefore, the influence of the flow of steam in the opposite direction to the capillary force of the wick 30, that is, the so-called counterflow, can be reduced. Therefore, the maximum heat transport amount of the vapor chamber 1 can be improved.
 凸部34は、貫通孔33の周縁全体に設けられていることが好ましい。凸部34は、貫通孔33の周縁の一部にのみ設けられていてもよい。 It is preferable that the convex portion 34 is provided on the entire periphery of the through hole 33. The protrusion 34 may be provided only on a part of the periphery of the through hole 33.
 凸部34は、有孔体32におけるすべての貫通孔33の周縁に設けられていてもよく、有孔体32における一部の貫通孔33の周縁にのみ設けられていてもよい。凸部34が、有孔体32における一部の貫通孔33の周縁にのみ設けられている場合、熱源HSの直上に位置する貫通孔33以外の周縁に凸部34が設けられていることが好ましい。 The convex portion 34 may be provided on the periphery of all the through holes 33 in the perforated body 32, or may be provided only on the periphery of some of the through holes 33 in the perforated body 32. When the convex portion 34 is provided only on the periphery of some of the through holes 33 in the perforated body 32, the convex portion 34 may be provided on the periphery of the through holes 33 other than those located directly above the heat source HS. preferable.
 貫通孔33及び凸部34は、例えば、有孔体32を構成する金属等に対して、プレス加工による打ち抜きを行うことによって作製することができる。プレス加工による打ち抜きにおいて、打ち抜きの深さ等を適宜調整することによって、凸部の形状等を調節することができる。なお、打ち抜きの深さとは、例えば、パンチによって打ち抜きを行う際に、打ち抜き方向に、どの程度までパンチを押し込むかを意味する。 The through holes 33 and the convex portions 34 can be produced, for example, by punching the metal or the like that constitutes the perforated body 32 by press working. In punching by press working, the shape of the convex portion, etc. can be adjusted by appropriately adjusting the punching depth, etc. Note that the punching depth means, for example, how far the punch is pushed in the punching direction when punching is performed.
 凸部34の寸法は特に限定されない。例えば、凸部34の高さが、貫通孔33の径よりも大きくてもよく、凸部34の高さが、貫通孔33の径よりも小さくてもよく、凸部34の高さが、貫通孔33の径と同じであってもよい。なお、図10Aに示す凸部34において、凸部34の高さは、第1端部35及び第2端部36の間の厚さ方向Zにおける距離を意味する。 The dimensions of the convex portion 34 are not particularly limited. For example, the height of the protrusion 34 may be larger than the diameter of the through hole 33, the height of the protrusion 34 may be smaller than the diameter of the through hole 33, and the height of the protrusion 34 may be It may be the same as the diameter of the through hole 33. In addition, in the convex part 34 shown in FIG. 10A, the height of the convex part 34 means the distance in the thickness direction Z between the 1st end part 35 and the 2nd end part 36.
 図10Aに示す例では、ウィック30Dの縁端の曲げ高さ(図10A中、Bで示す距離)は、凸部34の高さよりも大きい。ウィック30Dの縁端の曲げ高さ(図10A中、Bで示す距離)は、凸部34の高さよりも小さくてもよく、凸部34の高さと同じであってもよい。 In the example shown in FIG. 10A, the bending height of the edge of the wick 30D (distance indicated by B in FIG. 10A) is greater than the height of the convex portion 34. The bending height of the edge of the wick 30D (the distance indicated by B in FIG. 10A) may be smaller than the height of the protrusion 34, or may be the same as the height of the protrusion 34.
 なお、貫通孔33の周縁において、第2内面12aに近接する方向に凸部34が設けられている場合、有孔体32の厚さは、凸部34が設けられていない部分での有孔体32の厚さを意味する。 Note that when a protrusion 34 is provided at the peripheral edge of the through hole 33 in a direction approaching the second inner surface 12a, the thickness of the perforated body 32 is equal to the thickness of the perforated body 32 at the portion where the protrusion 34 is not provided. It means the thickness of the body 32.
 図10Aに示すウィック30Dは、プレス加工などによって金属箔の一部を曲げて凹ませることにより、凹んだ部分に支持体31が形成されている。ウィック30Dは、支持体31を形成するプレス加工と、貫通孔33及び凸部34を形成するプレス加工と、が一括で行われることにより形成されていてもよい。 In the wick 30D shown in FIG. 10A, a support body 31 is formed in the recessed part by bending and recessing a part of the metal foil by pressing or the like. The wick 30D may be formed by simultaneously performing the press work to form the support body 31 and the press work to form the through holes 33 and the convex portions 34.
 図10Aに示すウィック30Dは、図7に示すウィック30A、図8に示すウィック30B及び図9に示すウィック30Cのように支持体31が凹んでいなくてもよい。 In the wick 30D shown in FIG. 10A, the support 31 does not have to be recessed like the wick 30A shown in FIG. 7, the wick 30B shown in FIG. 8, and the wick 30C shown in FIG.
 図11は、図10Aに示す凸部の第1変形例を模式的に示す、一部を拡大した断面図である。 FIG. 11 is a partially enlarged cross-sectional view schematically showing a first modification of the convex portion shown in FIG. 10A.
 なお、図11から図15に示す断面図においては、ウィックの変形例の説明を簡単にするため、ウィックの縁端の様子は図示していない。図11から図15に示す断面図におけるウィックの縁端の形状は、図10Aに示す断面図におけるウィック30Dの縁端の形状と同じであってもよい。 Note that in the cross-sectional views shown in FIGS. 11 to 15, the edges of the wick are not shown in order to simplify the explanation of the modified examples of the wick. The shape of the edge of the wick in the cross-sectional views shown in FIGS. 11 to 15 may be the same as the shape of the edge of the wick 30D in the cross-sectional view shown in FIG. 10A.
 図11に示す凸部34aは、第1内面11a側の第1端部35a及び第2内面12a側の第2端部36aを有する。凸部34aは、厚さ方向Zから見て、第2端部36aの内壁が囲う領域の断面積が、第1端部35aの内壁が囲う領域の断面積よりも小さい。厚さ方向Zから見て、第2端部36aの内壁が囲う領域の断面積が、第1端部35aの内壁が囲う領域の断面積よりも小さいと、蒸気の流れが貫通孔33内の作動媒体20の液面と直接触れることをさらに防ぐことができる。これによって、カウンターフローの影響をさらに低減することができるため、ベーパーチャンバー1の最大熱輸送量をさらに向上することができる。 The convex portion 34a shown in FIG. 11 has a first end 35a on the first inner surface 11a side and a second end 36a on the second inner surface 12a side. In the convex portion 34a, when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the second end portion 36a is smaller than the cross-sectional area of the region surrounded by the inner wall of the first end portion 35a. When the cross-sectional area of the region surrounded by the inner wall of the second end 36 a is smaller than the cross-sectional area of the region surrounded by the inner wall of the first end 35 a when viewed from the thickness direction Z, the flow of steam inside the through-hole 33 is Direct contact with the liquid surface of the working medium 20 can be further prevented. As a result, the influence of counterflow can be further reduced, so that the maximum heat transport amount of the vapor chamber 1 can be further improved.
 凸部34aにおいて、厚さ方向Zから見て、第2端部36aの内壁は、第1端部35aの内壁よりも内側に位置する。厚さ方向Zから見て、第2端部36aの内壁は、第1端部35aの内壁よりも内側に位置すると、蒸気の流れが貫通孔33内の作動媒体20の液面と直接触れることをさらに防ぐことができる。これによって、カウンターフローの影響をさらに低減することができるため、ベーパーチャンバー1の最大熱輸送量をさらに向上することができる。 In the convex portion 34a, when viewed from the thickness direction Z, the inner wall of the second end portion 36a is located inside the inner wall of the first end portion 35a. When the inner wall of the second end 36a is located inside the inner wall of the first end 35a when viewed from the thickness direction Z, the flow of steam directly contacts the liquid level of the working medium 20 in the through hole 33. can be further prevented. As a result, the influence of counterflow can be further reduced, so that the maximum heat transport amount of the vapor chamber 1 can be further improved.
 凸部34aは、厚さ方向Zに沿う断面において、第2内面12aに近接する方向に向かって、凸部34aの外壁間の距離が狭くなるテーパー形状を有する。凸部34aが厚さ方向Zに沿う断面において、第2内面12aに近接する方向に向かって、凸部34aの外壁間の距離が狭くなるテーパー形状を有すると、有孔体32と第2内面12aとの間の空間を流れる蒸気が凸部34aに接触した時に、蒸気は、凸部34aを迂回するように流れるだけでなく、厚さ方向Zに沿う断面において凸部34aの外壁面に沿うように第2内面12a側へと流れることができる。そのため、厚さ方向Zに沿う断面において、第2内面12aに近接する方向に向かって、凸部34aの外壁間の距離が狭くなるテーパー形状を有さない凸部34と比べて、凸部34aに接触した蒸気の流れる経路を増やすことができる。これによって、ベーパーチャンバー1の熱伝導率の低下を抑制することができる。 In the cross section along the thickness direction Z, the convex portion 34a has a tapered shape in which the distance between the outer walls of the convex portion 34a becomes narrower toward the second inner surface 12a. When the convex portion 34a has a tapered shape in which the distance between the outer walls of the convex portion 34a becomes narrower toward the second inner surface 12a in the cross section along the thickness direction Z, the distance between the perforated body 32 and the second inner surface increases. 12a, when the steam flows in the space between the convex portion 34a and the convex portion 34a, the steam not only flows around the convex portion 34a but also flows along the outer wall surface of the convex portion 34a in the cross section along the thickness direction Z. Thus, the water can flow toward the second inner surface 12a. Therefore, in the cross section along the thickness direction Z, the protrusion 34a is smaller than the protrusion 34 which does not have a tapered shape in which the distance between the outer walls of the protrusion 34a becomes narrower toward the second inner surface 12a. It is possible to increase the number of paths through which steam comes into contact with. Thereby, a decrease in thermal conductivity of the vapor chamber 1 can be suppressed.
 凸部34aは、厚さ方向Zに沿う断面において、第2内面12a側(図11では上側)に凸な形状である。いいかえれば、凸部34aは、厚さ方向Zに沿う断面において、第1端部35a及び第2端部36aを結ぶ線分に対して第2内面12a側(図11では上側)にカーブする形状である。 The convex portion 34a has a shape that is convex toward the second inner surface 12a side (upper side in FIG. 11) in a cross section along the thickness direction Z. In other words, the convex portion 34a has a shape that curves toward the second inner surface 12a side (upper side in FIG. 11) with respect to the line segment connecting the first end portion 35a and the second end portion 36a in the cross section along the thickness direction Z. It is.
 図12は、図10Aに示す凸部の第2変形例を模式的に示す、一部を拡大した断面図である。 FIG. 12 is a partially enlarged cross-sectional view schematically showing a second modification of the convex portion shown in FIG. 10A.
 図12に示す凸部34bは、第1内面11a側の第1端部35b及び第2内面12a側の第2端部36bを有する。凸部34bは、厚さ方向Zに沿う断面において、第2内面12aに近接する方向に向かって、凸部34bの外壁間の距離が狭くなるテーパー形状を有する。凸部34bは、厚さ方向Zに沿う断面において、第1内面11a側(図12では下側)に凸な形状である。いいかえれば、凸部34bは、厚さ方向Zに沿う断面において、第1端部35b及び第2端部36bを結ぶ線分に対して第1内面11a側(図12では下側)にカーブする形状である。凸部34bのように、厚さ方向Zに沿う断面において、第1内面11a側(図12では下側)に凸な形状であると、第2内面12a側(図11では上側)に凸な形状である凸部34aと比較して、凸部34bの第1端部35b側の部分における外壁面の傾斜がなだらかとなる。そのため、有孔体32と第2内面12aとの間の空間を流れる蒸気が凸部34bの第1端部35b側の部分に接触した際に、厚さ方向Zに沿う断面において凸部34bの外壁面に沿うように第2内面12a側へとさらに流れやすくなる。これによって、ベーパーチャンバー1の熱伝導率の低下をさらに抑制することができる。 The convex portion 34b shown in FIG. 12 has a first end 35b on the first inner surface 11a side and a second end 36b on the second inner surface 12a side. The convex portion 34b has a tapered shape in a cross section along the thickness direction Z such that the distance between the outer walls of the convex portion 34b decreases toward the second inner surface 12a. The convex portion 34b has a shape that is convex toward the first inner surface 11a side (lower side in FIG. 12) in a cross section along the thickness direction Z. In other words, the convex portion 34b curves toward the first inner surface 11a side (downward in FIG. 12) with respect to the line segment connecting the first end portion 35b and the second end portion 36b in the cross section along the thickness direction Z. It is the shape. When the convex portion 34b has a shape that is convex toward the first inner surface 11a side (lower side in FIG. 12) in the cross section along the thickness direction Z, it has a convex shape toward the second inner surface 12a side (upper side in FIG. 11). Compared to the shape of the convex portion 34a, the slope of the outer wall surface of the portion of the convex portion 34b on the first end 35b side is gentle. Therefore, when the steam flowing in the space between the perforated body 32 and the second inner surface 12a comes into contact with the first end 35b side portion of the convex portion 34b, the convex portion 34b is removed in the cross section along the thickness direction Z. It becomes easier to flow toward the second inner surface 12a side along the outer wall surface. Thereby, a decrease in the thermal conductivity of the vapor chamber 1 can be further suppressed.
 図13は、図10Aに示す凸部の第3変形例を模式的に示す、一部を拡大した断面図である。 FIG. 13 is a partially enlarged sectional view schematically showing a third modification of the convex portion shown in FIG. 10A.
 図13に示す凸部34cは、第1内面11a側の第1端部35c及び第2内面12a側の第2端部36cを有する。凸部34cは、厚さ方向Zから見て、第2端部36cの内壁が囲う領域の断面積が、第1端部35cの内壁が囲う領域の断面積よりも小さい。凸部34cは、第2端部36cにおいて、凸部34cの開口を狭める蓋部37を備えている。凸部34cでは、厚さ方向Zから見たとき、第2端部36cにおいて蓋部37が存在しない凸部34bと比べて、第2端部36cの内壁が囲う領域の断面積が狭くなっている。凸部34cが第2端部36cにおいて、凸部34cの開口を狭める蓋部37を備えていると、蒸気の流れが貫通孔33内の作動媒体20の液面と直接触れることをさらに防ぐことができる。これによって、カウンターフローの影響をさらに低減することができるため、ベーパーチャンバー1の最大熱輸送量をさらに向上することができる。 The convex portion 34c shown in FIG. 13 has a first end 35c on the first inner surface 11a side and a second end 36c on the second inner surface 12a side. In the convex portion 34c, when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the second end portion 36c is smaller than the cross-sectional area of the region surrounded by the inner wall of the first end portion 35c. The convex portion 34c includes a lid portion 37 that narrows the opening of the convex portion 34c at the second end portion 36c. In the convex portion 34c, when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the second end portion 36c is narrower than that of the convex portion 34b in which the lid portion 37 does not exist at the second end portion 36c. There is. If the convex portion 34c is provided with a lid portion 37 that narrows the opening of the convex portion 34c at the second end 36c, direct contact of the flow of steam with the liquid level of the working medium 20 in the through hole 33 can be further prevented. I can do it. As a result, the influence of counterflow can be further reduced, so that the maximum heat transport amount of the vapor chamber 1 can be further improved.
 凸部34cの開口を狭める蓋部37は、例えば、第2端部36cにプレス加工を行うことで形成されていてもよい。凸部34cの開口を狭める蓋部37の大きさや形状は、特に限定されず、凸部34cの第2端部36c側での開口を狭めていればよい。凸部34cの開口を狭める蓋部37は、平坦面であることが好ましい。凸部34cの開口を狭める蓋部37は、厚さ方向Zに対して垂直な平坦面であることが好ましい。凸部34cの開口を狭める蓋部37は、一部又は全体が曲面状であってもよい。凸部34cの開口を狭める蓋部37は、表面が凹凸形状を有していてもよい。凸部34cの開口を狭める蓋部37の厚さは、凸部34cの厚さと同じであってもよく、異なっていてもよい。 The lid portion 37 that narrows the opening of the convex portion 34c may be formed by, for example, performing press working on the second end portion 36c. The size and shape of the lid part 37 that narrows the opening of the convex part 34c are not particularly limited, as long as the opening on the second end 36c side of the convex part 34c is narrowed. It is preferable that the lid portion 37 that narrows the opening of the convex portion 34c has a flat surface. The lid portion 37 that narrows the opening of the convex portion 34c is preferably a flat surface perpendicular to the thickness direction Z. The lid portion 37 that narrows the opening of the convex portion 34c may have a curved surface in part or in its entirety. The lid portion 37 that narrows the opening of the convex portion 34c may have an uneven surface. The thickness of the lid portion 37 that narrows the opening of the convex portion 34c may be the same as or different from the thickness of the convex portion 34c.
 図14は、図10Aに示す凸部の第4変形例を模式的に示す、一部を拡大した断面図である。 FIG. 14 is a partially enlarged sectional view schematically showing a fourth modification of the convex portion shown in FIG. 10A.
 図14に示す凸部34dは、第1内面11a側の第1端部35d及び第2内面12a側の第2端部36dを有する。凸部34dは、厚さ方向Zから見て、第2端部36dの内壁が囲う領域の断面積が、第1端部35dの内壁が囲う領域の断面積よりも大きい。 The convex portion 34d shown in FIG. 14 has a first end 35d on the first inner surface 11a side and a second end 36d on the second inner surface 12a side. In the convex portion 34d, when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the second end portion 36d is larger than the cross-sectional area of the region surrounded by the inner wall of the first end portion 35d.
 凸部34dにおいて、厚さ方向Zから見て、第2端部36dの内壁は、第1端部35dの内壁よりも外側に位置する。 In the convex portion 34d, when viewed from the thickness direction Z, the inner wall of the second end portion 36d is located outside the inner wall of the first end portion 35d.
 図15は、図10Aに示す凸部の第5変形例を模式的に示す、一部を拡大した断面図である。 FIG. 15 is a partially enlarged sectional view schematically showing a fifth modification of the convex portion shown in FIG. 10A.
 図15に示す凸部34eは、第1内面11a側の第1端部35e及び第2内面12a側の第2端部36eを有する。凸部34eは、厚さ方向Zから見て、第2端部36eの内壁が囲う領域の断面積が、第1端部35eの内壁が囲う領域の断面積よりも大きい。凸部34eは、第2端部36eにおいて、凸部34eの開口を狭める蓋部37を備えている。凸部34eでは、厚さ方向Zから見たとき、第2端部36eにおいて蓋部37が存在しない凸部34dと比べて、第2端部36eの内壁が囲う領域の断面積が狭くなっている。凸部34eが第2端部36eにおいて、凸部34eの開口を狭める蓋部37を備えていると、蒸気の流れが貫通孔33内の作動媒体20の液面と直接触れることをさらに防ぐことができる。これによって、カウンターフローの影響をさらに低減することができるため、ベーパーチャンバー1の最大熱輸送量をさらに向上することができる。 The convex portion 34e shown in FIG. 15 has a first end 35e on the first inner surface 11a side and a second end 36e on the second inner surface 12a side. In the convex portion 34e, when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the second end portion 36e is larger than the cross-sectional area of the region surrounded by the inner wall of the first end portion 35e. The convex portion 34e includes a lid portion 37 that narrows the opening of the convex portion 34e at the second end portion 36e. In the convex portion 34e, when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the second end portion 36e is narrower than that of the convex portion 34d in which the lid portion 37 does not exist at the second end portion 36e. There is. If the convex portion 34e is provided with a lid portion 37 that narrows the opening of the convex portion 34e at the second end 36e, direct contact of the flow of steam with the liquid level of the working medium 20 in the through hole 33 can be further prevented. I can do it. As a result, the influence of counterflow can be further reduced, so that the maximum heat transport amount of the vapor chamber 1 can be further improved.
 凸部34eの開口を狭める蓋部37は、例えば、第2端部36eにプレス加工を行うことで形成されていてもよい。凸部34eの開口を狭める蓋部37の大きさや形状は、特に限定されず、凸部34eの第2端部36e側での開口を狭めていればよい。凸部34eの開口を狭める蓋部37は、平坦面であることが好ましい。凸部34eの開口を狭める蓋部37は、厚さ方向Zに対して垂直な平坦面であることが好ましい。凸部34eの開口を狭める蓋部37は、一部又は全体が曲面状であってもよい。凸部34eの開口を狭める蓋部37は、表面が凹凸形状を有していてもよい。凸部34eの開口を狭める蓋部37の厚さは、凸部34eの厚さと同じであってもよく、異なっていてもよい。 The lid portion 37 that narrows the opening of the convex portion 34e may be formed, for example, by pressing the second end portion 36e. The size and shape of the lid 37 that narrows the opening of the convex portion 34e are not particularly limited, as long as the opening on the second end 36e side of the convex portion 34e is narrowed. It is preferable that the lid portion 37 that narrows the opening of the convex portion 34e has a flat surface. The lid portion 37 that narrows the opening of the convex portion 34e is preferably a flat surface perpendicular to the thickness direction Z. The lid portion 37 that narrows the opening of the convex portion 34e may have a curved surface in part or in its entirety. The lid portion 37 that narrows the opening of the convex portion 34e may have an uneven surface. The thickness of the lid portion 37 that narrows the opening of the convex portion 34e may be the same as or different from the thickness of the convex portion 34e.
 図16Aは、ウィックの第5変形例を模式的に示す、一部を拡大した断面図である。図16Bは、図16Aに示す断面図において、作動媒体を封入した状態の一例を示した断面図である。 FIG. 16A is a partially enlarged cross-sectional view schematically showing a fifth modification of the wick. FIG. 16B is a cross-sectional view showing an example of a state in which a working medium is enclosed in the cross-sectional view shown in FIG. 16A.
 なお、図16B及び図17から図21に示す断面図においては、ウィックの変形例の説明を簡単にするため、ウィックの縁端の様子は図示していない。図16B及び図17から図21に示す断面図におけるウィックの縁端の形状は、図16Aに示す断面図におけるウィック30Eの縁端の形状と同じであってもよい。 Note that in the cross-sectional views shown in FIGS. 16B and 17 to 21, the edges of the wick are not shown in order to simplify the explanation of the modified examples of the wick. The shape of the edge of the wick in the cross-sectional views shown in FIGS. 16B and 17 to 21 may be the same as the shape of the edge of the wick 30E in the cross-sectional view shown in FIG. 16A.
 図16Aに示すウィック30Eでは、貫通孔33の周縁には、第1内面11aに近接する方向に凸部34fが設けられている。 In the wick 30E shown in FIG. 16A, a protrusion 34f is provided on the periphery of the through hole 33 in a direction approaching the first inner surface 11a.
 凸部34fは、第1内面11a側の第1端部35f及び第2内面12a側の第2端部36fを有する。 The convex portion 34f has a first end 35f on the first inner surface 11a side and a second end 36f on the second inner surface 12a side.
 以下、貫通孔33の周縁において、第1内面11aに近接する方向に凸部34fが設けられていることによる効果を説明する。図16Bにおいて、作動媒体20は、凸部34fの内壁によって囲まれる面と接することによって、毛細管力により貫通孔33内に吸い上げられている。このため、ウィック30Eを厚さ方向Zから見て貫通孔33が存在しない部分では、作動媒体20の液面は、有孔体32よりも第1内面11a側に位置しているにも関わらず、貫通孔33内には作動媒体20が吸い上げられている。このようにして、図16Bに示すように作動媒体20の液量が少ない場合においても、貫通孔33内に作動媒体20を吸い上げることができる。それゆえ、作動媒体20の液量が少ない場合であっても、ウィック30Eにおいて、毛細管力が生じにくくなることを防ぐことができる。以上のことから、ベーパーチャンバー1において、作動媒体20の液量が少ない場合でも、均熱性能及び熱輸送性能の低下を抑制することが可能である。 Hereinafter, the effect of the protrusion 34f being provided at the periphery of the through hole 33 in a direction approaching the first inner surface 11a will be explained. In FIG. 16B, the working medium 20 is sucked up into the through hole 33 by capillary force by contacting the surface surrounded by the inner wall of the convex portion 34f. Therefore, even though the liquid level of the working medium 20 is located closer to the first inner surface 11a than the perforated body 32 in the portion where the through hole 33 does not exist when the wick 30E is viewed from the thickness direction Z. The working medium 20 is sucked up into the through hole 33 . In this way, even when the amount of the working medium 20 is small as shown in FIG. 16B, the working medium 20 can be sucked up into the through hole 33. Therefore, even if the amount of the working medium 20 is small, it is possible to prevent capillary force from occurring in the wick 30E. From the above, in the vapor chamber 1, even when the amount of the working medium 20 is small, it is possible to suppress the deterioration of the heat soaking performance and the heat transport performance.
 貫通孔33の周縁に、第1内面11aに近接する方向に凸部34fが設けられていると、作動媒体20の液量が少ない場合でも、均熱性能及び熱輸送性能の低下を抑制することが可能であるため、例えば、製造工程における作動媒体20の注液量の設計値の変更、製造工程における作動媒体20の注液量のばらつき及び使用時における作動媒体20の液量の変動等が均熱性能又は熱輸送性能に与える影響が少ない。つまり、貫通孔33の周縁に、第1内面11aに近接する方向に凸部34fが設けられていると、ベーパーチャンバー1における作動媒体20の液量に対するロバスト性が向上するといえる。 When the convex portion 34f is provided on the periphery of the through hole 33 in a direction close to the first inner surface 11a, even when the amount of the working medium 20 is small, deterioration in heat soaking performance and heat transport performance can be suppressed. For example, changes in the design value of the amount of the working medium 20 injected in the manufacturing process, variations in the amount of the working medium 20 injected in the manufacturing process, fluctuations in the amount of the working medium 20 during use, etc. There is little effect on soaking performance or heat transport performance. In other words, if the convex portion 34f is provided on the periphery of the through hole 33 in a direction approaching the first inner surface 11a, it can be said that the robustness against the amount of the working medium 20 in the vapor chamber 1 is improved.
 凸部34fは、貫通孔33の周縁全体に設けられていることが好ましい。凸部34fは、毛細管力により、作動媒体20を吸い上げることができる形状である限りは、貫通孔33の周縁の一部にのみ設けられていてもよい。 It is preferable that the convex portion 34f is provided on the entire periphery of the through hole 33. The convex portion 34f may be provided only on a part of the periphery of the through hole 33 as long as the convex portion 34f has a shape that allows the working medium 20 to be sucked up by capillary force.
 凸部34fは、有孔体32におけるすべての貫通孔33の周縁に設けられていてもよく、有孔体32における一部の貫通孔33の周縁にのみ設けられていてもよい。凸部34fが、有孔体32における一部の貫通孔33の周縁にのみ設けられている場合、少なくとも熱源HSの直上に位置する貫通孔33の周縁には凸部34fが設けられていることが好ましい。熱源HSの直上に位置する貫通孔33に凸部34fが設けられている場合、作動媒体20の液量が少ない場合でも、蒸発部において作動媒体20の蒸発が起こりにくくなることを抑制できる。熱源HSの直上に位置する貫通孔33の周縁にのみ、凸部34fが設けられていてもよい。 The convex portion 34f may be provided on the periphery of all the through holes 33 in the perforated body 32, or may be provided only on the periphery of some of the through holes 33 in the perforated body 32. When the convex portion 34f is provided only on the periphery of some of the through holes 33 in the perforated body 32, the convex portion 34f is provided at least on the periphery of the through hole 33 located directly above the heat source HS. is preferred. When the convex portion 34f is provided in the through hole 33 located directly above the heat source HS, even if the amount of the working medium 20 is small, it can be suppressed that the working medium 20 is less likely to evaporate in the evaporation section. The protrusion 34f may be provided only on the periphery of the through hole 33 located directly above the heat source HS.
 貫通孔33及び凸部34fは、例えば、有孔体32を構成する金属等に対して、プレス加工による打ち抜きを行うことによって作製することができる。プレス加工による打ち抜きにおいて、打ち抜きの深さ等を適宜調整することによって、凸部の形状等を調節することができる。なお、打ち抜きの深さとは、例えば、パンチによって打ち抜きを行う際に、打ち抜き方向に、どの程度までパンチを押し込むかを意味する。 The through hole 33 and the convex portion 34f can be produced, for example, by punching the metal or the like that constitutes the perforated body 32 by press working. In punching by press working, the shape of the convex portion, etc. can be adjusted by appropriately adjusting the punching depth, etc. Note that the punching depth means, for example, how far the punch is pushed in the punching direction when punching is performed.
 凸部34fの寸法は特に限定されない。例えば、凸部34fの高さが、貫通孔33の径よりも大きくてもよく、凸部34fの高さが、貫通孔33の径よりも小さくてもよく、凸部34fの高さが、貫通孔33の径と同じであってもよい。なお、図16Aに示す凸部34fにおいて、凸部34fの高さは、第1端部35f及び第2端部36fの間の厚さ方向Zにおける距離を意味する。 The dimensions of the convex portion 34f are not particularly limited. For example, the height of the protrusion 34f may be larger than the diameter of the through hole 33, the height of the protrusion 34f may be smaller than the diameter of the through hole 33, and the height of the protrusion 34f may be It may be the same as the diameter of the through hole 33. In addition, in the convex part 34f shown in FIG. 16A, the height of the convex part 34f means the distance in the thickness direction Z between the 1st end part 35f and the 2nd end part 36f.
 図16Aに示す例では、ウィック30Eの縁端の曲げ高さ(図16A中、Bで示す距離)は、凸部34fの高さよりも大きい。ウィック30Eの縁端の曲げ高さ(図16A中、Bで示す距離)は、凸部34fの高さよりも小さくてもよく、凸部34fの高さと同じであってもよい。 In the example shown in FIG. 16A, the bending height of the edge of the wick 30E (distance indicated by B in FIG. 16A) is greater than the height of the convex portion 34f. The bending height of the edge of the wick 30E (the distance indicated by B in FIG. 16A) may be smaller than the height of the protrusion 34f, or may be the same as the height of the protrusion 34f.
 なお、貫通孔33の周縁において、第1内面11aに近接する方向に凸部34fが設けられている場合、有孔体32の厚さは、凸部34fが設けられていない部分での有孔体32の厚さを意味する。 Note that when a protrusion 34f is provided at the peripheral edge of the through hole 33 in a direction approaching the first inner surface 11a, the thickness of the perforated body 32 is equal to the thickness of the perforated body 32 at the portion where the protrusion 34f is not provided. It means the thickness of the body 32.
 図16Aに示すウィック30Eは、プレス加工などによって金属箔の一部を曲げて凹ませることにより、凹んだ部分に支持体31が形成されている。ウィック30Eは、支持体31を形成するプレス加工と、貫通孔33及び凸部34fを形成するプレス加工と、が一括で行われることにより形成されていてもよい。 In the wick 30E shown in FIG. 16A, a support 31 is formed in the recessed part by bending and recessing a part of the metal foil by pressing or the like. The wick 30E may be formed by simultaneously performing the press work for forming the support body 31 and the press work for forming the through hole 33 and the convex portion 34f.
 図16Aに示すウィック30Eは、図7に示すウィック30A、図8に示すウィック30B及び図9に示すウィック30Cのように支持体31が凹んでいなくてもよい In the wick 30E shown in FIG. 16A, the support 31 does not have to be recessed like the wick 30A shown in FIG. 7, the wick 30B shown in FIG. 8, and the wick 30C shown in FIG.
 図17は、図16Aに示す凸部の第1変形例を模式的に示す、一部を拡大した断面図である。 FIG. 17 is a partially enlarged cross-sectional view schematically showing a first modification of the convex portion shown in FIG. 16A.
 図17に示す凸部34gは、第1内面11a側の第1端部35g及び第2内面12a側の第2端部36gを有する。凸部34gは、厚さ方向Zから見て、第1端部35gの内壁が囲う領域の断面積が、第2端部36gの内壁が囲う領域の断面積よりも小さい。厚さ方向Zから見て、第1端部35gの内壁が囲う領域の断面積が、第2端部36gの内壁が囲う領域の断面積よりも小さいと、第1端部35gの内壁に囲まれる領域において生じる毛細管力を向上することができる。それゆえ、ウィック30Eの毛細管力を向上することができるため、ベーパーチャンバー1の最大熱輸送量を向上することができる。 The convex portion 34g shown in FIG. 17 has a first end 35g on the first inner surface 11a side and a second end 36g on the second inner surface 12a side. In the convex portion 34g, when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the first end portion 35g is smaller than the cross-sectional area of the region surrounded by the inner wall of the second end portion 36g. When the cross-sectional area of the region surrounded by the inner wall of the first end 35g is smaller than the cross-sectional area of the region surrounded by the inner wall of the second end 36g when viewed from the thickness direction Z, the inner wall of the first end 35g surrounds the region. can improve the capillary force generated in the area where the Therefore, since the capillary force of the wick 30E can be improved, the maximum heat transport amount of the vapor chamber 1 can be improved.
 凸部34gにおいて、厚さ方向Zから見て、第1端部35gの内壁は、第2端部36gの内壁よりも内側に位置していてもよい。 In the convex portion 34g, the inner wall of the first end portion 35g may be located inside the inner wall of the second end portion 36g when viewed from the thickness direction Z.
 凸部34gは、厚さ方向Zに沿う断面において、第1内面11aに近接する方向に向かって、凸部34gの外壁間の距離が狭くなるテーパー形状を有する。 The convex portion 34g has a tapered shape in a cross section along the thickness direction Z such that the distance between the outer walls of the convex portion 34g becomes narrower toward the first inner surface 11a.
 凸部34gは、厚さ方向Zに沿う断面において、第1内面11a側(図17では下側)に凸な形状である。いいかえれば、凸部34gは、厚さ方向Zに沿う断面において、第1端部35g及び第2端部36gを結ぶ線分に対して第1内面11a側(図17では下側)にカーブする形状である。 The convex portion 34g has a shape that is convex toward the first inner surface 11a side (lower side in FIG. 17) in the cross section along the thickness direction Z. In other words, the convex portion 34g curves toward the first inner surface 11a side (downward in FIG. 17) with respect to the line segment connecting the first end portion 35g and the second end portion 36g in the cross section along the thickness direction Z. It is the shape.
 図18は、図16Aに示す凸部の第2変形例を模式的に示す、一部を拡大した断面図である。 FIG. 18 is a partially enlarged sectional view schematically showing a second modification of the convex portion shown in FIG. 16A.
 図18に示す凸部34hは、第1内面11a側の第1端部35h及び第2内面12a側の第2端部36hを有する。凸部34hは、厚さ方向Zに沿う断面において、第1内面11aに近接する方向に向かって、凸部34hの外壁間の距離が狭くなるテーパー形状を有する。凸部34hは、厚さ方向Zに沿う断面において、第2内面12a側(図18では上側)に凸な形状である。いいかえれば、凸部34hは、厚さ方向Zに沿う断面において、第1端部35h及び第2端部36hを結ぶ線分に対して第2内面12a側(図18では上側)にカーブする形状である。 The convex portion 34h shown in FIG. 18 has a first end 35h on the first inner surface 11a side and a second end 36h on the second inner surface 12a side. The convex portion 34h has a tapered shape in a cross section along the thickness direction Z such that the distance between the outer walls of the convex portion 34h becomes narrower toward the first inner surface 11a. The convex portion 34h has a convex shape toward the second inner surface 12a side (upper side in FIG. 18) in a cross section along the thickness direction Z. In other words, the convex portion 34h has a shape that curves toward the second inner surface 12a side (upper side in FIG. 18) with respect to the line segment connecting the first end portion 35h and the second end portion 36h in the cross section along the thickness direction Z. It is.
 図19は、図16Aに示す凸部の第3変形例を模式的に示す、一部を拡大した断面図である。 FIG. 19 is a partially enlarged cross-sectional view schematically showing a third modification of the convex portion shown in FIG. 16A.
 図19に示す凸部34iは、第1内面11a側の第1端部35i及び第2内面12a側の第2端部36iを有する。凸部34iは、厚さ方向Zから見て、第1端部35iの内壁が囲う領域の断面積が、第2端部36iの内壁が囲う領域の断面積よりも小さい。凸部34iは、第1端部35iにおいて、凸部34iの開口を狭める蓋部37を備えている。凸部34iでは、厚さ方向Zから見たとき、第1端部35iにおいて蓋部37が存在しない凸部34hと比べて、第1端部35iの内壁が囲う領域の断面積が狭くなっている。 The convex portion 34i shown in FIG. 19 has a first end 35i on the first inner surface 11a side and a second end 36i on the second inner surface 12a side. In the convex portion 34i, when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the first end portion 35i is smaller than the cross-sectional area of the region surrounded by the inner wall of the second end portion 36i. The convex portion 34i includes a lid portion 37 that narrows the opening of the convex portion 34i at the first end 35i. In the convex portion 34i, when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the first end 35i is narrower than that of the convex portion 34h in which the lid portion 37 does not exist at the first end 35i. There is.
 凸部34iの開口を狭める蓋部37は、例えば、第1端部35iにプレス加工を行うことで形成されていてもよい。凸部34iの開口を狭める蓋部37の大きさや形状は、特に限定されず、凸部34iの第1端部35i側での開口を狭めていればよい。凸部34iの開口を狭める蓋部37は、平坦面であることが好ましい。凸部34iの開口を狭める蓋部37は、厚さ方向Zに対して垂直な平坦面であることが好ましい。凸部34iの開口を狭める蓋部37は、一部又は全体が曲面状であってもよい。凸部34iの開口を狭める蓋部37は、表面が凹凸形状を有していてもよい。凸部34iの開口を狭める蓋部37の厚さは、凸部34iの厚さと同じであってもよく、異なっていてもよい。 The lid portion 37 that narrows the opening of the convex portion 34i may be formed by, for example, pressing the first end portion 35i. The size and shape of the lid 37 that narrows the opening of the convex portion 34i are not particularly limited, as long as the opening on the first end 35i side of the convex portion 34i is narrowed. It is preferable that the lid portion 37 that narrows the opening of the convex portion 34i has a flat surface. The lid portion 37 that narrows the opening of the convex portion 34i is preferably a flat surface perpendicular to the thickness direction Z. The lid portion 37 that narrows the opening of the convex portion 34i may have a curved shape in part or in its entirety. The lid portion 37 that narrows the opening of the convex portion 34i may have an uneven surface. The thickness of the lid portion 37 that narrows the opening of the convex portion 34i may be the same as or different from the thickness of the convex portion 34i.
 図20は、図16Aに示す凸部の第4変形例を模式的に示す、一部を拡大した断面図である。 FIG. 20 is a partially enlarged sectional view schematically showing a fourth modification of the convex portion shown in FIG. 16A.
 図20に示す凸部34jは、第1内面11a側の第1端部35j及び第2内面12a側の第2端部36jを有する。凸部34jは、厚さ方向Zから見て、第1端部35jの内壁が囲う領域の断面積が、第2端部36jの内壁が囲う領域の断面積よりも大きい。厚さ方向Zから見て、第1端部35jの内壁が囲う領域の断面積が、第2端部36jの内壁が囲う領域の断面積よりも大きいと、貫通孔33内への作動媒体20の吸い上げ量を増加することができる。貫通孔33内への作動媒体20の吸い上げ量が多いと、ベーパーチャンバー1内の作動媒体20が減少していく場合に、貫通孔33内に作動媒体20が全く吸い上げられなくなるまでの作動媒体20の変動の許容値が大きくなる。そのため、ベーパーチャンバー1における作動媒体20の液量に対するロバスト性が向上する。 The convex portion 34j shown in FIG. 20 has a first end 35j on the first inner surface 11a side and a second end 36j on the second inner surface 12a side. In the convex portion 34j, when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the first end portion 35j is larger than the cross-sectional area of the region surrounded by the inner wall of the second end portion 36j. When the cross-sectional area of the region surrounded by the inner wall of the first end 35j is larger than the cross-sectional area of the region surrounded by the inner wall of the second end 36j when viewed from the thickness direction Z, the working medium 20 flows into the through hole 33. The amount of suction can be increased. When the amount of working medium 20 sucked into the through hole 33 is large, when the working medium 20 in the vapor chamber 1 decreases, the amount of working medium 20 until no working medium 20 is sucked up into the through hole 33 will increase. The permissible value of fluctuation becomes larger. Therefore, the robustness against the amount of working medium 20 in vapor chamber 1 is improved.
 凸部34jにおいて、厚さ方向Zから見て、第1端部35jの内壁は、第2端部36jの内壁よりも外側に位置していてもよい。 In the convex portion 34j, the inner wall of the first end 35j may be located outside the inner wall of the second end 36j when viewed from the thickness direction Z.
 図21は、図16Aに示す凸部の第5変形例を模式的に示す、一部を拡大した断面図である。 FIG. 21 is a partially enlarged sectional view schematically showing a fifth modification of the convex portion shown in FIG. 16A.
 図21に示す凸部34kは、第1内面11a側の第1端部35k及び第2内面12a側の第2端部36kを有する。凸部34kは、厚さ方向Zから見て、第1端部35kの内壁が囲う領域の断面積が、第2端部36kの内壁が囲う領域の断面積よりも大きい。凸部34kは、第1端部35kにおいて、凸部34kの開口を狭める蓋部37を備えている。凸部34kでは、厚さ方向Zから見たとき、第1端部35kにおいて蓋部37が存在しない凸部34jと比べて、第1端部35kの内壁が囲う領域の断面積が狭くなっている。 The convex portion 34k shown in FIG. 21 has a first end 35k on the first inner surface 11a side and a second end 36k on the second inner surface 12a side. In the convex portion 34k, when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the first end portion 35k is larger than the cross-sectional area of the region surrounded by the inner wall of the second end portion 36k. The convex portion 34k includes a lid portion 37 that narrows the opening of the convex portion 34k at the first end 35k. In the convex portion 34k, when viewed from the thickness direction Z, the cross-sectional area of the region surrounded by the inner wall of the first end portion 35k is narrower than that of the convex portion 34j in which the lid portion 37 does not exist at the first end portion 35k. There is.
 凸部34kの開口を狭める蓋部37は、例えば、第1端部35kにプレス加工を行うことで形成されていてもよい。凸部34kの開口を狭める蓋部37の大きさや形状は、特に限定されず、凸部34kの第1端部35k側での開口を狭めていればよい。凸部34kの開口を狭める蓋部37は、平坦面であることが好ましい。凸部34kの開口を狭める蓋部37は、厚さ方向Zに対して垂直な平坦面であることが好ましい。凸部34kの開口を狭める蓋部37は、一部又は全体が曲面状であってもよい。凸部34kの開口を狭める蓋部37は、表面が凹凸形状を有していてもよい。凸部34kの開口を狭める蓋部37の厚さは、凸部34kの厚さと同じであってもよく、異なっていてもよい。 The lid portion 37 that narrows the opening of the convex portion 34k may be formed by, for example, performing press working on the first end portion 35k. The size and shape of the lid portion 37 that narrows the opening of the convex portion 34k are not particularly limited, as long as the opening on the first end 35k side of the convex portion 34k is narrowed. It is preferable that the lid portion 37 that narrows the opening of the convex portion 34k has a flat surface. The lid portion 37 that narrows the opening of the convex portion 34k is preferably a flat surface perpendicular to the thickness direction Z. The lid portion 37 that narrows the opening of the convex portion 34k may have a curved surface in part or in its entirety. The lid portion 37 that narrows the opening of the convex portion 34k may have an uneven surface. The thickness of the lid portion 37 that narrows the opening of the convex portion 34k may be the same as or different from the thickness of the convex portion 34k.
 図22は、ウィックの第6変形例を模式的に示す平面図である。なお、図22は、支持体側から見たウィックの平面図である。 FIG. 22 is a plan view schematically showing a sixth modification of the wick. Note that FIG. 22 is a plan view of the wick viewed from the support body side.
 図22に示すウィック30Fでは、支持体31は、複数のレール状部材を含む。レール状部材の間に液相の作動媒体20を保持することにより、ベーパーチャンバー1の熱輸送性能を向上させることができる。ここで、「レール状」とは、底面の長辺の長さの比が、底面の短辺の長さに対して5倍以上である形状を意味する。 In the wick 30F shown in FIG. 22, the support body 31 includes a plurality of rail-shaped members. By holding the liquid-phase working medium 20 between the rail-like members, the heat transport performance of the vapor chamber 1 can be improved. Here, "rail shape" means a shape in which the ratio of the length of the long side of the bottom surface is 5 times or more to the length of the short side of the bottom surface.
 レール状部材の延伸方向に垂直な断面形状は、特に限定されないが、例えば、四角形などの多角形、半円形、半楕円形、これらを組み合わせた形状などが挙げられる。 The cross-sectional shape perpendicular to the extending direction of the rail-like member is not particularly limited, and examples thereof include polygons such as quadrangles, semicircles, semiellipses, and combinations thereof.
 レール状部材は、周囲よりも相対的に高さが高ければよい。したがって、レール状部材は、第1内面11aから突出した部分に加え、第1内面11aに形成された溝により相対的に高さが高くなっている部分も含む。 It is sufficient that the rail-shaped member is relatively higher in height than its surroundings. Therefore, in addition to the portion protruding from the first inner surface 11a, the rail-like member also includes a portion having a relatively high height due to the groove formed in the first inner surface 11a.
 また、ウィック30Fは、図22に開示される形状に限定されず、内部空間の全体に配置されず部分的に配置して利用されてもよい。例えば、内部空間に外周に沿ってレール状の支持体31を構成し、その上に外周に沿った形状の有孔体32を配置してもよい。 Furthermore, the wick 30F is not limited to the shape shown in FIG. 22, and may be used by being partially disposed instead of being disposed throughout the interior space. For example, a rail-shaped support 31 may be configured in the internal space along the outer periphery, and a perforated body 32 shaped along the outer periphery may be arranged thereon.
 図23は、図1に示す熱拡散デバイスを厚さ方向から見たときの、ウィックの配置を模式的に示す平面図である。 FIG. 23 is a plan view schematically showing the arrangement of the wicks when the heat diffusion device shown in FIG. 1 is viewed from the thickness direction.
 図23に示すベーパーチャンバー1では、厚さ方向Zから見たときに、ウィック30が筐体10の内部空間の全体にわたって配置されている。 In the vapor chamber 1 shown in FIG. 23, the wick 30 is arranged throughout the interior space of the casing 10 when viewed from the thickness direction Z.
 図23に示すベーパーチャンバー1では、厚さ方向Zから見て、蒸発部EP(evaporation portion)は筐体10の内縁に重なる。図23に示すベーパーチャンバー1では、厚さ方向Zから見て、蒸発部EPはウィック30と重なる。 In the vapor chamber 1 shown in FIG. 23, the evaporation portion EP (evaporation portion) overlaps the inner edge of the housing 10 when viewed from the thickness direction Z. In the vapor chamber 1 shown in FIG. 23, the evaporation part EP overlaps the wick 30 when viewed from the thickness direction Z.
 図23では、ウィック30の縁端と筐体10の内縁とは接していない。ウィック30の縁端と筐体10の内縁とは接していてもよい。 In FIG. 23, the edge of the wick 30 and the inner edge of the casing 10 are not in contact. The edge of the wick 30 and the inner edge of the housing 10 may be in contact with each other.
 図24は、本発明の熱拡散デバイスの第1変形例を厚さ方向から見たときの、ウィックの配置を模式的に示す平面図である。 FIG. 24 is a plan view schematically showing the arrangement of the wicks when the first modification of the heat diffusion device of the present invention is viewed from the thickness direction.
 図24に示すベーパーチャンバー(熱拡散デバイス)1Aでは、厚さ方向Zから見たときに、ウィック30は、筐体10の内部空間の全体にわたって配置され、内部空間は、厚さ方向Zから見たときにウィック30が配置されている領域と、ウィック30が配置されていない領域を有し、ウィック30が配置されていない領域は、厚さ方向Zから見たときに線状に延びている。 In the vapor chamber (thermal diffusion device) 1A shown in FIG. 24, the wick 30 is disposed over the entire internal space of the casing 10 when viewed from the thickness direction Z, and the internal space is It has a region where the wick 30 is arranged and a region where the wick 30 is not arranged, and the region where the wick 30 is not arranged extends linearly when viewed from the thickness direction Z. .
 ベーパーチャンバー1Aにおいて、ウィック30が配置されていない領域は、厚さ方向Zから見たときに直線状に延びていてもよく、曲線状に延びていてもよい。 In the vapor chamber 1A, the region where the wick 30 is not arranged may extend linearly or curvedly when viewed from the thickness direction Z.
 ベーパーチャンバー1Aでは、ウィック30の縁端のうち、筐体10の内縁側の縁端が、第1内面11a側に向かって近接するように曲がっている。ウィック30の縁端のうち、ウィック30が配置されていない領域側の縁端は、第1内面11a側に向かって近接するように曲がっていてもよく、第1内面11a側に向かって近接するように曲がっていなくてもよい。 In the vapor chamber 1A, among the edges of the wick 30, the edge on the inner edge side of the housing 10 is bent toward the first inner surface 11a side. Among the edges of the wick 30, the edge on the side of the area where the wick 30 is not arranged may be curved so as to approach the first inner surface 11a side, and may approach the edge toward the first inner surface 11a side. It doesn't have to be bent like this.
 図24では、ウィック30の縁端と筐体10の内縁とは接していない。ウィック30の縁端と筐体10の内縁とは接していてもよい。 In FIG. 24, the edge of the wick 30 and the inner edge of the casing 10 are not in contact. The edge of the wick 30 and the inner edge of the housing 10 may be in contact with each other.
 図24に示すベーパーチャンバー1Aでは、厚さ方向Zから見て、蒸発部EPは筐体10の内縁に重なる。図24に示すベーパーチャンバー1Aにおいて、ウィック30が配置されていない領域は、厚さ方向Zから見たときに蒸発部EPまで延びていてもよく、蒸発部EPまで延びていなくてもよい。 In the vapor chamber 1A shown in FIG. 24, the evaporation part EP overlaps the inner edge of the casing 10 when viewed from the thickness direction Z. In the vapor chamber 1A shown in FIG. 24, the area where the wick 30 is not arranged may extend to the evaporation part EP when viewed from the thickness direction Z, or may not extend to the evaporation part EP.
 図25は、本発明の熱拡散デバイスの第2変形例を厚さ方向から見たときの、ウィックの配置を模式的に示す平面図である。 FIG. 25 is a plan view schematically showing the arrangement of the wick when the second modification of the heat diffusion device of the present invention is viewed from the thickness direction.
 図25に示すベーパーチャンバー(熱拡散デバイス)1Bでは、厚さ方向Zから見たときに、ウィック30は、筐体10の内部空間の外周に沿って配置されている。 In the vapor chamber (thermal diffusion device) 1B shown in FIG. 25, the wick 30 is arranged along the outer periphery of the internal space of the casing 10 when viewed from the thickness direction Z.
 ベーパーチャンバー1Bでは、ウィック30の縁端のうち、筐体10の内縁側の縁端が、第1内面11a側に向かって近接するように曲がっている。ウィック30の縁端のうち、ウィック30が中空となっている領域側の縁端は、第1内面11a側に向かって近接するように曲がっていてもよく、第1内面11a側に向かって近接するように曲がっていなくてもよい。 In the vapor chamber 1B, among the edges of the wick 30, the edge on the inner edge side of the housing 10 is bent toward the first inner surface 11a side. Among the edges of the wick 30, the edge on the side where the wick 30 is hollow may be bent so as to approach the first inner surface 11a side, and may be bent toward the first inner surface 11a side. It doesn't have to be bent like that.
 図25に示すベーパーチャンバー1Bでは、厚さ方向Zから見て、蒸発部EPは筐体10の内縁に重なる。図25に示すベーパーチャンバー1Bでは、厚さ方向Zから見て、蒸発部EPはウィック30と重なる。 In the vapor chamber 1B shown in FIG. 25, the evaporation part EP overlaps the inner edge of the casing 10 when viewed from the thickness direction Z. In the vapor chamber 1B shown in FIG. 25, the evaporation part EP overlaps the wick 30 when viewed from the thickness direction Z.
 図25では、ウィック30の縁端と筐体10の内縁とは接していない。ウィック30の縁端と筐体10の内縁とは接していてもよい。 In FIG. 25, the edge of the wick 30 and the inner edge of the casing 10 are not in contact. The edge of the wick 30 and the inner edge of the housing 10 may be in contact with each other.
 図26は、熱拡散デバイスの第3変形例を模式的に示す断面図である。 FIG. 26 is a cross-sectional view schematically showing a third modification of the heat diffusion device.
 図26に示すベーパーチャンバー(熱拡散デバイス)1Cでは、支持体31は、筐体10の第1シート11と一体的に構成されている。ベーパーチャンバー1Cにおいて、第1シート11及び支持体31は、例えば、エッチング技術、多層塗りによる印刷技術、その他の多層技術などにより作製することができる。ベーパーチャンバー1Cにおいて、有孔体32は、支持体31及び筐体10の第1シート11と同じ材料から構成されてもよく、異なる材料から構成されていてもよい。有孔体32は、支持体31及び筐体10の第1シート11と一体的に構成されていてもよい。 In the vapor chamber (thermal diffusion device) 1C shown in FIG. 26, the support body 31 is configured integrally with the first sheet 11 of the casing 10. In the vapor chamber 1C, the first sheet 11 and the support body 31 can be produced by, for example, an etching technique, a printing technique using multilayer coating, or another multilayer technique. In the vapor chamber 1C, the perforated body 32 may be made of the same material as the support body 31 and the first sheet 11 of the housing 10, or may be made of a different material. The perforated body 32 may be configured integrally with the support body 31 and the first sheet 11 of the housing 10.
 図27は、熱拡散デバイスの第4変形例を模式的に示す断面図である。 FIG. 27 is a cross-sectional view schematically showing a fourth modification of the heat diffusion device.
 図27に示すベーパーチャンバー(熱拡散デバイス)1Dでは、例えば、プレス加工などによって筐体10の第1内面11aの一部を曲げて凹ませることにより、凹んだ部分に支持体31が形成されている。 In the vapor chamber (thermal diffusion device) 1D shown in FIG. 27, by bending and recessing a part of the first inner surface 11a of the casing 10 by, for example, pressing, a support body 31 is formed in the recessed part. There is.
 本発明の熱拡散デバイスは、上記実施形態に限定されるものではなく、熱拡散デバイスの構成、製造条件等に関し、本発明の範囲内において、種々の応用、変形を加えることが可能である。 The heat diffusion device of the present invention is not limited to the above embodiments, and various applications and modifications can be made within the scope of the present invention regarding the configuration, manufacturing conditions, etc. of the heat diffusion device.
 本発明の熱拡散デバイスにおいて、筐体は、1個の蒸発部を有してもよく、複数の蒸発部を有してもよい。すなわち、筐体の外面には、1個の熱源が配置されてもよく、複数の熱源が配置されてもよい。蒸発部及び熱源の数は特に限定されない。 In the heat diffusion device of the present invention, the casing may have one evaporation section or a plurality of evaporation sections. That is, one heat source or a plurality of heat sources may be arranged on the outer surface of the casing. The number of evaporation sections and heat sources is not particularly limited.
 本発明の熱拡散デバイスにおいて、筐体が第1シート及び第2シートから構成される場合、第1シートと第2シートとは、端部が一致するように重なっていてもよいし、端部がずれて重なっていてもよい。 In the heat diffusion device of the present invention, when the casing is composed of a first sheet and a second sheet, the first sheet and the second sheet may overlap so that their edges coincide, or may be shifted and overlap.
 本発明の熱拡散デバイスにおいて、筐体が第1シート及び第2シートから構成される場合、第1シートを構成する材料と、第2シートを構成する材料とは異なっていてもよい。例えば、強度の高い材料を第1シートに用いることにより、筐体にかかる応力を分散させることができる。また、両者の材料を異なるものとすることにより、一方のシートで一の機能を得、他方のシートで他の機能を得ることができる。上記の機能としては、特に限定されないが、例えば、熱伝導機能、電磁波シールド機能等が挙げられる。 In the heat diffusion device of the present invention, when the casing is composed of a first sheet and a second sheet, the material constituting the first sheet and the material constituting the second sheet may be different. For example, by using a material with high strength for the first sheet, stress applied to the housing can be dispersed. Moreover, by using different materials for both sheets, one function can be obtained with one sheet, and another function can be obtained with the other sheet. The above-mentioned functions are not particularly limited, but include, for example, a heat conduction function, an electromagnetic wave shielding function, and the like.
 本発明の熱拡散デバイスは、放熱を目的として電子機器に搭載され得る。したがって、本発明の熱拡散デバイスを備える電子機器も本発明の1つである。本発明の電子機器としては、例えばスマートフォン、タブレット端末、ノートパソコン、ゲーム機器、ウェアラブルデバイス等が挙げられる。本発明の熱拡散デバイスは上記のとおり、外部動力を必要とせず自立的に作動し、作動媒体の蒸発潜熱及び凝縮潜熱を利用して、二次元的に高速で熱を拡散することができる。そのため、本発明の熱拡散デバイスを備える電子機器により、電子機器内部の限られたスペースにおいて、放熱を効果的に実現することができる。 The heat diffusion device of the present invention can be installed in electronic equipment for the purpose of heat radiation. Therefore, electronic equipment including the heat diffusion device of the present invention is also one of the present inventions. Examples of the electronic device of the present invention include a smartphone, a tablet terminal, a notebook computer, a game device, a wearable device, and the like. As described above, the heat diffusion device of the present invention operates independently without requiring external power, and can diffuse heat two-dimensionally at high speed by utilizing the latent heat of vaporization and latent heat of condensation of the working medium. Therefore, an electronic device including the heat diffusion device of the present invention can effectively dissipate heat in a limited space inside the electronic device.
 本明細書には、以下の内容が開示されている。 The following contents are disclosed in this specification.
<1>
 厚さ方向に対向する第1内面及び第2内面を有する筐体と、
 上記筐体の内部空間に封入される作動媒体と、
 上記筐体の上記内部空間に配置されるウィックと、を備え、
 上記ウィックは、上記第1内面に接する支持体と、上記支持体に接する有孔体と、を含み、
 上記ウィックの縁端は、上記第1内面側に向かって近接するように曲がっている熱拡散デバイス。
<1>
a casing having a first inner surface and a second inner surface facing each other in the thickness direction;
A working medium sealed in the internal space of the casing;
a wick disposed in the internal space of the casing;
The wick includes a support in contact with the first inner surface and a perforated body in contact with the support,
In the heat diffusion device, an edge of the wick is bent toward the first inner surface.
<2>
 上記厚さ方向に沿った断面において、上記ウィックの縁端と上記筐体の内縁との間には、上記厚さ方向に垂直な方向に隙間が存在する、<1>に記載の熱拡散デバイス。
<2>
The heat diffusion device according to <1>, wherein in a cross section along the thickness direction, a gap exists in a direction perpendicular to the thickness direction between the edge of the wick and the inner edge of the casing. .
<3>
 上記筐体は、外縁部が接合され、上記厚さ方向に対向する第1シート及び第2シートから構成され、
 上記第1シートと上記第2シートとの接合部は、上記厚さ方向において、上記ウィックの縁端と異なる位置にある、<1>又は<2>に記載の熱拡散デバイス。
<3>
The casing is composed of a first sheet and a second sheet that are joined at their outer edges and that face each other in the thickness direction,
The heat diffusion device according to <1> or <2>, wherein the joint between the first sheet and the second sheet is located at a different position from the edge of the wick in the thickness direction.
<4>
 上記筐体の上記第2内面に接するように上記内部空間に配置される支柱をさらに備え、
 上記支柱の高さは、上記支持体の高さよりも大きい、<1>~<3>のいずれか1つに記載の熱拡散デバイス。
<4>
further comprising a post disposed in the internal space so as to be in contact with the second inner surface of the casing,
The heat diffusion device according to any one of <1> to <3>, wherein the height of the support column is greater than the height of the support body.
<5>
 上記支柱の高さ方向に垂直な断面の円相当径は、上記支持体の高さ方向に垂直な断面の円相当径よりも大きい、<4>に記載の熱拡散デバイス。
<5>
The heat diffusion device according to <4>, wherein the equivalent circle diameter of the cross section perpendicular to the height direction of the support is larger than the equivalent circle diameter of the cross section perpendicular to the height direction of the support.
<6>
 互いに隣接する上記支柱同士の中心間距離は、互いに隣接する上記支持体同士の中心間距離よりも大きい、<4>又は<5>に記載の熱拡散デバイス。
<6>
The heat diffusion device according to <4> or <5>, wherein the distance between the centers of the support columns adjacent to each other is larger than the distance between the centers of the support bodies adjacent to each other.
<7>
 上記有孔体は、上記支持体と同じ材料から構成される、<1>~<6>のいずれか1つに記載の熱拡散デバイス。
<7>
The heat diffusion device according to any one of <1> to <6>, wherein the porous body is made of the same material as the support.
<8>
 上記有孔体及び上記支持体が多孔質体から構成される、<7>に記載の熱拡散デバイス。
<8>
The heat diffusion device according to <7>, wherein the porous body and the support body are composed of porous bodies.
<9>
 上記有孔体は、上記支持体とは異なる材料から構成される、<1>~<6>のいずれか1つに記載の熱拡散デバイス。
<9>
The heat diffusion device according to any one of <1> to <6>, wherein the porous body is made of a different material from the support.
<10>
 上記有孔体が多孔質体から構成される、<9>に記載の熱拡散デバイス。
<10>
The heat diffusion device according to <9>, wherein the porous body is composed of a porous body.
<11>
 上記支持体の厚さが上記有孔体の厚さと同じであるか、又は、上記有孔体の厚さより小さい、<1>~<10>のいずれか1つに記載の熱拡散デバイス。
<11>
The heat diffusion device according to any one of <1> to <10>, wherein the thickness of the support is the same as the thickness of the porous body or smaller than the thickness of the porous body.
<12>
 上記有孔体は上記厚さ方向に貫通する貫通孔を有し、
 上記貫通孔の周縁には、上記第2内面に近接する方向に凸部が設けられている、<1>~<11>のいずれか1つに記載の熱拡散デバイス。
<12>
The porous body has a through hole penetrating in the thickness direction,
The heat diffusion device according to any one of <1> to <11>, wherein a convex portion is provided on a peripheral edge of the through hole in a direction approaching the second inner surface.
<13>
 上記凸部は、上記第1内面側の第1端部及び上記第2内面側の第2端部を有し、
 上記厚さ方向から見て、上記第2端部の内壁が囲う領域の断面積が、上記第1端部の内壁が囲う領域の断面積よりも小さい、<12>に記載の熱拡散デバイス。
<13>
The convex portion has a first end on the first inner surface side and a second end on the second inner surface side,
The heat diffusion device according to <12>, wherein the cross-sectional area of the region surrounded by the inner wall of the second end is smaller than the cross-sectional area of the region surrounded by the inner wall of the first end, when viewed from the thickness direction.
<14>
 上記有孔体は上記厚さ方向に貫通する貫通孔を有し、
 上記貫通孔の周縁には、上記第1内面に近接する方向に凸部が設けられている、<1>~<11>のいずれか1つに記載の熱拡散デバイス。
<14>
The porous body has a through hole penetrating in the thickness direction,
The heat diffusion device according to any one of <1> to <11>, wherein a convex portion is provided on a peripheral edge of the through hole in a direction proximate to the first inner surface.
<15>
 上記凸部は、上記第1内面側の第1端部及び上記第2内面側の第2端部を有し、
 上記厚さ方向から見て、上記第1端部の内壁が囲う領域の断面積が、上記第2端部の内壁が囲う領域の断面積よりも小さい、<14>に記載の熱拡散デバイス。
<15>
The convex portion has a first end on the first inner surface side and a second end on the second inner surface side,
The heat diffusion device according to <14>, wherein the cross-sectional area of the region surrounded by the inner wall of the first end is smaller than the cross-sectional area of the region surrounded by the inner wall of the second end, when viewed from the thickness direction.
<16>
 上記厚さ方向から見たときに、上記ウィックは、上記筐体の上記内部空間の全体にわたって配置されている、<1>~<15>のいずれか1つに記載の熱拡散デバイス。
<16>
The heat diffusion device according to any one of <1> to <15>, wherein the wick is disposed throughout the internal space of the housing when viewed from the thickness direction.
<17>
 上記厚さ方向から見たときに、上記ウィックは、上記筐体の上記内部空間の全体にわたって配置され、
 上記内部空間は、上記厚さ方向から見たときに上記ウィックが配置されている領域と、上記ウィックが配置されていない領域を有し、
 上記ウィックが配置されていない領域は、上記厚さ方向から見たときに線状に延びている、<1>~<15>のいずれか1つに記載の熱拡散デバイス。
<17>
When viewed from the thickness direction, the wick is arranged throughout the internal space of the housing,
The internal space has a region where the wick is arranged and a region where the wick is not arranged when viewed from the thickness direction,
The heat diffusion device according to any one of <1> to <15>, wherein the region where the wick is not arranged extends linearly when viewed from the thickness direction.
<18>
 上記厚さ方向から見たときに、上記ウィックは、上記筐体の上記内部空間の外周に沿って配置されている、<1>~<15>のいずれか1つに記載の熱拡散デバイス。
<18>
The heat diffusion device according to any one of <1> to <15>, wherein the wick is arranged along the outer periphery of the internal space of the housing when viewed from the thickness direction.
<19>
 <1>~<18>のいずれか1つに記載の熱拡散デバイスを備える、電子機器。
<19>
An electronic device comprising the heat diffusion device according to any one of <1> to <18>.
 本発明の熱拡散デバイスは、携帯情報端末等の分野において、広範な用途に使用できる。例えば、CPU等の熱源の温度を下げ、電子機器の使用時間を延ばすために使用することができ、スマートフォン、タブレット端末、ノートパソコン等に使用することができる。 The heat diffusion device of the present invention can be used for a wide range of applications in the field of mobile information terminals and the like. For example, it can be used to lower the temperature of a heat source such as a CPU and extend the usage time of electronic devices, and can be used for smartphones, tablet terminals, notebook computers, etc.
 1、1A、1B、1C、1D ベーパーチャンバー(熱拡散デバイス)
 10 筐体
 11 第1シート
 11a 第1内面
 12 第2シート
 12a 第2内面
 13 接合部
 20 作動媒体
 30、30A、30B、30C、30D、30E、30F ウィック
 31 支持体
 32 有孔体
 33 貫通孔
 34、34a、34b、34c、34d、34e、34f、34g、34h、34i、34j、34k 凸部
 35、35a、35b、35c、35d、35e、35f、35g、35h、35i、35j、35k 第1端部
 36、36a、36b、36c、36d、36e、36f、36g、36h、36i、36j、36k 第2端部
 37 蓋部
 40 支柱
 HS 熱源
 EP 蒸発部
 P31 支持体の中心間距離
 P33 貫通孔の中心間距離
 T31 支持体の高さ
 T32 有孔体の厚さ
 W31 支持体の幅
 X 幅方向
 Y 長さ方向
 Z 厚さ方向
 A ウィックの遠端と筐体の内縁との距離
 B ウィックの縁端の曲げ高さ
 C ウィックの縁端の曲げ幅
 φ33 貫通孔の径

 
1, 1A, 1B, 1C, 1D Vapor chamber (thermal diffusion device)
10 Housing 11 First sheet 11a First inner surface 12 Second sheet 12a Second inner surface 13 Joint portion 20 Working medium 30, 30A, 30B, 30C, 30D, 30E, 30F Wick 31 Support body 32 Porous body 33 Through hole 34 , 34a, 34b, 34c, 34d, 34e, 34f, 34g, 34h, 34i, 34j, 34k Convex portion 35, 35a, 35b, 35c, 35d, 35e, 35f, 35g, 35h, 35i, 35j, 35k First end Parts 36, 36a, 36b, 36c, 36d, 36e, 36f, 36g, 36h, 36i, 36j, 36k Second end part 37 Lid part 40 Pillar HS Heat source EP Evaporation part P 31 Distance between centers of support P 33 Through hole Distance between centers T 31 Height of support T 32 Thickness of porous body W 31 Width of support X Width direction Y Length direction Z Thickness direction A Distance between the far end of the wick and the inner edge of the casing B Bending height of wick edge C Bending width of wick edge φ Diameter of 33 through hole

Claims (19)

  1.  厚さ方向に対向する第1内面及び第2内面を有する筐体と、
     前記筐体の内部空間に封入される作動媒体と、
     前記筐体の前記内部空間に配置されるウィックと、を備え、
     前記ウィックは、前記第1内面に接する支持体と、前記支持体に接する有孔体と、を含み、
     前記ウィックの縁端は、前記第1内面側に向かって近接するように曲がっている熱拡散デバイス。
    a casing having a first inner surface and a second inner surface facing each other in the thickness direction;
    a working medium sealed in the internal space of the housing;
    a wick disposed in the internal space of the housing,
    The wick includes a support in contact with the first inner surface and a perforated body in contact with the support,
    The edge of the wick is curved toward the first inner surface.
  2.  前記厚さ方向に沿った断面において、前記ウィックの縁端と前記筐体の内縁との間には、前記厚さ方向に垂直な方向に隙間が存在する、請求項1に記載の熱拡散デバイス。 The heat diffusion device according to claim 1, wherein in a cross section along the thickness direction, a gap exists between an edge of the wick and an inner edge of the casing in a direction perpendicular to the thickness direction. .
  3.  前記筐体は、外縁部が接合され、前記厚さ方向に対向する第1シート及び第2シートから構成され、
     前記第1シートと前記第2シートとの接合部は、前記厚さ方向において、前記ウィックの縁端と異なる位置にある、請求項1又は2に記載の熱拡散デバイス。
    The casing is composed of a first sheet and a second sheet that are joined at their outer edges and that face each other in the thickness direction,
    The heat diffusion device according to claim 1 or 2, wherein a joint between the first sheet and the second sheet is located at a different position from an edge of the wick in the thickness direction.
  4.  前記筐体の前記第2内面に接するように前記内部空間に配置される支柱をさらに備え、
     前記支柱の高さは、前記支持体の高さよりも大きい、請求項1~3のいずれか1項に記載の熱拡散デバイス。
    further comprising a strut disposed in the internal space so as to be in contact with the second inner surface of the casing,
    The heat spreading device according to any one of claims 1 to 3, wherein the height of the strut is greater than the height of the support.
  5.  前記支柱の高さ方向に垂直な断面の円相当径は、前記支持体の高さ方向に垂直な断面の円相当径よりも大きい、請求項4に記載の熱拡散デバイス。 The heat diffusion device according to claim 4, wherein the equivalent circle diameter of a cross section perpendicular to the height direction of the support is larger than the equivalent circle diameter of a cross section perpendicular to the height direction of the support.
  6.  互いに隣接する前記支柱同士の中心間距離は、互いに隣接する前記支持体同士の中心間距離よりも大きい、請求項4又は5に記載の熱拡散デバイス。 The heat diffusion device according to claim 4 or 5, wherein the center-to-center distance between the mutually adjacent support columns is larger than the center-to-center distance between the mutually adjacent supports.
  7.  前記有孔体は、前記支持体と同じ材料から構成される、請求項1~6のいずれか1項に記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 1 to 6, wherein the porous body is made of the same material as the support body.
  8.  前記有孔体及び前記支持体が多孔質体から構成される、請求項7に記載の熱拡散デバイス。 The heat diffusion device according to claim 7, wherein the porous body and the support body are composed of a porous body.
  9.  前記有孔体は、前記支持体とは異なる材料から構成される、請求項1~6のいずれか1項に記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 1 to 6, wherein the porous body is made of a different material from the support body.
  10.  前記有孔体が多孔質体から構成される、請求項9に記載の熱拡散デバイス。 The heat diffusion device according to claim 9, wherein the porous body is composed of a porous body.
  11.  前記支持体の厚さが前記有孔体の厚さと同じであるか、又は、前記有孔体の厚さより小さい、請求項1~10のいずれか1項に記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 1 to 10, wherein the thickness of the support is the same as the thickness of the porous body or smaller than the thickness of the porous body.
  12.  前記有孔体は前記厚さ方向に貫通する貫通孔を有し、
     前記貫通孔の周縁には、前記第2内面に近接する方向に凸部が設けられている、請求項1~11のいずれか1項に記載の熱拡散デバイス。
    The porous body has a through hole penetrating in the thickness direction,
    The heat diffusion device according to any one of claims 1 to 11, wherein a convex portion is provided on a peripheral edge of the through hole in a direction approaching the second inner surface.
  13.  前記凸部は、前記第1内面側の第1端部及び前記第2内面側の第2端部を有し、
     前記厚さ方向から見て、前記第2端部の内壁が囲う領域の断面積が、前記第1端部の内壁が囲う領域の断面積よりも小さい、請求項12に記載の熱拡散デバイス。
    The convex portion has a first end on the first inner surface side and a second end on the second inner surface side,
    The heat diffusion device according to claim 12, wherein a cross-sectional area of a region surrounded by an inner wall of the second end is smaller than a cross-sectional area of a region surrounded by an inner wall of the first end when viewed from the thickness direction.
  14.  前記有孔体は前記厚さ方向に貫通する貫通孔を有し、
     前記貫通孔の周縁には、前記第1内面に近接する方向に凸部が設けられている、請求項1~11のいずれか1項に記載の熱拡散デバイス。
    The porous body has a through hole penetrating in the thickness direction,
    The heat diffusion device according to any one of claims 1 to 11, wherein a convex portion is provided on a peripheral edge of the through hole in a direction proximate to the first inner surface.
  15.  前記凸部は、前記第1内面側の第1端部及び前記第2内面側の第2端部を有し、
     前記厚さ方向から見て、前記第1端部の内壁が囲う領域の断面積が、前記第2端部の内壁が囲う領域の断面積よりも小さい、請求項14に記載の熱拡散デバイス。
    The convex portion has a first end on the first inner surface side and a second end on the second inner surface side,
    The heat diffusion device according to claim 14, wherein a cross-sectional area of a region surrounded by an inner wall of the first end is smaller than a cross-sectional area of a region surrounded by an inner wall of the second end when viewed from the thickness direction.
  16.  前記厚さ方向から見たときに、前記ウィックは、前記筐体の前記内部空間の全体にわたって配置されている、請求項1~15のいずれか1項に記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 1 to 15, wherein the wick is arranged throughout the internal space of the housing when viewed from the thickness direction.
  17.  前記厚さ方向から見たときに、前記ウィックは、前記筐体の前記内部空間の全体にわたって配置され、
     前記内部空間は、前記厚さ方向から見たときに前記ウィックが配置されている領域と、前記ウィックが配置されていない領域を有し、
     前記ウィックが配置されていない領域は、前記厚さ方向から見たときに線状に延びている、請求項1~15のいずれか1項に記載の熱拡散デバイス。
    When viewed from the thickness direction, the wick is arranged throughout the internal space of the housing,
    The internal space has a region where the wick is arranged and a region where the wick is not arranged when viewed from the thickness direction,
    The heat diffusion device according to any one of claims 1 to 15, wherein the region where the wick is not arranged extends linearly when viewed from the thickness direction.
  18.  前記厚さ方向から見たときに、前記ウィックは、前記筐体の前記内部空間の外周に沿って配置されている、請求項1~15のいずれか1項に記載の熱拡散デバイス。 The heat diffusion device according to any one of claims 1 to 15, wherein the wick is arranged along the outer periphery of the internal space of the housing when viewed from the thickness direction.
  19.  請求項1~18のいずれか1項に記載の熱拡散デバイスを備える、電子機器。

     
    An electronic device comprising the heat diffusion device according to any one of claims 1 to 18.

PCT/JP2023/018557 2022-06-08 2023-05-18 Heat diffusion device and electronic appliance WO2023238626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022093080 2022-06-08
JP2022-093080 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023238626A1 true WO2023238626A1 (en) 2023-12-14

Family

ID=89118195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018557 WO2023238626A1 (en) 2022-06-08 2023-05-18 Heat diffusion device and electronic appliance

Country Status (3)

Country Link
CN (1) CN220776319U (en)
TW (1) TW202403256A (en)
WO (1) WO2023238626A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168359A1 (en) * 2010-01-08 2011-07-14 Cooler Master Co., Ltd. Heat-dissipating plate
JP2019113270A (en) * 2017-12-25 2019-07-11 株式会社フジクラ Heat radiation module
US20200182557A1 (en) * 2018-12-11 2020-06-11 Kelvin Thermal Technologies, Inc. Vapor chamber
US20210293488A1 (en) * 2020-03-18 2021-09-23 Kelvin Thermal Technologies, Inc. Deformed Mesh Thermal Ground Plane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168359A1 (en) * 2010-01-08 2011-07-14 Cooler Master Co., Ltd. Heat-dissipating plate
JP2019113270A (en) * 2017-12-25 2019-07-11 株式会社フジクラ Heat radiation module
US20200182557A1 (en) * 2018-12-11 2020-06-11 Kelvin Thermal Technologies, Inc. Vapor chamber
US20210293488A1 (en) * 2020-03-18 2021-09-23 Kelvin Thermal Technologies, Inc. Deformed Mesh Thermal Ground Plane

Also Published As

Publication number Publication date
CN220776319U (en) 2024-04-12
TW202403256A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
US10973151B2 (en) Vapor chamber
CN111712682B (en) Vapor chamber
JP6702524B1 (en) Vapor chamber
US11346617B2 (en) Wick structure and heat pipe accommodating wick structure
US11445636B2 (en) Vapor chamber, heatsink device, and electronic device
JP2020193715A (en) Vapor chamber
TWI827944B (en) Steam chamber and electronic equipment
WO2023238626A1 (en) Heat diffusion device and electronic appliance
JP7111266B2 (en) vapor chamber
WO2023238625A1 (en) Heat spreading device and electronic apparatus
JP2021143809A (en) Vapor chamber and electronic device
WO2024018846A1 (en) Heat diffusing device, and electronic apparatus
WO2023145396A1 (en) Thermal diffusion device and electronic apparatus
WO2023145397A1 (en) Thermal diffusion device and electronic apparatus
WO2023026896A1 (en) Thermal diffusion device
WO2023090265A1 (en) Thermal diffusion device
JP7222448B2 (en) heat spreading device
JP7120494B1 (en) heat spreading device
JP7311057B2 (en) Heat spreading devices and electronics
JP7260062B2 (en) heat spreading device
WO2023058595A1 (en) Thermal diffusion device
WO2024075631A1 (en) Thermal diffusion device and electronic apparatus
WO2023182029A1 (en) Heat diffusing device, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819610

Country of ref document: EP

Kind code of ref document: A1